FACTORIZATION ALGEBRAS (OCT 8, 2020)

TALK BY JACOB LURIE, NOTES BY TONY FENG

Contents

1.	Affine Grassmannian	1
2.	The Beilinson-Drinfeld Grassmannian	1
3.	The determinant bundle	2
4.	Factorization algebras	4
5.	Unital factorization algebras	6
6.	Connection structure	7
7.	Commutative factorization algebras	8

1. Affine Grassmannian

Let G be a reductive algebraic group over C. For now we will assume $G = GL_n$, and later on we'll switch to $G = SL_n$.

Definition 1.1. The affine Grassmannian for $G = GL_n$ is the quotient

$$\operatorname{Gr} := \operatorname{GL}_n(\mathbf{C}((t)) / \operatorname{GL}_n(\mathbf{C}[[t]]))$$

So far we're just thinking of this as a set. But we're going to explain that it has the structure of an increasing union of algebraic varieties.

Fix the trivial *n*-dimensional vector space $\mathbf{C}((t))^n$. Consider the lattice $L_0 = \mathbf{C}[[t]]^n \subset \mathbf{C}((t))^n$. Clearly $\mathrm{GL}_n(\mathbf{C}((t)))$ acts transitively on the set of lattices in $\mathbf{C}((t))^n$, and $\mathrm{GL}_n(\mathbf{C}[[t]])$ is the stabilizer of L_0 .

Fix an integer $d \ge 0$ and effne $\operatorname{Gr}(d)$ to be the set of lattices L such that $t^d L_0 \subseteq L \subseteq t^{-d} L_0$. Then $\operatorname{Gr} = \varinjlim \operatorname{Gr}(d)$. Now, the $\operatorname{Gr}(d)$ are finite-dimensional. To analyze it, note that $L \in \operatorname{Gr}(d)$ is determined by its image in $t^{-d} L_0 / t^d L_0$. So $\operatorname{Gr}(d)$ maps injectively into the set of complex subspaces of $V := t^{-d} L_0 / t^d L_0$, which is $\coprod_{0 \le m \le 2nd} \operatorname{Gr}(m, V)$.

The image of $\operatorname{Gr}(d)$ is the collection of complex subspaces of $V = t^{-d}L_0/t^dL_0$ which are $\mathbf{C}[[t]]$ -submodules, i.e. stable under t. This is a closed condition, so $\operatorname{Gr}(d)$ is a projective variety.

2. The Beilinson-Drinfeld Grassmannian

We fix X to be a smooth algebraic curve over \mathbf{C} . Let

$$\operatorname{Gr}_{x} := \left\{ (\mathcal{P}, \gamma) \colon \begin{array}{c} \mathcal{P} = \operatorname{rank} n \text{ vector bundle on } X \\ \gamma = \operatorname{trivialization of } \mathcal{P}|_{X-x} \end{array} \right\} / \operatorname{isom.}$$

Fix $x \in X$ and a local coordinate t at x, which induces an isomorphism $\widehat{X}_x \cong \operatorname{Spf} \mathbf{C}[[t]]$. We can write

$$X = (X - \{x\}) \cup_{\widehat{X}_x - x} \widehat{X}_x$$

Using this to get a "gluing" description of vector bundles on X, we get an identification (depending on the choice of local coordinate) $\operatorname{Gr}_x \cong \operatorname{Gr}$.

Now if R is a C-algebra, let $\operatorname{Gr}_{x}(R)$ be the set of pairs (\mathcal{P}, γ) , where \mathcal{P} is a rank n vector bundle on $X \times \operatorname{Spec} R$ and γ is a trivialization on $(X - \{x\}) \times \operatorname{Spec} R$, up to isomorphism.

Example 2.1. Let's compare this to the "naïve definition" $\operatorname{GL}_n(R((t)))/\operatorname{GL}_n(R[[t]])$. This is contained in $\operatorname{Gr}_x(R)$, and is bijective when R is local, or more generally when every projective R-module is free, but not in general.

We will introduce an object Gr_X , the *Beilinson-Drinfeld Grassmannian*, which puts the Gr_x into a family over X. First we define

$$\operatorname{Gr}_{X}(\mathbf{C}) := \left\{ \begin{array}{ll} \mathcal{P} = \operatorname{rank} n \text{ vector bundle on } X \\ (\mathcal{P}, x, \gamma) \colon & x \in X(\mathbf{C}) \\ \gamma = \operatorname{trivialization of } \mathcal{P}|_{X-x} \end{array} \right\} / \sim .$$

More generally, we define $\operatorname{Gr}_X(R)$.

$$\operatorname{Gr}_X(R) := \left\{ \begin{array}{ll} \mathcal{P} = \operatorname{rank} n \text{ vector bundle on } X_R \\ (\mathcal{P}, x, \gamma) \colon & x \in X(R) \\ \gamma = \text{ trivialization of } \mathcal{P}|_{X_R - \Gamma_x} \end{array} \right\} / \sim$$

This allows us to view Gr_X as a stack. We have a map $\operatorname{Gr}_X \to X$ sending $(\mathcal{P}, \gamma, x) \mapsto x$, whose fiber over $\{x\}$ is Gr_x .

There is a version $\operatorname{Gr}_{X^2}(R)$, parametrizing $\{(\mathcal{P}, x, y, \gamma)\}$ where \mathcal{P} is a vector bundle of rank n on X_R , $x, y \in X(R)$, and γ is a trivialization of $\mathcal{P}_{X_R-\Gamma_x-\Gamma_y}$. There is a map $\operatorname{Gr}_{X^2} \to X^2$, whose fiber over (x, y) is Gr_x if x = y, and $\operatorname{Gr}_x \times \operatorname{Gr}_y$ if $x \neq y$.

More generally, there's a space $\operatorname{Gr}_{X^n} \to X^n$ whose fiber over (x_1, \ldots, x_n) is $\prod_{y \in \{x_1, \ldots, x_n\}} \operatorname{Gr}_y$.

2.1. What just happened? This was an example of "factorization". The slogan is that "Gr is a factorizable ind-scheme".

3. The determinant bundle

3.1. Determinant bundle on the affine Grassmannian. Fix integers $0 \le d \le m$. We have a Grassmannian $\operatorname{Gr}(d,m)$. It has a Plucker embedding into $\mathbb{P}^{\binom{m}{d}-1}$, by sending $V \subset \mathbb{C}^m$ to $\wedge^d V \subset \wedge^d \mathbb{C}^m$.

Consider $f^*\mathcal{O}(1)$, an ample line bundle on $\operatorname{Gr}(d, m)$. Now, we had $\operatorname{Gr} = \varinjlim \operatorname{Gr}(d)$. On $\operatorname{Gr}(d)$ we have a line bundle, sending $V \subset t^{-d}L_0/t^dL_0$ to $(\wedge^{\operatorname{top}}V)^{-1} = (\det V)^{-1}$. In other words, it takes $L \mapsto \det(L/t^dL_0)^{-1}$. We would like to normalize this to be independent of d, so we tensor with $\det(L_0/t^dL_0)$. Now, these line bundles are comapatible as d varies and so define a line bundle $\mathcal{L}_{\operatorname{det}}$ on Gr.

3.2. Determinant bundle on the BD Grassmannian. Now let X be a *complete* smooth algebraic curve. We define $\operatorname{Gr}_X = \{(\mathcal{P}, x, \gamma)\}/\sim$ as before. Given (\mathcal{P}, x, γ) , we can make a 1-dimensional C-vector space by the global version of the preceding construction:

$$\frac{\det H^1(X,\mathcal{P})\otimes \det H^0(X,\mathcal{P})^{-1}}{\det H^1(X,\mathcal{O}^n)\otimes \det H^0(X,\mathcal{O}^n)^{-1}}$$

Warning 3.1. The determinant of a vector space is regarded as a Z-graded vector space, where the grading is the Euler characteristic. You need to keep track of this (at least mod 2).

More generally, given a vector bundle \mathcal{P} on $X \times \text{Spec } R$, we form

$$\frac{\det R\Gamma(X_R, \mathcal{P})}{\det R\Gamma(X_R, \mathcal{O}^n)^{-1}}.$$

This defines a line bundle on the moduli stack of G-bundles, and we are pulling it back to Gr_X .

We claim that the determinant line bundle $\mathcal{L}_{\text{Det},X^n}$ on Gr_{X^n} "factorizes". For example, on Gr_{X^2} there is a line bundle \mathcal{L}_{\det,X^2} .

We claim that \mathcal{L}_{det} on Gr_{X^2} restricts to $\mathcal{L}_{det} \boxtimes \mathcal{L}_{det}$ on $X^2 - \Delta$ and \mathcal{L}_{det} on X.

Why? An *R*-point of Gr_{X^2} is $(\mathcal{P}, x, y, \gamma)$. We have $\gamma \colon \mathcal{O}^n \to \mathcal{P}$ away from x and y. Suppose γ happens to extend over x and y (not necessarily isomorphically). Then

$$\det(R\Gamma(X_R,\mathcal{P})) \cong \det(R\Gamma(X_R,\mathcal{O}^n)) \otimes \det(R\Gamma(X_R,\mathcal{P}/\mathcal{O}^n))$$

and since $\mathcal{P}/\mathcal{O}^n$ is supported on the distinct points x, y, the det $(R\Gamma(X_R, \mathcal{P}/\mathcal{O}^n))$ factors into contributions from x, y.

3.3. Cohomology of the determinant bundle. From now on, fix $\ell \geq 0$. We contemplate " $H^0(\operatorname{Gr}, \mathcal{L}_{det}^{\otimes \ell})$ ". What does this even mean? We have $\operatorname{Gr} = \varinjlim_d \operatorname{Gr}(d)$, so it's reasonable to define $H^0(\operatorname{Gr}, \mathcal{L}_{det}^{\otimes \ell}) = \varprojlim H^0(\operatorname{Gr}(d), \mathcal{L}_{det}^{\otimes \ell})$. Since the $\operatorname{Gr}(d)$ are algebraic varieties, each $H^0(\operatorname{Gr}(d), \mathcal{L}_{det}^{\otimes \ell})$ is a finite-dimensional vector space over **C**. But the inverse limit is infinite-dimensional, and has an inverse limit topology.

We don't want to deal with topological vector spaces, so instead we contemplate

$$\mathcal{A} := \varinjlim_{d} H^0(\mathrm{Gr}(d), \mathcal{L}_{\mathrm{det}}^{\otimes \ell})^{\vee}.$$

This is now a **C**-vector space of countable dimension. It is an example of a factorization algebra.

More generally, for each $n \ge 0$, we have $\operatorname{Gr}_{X^n} \to X^n$ and there is a determinant bundle \mathcal{L}_{\det,X^n} on Gr_{X^n} . We define \mathcal{A}_{X^n} to be the "pre-dual" of $\pi_* \mathcal{L}_{\det,X^n}^{\otimes \ell}$.

What does this mean more concretely, e.g. in terms of finite-dimensional algebraic geometry? We have $\operatorname{Gr}_{X^n} = \varinjlim_d \operatorname{Gr}_{X^n}(d)$, and $\pi \colon \operatorname{Gr}_{X^n}(d) \to X^n$. Take $\pi_*(\mathcal{L}_{\det,X^n}^{\otimes \ell}|_{\operatorname{Gr}_{X^n}(d)})$. Questions:

- Does this give a vector bundle?
- Is it compatible with the construction over a point?

It turns out that the answer is *yes* (to both questions) for well-chosen approximations $\operatorname{Gr}_{X^n}(d)$. (They should be flat over X^n , and the content is that the higher cohomology groups vanish.)

Now we can formally define \mathcal{A}_{X^n} . Let $\mathcal{A}_{X^n} = \underset{d}{\underset{d}{\underset{d}{\underset{d}{\underset{d}}}}} \left(\pi_* (\mathcal{L}_{\det,X^n}^{\otimes \ell}|_{\mathrm{Gr}_{X^n}(d)})^{\vee} \right)$. This is a direct limit of vector bundles, so a flat quasicoherent sheaf on X^n . Its fiber at x looks like $\mathcal{A} = H^0(\mathrm{Gr}, \mathcal{L}_{\det}^{\otimes \ell})$.

Now consider how it looks like on restricting: a formal consequence of what we have said is that $\mathcal{A}_{X^2}|_{X^2-\Delta} \cong (\mathcal{A}_X \boxtimes \mathcal{A}_X)|_{X^2-\Delta}$, while $\mathcal{A}_{X^2}|_{\Delta X} \cong \mathcal{A}_X$.

 \mathcal{A}_X is an example of a (super) factorization algebra on X. We are going to axiomatize the structure we see here to give the definition of factorization algebras. Actually, at this point we change GL_n to SL_n (because of Warning 3.1) and then the analogous \mathcal{A}_X is an honest factorization algebra on X.

4. FACTORIZATION ALGEBRAS

Let X be a smooth algebraic curve over \mathbf{C} .

Definition 4.1. A non-unital factorization algebra on X is a rule which assigns to every commutative C-algebra R and every finite subset $S \subset X(R)$, a flat R-module \mathcal{A}_S plus the following data:

- (1) For any C-algebra homomorphism $R \to R'$, letting $S' \subset X(R')$ be the image of $S \subset X(R)$, then we have an isomorphism $\mathcal{A}_{S'} \xrightarrow{\sim} R' \otimes_R \mathcal{A}_S$.
- (2) If $S = \coprod_{i \in I} S_i$ which are "geometrically disjoint" (i.e. disjoint after any base change to any *R*-algebra), then we have $\mathcal{A}_S \xrightarrow{\sim} \bigotimes_{S_i} \mathcal{A}_{S_i}$.
- (3) Compatibility isomorphisms for the above data.

Assume for simplicity that X = Spec A is affine. We can take $R = A, S = \{\text{Id}\}$: Spec $R \to X$ the identity map. Then $\mathcal{A}_{\{\text{Id}\}}$ is \mathcal{A}_X .

Next consider $R = A \otimes_{\mathbf{C}} A$ and π_1, π_2 : Spec $R \rightrightarrows X$. Then $A_{\{\pi_1, \pi_2\}} =: A_{X^2}$ is a quasicoherent sheaf on X^2 . How are these related?

- Consider $\Delta \colon X \to X^2$. This corresponds to $A \otimes_{\mathbf{C}} A \xrightarrow{m} A$. The points $\pi_1, \pi_2 \in X(A \otimes_{\mathbf{C}} A)$ are both sent to Id in X(A). Compatibility with base change says that we have an isomorphism $\Delta^* \mathcal{A}_{X^2} \xrightarrow{\sim} \mathcal{A}_X$.
- Inside $X^2 \Delta =:$ Spec B, the points π_1, π_2 become disjoint. So we should have $\mathcal{A}_{X^2|_{X^2-\Delta}} \cong (\mathcal{A}_X \boxtimes \mathcal{A}_X)|_{X^2-\Delta}$.

In fact, we claim that all the structure required to build the factorization algebra are recovered from the data here.

Say \mathcal{A} is a non-unital factorization algebra. We have \mathcal{A}_X flat quasicoherent on X, and \mathcal{A}_{X^2} flat quasicoherent on X^2 . The flatness implies that for $j: (X^2 - \Delta) \hookrightarrow X^2$,

$$\mathcal{A}_{X^2} \hookrightarrow j_*(\mathcal{A}_X \boxtimes \mathcal{A}_X|_{X^2 - \Delta}).$$

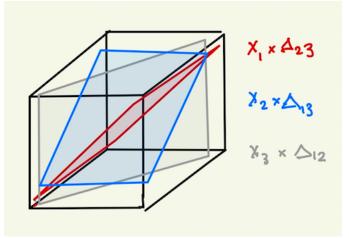
Last time we said that \mathcal{A}_X is a sheaf whose sections could be considered as "observables". Note that $\mathcal{A}_X \boxtimes \mathcal{A}_X \hookrightarrow j_*(\mathcal{A}_X \boxtimes \mathcal{A}_X|_{X^2-\Delta})$ as well. The properness of this inclusion is saying that you can't observe two observables at the same point. The sheaf \mathcal{A}_{X^2} is telling what regularization is needed to do this.

This makes it seem like you have to specify a whole lot of data in order to get a factorization algebra. In fact, the claim is that everything is determined by the data:

•
$$\mathcal{A}_X$$
,
• $\mathcal{A}_{X^2} \hookrightarrow j_*(\mathcal{A}_X \boxtimes \mathcal{A}_X|_{X^2 - \Delta}),$

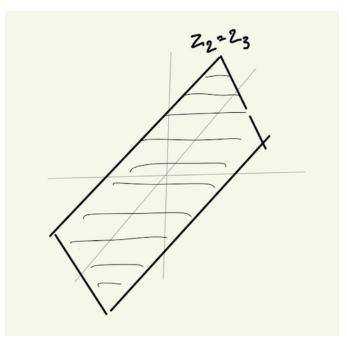
•
$$e: \mathcal{A}_{X^2}|_{\Delta} \cong \mathcal{A}_X.$$

(However there are conditions.) We explain this through a representative example. Suppose you want to understand \mathcal{A}_{X^3} as a sheaf on X^3 .



Picture: three divisors $X_1 \times \Delta_{23}, X_2 \times \Delta_{13}, X_3 \times \Delta_{12}$. They meet in the diagonal copy of X. Now, \mathcal{A}_{X^3} is flat on the smooth variety X^3 . So removing a codimension ≥ 2 subset doesn't change anything, so we can remove the diagonal copy of X. Generically it looks like $\mathcal{A}_X \boxtimes \mathcal{A}_X \boxtimes \mathcal{A}_X$. On $X_1 \times \Delta$, it looks like $\mathcal{A}_X \boxtimes \mathcal{A}_{X^2}$.

To convince you that this works, we will give explicit formulas for $X = \mathbb{A}^1 = \text{Spec } \mathbb{C}[z]$. Write $X^3 = \text{Spec } \mathbb{C}[z_1, z_2, z_3]$. We will explain how to reconstruct \mathcal{A}_{X^3} . By the flatness, $\mathcal{A}_{X^3} \subset \mathcal{A}_X \boxtimes \mathcal{A}_X \boxtimes \mathcal{A}_X[(z_1 - z_2)^{-1}, (z_2 - z_3)^{-1}, (z_3 - z_1)^{-1}]$. It is cut out by the condition of extending over the three divisors $\{z_1 = z_3\}, \{z_1 = z_2\}, \text{ and } \{z_2 = z_3\}$.



The condition of extending over the divisor $\{z_2 = z_3\}$ is that it lie in

$$\mathcal{A}_X \boxtimes \mathcal{A}_{X^2}[(z_1 - z_2)^{-1}, (z_1 - z_3)^{-1}] \subset \mathcal{A}_X \boxtimes \mathcal{A}_X \boxtimes \mathcal{A}_X [(z_1 - z_2)^{-1}, (z_1 - z_3)^{-1}].$$

Therefore, \mathcal{A}_{X^3} is the intersection inside $\mathcal{A}_X^{\boxtimes 3}[(z_1-z_2)^{-1}, (z_2-z_3)^{-1}, (z_3-z_1)^{-1}]$ of $\mathcal{A}_{X_1} \boxtimes \mathcal{A}_{X_2 \times X_3}[(z_1-z_2)^{-1}, (z_1-z_3)^{-1}]$ and the two other submodules obtained by permuting coordinates.

5. UNITAL FACTORIZATION ALGEBRAS¹

We have just defined non-unital factorization algebras. Now we will define a *unital* factorization algebra. In particular we ask for the same data as before, *plus* functoriality in S. That is:

Definition 5.1. A *unital factorization algebra* is a rule which assigns to every commutative **C**-algebra R and every finite subset $S \subset X(R)$, a flat R-module \mathcal{A}_S plus the following data:

- (1) For any C-algebra homomorphism $R \to R'$, letting $S' \subset X(R')$ be the image of $S \subset X(R)$, then we have an isomorphism $\mathcal{A}_{S'} \xrightarrow{\sim} R' \otimes_R \mathcal{A}_S$. (2) If $S = \coprod_{i \in I} S_i$ which are "geometrically disjoint" (i.e. disjoint after any base change
- to any *R*-algebra), then we have $\mathcal{A}_S \xrightarrow{\sim} \bigotimes_{S_i} \mathcal{A}_{S_i}$.
- (3) Compatibility isomorphisms for the above data.
- (4) (Unitality) For all $S \subset S' \subset X(R)$, a map $\mathcal{A}_S \to \mathcal{A}_{S'}$.

Example 5.2. Continuing our example from last time, we had a non-unital factorization algebra given by the rule

$$x \in X(\mathbf{C}) \mapsto \text{cosections of } \mathcal{L}_{\det}^{\otimes \ell} \text{ on } \mathrm{Gr}_x.$$

More generally, for $S \subset X(\mathbf{C})$ we have $\mathcal{A}_S = \bigotimes_{x \in S} \mathcal{A}_x$.

¹Continued on Oct. 15.

Now suppose we have $S \subset S'$. Now Gr_S parametrizes *G*-bundles on *X* trivialized outside *S*, so it admits a map to $\operatorname{Gr}_{S'}$ by restricting the domain of the trivialization. That induces a map from cosections of $\mathcal{L}_{det}^{\otimes \ell}$ on Gr_S to cosections of $\mathcal{L}_{det}^{\otimes \ell}$ on $\operatorname{Gr}_{S'}$. So this gives unitality data.

Example 5.3. Consider $S = \emptyset$ and $S' = \{x\}$. Then $\operatorname{Gr}_S = \operatorname{Spec} \mathbf{C}$ and $\operatorname{Gr}_{S'} = \operatorname{Gr}_x$. The map $\operatorname{Gr}_S \to \operatorname{Gr}_{S'}$ is the basepoint at the trivial bundle with its tautological trivialization.

Let \mathcal{A} be a non-unital factorization algebra. Recall that we had isomorphisms $\mathcal{A}_{X^2}|_{\Delta} \xrightarrow{\sim} \mathcal{A}_X$ and $\mathcal{A}_{X^2}|_{X^2-\Delta} \xrightarrow{\sim} \mathcal{A}_X \boxtimes \mathcal{A}_X|_{X^2-\Delta}$. This allowed to reconstruct the rest of the data of a factorization algebra (but there are conditions).

What does it take to make \mathcal{A} into a *unital* factorization algebra? We need to give $\mathcal{A}_{\emptyset} \to \mathcal{A}_{\{x\}}$ for $x \in X(R)$. This glues into a section $\mathbb{1}: \mathcal{O}_X \to \mathcal{A}_X$. What conditions does it satisfy?

Given R and $x, y \in X(R)$, we consider $\{x\} \subset \{x, y\}$. As x, y vary, this glues to a map of quasicoherent sheaves $f: \pi^* \mathcal{A}_X \to \mathcal{A}_{X^2}$. The compatibility conditions imply that:

• on $X^2 - \Delta$, f restricts to a map

$$\mathcal{A}_X \boxtimes \mathcal{O}_X|_{X^2 - \Delta} \cong (\pi^* \mathcal{A}_X)|_{X^2 - \Delta} \to (\mathcal{A}_{X^2})|_{X^2 - \Delta} = \mathcal{A}_X \boxtimes \mathcal{A}_X|_{X^2 - \Delta}$$

which must be identified with $\mathrm{Id}_{\mathcal{A}_X} \boxtimes \mathbb{1}$.

• On Δ , f restricts to a map

$$\mathcal{A}_X \cong \Delta^* \pi^* \mathcal{A}_X \to \Delta^* \mathcal{A}_{X^2} \xrightarrow{\sim} \mathcal{A}_X$$

which must be identified with $\mathrm{Id}_{\mathcal{A}_X}$.

Remark 5.4. Think about sections as being observables. We can't multiply such things in general. But 1 is allowed to be multiplied with other observables.

6. Connection structure

The data of the unit gives a lot of extra structure: it turns the quasicoherent sheaves into quasicoherent sheaves with a flat connection as a quasicoherent \mathcal{O}_{X^n} -module.

This means that if is a unital factorization algebra, then we get

$$\nabla \colon \mathcal{A}_{X^n} \to \mathcal{A}_{X^n} \boxtimes \Omega^1_{X^n}$$

satisfying some vanishing condition on curvature. Another way of expressing this is by saying that \mathcal{A}_{X^n} has the structure of an algebraic \mathcal{D}_{X^n} -module.

We will adopt a different perspective, modeled on the notion of parallel transport. We say that $x, y \in X(R)$ are *infinitesimally close* if they have the same image in $X(R^{\text{red}} := R/\sqrt{R})$. The following definition is due to Grothendieck.

Definition 6.1 (Flat connection as crystal on the infinitesimal site). If \mathcal{E} is a quasicoherent sheaf on X, then a *flat connection* is a rule which assigns to every pair $x, y \in X(R)$ which are infinitesimally close, isomorphisms of R-modules $x^*\mathcal{E} \xrightarrow{\sim} y^*\mathcal{E}$.

Let A be a unital factorization algebra and $x, y \in X(R)$. Then $\mathcal{A}_{\{x\}} = x^* \mathcal{A}_X$ and $\mathcal{A}_{\{y\}} = y^* \mathcal{A}_X$. Consider (x, y): Spec $R \to X^2$. So we have maps

We claim that these are isomorphisms. Indeed, x, y have the same image in X(R/I) for I a nilpotent ideal. So we have maps of flat R-modules which become isomorphisms after quotienting out by a nilpotent ideal – then they must already be isomorphisms of R-modules.

Example 6.2. In the case of \mathcal{A} being cosections of the determinant line bundle on Gr, Gr_x parametrizes *G*-bundles on *X* plus a trivialization on X - x. We even have an isomorphism $\operatorname{Gr}_x \cong \operatorname{Gr}_y$ for infinitesimally close x, y. So there is a "connection" on the spaces, even before we take cosections – this is one advantage of Grothendieck's formulation of a connection (that it makes sense even for non-linear objects).

7. Commutative factorization algebras

We give an example of a "commutative factorization algebra". Let X be an algebraic curve over **C** and Y = Spec B be a smooth affine variety. Given a point $x \in X$, we can form the formal completion $\widehat{X}_x = \text{Spf}(\widehat{\mathcal{O}}_{X,x})$. Then $\text{Map}(\widehat{X}_x, Y) = \text{Hom}_{\mathbf{C}}(B, \widehat{\mathcal{O}}_{X,x})$.

Example 7.1. Suppose $Y = \mathbb{A}^1$, so $B = \mathbb{C}[t]$. Then $\operatorname{Map}(\widehat{X}_x, Y) = \widehat{\mathcal{O}}_{X,x} = \varprojlim \widehat{\mathcal{O}}_{X,x}/\mathfrak{m}^n$. Each $\widehat{\mathcal{O}}_{X,x}/\mathfrak{m}^n$ is an affine space. So this looks like an inverse limit of copies of affine space, with transition maps given by forgetting higher order terms. So in this case the mapping space $\operatorname{Map}(\widehat{X}_x, Y)$ is $\mathbb{A}^{\infty} \cong \operatorname{Spec} \mathbb{C}[a_0, a_1, a_2, \ldots]$.

Given Y, we can make a factorization algebra \mathcal{A} on X such that \mathcal{A}_x is the coordinate ring of Map (\hat{X}_x, Y) .

More generally, if R is C-algebra and $S \subset X(R)$ is a finite set, \mathcal{A}_S is even a commutative R-algebra, and its spectrum is

$$\operatorname{Spec}(\mathcal{A}_S) = \operatorname{Map}((X \times \operatorname{Spec} R)^{\wedge}_{\Gamma_S}, Y)$$

Note that if the points S are disjoint, then the formal completion is a disjoint union. So \mathcal{A}_S factors as a tensor product. This corresponds to the factorization axiom.

The multiplication on \mathcal{A}_x is the same as provided by the factorization structure.