RELATION OF SPHERICAL VARIETIES TO REPRESENTATION THEORY

LECTURE BY YIANNIS SAKELLARIDIS, NOTES BY TONY FENG

Contents

- 1. Ideology
- 2. History

2

1

1. Ideology

For a spherical variety X under an action of G, we want to be able to attach

- (1) an L-group ${}^{L}G_{X}{}^{1}$, which should be equipped with a map ${}^{L}X \times \mathrm{SL}_{2} \to {}^{L}G$,
- (2) an *L*-value, which is something of the form $L(\bullet, r, s)$ where *r* is a representation ${}^{L}X \to \operatorname{GL}(V)$ and s_0 is a point of evaluation. (The point of evaluation is somehow superfluous; we can replace ${}^{L}X$ by ${}^{L}X \times \mathbf{G}_{m}$.)

Example 1.1. The *L*-group depends on *G*. For $X = PGL_2$ acted on by $PGL_2 \times PGL_2$, the representations appearing are $\tilde{\tau} \times \tau$.

For $X = PGL_2$ acted on by $\mathbf{G}_m \times PGL_2$, the representations appearing are $\chi \otimes \tau$. The represents appear in the second case are richer, so the *L*-group should be correspondingly richer.

Example 1.2. If $X = H \setminus G$, $\pi \in L^2([G] = G(k) \setminus G(\mathbf{A}))$, then for $\varphi \in \pi$ we can consider the period

$$\varphi \xrightarrow{\mathcal{P}_H} \left(g \mapsto \int_{[H]} \varphi(h \cdot g) dh \right) \in C^{\infty}(H \backslash G(\mathbf{A})).$$

So (1) should answer the question of which π for G embed in $C^{\infty}(H \setminus G)$.

For $X = G \setminus G$ = pt, we have ${}^{L}X = 1$ and the only such π is the trivial representation. We have a map ${}^{L}X \times SL_2 \to {}^{L}G$ induced by the principal nilpotent.

The *L*-values in (2) should be

$$|\mathcal{P}_H|^2 \sim \frac{L_X(\pi)}{L(\pi, \operatorname{Ad}_{\widehat{G}_X}, 1)}$$

Example 1.3. For $X = \mathbf{G}_m \setminus \text{PGL}_2$, we have ${}^LG_X = {}^LG$, and $L_X = L(\text{std}, 1/2)^2$. For $X = (N, \psi) \setminus G$, we have ${}^LG_X = {}^LG$, and $L_X = 1$.

Date: February 6, 2018.

¹At this point we only have a definition for \widehat{G}_X .

2. HISTORY

Brion, Luna, Vust, Knop do invariant theory on X and $T^*X \to \mathfrak{g}^*$. This gives rise to data for \widehat{G}_X , encoding e.g. \mathfrak{a}_X^*, W_X , "spherical roots". However the root system doesn't quite define the dual group.

Gaitsgory and Nadler constructed the dual group \widehat{G}_X using the Tannakian formalism. The expectation is that it is attached to the data above. However, this has not been completely checked.

Sakellaridis-Venkatesh gives a combinatorial description of the dual group.

Knop-Schalke have now defined \widehat{G}_X for any *G*-variety *X*.

There are some issues here:

- (1) Finish the work of Gaitsgory-Nadler, showing that their \widehat{G}_X is as expected and that we have a map $\widehat{G}_X \times \operatorname{SL}_2 \to \widehat{G}$.
- (2) Define ${}^{L}G_{X}$.

There are two aspects of invariant theory: the theory of compactifications, and the theory of the moment map $T^*X \to \mathfrak{g}^*$. By connecting them, Knop discovered the cone of *G*-invariant valuations $V(X) \subset \mathfrak{a}_X$.

Theorem 2.1 (Brion-Knop). V(X) is a fundamental domain for W_X , which is a finite reflection group.

All this theory misses the data that gives rise to L_X ! The reason is that Knop uses invariant theory, whereas it's better to work with stacks. We have a map from the stack to the coarse quotient:

$$[T^*X/G] \to T^*X//G.$$

Example 2.2. The ratio

$$\frac{L_X(\pi)}{L(\pi, \mathrm{Ad}, 1)}$$

should be the value of certain *local zeta integrals*, e.g. in the non-archimedean case and π is unramified. In my paper "Spherical functions on spherical varieties", I found that the data entering into L_X depends on the divisor Δ_X (the sum of the *B*-stable but not *G*-stable divisors) that was ignored in the invariant theory.

If G is split, then \widehat{G}_X should encode the harmonic analysis of X = X(F) for F a local field.

Already using the theory of compactifications, one can get valuable information. For example, let $I(\chi)$ be the normalized induced representation

$$I(\chi) = \operatorname{Ind}_{P(X)}^{G}(\chi \cdot \delta_{P(X)}^{1/2}).$$

We ask which $I(\chi) \hookrightarrow C^{\infty}(X)$? Dually we want a map

$$\mathcal{E}(X) \twoheadrightarrow I(\chi^{-1}).$$

The obvious thing to try is integration. Michal has shown that $X^{\circ} = A_X \times U_{P(X)}$. So for $\varphi \in \mathcal{S}(X)$, we define

$$\varphi\mapsto \int_{X^\circ}\varphi(au)\chi^{-1}(a)dadu\in I(\chi^{-1}).$$

For this to make sense we need χ to be a character of A_X . We would then have a Langlands parameter $W_F \to \hat{A}_X$, which is a Cartan in \hat{G}_X . Thus we have an unramified Langlands parameter in \hat{G}_X . What does the Weyl group tell us? We have $I(\chi^{-1}) \cong I(^w\chi^{-1})$. Applying the intertwining operator $I(\chi^{-1}) \to I(^w\chi^{-1})$, do we get the same integral

$$\varphi \mapsto \int_{X^{\circ}} \varphi(au)^w \chi^{-1}(a) dadu?$$

Theorem 2.3. The diagram commutes up to scalar if and only if $w \in W_X \subset N_W(\mathfrak{a}_X^*)/Z(\mathfrak{a}_X^*)$.

In other words, applying $w \in W_X$ gives the same Langlands parameter.

Example 2.4. For $X = N \setminus G$, $I(\chi) \subset C^{\infty}(N \setminus G)$ and also $I(^w\chi) \subset C^{\infty}(N \setminus G)$; they are abstractly isomorphic but not the same. Thus we get that the multiplicity of $I(\chi)$ in $C^{\infty}(N \setminus G)$ is generically $\#W_X$.