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1. Affine Grassmannian

Let G be a reductive algebraic group over C. For now we will assume G = GLn, and
later on we’ll switch to G = SLn.

Definition 1.1. The affine Grassmannian for G = GLn is the quotient

Gr := GLn(C((t))/GLn(C[[t]])

So far we’re just thinking of this as a set. But we’re going to explain that it has the
structure of an increasing union of algebraic varieties.

Fix the trivial n-dimensional vector space C((t))n. Consider the lattice L0 = C[[t]]n ⊂
C((t))n. Clearly GLn(C((t))) acts transitively on the set of lattices inC((t))n, and GLn(C[[t]])
is the stabilizer of L0.

Fix an integer d ≥ 0 an define Gr(d) to be the set of lattices L such that tdL0 ⊆ L ⊆ t−dL0.
Then Gr = lim−→Gr(d). Now, the Gr(d) are finite-dimensional. To analyze it, note that
L ∈ Gr(d) is determined by its image in t−dL0/t

dL0. So Gr(d) maps injectively into the set
of complex subspaces of V := t−dL0/t

dL0, which is
∐

0≤m≤2nd Gr(m,V ).
The image of Gr(d) is the collection of complex subspaces of V = t−dL0/t

dL0 which are
C[[t]]-submodules, i.e. stable under t. This is a closed condition, so Gr(d) is a projective
variety.

2. The Beilinson-Drinfeld Grassmannian

We fix X to be a smooth algebraic curve over C.
Let

Grx :=

{
(P, γ) :

P = rank n vector bundle on X
γ = trivialization of P|X−x

}
/isom.
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Fix x ∈ X and a local coordinate t at x, which induces an isomorphism X̂x
∼= SpfC[[t]].

We can write
X = (X − {x}) ∪X̂x−x X̂x.

Using this to get a “gluing” description of vector bundles on X, we get an identification
(depending on the choice of local coordinate) Grx ∼= Gr.

Now if R is a C-algebra, let Grx(R) be the set of pairs (P, γ), where P is a rank n vector
bundle on X × Spec R and γ is a trivialization on (X −{x})× Spec R, up to isomorphism.

Example 2.1. Let’s compare this to the “naïve definition” GLn(R((t)))/GLn(R[[t]]). This
is contained in Grx(R), and is bijective when R is local, or more generally when every
projective R-module is free, but not in general.

We will introduce an object GrX , the Beilinson-Drinfeld Grassmannian, which puts the
Grx into a family over X. First we define

GrX(C) :=

(P, x, γ) :
P = rank n vector bundle on X

x ∈ X(C)
γ = trivialization of P|X−x

 / ∼ .

More generally, we define GrX(R).

GrX(R) :=

(P, x, γ) :
P = rank n vector bundle on XR

x ∈ X(R)
γ = trivialization of P|XR−Γx

 / ∼ .

This allows us to view GrX as a stack. We have a map GrX → X sending (P, γ, x) 7→ x,
whose fiber over {x} is Grx.

There is a version GrX2(R), parametrizing {(P, x, y, γ)} where P is a vector bundle of
rank n on XR, x, y ∈ X(R), and γ is a trivialization of PXR−Γx−Γy

. There is a map
GrX2 → X2, whose fiber over (x, y) is Grx if x = y, and Grx×Gry if x 6= y.

(GrX ×GrX)×X2 (X2 −∆) GrX2 GrX

X2 −∆ X2 ∆

More generally, there’s a space GrXn → Xn whose fiber over (x1, . . . , xn) is
∏
y∈{x1,...,xn}Gry.

2.1. What just happened? This was an example of “factorization”. The slogan is that
“Gr is a factorizable ind-scheme”.

3. The determinant bundle

3.1. Determinant bundle on the affine Grassmannian. Fix integers 0 ≤ d ≤ m.
We have a Grassmannian Gr(d,m). It has a Plucker embedding into P(m

d )−1, by sending
V ⊂ Cm to ∧dV ⊂ ∧dCm.

Consider f∗O(1), an ample line bundle on Gr(d,m). Now, we had Gr = lim−→Gr(d). On
Gr(d) we have a line bundle, sending V ⊂ t−dL0/t

dL0 to (∧topV )−1 = (detV )−1. In other
words, it takes L 7→ det(L/tdL0)−1. We would like to normalize this to be independent of
d, so we tensor with det(L0/t

dL0). Now, these line bundles are comapatible as d varies and
so define a line bundle Ldet on Gr.
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3.2. Determinant bundle on the BD Grassmannian. Now letX be a complete smooth
algebraic curve. We define GrX = {(P, x, γ)}/ ∼ as before. Given (P, x, γ), we can make a
1-dimensional C-vector space by the global version of the preceding construction:

detH1(X,P)⊗ detH0(X,P)−1

detH1(X,On)⊗ detH0(X,On)−1
.

Warning 3.1. The determinant of a vector space is regarded as a Z-graded vector space,
where the grading is the Euler characteristic. You need to keep track of this (at least mod
2).

More generally, given a vector bundle P on X × Spec R, we form
detRΓ(XR,P)

detRΓ(XR,On)−1
.

This defines a line bundle on the moduli stack of G-bundles, and we are pulling it back to
GrX .

We claim that the determinant line bundle LDet,Xn on GrXn “factorizes”. For example,
on GrX2 there is a line bundle Ldet,X2 .

(GrX ×GrX)×X2 (X2 −∆) GrX2 GrX

X2 −∆ X2 X
∆

We claim that Ldet on GrX2 restricts to Ldet � Ldet on X2 −∆ and Ldet on X.
Why? An R-point of GrX2 is (P, x, y, γ). We have γ : On → P away from x and y.

Suppose γ happens to extend over x and y (not necessarily isomorphically). Then

det(RΓ(XR,P)) ∼= det(RΓ(XR,On))⊗ det(RΓ(XR,P/On))

and since P/On is supported on the distinct points x, y, the det(RΓ(XR,P/On)) factors
into contributions from x, y.

3.3. Cohomology of the determinant bundle. From now on, fix ` ≥ 0. We contemplate
“H0(Gr,L⊗`det)”. What does this even mean? We have Gr = lim−→d

Gr(d), so it’s reasonable
to define H0(Gr,L⊗`det) = lim←−H

0(Gr(d),L⊗`det). Since the Gr(d) are algebraic varieties, each
H0(Gr(d),L⊗`det) is a finite-dimensional vector space over C. But the inverse limit is infinite-
dimensional, and has an inverse limit topology.

We don’t want to deal with topological vector spaces, so instead we contemplate

A := lim−→
d

H0(Gr(d),L⊗`det)
∨.

This is now a C-vector space of countable dimension. It is an example of a factorization
algebra.

More generally, for each n ≥ 0, we have GrXn → Xn and there is a determinant bundle
Ldet,Xn on GrXn . We define AXn to be the “pre-dual” of π∗L⊗`det,Xn .

What does this mean more concretely, e.g. in terms of finite-dimensional algebraic geom-
etry? We have GrXn = lim−→d

GrXn(d), and π : GrXn(d) → Xn. Take π∗(L⊗`det,Xn |GrXn (d)).
Questions:

• Does this give a vector bundle?
• Is it compatible with the construction over a point?
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It turns out that the answer is yes (to both questions) for well-chosen approximations
GrXn(d). (They should be flat over Xn, and the content is that the higher cohomology
groups vanish.)

Now we can formally define AXn . Let AXn = lim−→d

(
π∗(L⊗`det,Xn |GrXn (d))

∨
)
. This is a

direct limit of vector bundles, so a flat quasicoherent sheaf on Xn. Its fiber at x looks like
A = H0(Gr,L⊗`det).

Now consider how it looks like on restricting: a formal consequence of what we have said
is that AX2 |X2−∆

∼= (AX �AX)|X2−∆, while AX2 |∆X ∼= AX .

(AX �AX)|X2−∆ AX2 AX

(X2 −∆) X2 X
j

AX is an example of a (super) factorization algebra on X. We are going to axiomatize the
structure we see here to give the definition of factorization algebras. Actually, at this point
we change GLn to SLn (because of Warning 3.1) and then the analogous AX is an honest
factorization algebra on X.

4. Factorization algebras

Let X be a smooth algebraic curve over C.

Definition 4.1. A non-unital factorization algebra on X is a rule which assigns to every
commutative C-algebra R and every finite subset S ⊂ X(R), a flat R-module AS plus the
following data:

(1) For any C-algebra homomorphism R → R′, letting S′ ⊂ X(R′) be the image of
S ⊂ X(R), then we have an isomorphism AS′

∼−→ R′ ⊗R AS .
(2) If S =

∐
i∈I Si which are “geometrically disjoint” (i.e. disjoint after any base change

to any R-algebra), then we have AS
∼−→
⊗

Si
ASi

.
(3) Compatibility isomorphisms for the above data.

Assume for simplicity thatX = Spec A is affine. We can takeR = A, S = {Id} : Spec R→
X the identity map. Then A{Id} is AX .

Next consider R = A ⊗C A and π1, π2 : Spec R ⇒ X. Then A{π1,π2} =: AX2 is a
quasicoherent sheaf on X2. How are these related?

• Consider ∆: X → X2. This corresponds to A ⊗C A
m−→ A. The points π1, π2 ∈

X(A⊗C A) are both sent to Id in X(A). Compatibility with base change says that
we have an isomorphism ∆∗AX2

∼−→ AX .
• Inside X2 − ∆ =: Spec B, the points π1, π2 become disjoint. So we should have
AX2 |X2−∆

∼= (AX �AX)|X2−∆.
In fact, we claim that all the structure required to build the factorization algebra are recov-
ered from the data here.

Say A is a non-unital factorization algebra. We have AX flat quasicoherent on X, and
AX2 flat quasicoherent on X2. The flatness implies that for j : (X2 −∆) ↪→ X2,

AX2 ↪→ j∗(AX �AX |X2−∆).

Last time we said that AX is a sheaf whose sections could be considered as “observables”.
Note that AX � AX ↪→ j∗(AX � AX |X2−∆) as well. The properness of this inclusion is



FACTORIZATION ALGEBRAS (OCT 8, 2020) 5

saying that you can’t observe two observables at the same point. The sheaf AX2 is telling
what regularization is needed to do this.

This makes it seem like you have to specify a whole lot of data in order to get a factor-
ization algebra. In fact, the claim is that everything is determined by the data:

• AX ,
• AX2 ↪→ j∗(AX �AX |X2−∆),
• e : AX2 |∆ ∼= AX .

(However there are conditions.) We explain this through a representative example. Suppose
you want to understand AX3 as a sheaf on X3.

Picture: three divisors X1 ×∆23, X2 ×∆13, X3 ×∆12. They meet in the diagonal copy of
X. Now, AX3 is flat on the smooth variety X3. So removing a codimension ≥ 2 subset
doesn’t change anything, so we can remove the diagonal copy of X. Generically it looks like
AX �AX �AX . On X1 ×∆, it looks like AX �AX2 .

To convince you that this works, we will give explicit formulas for X = A1 = Spec C[z].
Write X3 = Spec C[z1, z2, z3]. We will explain how to reconstruct AX3 . By the flatness,
AX3 ⊂ AX �AX �AX [(z1 − z2)−1, (z2 − z3)−1, (z3 − z1)−1]. It is cut out by the condition
of extending over the three divisors {z1 = z3}, {z1 = z2}, and {z2 = z3}.
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The condition of extending over the divisor {z2 = z3} is that it lie in

AX �AX2 [(z1 − z2)−1, (z1 − z3)−1] ⊂ AX �AX �AX [(z1 − z2)−1, (z1 − z3)−1].

Therefore, AX3 is the intersection inside A�3
X [(z1− z2)−1, (z2− z3)−1, (z3− z1)−1] of AX1 �

AX2×X3
[(z1 − z2)−1, (z1 − z3)−1] and the two other submodules obtained by permuting

coordinates.

5. Unital factorization algebras1

We have just defined non-unital factorization algebras. Now we will define a unital
factorization algebra. In particular we ask for the same data as before, plus functoriality in
S. That is:

Definition 5.1. A unital factorization algebra is a rule which assigns to every commutative
C-algebra R and every finite subset S ⊂ X(R), a flat R-module AS plus the following data:

(1) For any C-algebra homomorphism R → R′, letting S′ ⊂ X(R′) be the image of
S ⊂ X(R), then we have an isomorphism AS′

∼−→ R′ ⊗R AS .
(2) If S =

∐
i∈I Si which are “geometrically disjoint” (i.e. disjoint after any base change

to any R-algebra), then we have AS
∼−→
⊗

Si
ASi .

(3) Compatibility isomorphisms for the above data.
(4) (Unitality) For all S ⊂ S′ ⊂ X(R), a map AS → AS′ .

Example 5.2. Continuing our example from last time, we had a non-unital factorization
algebra given by the rule

x ∈ X(C) 7→ cosections of L⊗`det on Grx.

More generally, for S ⊂ X(C) we have AS =
⊗

x∈S Ax.

1Continued on Oct. 15.
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Now suppose we have S ⊂ S′. Now GrS parametrizes G-bundles on X trivialized outside
S, so it admits a map to GrS′ by restricting the domain of the trivialization. That induces
a map from cosections of L⊗`det on GrS to cosections of L⊗`det on GrS′ . So this gives unitality
data.

Example 5.3. Consider S = ∅ and S′ = {x}. Then GrS = Spec C and GrS′ = Grx. The
map GrS → GrS′ is the basepoint at the trivial bundle with its tautological trivialization.

Let A be a non-unital factorization algebra. Recall that we had isomorphisms AX2 |∆
∼−→

AX and AX2 |X2−∆
∼−→ AX �AX |X2−∆. This allowed to reconstruct the rest of the data of

a factorization algebra (but there are conditions).
What does it take to make A into a unital factorization algebra? We need to give

A∅ → A{x} for x ∈ X(R). This glues into a section 1 : OX → AX . What conditions does it
satisfy?

Given R and x, y ∈ X(R), we consider {x} ⊂ {x, y}. As x, y vary, this glues to a map of
quasicoherent sheaves f : π∗AX → AX2 . The compatibility conditions imply that:

• on X2 −∆, f restricts to a map

AX �OX |X2−∆
∼= (π∗AX)|X2−∆ → (AX2)|X2−∆ = AX �AX |X2−∆

which must be identified with IdAX
�1.

• On ∆, f restricts to a map

AX ∼= ∆∗π∗AX → ∆∗AX2
∼−→ AX

which must be identified with IdAX
.

Remark 5.4. Think about sections as being observables. We can’t multiply such things in
general. But 1 is allowed to be multiplied with other observables.

6. Connection structure

The data of the unit gives a lot of extra structure: it turns the quasicoherent sheaves into
quasicoherent sheaves with a flat connection as a quasicoherent OXn -module.

This means that if is a unital factorization algebra, then we get

∇ : AXn → AXn � Ω1
Xn

satisfying some vanishing condition on curvature. Another way of expressing this is by
saying that AXn has the structure of an algebraic DXn -module.

We will adopt a different perspective, modeled on the notion of parallel transport. We say
that x, y ∈ X(R) are infinitesimally close if they have the same image in X(Rred := R/

√
R).

The following definition is due to Grothendieck.

Definition 6.1 (Flat connection as crystal on the infinitesimal site). If E is a quasicoherent
sheaf on X, then a flat connection is a rule which assigns to every pair x, y ∈ X(R) which
are infinitesimally close, isomorphisms of R-modules x∗E ∼−→ y∗E .

Let A be a unital factorization algebra and x, y ∈ X(R). Then A{x} = x∗AX and
A{y} = y∗AX . Consider (x, y) : Spec R→ X2. So we have maps

A{x} A{x,y} A{y}

x∗AX (x, y)∗AX y∗AX
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We claim that these are isomorphisms. Indeed, x, y have the same image in X(R/I) for
I a nilpotent ideal. So we have maps of flat R-modules which become isomorphisms after
quotienting out by a nilpotent ideal – then they must already be isomorphisms of R-modules.

Example 6.2. In the case of A being cosections of the determinant line bundle on Gr, Grx
parametrizes G-bundles on X plus a trivialization on X −x. We even have an isomorphism
Grx ∼= Gry for infinitesimally close x, y. So there is a “connection” on the spaces, even before
we take cosections – this is one advantage of Grothendieck’s formulation of a connection
(that it makes sense even for non-linear objects).

7. Commutative factorization algebras

We give an example of a “commutative factorization algebra”. Let X be an algebraic
curve over C and Y = Spec B be a smooth affine variety. Given a point x ∈ X, we can
form the formal completion X̂x = Spf(ÔX,x). Then Map(X̂x, Y ) = HomC(B, ÔX,x).

Example 7.1. Suppose Y = A1, so B = C[t]. Then Map(X̂x, Y ) = ÔX,x = lim←−ÔX,x/m
n.

Each ÔX,x/mn is an affine space. So this looks like an inverse limit of copies of affine space,
with transition maps given by forgetting higher order terms. So in this case the mapping
space Map(X̂x, Y ) is A∞ ∼= Spec C[a0, a1, a2, . . .].

Given Y , we can make a factorization algebra A on X such that Ax is the coordinate
ring of Map(X̂x, Y ).

More generally, if R is C-algebra and S ⊂ X(R) is a finite set, AS is even a commutative
R-algebra, and its spectrum is

Spec (AS) = Map((X × Spec R)∧ΓS
, Y )

Note that if the points S are disjoint, then the formal completion is a disjoint union. So AS
factors as a tensor product. This corresponds to the factorization axiom.

The multiplication on Ax is the same as provided by the factorization structure.
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