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1. Homotopy theory of representations

Let me start by reviewing a few basic facts on homotopy theory. Let X be a “nice”
connected space (e.g. a CW complex). Let G be a discrete group. We write BG for the
classifying space of G, which is also known as a “K(G, 1)”. We write Map(X,BG) for the
space of continuous maps fromX to BG. The homotopy type of Map(X,BG) can be studied
via its homotopy groups. Fixing a basepoint x ∈ X, the components are parametrized by
Hom(π1(X,x), G), but then we need to mod out by conjugation to account for the choice
of basepoint. Therefore, we have

π0 Map(X,BG) = Hom(π1(X,x), G)/conj.

Futhermore, we have

• π1(Map(X,BG), ρ : π1 → G) ∼= CG(Im ρ) (centralizer).
• πi(Map(X,BG)) = 0 for i ≥ 2.

Thus we have a disjoint union of conjugacy classes

Map(X,BG) =
∐

ρ : π1(X)→G

BCG(ρ)

This presentation is good because it doesn’t depend on basepoints of choices of representa-
tives, and makes sense for non-discrete groups.

Remark 1.1. The components with trivial CG(ρ) are contractible. You can think of this
as corresponding to ρ with “large image”.

Remark 1.2. Framed deformations have to do with basepoints, where you get actual
homomorphisms rather than up to conjugacy.
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2. The classical theory

2.1. The deformation functor. We now introduce the setup for derived deformation
rings. Let k be a finite field. Let W be the ring of Witt vectors of k. Let G be an algebraic
group over W , e.g. G = GLn or PGLn.

Let A be a local Artinian ring. For every factorization

A

W k

we get a map BG(A) → BG(k), where for the moment the groups G(A) and G(k) are
regarded as discrete. (In a moment we will take simplicial rings, and we will no longer be
considering discrete groups.)

We want to think of the mapping spaces as a substitute for conjugacy classes of homo-
morphisms. Fix ρ ∈ Map(X,BG(k)), and consider the lifts to Map(X,BG(A)).

Map(X,BG(A))

Map(X,BG(k))

Definition 2.1. The homotopy fiber FGX,ρ(A
ε−→ k) is the space of lifts

BG(A)

X BG(k)
ρ

ρ

together with a choice of homotopy h between the two compositions. This is a homotopy
theoretic notion of lift, which is better than the naïve notion.

Remark 2.2. Often when we apply this, we make assumptions that imply CG(k)(ρ) = 0.
In that case we can instead just require the existence of h. But in general it is better to
include h in the notion of a lift.

Then FGX,ρ(A
ε−→ k) is a space which has no higher homotopy groups, and π0FX,S(A→ k)

is the set of lifts

G(A)

π1(X) G(k)/conjρ

ρ

and πiFGX,ρ(A
ε−→ k) = 0 for all i > 0.

This is just a convoluted way of saying the following. Up to homotopy,

FGX,ρ(A
ε−→ k) ∼= π0F

G
X,ρ(A

ε−→ k),

which is the “usual” deformation functor.
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2.2. The deformation ring. The classical deformation ring R exists under mild assump-
tions, and represents this functor FGX,ρ in the sense that FGX,ρ(A

ε−→ k) is isomorphic to space
of homomorphisms

R A

k k

The ring R is complete local noetherian, or a pro-object in the category of local Artinian
rings A→ k. We want advocate that the second point of view is better.

Remark 2.3. To obtain a theory that encompasses Galois groups, we consider pro-spaces
X = {j 7→ Xj}, and take

FX,ρ := lim−→
j

FX(j),ρ.

3. The derived theory

We still fix a field k, but now we want to extend this theory to simplicial commutative
rings A•,R.

3.1. Simplicial commutative rings. A simplicial commutative ring (SCR) is a simplicial
object in commutative rings, meaning a diagram of the form

A• = A0 ⇔ A1 . . . .

We want to think of π0(A•) as the “underlying commutative ring”. For any simplicial
commutative ring the homotopy groups form a graded commutative ring

π∗A• =

∞⊕
i=0

πi(A•).

Remark 3.1. Here πi(A•) is canonically isomorphic to the Hi of the chain complex

. . .← Ai−1 ← Ai ← Ai+1 ← . . .

with differential ∂ =
∑

(−1)idi. However this is not as good a point of view; for example
the ring structure is invisible. It’s better not to try to think in terms of this chain complex.

3.2. Derived deformation functor. To begin, we need to know what it means for a
simplicial ring to be “Artinian”, which is something we learned from Lurie’s thesis [L].

Definition 3.2 (Lurie). A simplicial commutative ring A• is Artinian local if the underlying
ring π0(A•) is Artinian local and π∗(A•) is finitely generated as a module over π0(A•). (In
particular, all but infinitely many of the homotopy groups are zero, and the non-zero ones
are finitely generated over π0(A•).)

The domain for the derived version of FX,ρ should be Artinian local simplicial commu-
tative rings (A•, ε : π0(A•)/m

∼−→ k).

Remark 3.3. The structure of an algebra over W (k) comes “for free” (up to a contractible
choice), so it does not need to be explicitly inserted into the definition.

We now want to design criteria for FX,ρ to be representable.
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Example 3.4. There is a functor from commutative rings to simplicial commutative rings,
sending A to the constant simplicial ring A (with all morphisms being the identity). This
is right adjoint to π0. In particular, there is a canonical (counit) map A• → π0(A•). You
think of this as analogous to the map given by modding out by the nilpotent ideal.

This allows us to think of ordinary commutative rings as a full subcategory of simplicial
commutative rings.

Definition 3.5. We say that a simplicial commutative ring is homotopy discrete if the
counit

A• → π0(A•)

is a homotopy equivalence, i.e. the higher homotopy groups of A• vanish.

The codomain of the derived FX,ρ should be spaces, but for technical reasons it’s better
to say simplicial sets. If we ever say “space” we mean simplicial sets.

Let us first lay out what we are looking for in the derived deformation functor FX,ρ.
(1) It should be an extension of the classical FX,ρ.
(2) It should be homotopy invariant, meaning that if you have a morphism of Artinian

local simplicial commutative rings

A• A′•

k k

ε

∼

ε

which is a homotopy equivalence, then

FX,ρ(f) : FX,ρ(A•)→ FX,ρ(A
′
•)

should also be a homotopy equivalence.
(3) There should be a compatibility with the non-derived theory. Namely, we have an

inclusion of the category of Artinian local rings A into the category of Artinian
local simplicial commutative rings, and taking π0 recovers the classical theory, in
the sense that the following diagram commutes:{

Artinian local
commutative rings A

}
Set

{
Artinian local simplicial

commutative rings A

}
sSet

classical FX,ρ

FX,ρ

π0

In the paper [GV] we explain how to define FX,ρ, and also in what sense it is representable.
The proof of representable is like in the classical case, using a derived version of Schlessinger’s
criterion [L].

To define FX,ρ, we need to define the space “BG(A)”. The association A 7→ BG(A)
should be a functor from A to spaces. Then we just repeat everything we said about
mapping spaces:

FX,ρ(A•
ε−→ k) =


BG(A•)

X BG(k)

ε
ρ

ρ

 .
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3.3. Classifying spaces. What is BG(A)? If A is discrete, one model for the classifying
space of a group is the simplicial set which is the nerve of G(A):

∗⇔ G(A)←←← G(A)×G(A)

If A is discrete, G(A) = Hom(OG, A) and G(A) × G(A) = Hom(OG ⊗ OG, A) etc. So we
could take the cosimplicial ring

W ⇒ OG →→→ OG ⊗OG ⊗ . . .

and try to set BG(A) to be the homomorphisms from it to A.
However, this is a bad idea because the result won’t be homotopy invariant. If A•, B•

are simplicial commutative rings then there is a space of homomorphisms SCR(A•, B•) but
the construction SCR(−,−) is not homotopy invariant in either factor. This is like how
taking Hom out of a chain complex is bad if the complex isn’t projective. Here the fix is to
take a “cofibrant replacement” c(A•)

∼−→ A•. Then SCR(c(A•),−) is homotopy invariant.

We need to explain how to make a “space” of maps between two simplicial commutative
rings.

Definition 3.6. If X•, Y• are simplicial sets then sSet(X•, Y•) is the set of natural transfor-
mations between X and Y as functors ∆op → Sets. This is naturally the set of 0-simplices
of a simplicial set sSet(X•, Y•). Here

sSetp(X•, Y•) = sSet(X ×∆[p], Y )

where ∆[p] = ∆(−, [p]) is the functor represented by [p] ∈ ∆. Thus the category of simplicial
sets is naturally enriched over itself.

Now, Y ∆[p]
• is the simplicial set of maps ∆[p] → Y•. If Y has an algebraic structure

which is defined in terms of cartesian products, e.g. an abelian group structure, then this
construction inherits that algebraic structure. In particular, if Y is a simplicial commutative
ring then so is Y ∆[p]

• . This makes SCR enriched over sSets.

The category SCR can be equipped with the structure of a model category in the sense
of Quillen. This means that is has a notion of cofibrations and fibrations, etc. and part
of this structure is the existence of cofibrant replacements. Now SCR(A•,−) is homotopy
invariant if A• is cofibrant. Intuitively this is something like “projective” but we don’t want
to define it formally.

Example 3.7. A free commutative ring on a simplicial set (meaning levelwise) is cofibrant.
More generally, a sufficient criterion for a simplicial commutative ring to be cofibrant is that
in each degree it has to be polynomial on a set (finite or infinite), such that the sets are
closed under degeneracies (but not under face maps). Not every cofibrant thing is of the
form, but this criterion supplies everything that you need in practice.

Fact 3.8. There exists a functorial cofibrant replacement

c(A•)
∼−→ A•.

Thus we get a cosimplicial commutative ring

W ⇒ c(OG)→→→ c(OG ⊗OG) . . .
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Remark 3.9. In general we do not claim that c(OG ⊗ OG) ∼= c(OG) ⊗ c(OG), i.e. that
there is an op lax monoidal cofibrant replacement functor. Thus our construction does not
present BG(A) as the bar construction of some group G(A). In fact it is more convenient
to define BG(A) than G(A). We could then go and define G(A) = ΩBG(A).

The point is that SCR(OG, A) is a bad model for G(A) because it is not homotopy
invariant, so we replace it by SCR(c(OG), A•). Similarly, we get a homotopy invariant
version of N•(G(A)),

[p] 7→ Hom(c(O⊗pG ), A•).

This nerve is a simplicial object in simplicial sets. To extract the desired simplicial set
BG(A) we take the geometric realization BG(A•) = |N•G(A•)|, which in this case is just
the diagonal simplicial set:

BG(A•)p = NpG(Ap).

This gives a homotopy invariant construction A• → BG(A•), which recovers the classical
construction in the sense that if A•

∼−→ π0(A•), then BG(A•) ∼= B(G(π0(A))).
We now define a deformation functor as before.

FX,ρ(A•
ε−→ k) =


BG(A•)

X BG(k)

ε
ρ

ρ

 .

(We imagine these as simplicial sets; if X is a space we should take geometric realizations.)
This defines a homotopy invariant functor

FX,ρ :
{Artin local simplicial

commutative rings
}
→ sSets.

Now we turn our attention to the issue of representability. In his thesis [L] Lurie gives
a “derived Schlessinger criterion”, and we check that our functor does satisfy this criterion.
Let’s not say much about this; it’s not one of the more difficult steps. The point is that
we want F to be equivalent to the functor represented by a pro-object R = {j 7→ R(j)} in
Artin local simpicial commutative rings, such that

A 7→ lim−→
j

SCR•/k(R(j), A•)

In order to get homotopy invariance, we need to demand that the R(j) are cofibrant.

Remark 3.10. In simplicial sets homotopy groups commute with filtered colimit. The col-
imit is morally a homotopy colimit, but in our model it is not necessary (which is technically
convenient).

3.4. The tangent complex. Consider a functor

F :
{Artin local simplicial

commutative rings
}
→ sSets.

We are interested in the question of when F is pro-representable by R.
The representing object should have a cotangent complex, and the tangent complex

should be “HomR(Ω1
R, k))”. There is a way to express this only in terms of the functor F ,

which is expressed in terms of evaluating F on objects “k ⊕ k[n]” (which we also learned
from Lurie’s thesis). This is a square-zero extension.
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When n = 0, k⊕ k[0] = k[ε]/ε2 is the usual dual numbers viewed as a constant simplicial
ring. Now we want a version where ε is in πn instead. So we define k[n] to be the simplicial
k-module with

πik[n] =

{
k i = n

0 otherwise

One way to construct this is to apply Dold-Kan to the chain complex k[n].
We then define k ⊕ k[n] to be the levelwise square 0 extension. This is a simplicial

commutative ring with
π∗(k ⊕ k[n]) = k[ε]/ε2

where |ε| = n. One of the properties of F is that F = FX,ρ satisfies

F (k = k) ∼= ∗

is contractible, and there is a canonical homotopy equivalence

F (k ⊕ k[n]) ∼= ΩF (k ⊕ k[n+ 1]).

In particular F (k ⊕ k[0]) (the first-order deformations) comes with deloopings

ΩF (k ⊕ k[1]) ∼= Ω2F (k ⊕ k[2]) ∼= . . .

so F (k ⊕ k[n]) forms an “Ω-spectrum”. The spectrum is what we define to be the tangent
complex tF . It then makes sense to talk about negative homotopy groups. For example,

π−itF = πn−iF (k ⊕ k[n]) n� 0.

Remark 3.11. There is a way to produce a spectrum from a Z-graded chain complex of
k-vector spaces. The construction goes as follows. If C∗ is a chain complex, ΣnC∗ = C∗[n].
Then we can form an object |ΣnC∗| by shifting, truncating the complex to be in non-positive
degrees, and then applying Dold-Kan, to get a spectrum.

It is a fact that our tangent complex F does arise from a Z-graded chain complex in this
way. (It’s mostly in negative degrees, so if you dualize you get something mostly in positive
degrees, which might be psychologically comforting.)

Lurie’s derived Schlessinger’s criterion roughly asks for the following conditions on the
functor F :

• it should be homotopy invariant,
• it should preserve pullbacks

A• ×B• C• A•

C• B•

• tF has no homotopy in positive degrees, i.e. F (k ⊕ k[0])
∼−→ π0F (k ⊕ k[0]). This

expresses the intuition that “the moduli problem has no automorphisms”.
The upshot is that we get a pro-([cofibrant] Artin local simplicial commutative ring) over

k),
R = {j 7→ R(j)}.

It’s better to think of R as a pro-object. You could try taking

πiR := lim←−
j

πi(R(j))
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but this is badly behaved in general because there’s a lim←−
1. It well-behaved if k is finite

because then lim←−
1 = 0. One could take a homotopy limit, but we don’t do this.

We can then define

π∗(R) =

∞⊕
i=0

πi(R).

Remark 3.12. Because this is a pro-object, it could have homotopy in arbitrarily high
degrees, just as taking a limit of Artinian objects need not produce something Artinian.

Now we consider what the tangent complex looks like for F = FX,ρ, the functor sending
(A

ε−→ k) to the space of lifts
BG(A•)

X BG(k)
ρ

In particular consider lifts to A• = k ⊕ k[n]:

BG(k ⊕ k[n])

X BG(k)
ρ

Think of BG(k) as a K(π, 1). The BG(k ⊕ k[n]) only has π1 = G(k) and πn+1 = g ⊗W k.
For any space you have an action of π1 on higher homotopy groups, which in this case is
the adjoint action.

From this we can get a description of the homotopy fiber:

π−n(tF ) = π0(F (k ⊕ k[n])) = Hn+1(X; g)

where π1(X) acts on g by
π1(X)

ρ−→ G(k)
Ad−−→ Aut(g).

This gives a formula for “π0 Hom(R, k ⊕ k[n])”. This is like how it’s easier to find formulas
for cohomology than homotopy groups in topology.
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