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Let k be a field of characteristic 0. Previously we had discussed the notion of factorization
algebra on a smooth algebraic curve X. This was a sequence of quasicoherent sheaves on
powers of X. In particular, for each x ∈ X, we get a vector space Ax on X. The idea we
want to articulate in this talk is that Ax depends only on X̂x = Spf(k[[t]]), and not on the
global structure of X.

1. Strictly positive part of the Virasoro algebra

1.1. Automorphisms of the disk.

Definition 1.1. Let R be a commutative ring. The standard formal disk over R is D̂R :=
Spf R[[x]]. There is an obvious zero section Spec R→ Spf R[[x]].

We will study the group of automorphisms of D̂ := Spf k[[x]] which fix the basepoint.

Definition 1.2. Let Aut∗(D̂) be the automorphism group of D̂ as a pointed formal scheme.
This is the group scheme with R-valued points being automorphisms of Spf(R[[x]]) preserv-
ing the locus where x = 0, as a formal scheme over R.

What does Aut∗(D̂) look like? An automorphism of Spf(R[[x]]) is (tautologically) the
same as an automorphism of R[[x]] which preserves the topology, but that is automatic
under the additional condition that it preserves the ideal (x).

Any such automorphism has the form x 7→ f(x) =
∑
anx

n ∈ R[[x]]. The condition that
it preserves (x), and is an automorphism, is equivalent to a0 = 0 and a1 ∈ R×. So

Aut∗(D̂)(R) =
{∑

anx
n : a0 = 0, a1 ∈ R×

}
.

Hence Aut∗(D̂) = Spec (k[a±1 , a2, a3, . . .]). This is a pro-algebraic group over k.
1
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What is the structure of Aut∗(D̂)? We have a map

Aut∗(D̂) � Gm

sending f(x) 7→ ∂f
∂x |x=0 = a1.

The kernel is a pro-unipotent group scheme that we’ll call U . It has a filtration with
subquotients being Ga. So all in all, we have an extension

1→ U︸︷︷︸
pro-unipotent

→ Aut∗(D̂)→ Gm → 1.

1.2. Lie algebra. Recall that we are in characteristic 0. Let’s consider Lie(Aut∗(D̂)). By
definition, this is

Lie(Aut∗(D̂)) := ker(Aut∗(D̂)(k[ε]/(ε2))→ Aut∗(D̂)(k)).

We will call this Vir++, for “strictly positive part of the Virasoro algebra”. This is an inverse
limit of Lie algebras. Informally, it is “vector fields on D̂ which vanish at the origin”. Such
a vector field can be written as a formal expression∑

n>0

bnx
n ∂

∂x
.

So Vir++ has a topological basis given by vector fields {Ln = −xn+1 ∂
∂x}n≥0. (This is

“half” the Virasoro algebra.)

Exercise 1.3. Show that the Lie bracket on Vir++ is given by [Lm, Ln] = (m− n)Lm+n.

Because we’re in characteristic 0, there is a fully faithfully embedding from continuous
representations of Aut∗(D̂) to continuous representations of Vir++. Let’s explicate what
this means. Continuity for a representation of Vir++ means that

(A) For all v ∈ V , Lmv = 0 for m� 0.
What representations are we missing? We had an exact sequence.

0→ U → Aut∗(D̂)→ Gm → 0.

Hence at the level of Lie algebras, we get an exact sequence

0→ 〈L1, L2, . . .〉 → Vir++ → 〈L0〉 → 0.

We have a splitting Autx(D̂) = Gm o U . That gives a splitting Vir++ = 〈L0, L1, L2, . . .〉.
The essential image of Rep Aut∗(D̂) → Rep Vir++ are the “integrable” representations.

For Gm, this means
(C) The action of L0 is diagonalizable with integer eigenvalues.
For Ln, it means
(B) Each Ln acts locally nilpotently for n > 0.
If V is an integrable representation, then V =

⊕
n∈Z Vn with L0 acting by n on Vn.

Recalling that [L0, Ln] = −nLn, this implies that Ln carries each Vi into Vi−n.

V−2 V−1 V0 V1 V2
L1 L1

L2

L1

L2

L1

L2

Remark 1.4. Conditions (A) and (B) are automatic if Vn = 0 for n << 0 (but not
conversely), which is a condition that often arises in practice.
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Example 1.5. Let’s classify irreducible integrable representations of Vir++. Any irreducible
representation is semisimple, hence restricts to a semisimple representation on the pro-
unipotent radical. Hence it is trivial. So the irreducible representations of Vir++ are all
inflated from Gm.

1.3. Moving disks.

Definition 1.6. Let R be a k-algebra. A (pointed) formal disk over R is a formal R-
scheme X with a point η : Spec (R) → X which is (Zariski/étale/fpqc) locally isomorphic
to (Spf R[[x]], zero section).

Every such object has the form Spf(
∏

n≥0 L
⊗n), where L is an invertible R-module.

Geometrically, L corresponds to some line bundle L−1 → Spec R, and the pointed formal
disk is the formal completion along a section.

In other words, a pointed formal disk over Spec R is an Autx(D̂)-torsor over Spec R,
which is classified by H1

ét(Spec R,Autx(D̂)). Note that we get the same notion for any of
the usual topologies, using the structure of Autx(D̂) as an extension of Gm’s and Ga’s and
the corresponding fact for those groups.

2. Localization from Rep(Vir++) to universal quasicoherent sheaves

Let X be an algebraic curve over k. Take the formal completion of X ×k X along the
diagonal divisor X ↪→ X ×k X, and call it X .

The projections give this the structure

X

X X

making X a formal disk over X, pointed by the diagonal section.
This construction supplies an Aut∗(D̂)-torsor over the curve X. Twisting by this torsor

gives a (“localization”) functor Rep(Aut∗(D̂)) → QCoh(X). It is in fact a tensor functor,
and the tensor functor allows to recover the torsor.

The category Rep(Aut∗(D̂)) has nothing to do with X. So it deserves to be thought of
as “the quasicoherent sheaves which live naturally on all X’s”.

Example 2.1. Take k, thought of as the trivial representation of Aut∗(D̂). It is the unit,
so its image is OX .

Example 2.2. Let k be the irreducible (hence 1-dimensional) representation of Aut∗(D̂)
where L0 acts by n. This is sent to Ω⊗−nX .

Example 2.3. Let V be the 2-dimensional representation

0 0 0 V0 V1 0 0 0

L1x x

L1

L1

This gives a quasicoherent sheaf on X. It is an extension 0 → OX →? → TX → 0. We
claim that the extension is D≤1

X as a right OX -module. (Note that it splits canonically as a
left OX -module.)
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These examples fit with the philosophy that the image of localization are quasicoherent
sheaves that one can write down canonically on any curve.

Exercise 2.4. There is a representation

0 0 V−1 0 V1 0 0 0

L2x x

L2

L2

What quasicoherent sheaf does it correspond to?

2.1. Summary and what’s next. We introduced Vir++, the topological Lie algebra gen-
erated by {Ln}n≥0. We saw that integrable representations of Vir+ correspond to “quasico-
herent sheaves that live naturally on any algebraic curve”.

We are eventually going to introduce an object which will similarly correspond to “fac-
torization algebras that live naturally on any curve”.

Recall that for a unital factorization algebra, the underlying quasicoherent sheaf has a
connection. We will first write down the thing which corresponds to “vector bundles with
connection (i.e. D-modules) that live naturally on any curve”.

3. Positive part of the Virasoro algebra

We will proceed as before, but now without the basepoint.
We consider Aut(D̂) ⊃ Aut∗(D̂). We have Aut(D̂)(R) are automorphisms of Spf(R[[x]])

as a formal scheme, i.e. continuous automorphisms of R[[x]]. These are given by a power
series f(x) =

∑
anx

n, such that a0 is nilpotent (continuity), and a1 ∈ R× (automorphism).

Warning 3.1. Aut(D̂) is not a scheme. But it is a formal scheme. We have Aut(D̂) =
Spf(k[a±1

1 , a2, . . .][[a0]]). More precisely, it is an affine formal group scheme.

Again we can think about the Lie algebra of Aut(D̂). It is

Vir+ := Lie(Aut(D̂)) = ker(Aut(D̂)(k[ε]/ε2)→ Aut(D̂)(k)).

Intuitively, these are all vector fields on D̂ (not just the ones vanishing at the origin). These
are expressions of the form

∑
n≥0 bnx

n ∂
∂xn .

Now, Vir+ has a topological basis given by {Ln = −xn+1 ∂
∂x}n≥−1. The Lie bracket is

given by [Lm, Ln] = (m−n)Lm+n. Note although there is now an L−1, the bracket doesn’t
allow to generate L−2.

As in the previous hour, we can consider representations of Aut(D̂). These are the
integrable representations of Vir+. This is the same as integrable representations of Vir++.

(A) For all v ∈ V , Lmv = 0 for m� 0.
(B) Each Ln acts locally nilpotently for n > 0.
(C) The action of L0 is diagonalizable with integer eigenvalues.
Note that we are not imposing any condition on L−1.

V−2 V−1 V0 V1 V2

L−1

L1

L−1

L1

L2

L−1

L1

L2

L−1

L1

L2

What do representations look like?
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Example 3.2. Let the trivial representation k of Vir++ extends to the trivial representa-
tion of Vir+. However, none of the other irreducible representations of Vir++ extend to a
representation of Vir+.

Example 3.3. Consider induced representations V ⊗U(Vir++) U(Vir+). As a vector space,
they are V ⊕ L−1V ⊕ L2

−1V ⊕ . . ..

4. Localization from Rep(Vir+) to universal D-modules

Definition 4.1. A formal disk over R is a formal R-scheme which is locally isomorphic to
Spf(R[[x]]). If k has characteristic 0, then it doesn’t matter which topology we mean here.
But if k has characteristic p, then it might matter.

Example 4.2. Suppose k has characteristic p, and t ∈ k has no pth root. We have
Spf(k̂[x](xp−t)). Then fpqc locally it is a formal disk, but Zariski locally it is not (as the
residue field got enlarged).

Since we are in characteristic 0, we can ignore these subtleties. Formal disks over R are
equivalent to Aut(D̂)-torsors over Spec R.

Example 4.3. Let X be an algebraic curve. Let X be the formal completion of X × X
along the diagonal. Either projection map to X gives X the structure of a formal disk over
X.

Definition 4.4 (Simpson-Teleman/Grothendieck). Let X be a smooth k-scheme. The de
Rham space XdR of X is the functor R 7→ X(Rred). This is a surjection if X is smooth.

If X is smooth, we have X → XdR. The formal disk X → X is the pullback of an object
over XdR.

X X

X XdR

Lemma 4.5. “X is a formal disk over XdR”.

What does this mean precisely? Given an R-valued point of XdR, we can form X ×XdR

Spec R. Claim: it is representable by a formal disk over R. Proof: by smoothness Spec R→
XdR lifts toX, i.e. Spec R→ XdR factors throughX. SoX×XdR

Spec R = (X ×XdR
X︸ ︷︷ ︸

X

)×X

Spec R.
So X � XdR can be viewed as an Aut(D̂)-torsor over XdR. We thus have a localiza-

tion functor from representations of Aut(D̂) to quasicoherent sheaves on XdR, which is
Grothendieck’s conception of quasicoherent sheaves on X equipped with a (flat) connection.

Heuristic: integrable representations of Vir+ are “D-modules that live functorially on any
curve”.

Example 4.6. Let k have trivial Vir+-action. This gives OX with the usual connection.

Example 4.7. Let V be an integrable representation of Vir++. What D-module corre-
sponds to W = Ind

Vir+
Vir++

(V )? We have quasicoherent sheaves EV and EW , where now EW
has a connection. There is a map V → W as representions of Vir++, so we have an OX -
module map EV → EW . So we have a map of DX -modules DX ⊗OX

EV → EW . We claim
that it is an isomorphism.
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We define a filtration W = W≤n = V ⊕ L−1V ⊕ L2
1V ⊕ . . .⊕ Ln

−1V . We have

0→W≤n−1 →W≤n → Ln
−1V → 0.

This is an exact sequence of Vir++-representations. We claim that it localizes to

0→ D≤n−1
X ⊗OX

EV → D≤nX ⊗OX
EV → T⊗nX ⊗OX

EV → 0

This will help to check the claim in Example 4.7.

Example 4.8. Let X = A1. Note that by functoriality, V 7→ EV produces translation-
invariant O-modules on A1 and translation-invariant D-modules on A1.

Indeed, the formal completion (A1 × A1)∧∆ is the standard formal disk on A1. We have
A1×A1 = Spec k[x, y] = Spec k[x, y−x]. So we can write this as Spf(k[x][[y−x]]), and notice
that this is translation invariant on A1 (translating x, y both by δ doesn’t do anything).

So there is a functor from representations of Vir++ to quasicoherent sheaves on A1, send-
ing V 7→ V ⊗k OX . That is, this construction produces translation invariant quasicoherent
sheaves on A1, which is identified with Vect (the category of vector spaces). In this case the
localization is the forgetful functor.

Representations of Vir+ produce translation-invariant D-modules on A1. This is equiv-
alent to the category of k-vector spaces with an endomorphism T . As an O-modules, it is
V ⊗OX . The operator L−1 is T .

4.1. Summary and what’s next. We discussed that representations of Aut∗(D̂) are con-
tinuous integrable reps of Vir++, which can be interpreted as “quasicoherent sheaves living
on every algeraic curve X”, e.g. X 7→ ω⊗nX .

We discussed that reps of Aut(D̂) are continuous integrable reps of Vir+, which can be
interpreted as “D-modules living on every algebraic curve X”, e.g. X 7→ DX .

What if we want representations of something which can be interpreted as “factorization
algebras living on every curve”?

5. Formal multidisks

Definition 5.1. Let R be a C-algebra. A formal multidisk over R is a formal R-scheme X
which looks (locally) like the formal completion of A1

R = Spec R[x] along a divisor which is
finite flat over R.

Example 5.2. We could have replaced A1 by any smooth algebraic curve. If X is any
smooth curve, D ⊂ X × Spec R a divisor, X̂D is a formal multidisk over R.

In particular, any formal disk Spf R[[x]] is a formal multidisk, as it is such a formal
completion along a section. Any disjoint union of formal multidisks is a formal multidisk.

If R = C, then all formal multidisks are disjoint unions of Spf C[[x]]. In general, a formal
disk over Spec R is a family of such objects, but the point is that the number of connected
components is not constant.
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Definition 5.3. Let I be a finite set. Then an I-pointed formal multidisk (over R) is a pair
(X , f) where X is a formal multidisk over R, and f : I → X (R) such that∐

I

Spec R→ X

is set-theoretically surjective.

Example 5.4. Let X be a smooth algebraic curve (over C). Let f : I → X(R) and X be
the formal completion of X×Spec R along D =

∑
i∈I Im (f(i)). This is an I-pointed formal

multidisk.

Definition 5.5. Let MDiskI be the “moduli stack of I-pointed formal multidisks”, so
MDiskI(R) is the groupoid of I-pointed formal multidisks over R.

Let X be a non-empty algebraic curve over C. The previous construction gives a map
XI → MDiskI . The LHS is a scheme, and the RHS is a stack. We claim that this map is a
pro-smooth surjection.

Indeed, a map Spec C → MDiskI amounts to choosing (X , I → X (C)). Consider the
fibered product

Spec C

XI MDiskI
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The fiber over XI parametrizes embeddings X ↪→ X. What is this? It’s open in the space
of all maps X → X, which is some jet space, affine if X is affine, and you can write it as an
inverse limit of smooth varieties along smooth transition maps.

Example 5.6. Jets from X = Spf C[[x]] into X = A1 are parametrized by the coefficients
of the power series, so A∞. The embeddings are the subspace where the linear term is
non-zero.

So the upper horizontal arrow in the diagram below is flat surjective, affine if X is affine.

Inj(X,X ) Spec C

XI MDiskI

Definition 5.7. A flat quasi-coherent sheaf F on MDiskI is a rule which assigns to each
(X , f) ∈ MDiskI(R) a flat R-module F(X ,f) functorial in R and in (X , f).

The fact that MDiskI is close to being an algebraic stack means that the notion of quasi-
coherent sheaf is reasonably behaved.

6. Universal factorization algebras

Definition 6.1. A universal non-unital factorization algebra is a rule which associates to
every I-pointed formal multidisk X over any R a flat R-module A(X , I → X (R)) such that

(1) It is functorial in R:

A(X , I → X (R))⊗R S ∼= A(X , I → X (S)).

(2) It is functorial for isomorphisms in X : any X ∼−→ Y gives

A(X , I) ∼= A(Y, I).

(3) For every I � J → X (R), we get an isomorphism A(X , I)
∼−→ A(X , J) (i.e. A only

depends on the image of I in X (R))
(4) (Factorization) A(

∐
j∈J Xj ,

∐
j∈J Ij)

∼=
⊗

j∈J A(Xj , Ij).

Note that if X is an algebraic curve over k, any universal factorization algebra A deter-
mines a factorization AX on X, namely for f : I → X(R) we set

AXI := A((X × Spec R)∧Im (f), I).

Also, if A is a universal factorization algebra, then A determines a quasicoherent sheaf
on AI on MDiskI for all I.

Example 6.2. Note that MDisk{1} = BAut∗(D̂). So quasi-coherent sheaves on MDisk{1}

are identified with Rep(Aut∗(D̂)), i.e. integrable representations of Vir++.

Remark 6.3. Let A be an associative algebra over C and g is a Lie algebra on C. There
are two notions of “g acting on A”.

One: give a map of Lie algebra g→ Der(A). This is the infinitesimal version of a group
acting on A.

Or, you could give a map of Lie algebras g→ A, i.e. an associative algebra map U(g)→ A.
We are talking about the first type. The action of the full Virasoro algebra is like the

second type.
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7. Variants of universal factorization algebras

Now we discuss the unital versions of universal factorization algebras. Let R be a C-
algebra. Recall that a formal multidisk over R is a formal R-scheme X that looks locally
like the formal completion of A1 × Spec R along a divisor.

Definition 7.1 (Universal factorization algebra, version 1). A universal factorization alge-
bra is a rule which assigns to each C-algebra R plus a formal multidisk X/R plus a finite
set I → X (R) which is “topologically surjective” (i.e.

∐
I Spec R → X is a set-theoretic

surjection) a flat R-module AX which is
(1) functorial in R:

AX×RS
∼= S ⊗R AX

(2) factorizes:
AX ∐

Y = AX ⊗R AY .
(3) (unitality) functorial in I: suppose we have I → J → X (R). The map from J could

be surjective, but the map from I not.

Then we have a map of formal multidisks

I J

X∧Im (I) X

We ask for a map AX∧
Im (I)

→ AX , which is an isomorphism if I → J is surjective.
(4) Finally, we say that a bunch of diagrams commute.

Example 7.2. ∅ is a formal multidisk. The factorization property will imply A∅ ∼= R as a
degenerate case.

For any I, we have a map ∅ → I and a diagram

∅ I

∅(R) X (R)

This gives a section R→ AX .
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As we said, a factorization algebra with a unit is automatically equipped with a connec-
tion. How would we build a connection into this story?

Definition 7.3. Let X be a formal multidisk over R and I a finite set. A weak I-pointing
of X is a map I → X (Rred) which is “topologically surjective.” (Informally, X (Rred) is the
quotient of X (R) up to the equivalence of being “infinitesimally close”.)

In the previous lecture we introduced MDiskI(R), the category of I-pointed formal multi-
disks over Spec R. We can analogously define MDiskI

wk(R), the category of weakly I-pointed
formal multidisks over Spec R

A way to get points of MDiskI was to start with a smooth algebraic curve and formally
complete it at a divisor. This gives a map XI → MDiskI , which we argued was faithfully
flat (even pro-smooth), affine if X is affine. The diagram below is cartesian.

XI MDiskI

XI
dR MDiskI

wk

Moreover we know that XI � XI
dR is flat, by Lemma 4.5. Hence we formally deduce that

XI
dR � MDiskI

wk is faithfully flat, affine if X is affine.

Example 7.4. For I = {1}, MDiskI = BAut∗(D̂). Analogously, MDiskI
wk = BAut(D̂).

Note that Aut(D̂) is a group object in formal schemes.

Definition 7.5 (Universal factorization algebra, version 2). A universal factorization alge-
bra is a rule which assigns to each C-algebra R plus a formal multidisk X/R plus a weak
I-pointing I → X (Rred) which is “topologically surjective”, a flat R-module AX which is

(1) functorial in R:
AX×RS

∼= S ⊗R AX
(2) factorizes:

AX ∐
Y = AX ⊗R AY .

(3) (unitality) functorial in I: suppose we have I → J → X (R). The map from J could
be surjective, but the map from I not.
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Then we have a map of formal multidisks

I J

X∧Im (I) X

We ask for a map AX∧
Im (I)

→ AX , which is an isomorphism if I → J is surjective.
(4) Finally, we say that a bunch of diagrams commute.

Recall that a representation of Aut∗(D̂) gave a universal quasicoherent sheaf, and a
representation of Aut(D̂) gave a univeral D-module. A universal factorization algebra in the
second version pulls back to a D-module on XI for any curve X. Indeed, in Grothendieck’s
point of view a D-module on XI is a quasicoherent sheaf on XI

dR, and you can just pull
back to XI

dR.
Note that in the world of factorization algebras on a curve, once we talk about unital

factorization algebras it doesn’t matter whether you talk about O-modules or D-modules.
This statement has an analog here:

Lemma 7.6. Definitions 1 and 2 are equivalent.

Proof. Clearly, any universal factorization algebra A in the sense of Definition 2 determines
a universal factorization algebra in the sense of Definition 1. Conversely, we need to show
that if A is a UFA in the sense of Definition 1, it canonically promotes to a UFA in the
sense of Definition 2. Let R be a C-algebra, X a formal multidisk over R. Suppose ϕ : I →
X (Rred) is topologically surjective. We want a flat R-module AX ,I . Since X is smooth,
X (R) � X (Rred). So we can refine the weak I-pointing to an I-pointing. That is, we can
find some ϕ̃ : I → X (Rred).

I X (Rred)

X (R)

ϕ

ϕ̃

Try taking AX ,ϕ = AX ,ϕ̃. Is it well-defined? Suppose you had two different lifts ϕ̃ and ϕ̃′.
Then the unit gives

Aϕ̃ → AX,ϕ̃
∐

ϕ̃′ ← AX ,ϕ̃′

We claim that both maps are isomorphisms. Now it suffices to check this claim when ϕ̃ = ϕ̃′.
In that case the map I

∐
I → X (R) factors through ϕ̃ : I → X (R). That gives a section of

the maps, which is an isomorphism by axiom (3).

Aϕ̃ Aϕ̃tϕ̃′ Aϕ̃

Aϕ̃

∼

�



12 TALK BY JACOB LURIE, NOTES BY TONY FENG

Remark 7.7. There’s a more general statement. Let A be a UFA in either sense. Suppose

I J

X (R)

In this situation if the map from J is topologically surjective, but the map from I may not
be. However suppose it is (both topologically surjective). That’s what happened in the
argument above. Then we get a map AX ,I → AX ,J and we claim that it’s an isomorphism.
Almost the same proof works.

Definition 7.8 (Universal factorization algebra, version 3). A universal factorization alge-
bra is a rule which assigns to each C-algebra R plus a formal multidisk X/R a flat R-module
AX which is

(1) functorial in R:
AX×RS

∼= S ⊗R AX
(2) factorizes:

AX ∐
Y = AX ⊗R AY .

(3) If X ↪→ Y is a formal completion of Y along a subset, then we have an induced map
AX → AY .

(4) Finally, we say that a bunch of diagrams commute.

Definition 1 is equivalent to Definition 3. The point is as follows. For a formal multidisk
X over R and {AX←I} a universal factorization algebra in the sense of Definition 1. Then
AX := AX←I is well-defined locally on Spec R independent of the choice of I.

Note: for any smooth curve X over C, we have a diagram

{universal factorization algebras}

{
Representations of Aut(D̂)

}
{factorization algebras on X}

{D-modules on X}

Conversely, we can recover the UFA A. Take AXI = π∗AI . Let AX be the induced
factorization algebra on X. There is a faithfully flat map π : XI → MDiskI , affine if X is
affine. Suppose we know the D-module π∗AI . What is AI? We have

AI → π∗π
∗AI → π∗AXI .

We have
AI → π∗AXI .→ K

for some K which is a flat sheaf on MDiskI . It suffices to understand this for 1 copy of the
curve.
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