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1. Motivation (Akshay Venkatesh)

Let X be a spherical variety for the (reductive) group G. Then we have a moment map

T ∗X → g∗.

Let F be a p-adic field. We would like to know that for π an irreducible representation of
G(F ), we have

dim Hom(π,C∞(X)) <∞.
This is proved in [SV] for the “wavefront spherical varieties”. It would be nice to have a
complete proof in the class of p-adic fields, using the geometry of the moment map.

Here is the shred of an idea. Choose a nice open compact K of G(F ) and an irreducible
K-representation τ . By Howe’s Kirillov theory, τ corresponds to a K-stable subset Oτ of
g∗. (This is analogous to the parametrization of representations of nilpotent groups by
coadjoint orbits, due to Kirillov.) Choose τ so that τ ⊂ π|K . We should have an analogous
“correspondence”

Hom(τ, C∞(X))↔ Φ−1(Oτ ) ⊂ T ∗X.
The idea is that the arrow is “microlocal support”.

For a generic point λ ∈ g∗, the property of being spherical forces Φ−1(λ) to be a single
(geometric) orbit of Gλ on T ∗X (this is the only place so far where the spherical property is
being used). This means that we should think of Φ−1(Oτ ) as a thickening of φ−1(λ) = Gλ-
orbit.

On Hom(τ, C∞(X)) you have a Hecke action of End(iGKτ). We want to show that it’s
finitely generated over the Hecke algebra. On some commutative subalgebra, this action
should correspond to translation along the direction of the orbit. The vague idea is that the
finiteness eventually comes from the fact that you had a single orbit.
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2. Howe’s Kirillov theory

2.1. Setup. Let k be a p-adic field, with valuation νk.1 Let Ω: k → C× be an additive
character with conductor pk.

Consider a Lie algebra g ⊂ gln(k). Fix a nondegenerate bilinear form B on g. This gives
an identification

g
∼−→ g∗

x 7→ Bx := (Y 7→ B(X,Y ))

Letting ĝ = Hom(g,C), we also have an identification

g∗
∼−→ ĝ

Bx 7→ Ωx := (Y 7→ Ω(B(X,Y ))).

2.2. Elementary exponentiable lattices.

Definition 2.1. Let L ⊂ g be an open compact Ok-module, closed under [, ]. We say that
L is elementary exponentiable (e.e.) if exp is defined on L and exp(L ) is a group, which
we denote by C.

Example 2.2. For g = gln, an e.e. lattice is a L ⊂ gln(pαk ) ∩ g and [L ,L ] ⊂ $β
kL , such

that α is the in the range of convergence of exp and β makes the exponential of L into a
group. To determine the meaning of the latter, we need

log(exp(X) exp(Y )) ∈ L .

We can calculate this explicitly using the Campbell-Baker-Hausdorff formula

log(exp(X) exp(Y )) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]] + . . . .

Let L ⊂ g be an e.e. lattice. So we have L ⊂ g
∼−→ g∗

∼−→ ĝ. Define

L # := {λ ∈ g∗ : λ(L ) ⊂ pk} = {x ∈ g : B(x,L ) ⊂ pk} ⊂ g∗

and
L ⊥ = {ψ ∈ ĝ : ψ|L = 1} ⊂ ĝ.

Then the diagram

L ∗ := g∗/L # ĝ/L ⊥ =: L̂

g∗ ĝ

(2.1)

is commutative and Ad(exp(L ))-invariant.

Example 2.3. Take g = gln and L = gln(pmk ). Then L # = gln(p−m+1
k ) and C = exp L =

1 + gln(pmk ) = Km (a standard congruence subgroup).

Definition 2.4. Let ψ ∈ L̂ . By the diagram (2.1) we get a corresponding xψ + L #. We
say that xψ + L # represents ψ, and is called the dual blob of ψ.

Definition 2.5. Given ψ ∈ L̂ , we define fψ : L ×L → S1 by (X,Y ) 7→ ψ([X,Y ]).
Let A = {a ∈ exp L =: C : Ad a(ψ) = ψ}. The radical of fψ is {x ∈ L | fψ(x,L ) = 1}.
1We use the exponential map, so the proofs would break down in characteristic p. For large p, there may

be a way to rectify this.
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Remark 2.6. We can also calculate A as A = StabC(xψ + L #).

Lemma 2.7. In the situation of Definition 2.5,
(1) I = log(A) is an e.e. lattice and is a radical of fψ.
(2) If A = C, ψ defines a character of C via exp.

Proof. (1) Let x ∈ L . We use Ad(exp(x)). Write

Ad(exp(x))− Id = exp(ad(x))− 1 = τ(x) ◦ adx

where τ(x) is invertible. Hence

exp(x) ∈ A ⇐⇒ Ad(expx)(ψ) = ψ

⇐⇒ Ad(exp(x)− 1)(L ) ⊂ kerψ

⇐⇒ τ(x) adx(L ) ⊂ kerψ

⇐⇒ ψ([x, τ(x)y]) = 1 for all y ∈ L

⇐⇒ ψ([x,L ]) = 1

⇐⇒ fψ(x,L ) = 1

For (2), we need to check that the formula exp(x) 7→ ψ(x) defines a homomorphism of
C. If StabC(ψ) = A = C then rad fψ = L , hence ψ([L ,L ]) = 1. By the Campbell-Baker-
Hausdorff formula, we have

ψ(log(exp(x) + exp(y)) = ψ(x+ y + [L ,L ]) = ψ(x)ψ(y).

�

2.3. Howe’s Kirillov correspondence.

Example 2.8. Let k = Qp, for p > 3. Then we can take L = gln(pk), i.e. it is e.e. with
C = K1. Let

X = p−2d

t1 . . .
tn


where ti ∈ O×k , and the the ti are distinct modulo p. Then X defines a character ψx of L ,
and A = Stabc(ψX) = K2d+1T1, where

T1 =

1 + pk
. . .

1 + pk

 .

We’re going to build a representation from this data.

Let J ⊂ L be an inclusion of e.e. lattices. Then J # ⊃ L #, and we have a restriction
map

L̂ Ĵ

g/L # g/J #

r

∼ ∼

If exp(J ) / C, then the diagram is AdC-invariant. Set B = exp(J ).
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Definition 2.9. Let ψ ∈ L with A = StabC(ψ). In the notation above, we say that B
polarizes ψ if B ⊃ A, #B/A = #C/B, and r(ψ) ∈ Ĵ is AdB-invariant.

Remark 2.10. If B polarizes ψ, then
(1) r(ψ) defines a character of B.
(2) By Lemma 2.7, fψ|J×J = fr(ψ) = 1, and J /I forms a maximal isotropic sub-

space (“half of a polarization”).
(3) r−1(r(ψ)) = Ad(B)ψ, and

#(Ad(B)ψ) = #B/A = #C/B = (#Oψ)1/2,

where Oψ ⊂ L is the C-orbit of ψ.

Now, any dual blob X ∈ g/L # defines a character ψ of L . In the setting of Example
2.8, we have A = StabC(ψx) = K2d+1T1 and B = Kd+1T1.

Lemma 2.11. If B polarizes ψ ∈ L̂ , then U(Oψ) := IndCB(ψ) is irreducible. Furthermore,
we have

(1) degU(Oψ) = #(C/B) = (#Oψ)1/2 and
(2) the character of U(Oψ) is

1

(#Oψ)1/2

∑
φ∈Oψ

φ ◦ log .

In particular, U(Oψ) depends only on the orbit Oψ.

Remark 2.12. If L is small enough, then for any ψ ∈ L̂ there exists a polarizing group
A ⊂ Bψ ⊂ C. In this case, we say that L is polarizable.

Theorem 2.13. Let L ⊂ g be e.e. and polarizable, and let C = exp(L ). Define E(C)
to be the set of irreducible smooth representation of C, and O(C) the set of C-orbits in
L̂ = g/L #. Then the association U(Oψ)↔ Oψ induces a bijection E(C)↔ O(C).

2.4. Representations of G. We now aim to say something about representations of G
itself.

Definition 2.14. Let L1,L2 ⊂ g be e.e. polarizable subgroups. Let Ci = exp Li, and
ρi ∈ E(Ci). We say that g ∈ G intertwines ρ1 with ρ2 if Hom(gρ1, ρ2) 6= 0 on gC1∩C2. This
is equivalent to following alternate formulations:

• the existence of φi ∈ Oρi such that gφ1 = φ2 on gL1 ∩L2,
• gOρ1

∩ Oρ2
6= ∅ in ̂gL1 ∩ L2,

• g(Xφ1
+ L #

1 ) ∩ (Xφ2
+ L #

2 ) 6= ∅.

Let G ⊃ K = exp(L ). For π ∈ E(G), we have

π|K =
⊕

ρ∈E(K)

mρρ.

If K is small enough, then every ρ appearing will intertwine with 1. This is equivalent
to saying that the dual blobs are represented by nilpotent elements. There is a character
expansion

θπ(f) =
∑

θ∈O(0)

cθµ̂θ(f).
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Here O(Γ) is the set of G-orbits θ in g such that Γ is in the closure, so Θ(0) is the set of
nilpotent orbits.

We haveK ⊂ Gx,d(π)+ . The size ofK dictates the convergence of the character expansion.
If K is not too small, then new orbits start appearing. The first nontrivial orbits are from
the “unrefined minimal K-types”, introduced by Moy and Prasad. In order to explain this,
we need to review the theory of Moy and Prasad.

3. Moy-Prasad theory

3.1. The Moy-Prasad filtration. For x ∈ B(G), the affine building of G, given a sequence
of real numbers

0 ≤ r1 ≤ r2 ≤ . . . ⊂ R

Moy-Prasad defined filtrations
gx,r1 ⊃ gx,r2 ⊃ . . . ,
Gx,r1 ⊃ Gx,r2 ⊃ . . .
g∗x,r1 ⊃ g∗x,r2 ⊃ . . .

These filtrations are compatible with taking commutators:

(Gx,s, Gx,t) ⊂ Gx,s+t and [gx,s, gx,t] ⊂ gx,s+t.

They also satisfy gGx,rg−1 = Ggx,r.
We then define

Gx,r+ =
⋃
s>r

Gx,s

and
gx,r+ =

⋃
s>r

gx,s.

Given H ↪→ G, there is sometimes B(H) ↪→ B(G). It exists when we need it, namely
when H is a twisted Levi subgroup of G.

Definition 3.1. Let gr =
⋃
x∈B(G) gx,r and Gr+ =

⋃
s>r gs.

Note that gr is open and closed, and Ad(G)-invariant. These are called G-domains. They
are thickenings of the nilpotent cone: note that n =

⋂
gr.

3.2. Depth.

Definition 3.2. For (π, Vπ) ∈ E(G), define the depth of π to be

ρ(π) := min{r : V
Gx,r+
π 6= 0 for some x ∈ B(G)} ∈ Q.

This implies
π | Gx,ρ(π)+ =

∑
τ∈E(Gx,ρ(π)+ )

mττ

with τ ∼ 1 for all τ .

Theorem 3.3 (DeBacker-Waldspurger). Let p� 0. Then the Harish-Chandra–Howe local
character expansion

θπ =
∑

θ∈O(0)

cθµ̂θ

is valid on gρ(π)+ .
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We have an action of Gx,ρ(π) on V
Gx,ρ(π)+

π . Moreover, if ρ(π) > 0 then Gx,ρ(π)/Gx,ρ(π)+

is abelian, and (
Gx,ρ(π)

Gx,ρ(π)+

)∨
∼=

gx,−ρ(π)

gx,(−ρ(π))+

.

3.3. K-types.

Definition 3.4. For y ∈ B(G) and r ≥ 0,
(1) (Gy,0, τ) is an unrefined minimal K-type of depth 0 if τ is inflated from a cuspidal

representation of Gy,0/Gy,0+ .
(2) (Gy,r, χ) for r > 0 is an unrefined minimal K-type of depth r if χ|Gy,r+ is trivial and

the dual blob of χ doesn’t contain nilpotent elements.

Theorem 3.5 (Moy-Prasad).
(1) For any π ∈ E(G) of depth r, there exists an unrefined minimal K-type (Gx,ρ(π), χ)

such that π|Gχ,ρ(π) > χ.
(2) Any two minimal K-types are “associates” (i.e. intertwined).

Example 3.6. Spherical principal series have minimal K-type (I, 1).

Note that if ρ(π) > 0, then χ corresponds to a dual blob Γ ∈ gx,−ρ(π)/gx,(−ρ(π))+ .

Definition 3.7 (Adler-Roche). Let T ⊂ G be a maximal torus. We say that Γ ∈ LieT =: t
is good of depth r if

(1) Γ ∈ gr/gr+ ,
(2) t splits over a tamely ramified extension E,
(3) for any α ∈ Φ(T,E),

νE(dα(Γ)) = r or dα(Γ) = 0.

Remark: this implies that Γ ∈ tr/tr+ .
We also declare that 0 ∈ g is good by definition.

Remark 3.8. Fintzen has recently proved that if G splits over a tame extension and p - |W |,
then any coset tr/tr+ contains a good element.

Example 3.9. Let π ∈ E(GLn) be a principal series representation. Let (χ1, . . . , χn) be a
tuple of characters such that

• χi has conductor p2d,
• χiχ−1

j is nontrivial on p2d+1,
Then π contains the unrefined minimal K-type (K2d+1, χ) corresponding to the dual blob

$−2d−1

λ1

. . .
λn

 (3.1)

where λi ∈ O×K , so (3.1) is a good element of depth −2d− 1.

Example 3.10. If Γ is good and CG(Γ) is compact mod center, then π is supercuspidal.

Example 3.11 (Adler-Roche). Let H = H(G//Gx,ρ(π), χ), with the dual blob Γ corre-
sponding to χ being good. We have H ∼= EndG(c − IndGGx,ρ(π)

χ), and it is supported on
Gx,0+G′Gx,0+ where G′ = CG(Γ). (The support of H is defined to be {g ∈ G : ∃f ∈
H such that f(g) 6= 0}.)
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Definition 3.12. An unrefined minimal K-type (Gx,ρ(π), χ) is weakly good if it intertwines
with a good type in G.

Depth zero unrefined K-types are also declared to be good.

4. Applications

Theorem 4.1 (Kim-Murnaghan). If ρ(π) > 0 and π contains a weakly good type represented
by Γ, then we have the character expansion

θπ =
∑

θ∈O(Γ)

cθµ̂θ

valid on gρ(π) ) gρ(π)+ , where O(Γ) is the set of orbits whose closure contains Γ.

Remark 4.2.
(1) If Γ is regular, then θπ = cθµ̂θΓ .
(2) cθ is “computable”.

Theorem 4.3. Let G be semisimple. Almost all tempered representations contain a weakly
good type i.e. the Plancherel measure of the complement is 0.

Proof.
(1) Let Gss ⊂ g be the subset of all good semisimple elements of depth < 0, union with
{0}.

We define
g0 =

⋃
x∈B(G)

gx,0.

Given a dual blob Γ, we define

gΓ = G · (Γ + Cg(Γ)r+),

which is an open and closed G-invariant set.
We let gΓ be the union of all dual blobs of unrefined minimalK-types intertwining

with the good types of the form (Gχ,ρ, χΓ). Given Γ,Γ′ ∈ Gss, we say Γ ∼ Γ′ iff
gΓ ∩ gΓ′ 6= ∅, iff gΓ = gΓ′ .

We have

g =

◦⋃
Γ∈Gss/∼

gΓ.

(2) We introduce the notation G̃ := E(G). For a dual blob Γ we let G̃Γ be the set of
irreducible smooth representations containing a minimal K-type whose dual blob is
in gΓ, and we set G̃0 to be the set of depth zero irreducible smooth representations.

We have

G̃ =

◦⋃
Γ∈Gss/∼

G̃Γ.

Now we’re going to look at the tempered representations.
(3) The Plancherel formula says that for f ∈ C∞c (g0+),∫

g

f̂(x) dx = f(0).

We want to show that∫
g

f̂(x) dx =

∫
Ĝtemp

Θπ(f ◦ log)dπ.
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Decomposing, ∫
g

f̂(x) dx =
⊕∫

gΓ

f̂(x) dx

and∫
Ĝtemp

Oπ(f ◦ log)dπ. =
⊕∫

Ĝtemp
Γ

Θπ(f ◦ log)dπ +

∫
Ĝtemp\

◦⋃
Ĝtemp

Γ

Θπ(f ◦ log)dπ

So we want to match∫
gΓ

f̂(x) dx =

∫
Ĝtemp

Γ

Θπ(f ◦ log)dπ.

Let fy,ρ be the characteristic function of Gy,ρ+1. If 0 ≤ ρ < −depth(Γ), the depth
of representations in Ĝtemp

Γ then both sides vanish.
If ρ > −depth(Γ), then we match the two sides using the character expansion∑

O∈O(Γ)

cOµ̂O.

The cO are determined using the test functions chGx,r,χΓ , i.e. the inflation of the
character χΓ as a function supported on Gx,r.

The conclusion is that∫
Ĝtemp\

◦⋃
Ĝtemp

Γ

Θπ(f ◦ log)dπ = 0

for all such fy,ρ. Since Θπ(f) is always non-negative, this shows the vanishing of
the Plancherel measure of non-tempered representations.

�

Remark 4.4. All smooth irreducible representations contain a good type, under the as-
sumption that the group is tamely ramified. This can be proved using the geometry of the
of Bruhat-Tits building.

Remark 4.5. The exhaustion theorem for supercuspidal reprsentations used a more refined
notion of K-type and a more refined notion of character expansion. The refined notion
extracts information on supercuspidal representations on Gx,0+ (a topologically unipotent
group).

To extract depth zero information, you need to analyze the Jacquet module.
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