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1 Introduction

We are going to work p-locally, i.e. fix a prime p and work over a “field” in which all other
primes are invertible. In algebra, this means that we are working in a characteristic 0 field
or a field extension of Fp.

Last time we introduced the notion of a cohomological field. Now the notion of work
p-locally becomes a little more complicated. There are Morava K-theories which can be
thought of as “intermediate fields” interpolating between characteristic 0 and characteristic
p.

Question. What happens to the representation theory of finite groups over intermediate
fields?

1.1 (Classical) representation Theory of finite groups

Let G be a finite group and k a field. What does the representation theory of G look like
over k?

Characteristic zero. We have complete reducibility, which can be described by the equiva-
lent statements:

• Every representation is a direct sum of irreducibles.

• Every exact sequence of representations splits.

In particular, for any V the subspace of invariants VG is a direct summand of V . Although
this is a special case of completely reducibility, it’s not hard to show that it also implies
complete reducibility.

Proof. We introduce also the co-invariants VG = V/(gv− v), which is the maximal quotient
of V with trivial G-action. So we have

VG ↪→ V � VG.
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In particular, the composition is a map from VG to VG. If we want to split off VG, it would
suffice to show that this composite is an isomorphism.

You can show this by writing down a map in the other direction, involving averaging:

v 7→
∑
g∈G

g · v.

A priori this is a map V → V , but it is easily shown to factor through VG. Dually, it factors
through VG:

V � VG
NG
−−→ VG ↪→ V.

The composition in either direction is multiplication by |G| , 0, which is where we use
characteristic 0. �

We highlight:

Phenomenon: In characteristic 0, the coinvariants and invariants are isomorphic.

Characteristic p. If |G| is coprime to p, then everything is the same. However, the argument
falls apart if |G| is divisible by p and complete reducibilty fails.

In fact let’s consider an extreme: suppose |G| is a power of p. Then complete reducibil-
ity fails badly, but we get the consolation prize of unipotence.

• Every irreducible representation of G is trivial.

• V , 0 =⇒ VG , 0.

Therefore, every representation can be formed by extensions of trivial representations.
So if G is a p-group, we get a dichotomy:

Characteristic 0 Characteristic p
Complete reducibilty Unipotence
Irreducibles interesting Irreducibles trivial
Extensions trivial Extensions interesting

2 Local systems

First I want to recast the notion of a representation. Fix a field k.

Definition 2.1. A local system L of k-vector space on X assigns:

• To each x ∈ X a k-vector space Lx.

• For each path p : [0, 1]→ X from x = p(0) to y = p(1) an isomorphismLp : Lx � Ly

(thought of as “parallel transport along p”)
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• For every two-simplix ∆2 → X

y
q

��
x

p
@@

r // z

we require Lr = Lq ◦ Lp.

This says two things simultaneously. First, that Lp depends only on the homotopy
class of p. Second, that the isomorphism associated to a composite of paths is ob-
tained by composing the isomorphisms of the individual paths (some kind of functo-
riality).

If X is connected, then a local system on X is the same as a representation of π1X.

2.1 Local systems of K(n)-modules

Now I want to go to homotopy theory and talk about local systems of K(n)-modules on a
space X, i.e. spectra (or cohomology theories) equipped with an action of K(n).

Definition 2.2. A local system of K(n)-modules consists of:

• To each x ∈ X a K(n)-module spectrum Lx.

• To each path p : [0, 1]→ X from x = p(0) to y = p(1) an isomorphism Lp : Lx � Ly

(thought of as “parallel transport along p”)

• For every two-simplex ∆2 → X

y
q

��
x

p
@@

r // z

a homotopy Lr � Lq ◦ Lp.

In homotopy theory, it’s not natural to demand equality. Instead, we demand a homo-
topy, and this should be supplied as part of the data of a local system of K(n)-modules.

• Analogous data for simplices of all dimensions.

Warning: this does not depend only on π1X. This notion potentially sees the entire
homotopy type of X. The topological space X serves as a replacement for the finite group
G.

Classically, local systems on X are representations of π1(X). We need some finiteness
conditions, which strengthen the notion of finite fundamental group.

Definition 2.3. A space X is π-finite if:
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• the set π0(X) is finite

• each homotopy group πn(X, x) is finite

• the groups πn(X, x) vanish for n � 0 (so there are only finitely many non-zero such).

We say that X is p-finite if it satisfies all of these and also all the non-zero homotopy groups
are p-groups.

Example 2.4. If G is finite, then BG is π-finite.
If G is a finite p-group, then BG is p-finite.
Local systems on BG are the same as “representations of G.” This is literally true for

local systems of vector spaces, but for local systems of K(n) modules it is a definition.

We’re going to talk about local systems on general π (or p) finite groups. There are at
least two reasons for this level of generality. First, the general story works out well so we
may as well tell it. Second, some features would be obscured if we restricted ourselves to
BG.

Representations Local Systems
Finite group G Space X
Representations V Local system L
Invariants VG C∗(X;L) := lim

←−−x∈X
Lx (i.e. global sections)

Coinvariants C∗(X;L) := lim
−−→x∈X

Lx

This limit here is over all points and paths.

3 Norm Isomorphisms

Theorem 3.1 (Hopkins-Lurie). Let X be a π-finite space and L a local system of K(n)-
modules on X. There is a canonical norm isomorphism

NX : C∗(X;L)
∼
−→ C∗(X;L).

This should surprise you. This was a feature of characteristic 0, which worked out
because you could divide by the order of the group. However, over K(n) of a point, p = 0
so you can’t “divide by the order of the group.” But this is telling you that in some sense
K(n) is like working in characteristic 0.

This is pretty abstract, so let’s spell out what it tells you in some special cases.

Example 3.2. If L is the trivial local system, then K(n)∗X is like the homology of X with
coefficients in K(n) and K(n)∗X is the cohomology, so the isomorphism

K(n)∗X
∼
−→ K(n)∗X

is like Poincaré duality. In particular, K(n)0X is canonically self-dual.
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Example 3.3. K(1) = K/p. For BG, this is related to the representation theory of G. Let
G be a finite p-group and Rep(G) its representation ring. Then there is a non-degenerate
bilinear form

b : Rep(G) ⊗ Rep(G)→ Z

given by

(V,W) 7→ dimCHom(V,W) =
1
|G|

∑
g∈G

χV (g)χW(g). (1)

The Atiyah-Segal completion theorem gives an isomorphism

K(1)0B � Rep(G) ⊗ Fp.

The form b gives an identification of K(1)0BG with its dual (over Fp).
The Theorem 3.1 is the driving force for all the results I’ll discuss.

Sketch of proof. You build the norm map in such a way that it has nice naturality properties.
That lets you run a devissage to a few elemental cases.

One is the case where X is an Eilenberg-MacLane space and L is trivial. In this case,
you can think of the norm map as a bilinear form on the homology. You need to show that
this is non-degenerate. The way that goes is sort of mimicking the known argument by
“lifting to characteristic 0,” at which point you can write down a formula. It looks like the
rightmost expression in (1).

It’s clear that it’s non-degenerate rationally but not integrally, and in fact it’s not even
clearly well-defined integrally. You have to find an interpretation like the middle expression
of (1). �

Let X be any space. The construction L 7→ C∗(X;L) commutes with inverse lmits
because it is an inverse limit. But it doesn’t usually commute with direct limits, since
inverse limits don’t need to play well with direct limits.

Corollary 3.4. If X is π-finite, then the two constructions are the same so they both commute
with both types of limits.

Definition 3.5. A local system L of K(n)-modules on a space X is unipotent if it can be
built from constant local systems using direct limits.

This looks different from the usual notion, because you usually build unipotent things
with extensions. But local systems are a triangulated category, and extensions are replaced
with cones, so this subsumes extensions.

Corollary 3.6. If X is π-finite then every lcoal system can be written as an extension

Lunip → L → T

where C∗(X;T ) = 0.

Sketch. Take Lunip to be the direct limit of all constant local systems wiht a map to L. You
need to show that T has no global sections, and for that you need to know if global sections
commutes with limits. �
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4 Phenomena

4.1 Unipotence

Theorem 4.1 (Hopkins-Lurie). Let X be a p-finite space and assume that πmX � 0 for
m > n. Then every local system of K(n)-modules on X is unipotent.

Example 4.2. In particular, if G is a finite p-group then every representation of G (on a
K(n)-module) is unipotent.

This is saying that for p-finite spaces, working over Morava k-theories is like working
in characateristic p.

4.2 Complete reducibility

What if the homotopy groups are not concentrated in degree ≤ n? Then you get a kind of
“complete reducibility. ”

Theorem 4.3. Let X be a π-finite space. Assume that |πmX| is not divisible by p for m ≤ n.
Then

• Every unipotent local system on X is constant.

• For every local system L on X, the extension

Lunip → L → K

splits (breaks off into invariant piece and a piece with no invariatns).

Remark 4.4. If πmX � 0 for m ≤ n + 1, then any local system of K(n)-modules on X is
constant. This says that really the only thing that matters in degree n + 1, and everything
above is not that relevant.

4.3 Summary

What is this saying? For local systems of K(n)-modules on a p-finite space X:

• There is a “unipotent regime” if the homotopy groups are concentrated in degree up
to n,

• There is a “complete reducibility regime” if the homotopy groups are concentrated in
degree n + 1,

• If the homotopy groups are concentrated above degree n+1 then everything is trivial.

So there is a sort of “phase transition.” It depends on where the homotopy groups are
concentrated. Notice that this is why it was so important not merely to study spaces BG.

The larger n is, the more unipotence (characteristic p) we see, and the “closer” we are to
being in characteristic p. The above result is a quantitative articulation of this philosophy.
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