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NOTE TO THE READER 5

Note to the reader

This document consists of notes I live-TEXed during the Arbeitsgemeinschaft at
Oberwolfach in April 2017. They should not be taken as a faithful transcription of the
actual lectures; they represent only my personal perception of the talks. Moreover,
they have been edited from their original form.

No doubt many typors and errors remain, for which I take full responsibility. I
have also not attempted to sync the notation used across different talks. The reader
is warned that there are some fairly significant inconsistencies in notation! Despite
these flaws, I hope the notes will be useful to some readers.

Almost all of the mathematics here is contained in the paper “Shtukas and the
Taylor Expansion of L-functions” by Zhiwei Yun and Wei Zhang. These notes are
but an expository first glimpse of their incredible work. Special thanks to Zhiwei
and Wei for also organizing the workshop, and to the speakers.

Comments and corrections can be sent to me at tonyfeng@stanford.edu. I thank
Arthur Cesar le Bras for corrections.





Part 1

Day One



1. An overview of the Gross-Zagier and Waldspurger formulas
(Yunqing Tang)

1.1. The modular curve X0(N).
1.1.1. The open modular curve. To state the Gross-Zagier formula, we need to

introduce modular curves. We begin by defining the open modular curve Y0(N).
Over a field of characteristic 0, it is the moduli space of pairs (E′, C) where E′ is an
elliptic curve and C is a subgroup of E′ isomorphic to Z/NZ.

The complex points Y0(N)(C) have the structure of the locally symmetric space
Γ0(N)\H, where

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

The point τ ∈ H parametrizes the curve C/Z + τZ, with N -torsion point being τ
N .

1.1.2. Cusps. The cusps of Γ0(N) are in bijection with the set

Γ0(N)\P1(Q) =
⊔
d|N

(Z/fdZ)× fd = gcd(d,N/d).

We define X0(N) as the compactification of Y0(N) obtained by adjoining a point for
each cusp. There is a moduli interpretation of X0(N) as parametrizing isogenies of
generalized elliptic curves

φ : E′ → E′′

such that kerφ ∼= Z/NZ and kerφ meets every component of E′. A generalized
elliptic curve is a family whose geometric fibers are either an elliptic curve or a
“Néron n-gon” of P1’s.

There are two special cusps on X0(N):
• The cusp ∞ corresponds to the n-gon for n = 1, which is the nodal cubic.
• The cusp 0 corresponds to the N -gon.

1.1.3. CM points. In terms of the uniformization of X0(N) by H, CM points
correspond to τ ∈ H such that there exist a, b, c ∈ Z such that

aτ2 + bτ + c = 0.

We can assume that gcd(a, b, c) = 1. With this assumption, the discriminant D =

b2 − 4ac is the discriminant of EndC(Eτ ) ∼= Z + Z[D+
√
D

2 ].
1.1.4. Heegner points. Heegner points are a special type of CM points. Fix K to

be an imaginary quadratic field of discriminant D over Q. Assume D is odd. The
Heegner condition says that for all p | N ,

(1) p is split or ramified in K, and
(2) p2 - N .
Remark 1.1. These conditions are equivalent to saying that D is a square

(mod 4N).
The Heegner condition is equivalent to the existence of a point x := (φ : E′ →

E) ∈ X0(N)(Q) satisfying

EndQ(E′) = EndQ(E′′) = OK .
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The theory of complex multiplication implies that Heegner points are defined
over the Hilbert class field of K, which we denote by H. In terms of the complex
uniformization, the Heegner point x corresponds to

x = [C/OK → C/N−1OK ]

where N ⊂ OK is an ideal of norm N . Its existence is guaranteed by the Heegner
condition as follows. For every p | N we can choose p ⊂ OK such that Nm p = p,
and then set N =

∏
p p

vp(N).
Finally, we can form a degree 0 divisor on X0(N) from the Heegner point, which

will actually be defined over K, as follows: let

P :=
∑

σ∈Gal(H/K)

(σ(x)−∞).

1.2. Néron-Tate height. We now define the “Néron-Tate height”. This con-
struction can be done for any abelian variety, but we will only do it for Jacobians;
this is all we need to state Gross-Zagier.

Suppose we have a line bundle L on J0(N), corresponding to twice a theta divisor
Θ. (More This is ample, so we can use it to define a height. Namely, we can pick a
large power of n and use L⊗n to embed

L⊗n : J0(N) ↪→ Pm.

On projective space we have the standard height function due to Weil, which we can
restrict to J0(N) to obtain a height function 1

nh
K
L⊗n . To make this well defined, we

normalize: define hKL on J0(N)(K) by 1
nh

K
L⊗n .

Definition 1.2. The Néron-Tate height for J0(N) is defined to be

ĥ := lim
n→∞

hKL (2nx)

4n
.

This satisfies
ĥ(2x) = 4ĥ(x).

Remark 1.3. The Néron-Tate height can be decomposed into a sum of local
terms, which is used in the original proof of the Gross-Zagier formula.

1.3. L-functions. Let f be a weight 2 newform for Γ0(N). (This means that
f is a cuspidal Hecke eigenform, orthogonal to modular forms coming from smaller
level.) We have a Fourier expansion

f =
∑
n≥1

anq
n.

If an ∈ Z for all n, then by Eichler-Shimura we have an elliptic curve E/Q with
conductor N . Conversely, for an elliptic curve E/Q the modularity theorem (Wiles,
Taylor-Wiles, Breuil-Conrad-Diamond-Taylor) produces a modular form with the
same L-function.
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The modular form f can be viewed as an automorphic form for GL2 /Q. If fk
denotes its base change to K, then

L(fK , s) = L(f, s)L(f ⊗ ηK/Q, s) (1.1)

where ηK/Q is the quadratic character associated to K/Q by class field theory.
Explicitly, we can write

L(f, s) =
∑

anq
n

L(f ⊗ ηK/Q, s) =
∑

η(n)anq
n

Remark 1.4. The base change for automorphic forms can be understood con-
cretely in terms of elliptic curve. If f corresponds to the elliptic curve E under
Eichler-Shimura, then

L(fK , s) = L(EK , s).

Thus (1.1) becomes
L(EK , s) = L(E, s)L(ED, s)

where ED is the quadratic twist of E by D. This has an Euler product

L(EK , s) =
∏

v finite place of K

Lv

where for good reduction v,

Lv = (1− avq−sv + q1−2s
v )−1, av = qv + 1−#E(Fv),

and in the bad reduction case,

Lv = (1− avq−sv )−1

where av = 1 for split multiplicative reduction, av = −1 for a nonsplit multiplicative
reduction, and av = 0 for additive reduction. (This can again be phrased in terms
of a point count for the non-singular locus of the reduction.)

The Heegner condition implies that

ε(L(fK , s)) = −1 =⇒ L(fK , 1) = 0.

1.4. Gross-Zagier.
1.4.1. The elliptic curve case. Let φ : X0(N)→ E be the modular parametriza-

tion, sending∞ 7→ e. Thanks to the modularity theorem of Wiles, this parametriza-
tion is induced by a modular form f . We define

P (φ) :=
∑

σ∈Gal(H/K)

φ(σ(x)) ∈ E(K).

Theorem 1.5 (Gross-Zagier). We have

ĥ(P (φ)) =
deg φ · u2 · |D|1/2

8π2||f ||Pet
L′(EK , 1)
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where u = |O×K |, and

||f ||Pet :=

∫
Γ0(N)\H

f(z)f(z) dxdy

We can rewrite this in terms of modular forms, which fits better with the gener-
alization to automorphic forms.

Definition 1.6. The Hecke algebra is the algebra of correspondences on X0(N)
generated by

Tm : [E
φ−→ E′] 7→

∑
C⊂C :
#C=m

C∩kerφ=e

[E/C → E′/C].

It acts on X0(N), hence also on J0(N). Let P (f) be the isotypic component of
J0(N)⊗Q, where we need to extend scalars because the idempotent has denomina-
tors. Then the reformulation of Gross-Zagier is:

ĥ(P (f)) =
u2 · |D|1/2

8π2

L′(FK , 1)

||f ||Pet
.

Remark 1.7. The proof considers the height pairing

〈(x−∞), TM (σ(x)−∞)〉NT
for X0(N). This is the Fourier coefficient of a cusp form of weight 2 on X0(N). It is
part of a general philosopy of Kudla that the generating series for special cycles is a
modular form. The L-function is also associated to a modular form. The proof goes
by arguing that these two forms coincide, up to an old form. The higher Gross-Zagier
also has to do with this.

1.5. Generalized Heegner conditions. We now explain a generalization of
of Heegner points, following work of Zhang and Yuan-Zhang-Zhang.

Let (N,D) = 1. Assume N = N+N− where N− is squarefree and its number of
prime factors is even. In this case we can have a quaternion algebra B ramified at
N−, giving rise to a Shimura curve

X = B×(Q)\H± ×B×(Af )/U.

From an elliptic curve E/Q we get a modular form f . By Jacquet-Langlands, we
get a modular parametrization X → E. For an embedding K → B(Q) of an
imaginary quadratic field K, we get a Heegner point x ∈ X(H), where H is the
Hilbert class field of K. (The Shimura curve parametrizes abelian surfaces with real
multiplication, while the CM point parametrizes things with endomorphism by OK .
The Heegner condition forces endomorphisms by the maximal order. In particular,
this implies that the CM point is defined over H. )

Definition 1.8. We define the generalized Heegner point

P (φ) :=
∑

σ∈Gal(H/K)

φ(σ(x)) ∈ E(K).
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Theorem 1.9 (Zhang, YZZ). We have

ĥ(P (φ)) =
L′(E/K, 1)

||f ||Pet
.

1.6. Waldspurger formula. We normalize so that the center of the L-function
is 1/2.

Let F be a number field and A = AF . Let B be a quaternion algebra over F ,
and G the algebraic group associated to B×. Denote the center of G by ZG = F×.
Let K/F be a quadratic extension with a given embedding K ↪→ B. Let T =
ResK/F Gm; note that we can naturally view T ⊂ G. Let η be the quadratic Hecke
character associated to K/F .

Let π be an irreducible cuspidal automorphic representation of G, and ωπ the
central character. Let πK denote the base change of π to K. Let

χ : T (F )\T (A)→ C×

be a unitary character, such that ωπ ·χ|A× = 1. (The purpose of χ is to get a trivial
central character.)

The Waldspurger formula concerns a period integral. We define

Pχ : π → C

by

f 7→ Pχ(f) =

∫
T (F )\T (A)/A×

f(t)χ(t) dt.

Theorem 1.10 (Waldspurger). For f1 ∈ π and f2 ∈ π̃ (the contragredient rep-
resentation), we have

Pχ(f1)Pχ(f2) ∼ L(πK ⊗ χ, 1/2)

L(π,Ad, 1)
α(f1 ⊗ f2)

where α =
∏
v αv is a product of local terms

αv ∈ HomK×v
(πv ⊗ χv,C)⊗HomK×v

(π̃v ⊗ χ−1
v ,C),

normalized by Waldspurger (so in particular, they are 1 in the spherical case).
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2. The stacks Bunn and Hecke
(Timo Richarz)

2.1. Why stacks? In algebraic geometry one would like to have a classifying
space BGLn for vector bundles, such that

Hom(S,BGLn) = {vector bundles of rank n on S} / ∼ .

Such an object can’t be represented by a scheme, since a vector bundle is locally
trivial, so any map S → BGLn would need to be locally constant, and for maps of
schemes locally constant implies constant.

There are several possible ways to wriggle out of this situation.
(1) Add extra data (e.g. level structure) in order to eliminate automorphisms.
(2) Don’t pass to isomorphism classes.

Stacks are the result of the second option.

2.2. Bunn as a stack. Let k be a field.
Definition 2.1. A stack M is a sheaf of groupoids

M : Schop
k → Grp ⊂ Cat

i.e. an assignment
• for all S a groupoidM(S),
• for every S f−→ S′ a pullback functor f∗ : M(S′)→M(S),
• for all S f−→ S′

g−→ S′′ a transformation

ϕf,g : f∗ ◦ g∗ =⇒ (g ◦ f)∗

such that objects and morphisms glue (in the appropriate topology).
Example 2.2. The classifying stack

BGLn := [pt /GLn]

takes S to the groupoid of vector bundles of rank n on S.
Example 2.3. LetX be a smooth, projective, connected curve over k. We define

the stack Bunn taking S to the groupoid of vector bundles of rank n on X × S.
How do you make this geometric? We have a map pt→ BGLn corresponding to

the trivial bundle. If E is a rank n vector bundle on S, then we get by definition a
classifying map

fE : S → BGLn.

Consider the fibered product

S ×BGLn pt pt

S BGLn
fE
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To understand what the fibered product is, let’s compute its functor of points is.

T

S ×BGLn pt pt

S BGLn

p

f

Triv
fE

Its T -valued points are

{(f, ϕ : Triv ◦ p ∼−→ fE ◦ f} = Isom(O⊕nS , E)(T ),

which is the frame bundle of E . Let’s think about what this means.
(1) We can recover E = OnS ×GLn Isom(O⊕nS , E), i.e. the map pt → BGLn is

the universal vector bundle.
(2) The map pt→ BGLn is a smooth surjection after every base change.
Inspired by these examples, we make a definition.
Definition 2.4. A stackM is called algebraic if
(1) For all maps S →M and S′ →M from schemes S, S′, the fibered product
S ×M S ′ is a scheme .

(2) There exists a scheme U together with a smooth surjection U →M called
an atlas.

(3) The map U ×M U → U × U is qcqs.
An algebraic stackM is smooth (resp. locally of finite type, ...) if there is an atlas
U �M such that U is smooth (resp. locally of finite type, ...).

Example 2.5. (Picard stack) We define PicX = BunX,1. Let JacX be the
Jacobian of X. This is the coarse moduli space of PicX , so we have a map

PicX → JacX

which preserves the labelling of connected components by degree. Suppose you have
x ∈ X(k) 6= ∅. Then we actually have an isomorphism

PicX
∼−→ JacX ×BGm

where the map PicX → BGm corresponds to the restriction of the universal line
bundle on X × PicX to {x} × PicX .

This shows that PicX is a smooth algebraic stack locally of finite type of dimen-
sion g(X)− 1.

Theorem 2.6. Bunn is a smooth algebaic stack locally of finite type over k, of
dimension n2(g(X)− 1), and π0(Bunn) = Z.

Proof. Choose an ample line bundle OX(1) on X. Define U to be the union
over N of (E , {si}) such that

• E(N) is globally generated,
• H1(X, E(N)) = 0, and
• the {si} are a basis of H0(X, E(N)).
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This U is represented by a smooth scheme, by the theory of Quot schemes, and
U → Bunn is an atlas. (The obstruction to deforming a basis lies in H1(X, E(N)),
which we have asked to vanish.) �

Example 2.7. Let X = P1
k. Then [pt /GLn], corresponding to the trivial

bundle, is an open immersion in Bunn because H1(P1
k, g) = 0. For example,

Bun0
2(k) = {O⊕2,O(1) ⊕ O(−1), . . .} so the automorphism groups get bigger as

the points get more special.

2.3. Adelic uniformization of Bunn.
2.3.1. Weil’s uniformization. Let k = Fq. Let F be a the function field of X,

and |X| the set of closed points. For x ∈ |X| denote by Ox the completed local ring
at x. This is non-canonically isomorphic to kx[[$x]]. We also set Fx = Frac(Ox),
which is non-canonically isomorphic to kx(($x)). Recall the ring of adeles

A =
′∏

x∈|X|

(Fx,Ox) = {(ax) ∈
∏

Fx | ax ∈ Ox for almost all x ∈ |X|}.

Theorem 2.8 (Weil). There is a canonical isomorphism of groupoids

GLn(F )\

GLn(A)/
∏
x∈|X|

GLn(Ox)

 ∼−→ Bunn(k).

Here if S is a set with a group action of G, then S/G can be considered as a
groupoid, whose objects are orbits and automorphisms are stabilizers.

Example 2.9. For n = 1, this gives

F×\A×/
∏
O×X = F×\

(∏
x

F×x /O×x

)
= F×\Div(X) = PicX(k).

Proof. Consider the set

Σ :=

(E , {αx}, τ) :
rank E = n

αx : E|Spec Ox
∼= O⊕nx

τ : E|Spec F
∼= F⊕n

 .

We seek to define a GLn(F )×
∏

GLn(Ox)-equivariant map

Σ→ GLn(A). (2.1)

Once we have this, we get a map of quotients

Σ GLn(A)

Bunn(k) GLn(F )\ (GLn(A)/
∏

GLn(Ox)) .

We’ll just show you how to define the map (2.1). Given (E , {αx}, τ) ∈ Σ, we get
gx ∈ GLn(Fx) given by

Fnx
α−1
x−−→ E|Spec Fx

τ−→ F⊕nx .
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�

2.3.2. Level structure. Given D =
∑
dx · x an effective divisor, we can look at

the double quotient

GLn(F )\ (GLn(A)/KD) ∼=
{

(E , α) | α : E|D ∼= O⊕nD
}

where KD = ker
(∏

x∈|X|GLn(Ox)→
∏
x∈|X|GLn(Ox/$dx

x )
)
.

2.3.3. Split groups. If G is any (not necessarily reductive) algebraic group split
over k, then

G(F )\

G(A)/
∏
x∈|X|

G(OX)

 ∼= BunG(k).

If G is not split, then we instead get an injection, with the right side having terms
related to inner twists of G.

2.4. Hecke stacks. Let r ≥ 0 and µ = (µ1, . . . , µr) a sequence of dominant
coweights of GLn such that µi is either µ+ = (1, 0, . . . , 0) or µ− = (0, . . . , 0,−1).

Definition 2.10. The Hecke stack Hkµn is the stack defined by Hkµn(S) is the
groupoid classifying the following data:

• a sequence (E0, . . . , Er) of rank n vector bundles on X × S.
• a sequence (x1, . . . , xr) of morphisms xi : S → X, with graphs Γxi ⊂ X×S,
• maps (f1, . . . , fr) with

fi : Ei−1|X×S\Γxi
∼−→ Ei|X×S\Γxi

such that if µi = µ+, then fi extends to Ei−1 ↪→ Ei whose cokernel is an
invertible sheaf on Γxi , and if µi = µ− then f−1

i extends to Ei ↪→ Ei−1 whose
cokernel is an invertible sheaf on Γxi .

For i = 0, . . . , r we have a map

pi : Hkµn → Bunn

sending (E , x, f) 7→ Ei and
pX : Hkµn → Xr

sending (E , x, f) 7→ x.

Lemma 2.11. The morphism

(p0, pX) : Hkµn → Bunn×Xr

is representable by a proper smooth morphism of relative dimension r(n− 1), whose
fibers are iterated Pn−1-bundles.

Proof. Once we have fixed a reference bundle, the fibers are iterated modi-
fications, which amounts to a choice of a hyperplane in an n-dimensional vector
space. �
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3. (Moduli of Shtukas I)
(Doug Ulmer)

3.1. Hecke stacks. Let X be a (smooth, projective, geometrically connected)
curve over Fq. Let F = Fq(X). Fix integers n ≥ 1 and r ≥ 0. Let µ = (µ1, . . . , µr)
with each µi = ±1. Usually we require that r is even, and moreover that

∑
µi = 0.

In the previous talk we met the Hecke stack Hkµn, parametrizing the stack of
modifications of type µ of rank n vector bundles. If S is an Fq-scheme, then Hkµn(S)
is the groupoid of

• vector bundles (E0, . . . , Er) on X × S.
• If µi = +1, a map φi : Ei−1 ↪→ Ei with cokernel an invertible sheaf supported
on Γxi . If µi = −1, a map φi : Ei ↪→ Ei−1 with cokernel an invertible sheaf
supported on Γxi .

Example 3.1. If µi = +1, demanding a map

Ei−1 ↪→ Ei ↪→ Ei−1 ⊗O(Γxi).

amounts to specifying a line in an n-dimensional vector space.
We have a map

Hkµn → Bunn×Xr

sending
(E , x, φ)→ (E0, x).

This map is smooth of fiber dimension r(n − 1), so Hkµn is smooth of dimension
n2(g − 1) + nr.

3.2. Moduli of shtukas for GLn.
3.2.1. Definition.
Definition 3.2. A shtuka of type µ and rank n is a “Hecke modification” plus a

Frobenius structure. More precisely, Shtµn(S) = {(E , x, φ)} together with an isomor-
phism Er ∼= τE0 := (IdX ×FrobS)∗E0.

We have a cartesian diagram

Shtµn Hkµn

Bunn Bunn×Bunn

p0×pr

Frob× Id

Example 3.3. For n = 1, the choice of points xi determines the higher Ei from
E0, namely Ei = Ei−1 ⊗O(xi). So Hkµ1

∼= PicX ×Xr.
For a point of Hµ

1 to be an element of Shtµ1 , we also need Er ∼= τE0, i.e.

τE0 ⊗ E−1
0
∼= O(

∑
µixi).

Thus Shtµ1 is a familiar object, classically known as a “Lang torsor”. It is a fiber of
the Lang isogeny PicX → PicX , hence a torsor for Bun1(Fq).
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Example 3.4. For r = 0, Shtµn(S) is a vector bundle E on X × S and an
isomorphism E ∼= τE . This looks like part of a descent datum. If S = Spec Fq, then
such E come from E on X itself via pullback.

More generally, in this case

Shtµn =
∐
E

[Spec Fq/Aut E ].

What exactly does this mean? Concretely, an element of Shtµn is an Aut(E)-torsor
on S, which we can think of as a twisted form of p∗X(E) on X × S.

3.2.2. Basic geometric facts about Shtµn.
(1) Shtµn is a Deligne-Mumford stack, smooth and locally of finite type.
(2) There is a morphism

Shtµn → Xr

which is separated, smooth, and of relative dimension r(n− 1).
3.2.3. Level structure.
Definition 3.5. Let D ⊂ X be a finite closed subscheme (in this case, just a

finite collection of points with multiplicities). A level D structure on (E , x, φ) is an
isomorphism

E0|D×S
∼−→ O⊕nD×S

such that |D| ∩ {x1, . . . , xr} = ∅, which is compatible with Frobenius in the sense
that the following diagram commutes:

E0|D×S O⊕nD×S

τE0|D×S τO⊕nD×S

∼

∼

∼

Note that there is an action of GLn(OD) on the set of level structures.
In practice, we’ll introduce level structure in order to rigidify the objects.
3.2.4. Stability conditions. The components of Bunn are indexed by Z, via

E 7→ deg det E .
We need to fix this to get something of finite type. But that still won’t be enough,
since we have things like O(ap)⊕O(−ap). For a vector bundle E , let

M(E) := max{degL | L ↪→ E}.
This is enough to cut down to something of finite type.

Definition 3.6. Define Shtµn,D,d,m to be the stack whose S-points are

• (E , x, φ), Er
∼−→ τE0

• A level D structure,
• deg(det Ei) = d, M(E0) ≤ m.

Facts:
(1) If D � 0 (with respect to n,m, d) then Shtµn,D,d,m is represented by a

quasi-projective variety.
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(2) The map [Shtµn,D,d,m /GLn(OD)] ↪→ Shtµn is an open embedding.
(3) Shtµn is the union of these substacks for varying d,m.
This is enough to check that Shtµn is a DM stack locally of finite type over Fq.
3.2.5. Smoothness. Recall the cartesian square

Shtµn Hkµn Xr

Bunn Bunn×Bunn

p0×pr
Frob× Id

Note that dFrob = Frob∗ = 0, and Id∗ = Id. On the other hand, p0∗ and pr∗ are
both surjections.

Corollary 3.7. The maps (Frob, Id) : Bunn → Bunn×Bunn and (p0, pr) : Hkµn →
Bunn×Bunn are transverse.

Corollary 3.8. The map Shtµn → Xr is smooth, and so has relative dimension
(n− 1)r.

3.2.6. Summary. ShtrG is a DM stack locally of finite type, with a smooth sepa-
rated morphism ShtrG → Xr of relative dimension r.

3.3. Moduli of Shtukas for PGL2. Let G = PGL2 = GL2 /Gm, and let BunG
be the stack of G-torsors on X, which is isomorphic to Bun2 /Bun1, with the action
being ⊗. This action lifts to Hkµ2 , by

(E , x, f) 7→ (E ⊗ L, x, f ⊗ Id).

This action doesn’t restrict to Shtµ2 unless L ∼= τL. Therefore, only the subgroup
PicX(k) acts on Shtµ2 . We have cartesian diagrams

PicX(Fq) PicX

PicX PicX ×PicX .
Frob× Id

(3.1)

and
Shtµn Hkµn

Bunn Bunn×Bunn

p0×pr
Frob× Id

(3.2)

and the objects for G = PGL2 are obtained by quotienting the second diagram (3.2)
by the action of the corresponding groups in the first diagram (3.1).

3.3.1. Independence of signs when n = 2. If µ, µ′ are r-tuples of signs and n = 2,
then there is a canonical isomorphism ShtµG

∼−→ Shtµ
′

G . We’ll show this by giving an
explicit isomorphism between ShtµG, for any µ, and Shtµ

′
where µ′ = (+1, . . . ,+1).

Suppose we are given (E , x, φ, ι) ∈ ShtµG. The key idea is that we can transform
an injection Ei−1 ←↩ Ei with deg 1 cokernel into Ei−1 ↪→ Ei⊗O(xi). So we take every
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instance of Ei−1 ←↩ Ei, which is a modification of type µ−, into Ei−1 ↪→ Ei ⊗O(xi),
which is a modification of type µ+. Given (E , x, φ) let

Di :=
∑

1≤j≤i
µj=µ−

Γxi .

Let E ′i = Ei ⊗OX×S(D), and note that

E ′0 ↪→ E ′1 ↪→ . . . ↪→ E ′r
is an element of Shtµ

′

G .
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4. Moduli of Shtukas II
(Brian Smithling)

4.1. Goal. We’re going to start by stating the formula which is the goal of this
work. We’ll then spend most of the talk explaining the meaning of some parts of it.
For f ∈ H the Hecke algebra, define

Ir(f) := 〈θµ∗ [ShtµT ], f ∗ θµ∗ [ShtµT ]〉
Sht
′r
G
∈ Q.

Here θµ∗ [ShtµT ] ∈ Chc,r(Sht
′r
G)Q, a cycle in the “rational Chow group of dimension r

cycles proper over k”.
This Chow group has an action of cCh2r(Sht

′r
G×Sht

′r
G)Q, the “rational Chow

group of dimension 2r cycles proper over the first factor”. This actually has an
algebra structure.

The main goals for today are:

• Define a map H → cCh2r(Sht
′r
G×Sht

′r
G).

• Define a map θµ : ShtµT → Sht
′r
G.

4.2. The Hecke algebra. Let G = PGL2, X/k, and F = k(X). Write

K =
∏
x∈|X|

Kx, Kx = G(Ox).

Definition 4.1. The spherical Hecke algebra is

H = C∞c (K\G(A)/K,Q) =
′⊗

x∈|X|

C∞c (Kx\G(Fx)/Kx,Q).

The algebra structure is by convolution.
LetMx,n be the subset of Mat2(Ox) with determinant n, viewed in G(Fx). Thus

Mx,0 = Kx

Mx,1 = Kx

(
$x

1

)
Kx

...

Let hnx ∈ Hx be the characteristic function of MX,n. By Cartan decomposition,
these form a Q-basis of Hx.

Let D =
∑

x∈|X| nxx be an effective divisor. Then hD = ⊗x∈Xhn,x ∈ H is a
Q-basis for H.

4.3. Hecke correspondences. Let µ be an r-tuple with the same number of
µ+’s and µ−’s. We define Shtµ2 (hD)(S) to parametrize

• (x1, . . . , xr) maps S → X.
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• a commutative diagram

E0 E1 . . . Er τE0

E ′0 E ′1 . . . E ′r τE ′0

φ0 φ1

∼

φr τφ0

∼

with top and bottom rows in Shtµ2 , such that:
• the map detφi has divisor D × S.

For G = PGL2, we define

ShtµG(hD) := Shtµ2 (hD)/PicX(k).

We have a commutative diagram

ShtrG(hD)

ShtrG ShtrG

Xr

p← p→

Lemma 4.2. The maps p← and p→ are representable and proper. The map
(p←, p→) is also representable and proper.

Proof. The fibers of p→ are closed subschemes in a product of Quot schemes.
For p←, dualize. For (p←, p→), the fibers are closed in a product of Hom schemes.
Properness follows from Sht being separable and p← being proper. �

Lemma 4.3. The geometric fibers of ShtrG(hD)→ Xr have dimension r. There-
fore dim ShtrG(hD) = 2r.

We now define
H : H → cCh2r(ShtrG×ShtrG)Q

sending hD 7→ (p←, p→)∗[ShtrG(hD)].

Lemma 4.4. The map H is a ring homomorphism.

Idea of the proof: we need to show that H(hD ∗hD′) = H(hD) ·H(hD′). We can
reduce to checking this over U r, where we can see it directly.

Remark 4.5. For g = (gx) ∈ G(A), one usually defines a self-correspondence
Γ(g) of ShtrG |(X\S)r where S = {x : gx /∈ Kx}. Then 1KgK |(X\S)r is the same cycle
as Γ(g). However, in this case the total Hecke algebra only acts on the generic fiber.
In the paper, the Hecke action is defined over all of X, using that ShtrG(hD) is defined
over all of X.

Here is a variant: let v : X ′ → X be an étale cover of degree 2, and X ′ and X
geometrically connected. Define

Sht
′r
G := (X ′)r ×Xr ShtrG
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and
Sht

′r
G(hD) := (X ′)r ×Xr ShtrG(hD).

Base changing the maps from earlier, we obtain the commutative diagram

ShtrG(hD)

Sht
′r
G Sht

′r
G

X
′r

p←
′

p→
′

This induces a map
H ′ : H → cCh2r(Sht

′r
G×ShtrG′)

which is again a ring homomorphism.
Definition 4.6. For f ∈ H, we have an operator f ∗ (−) := H ′(f) acting on

Chc,∗(Sht
′r
G)Q.

4.4. The Heegner-Drinfeld cycle. Let µ be a balanced r-tuple. Let T̃ :=

ResX′/X Gm, and T := T̃ /Gm.
We have an action of PicX′(k) on Shtµ

T̃
. In particular, PicX(k) acts through its

embedding into PicX′(k). Then ShtµT := Shtµ
T̃
/PicX(k) has a map

πµT : ShtµT → (X ′)r,

which is a PicX′(k)/PicX(k)-torsor. Thus ShtµT is proper smooth of dimension r
over k. The spaces ShtµT are canonically independent of µ, and so is the structure
map to Xr (but not the one to X ′r).

Let L be a line bundle on X ′ × S. Then we get a vector bundle ν∗L of rank 2
on X × S. This induces

ShtµT → ShtrG
sending (x′,L, f , ι) 7→ (ν(x′), ν∗L, ν∗f, ν∗ι). Thus we get

ShtµT → Sht
′r
G = (X ′)r ×Xr ShtrG .

This is a finite étale morphism.
Definition 4.7. We define the Heegner-Drinfeld cycle θµ∗ [ShtµT ] ∈ Chc,r(Shtr

′
G)Q.

Then can define
〈θµ∗ [ShtµT ], f ∗ θµ∗ [ShtµT ]〉

Sht
′r
G
.

Lemma 4.8. This pairing is independent of µ.

The main result is the following:

Theorem 4.9. If π is an everywhere unramified automorphic representation of
G, then

L(r)(πF ′ , 1/2) ∼ ([ShtµT ]π, [ShtµT ]π)π.
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5. Automorphic forms over function fields
(Ye Tian)

5.1. Cuspidal automorphic forms.
5.1.1. Goal. Let X/k be a curve over a finite field and F = k(X). Let A = AF

and O =
∏
x∈|X|Ox, where Ox is the completed local ring of X at x.

Let G = GLd and Z be the center of G. Let G(O) be the maximal compact
subgroup of G(A).

Definition 5.1. A function f : G(F )\G(A)→ C is smooth if it factors through
G(F )\G(A)/K for some open subgroup K of G(A). It is cuspidal if for any proper
standard parabolic P ⊂ G, with unipotent N , the constant term

ϕP (g) =

∫
N(F )\N(A)

ϕ(ng) dn

vanishes.
The main goal of the talk is to prove:

Theorem 5.2 (Harder). For any compact open K ⊂ G(A), all cuspidal functions
ϕ acting on G(F )\G(A)/K → C have support uniformly finite modulo Z(A).

5.1.2. Automorphic representations.
Definition 5.3. A smooth function ϕ : G(F )\G(A)→ C is called automorphic

if its space spanned by right translations G(A) of ϕ is admissible. (A smooth rep-
resentation is admissible if the fixed vectors under any compact subgroup are finite
dimensional.)

Definition 5.4. A function ϕ : G(A) → C has central character χ if χ(zg) =
χ(z)ϕ(g) for all z ∈ Z(A).

Remark 5.5. If ϕ is cuspidal automorphic form with a central character, after
twisting by µ ◦ det for some idele character µ, we may view ϕ as a function on
G(F )\G(A)/KaZ, where a ∈ Z(A) = A× has deg a = 1.

Harder’s theorem implies that Acusp(G(F )\G(A)/KaZ) is of finite dimension.
Definition 5.6. We define AG,cusp,χ to be the space of automorphic cuspidal

forms of central character χ. This has an action G(A) by right translation.

Theorem 5.7. For any χ ∈ χG, A|G,cusp,χ is an admissible representation of
G(A). Moreover, it has a countable direct sum decomposition

AG,cusp,χ =
⊕

π∈ΠG,cusp,χ

π.

Here ΠG,cusp,χ is the set of equivalence classes of irreducible automorphic cuspidal
representations of central character χ.

What is the content of this statement? It’s obvious that π occurs as a subquo-
tient. The theorem says that it actually occur as an honest subrepresentation, and
also asserts a multiplicity one statement.
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Proof. Admissibility follows from Harder.
Semisimplicity: after twisting AG,cusp,χ ⊗ (µ ◦ det), we can assume that is χ is

unitary. Then

〈ϕ1, ϕ2〉 :=

∫
G(F )Z(A)\G(A)

ϕ1ϕ2 dg

defines a G(A)-invariant positive definite Hermitian scalar product on AG,cusp,χ.
Since G(A) has a countable open basis at e, this implies

AG,cusp,χ =
⊕

πm(π)

with m(π) = dim HomG(A)(π,A) ≥ 1.
To see that m(π) = 1, we use that the Whittaker spaces are 1-dimensional. If

ψ : F\AF → C× is a non-trivial unitary character, and U is the unipotent radical
of the Borel, then we have

HomU(A)(π, ψ) = HomG(A)(π, Ind
G(A)
U(A) ψ)

The latter is one-dimensional, which we can prove by passing to the local Whittaker
model.

If ξ : π ↪→ AG,cusp,χ then we get a map π →Wξ, sending

ϕ 7→Wξ(ϕ)(g) :=

∫
U(F )\U(A)

ξ(ϕ)(ng)ψ(n)−1dn.

From this we can "recover"

ξ(ϕ)(g) =
∑

γ∈Ud−1(F )\Gd−1(F )

Wξ(ϕ)[

(
γ

1

)
g]

so the 1-dimensionality of the Whittaker model for π implies m(π) = 1. �

5.2. Reduction theory on BunG.
Definition 5.8. The slope of E is defined to be µ(E) := deg E

rank E . We have deg E =
deg det E .

By Riemann-Roch,

χ(E) = deg E + rank E(1− gX).

Definition 5.9. A (non-zero) vector bundle E over X is said to be semistable if
for all sub-bundles

0 ( F ( E ,
we have µ(F) ≤ µ(G). There is an equivalent formulation in terms of quotients.

Definition 5.10. A filtration of a vector bundle E on X

0 = F0E ⊂ F1E ⊂ . . . ⊂ FsE = E

is a Harder-Narasimhan (HN) filtration if FjE/Fj−1E are semistable with slopes µj
satisfying

µ1 > µ2 > . . . > µj .
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Example 5.11. Let X = P1/k. Then E =
⊕s

i=1O(ni)
ri with n1 > n2 > . . . >

ns integers. Then the HN filtration is

0 ⊂ O(n1)r1 ⊂ O(n1)r1 ⊕O(n2)r2 ⊂ . . . ⊂

Theorem 5.12 (Harder-Narasimhan). Any non-zero vector bundle over X ad-
mits a unique HN filtration.

Proof. Let µ1 be the maximal slope of a sub-bundle F ⊂ E . By Riemann-Roch,
we know this to be < ∞. We claim that in any HN filtration, F1E is the maximal
subbundle E1 with µ(E1) = µ1. (The result would then follow by induction.)

To see that E1 exists, suppose you have E ′1, E ′′1 which both have r1 with slope µ1.
Consider F := 〈E ′1 + E ′′1 〉, the saturation of the subsheaf of E spanned by E ′1 and E ′′1 .
Then

degF ≥ 2r1µ1 − deg(E ′1 ∩ E ′′1 )

(the inequality comes from the saturation) while

rankF = 2r1 − rank(E ′1 ∩ E ′′1 ) > r1.

So µ(F) ≥ µ1 and dominates both E ′1 and E ′′1 .
To see that F1E , must be defined in this way, note that the definition of E1 forces

it to be semistable. Therefore, its image in FiE/Fi+1E has slope at least µ(E1) ≥ µ1,
so this image must be 0.

�

Write B = TU . By Weil’s adelic uniformization, we can interpret

B(F )\B(A)/B(O)↔ isomorphism classes of flags of rank (1, . . . , 1).

Let ∆ be the set of simple roots of G.

Theorem 5.13 (Siegel Domain). Let c2 ≥ 2g be an integer. Then

G(A) = G(F )U(A)T (A)∆
c2G(O)

where T (A)∆
c2 = {t ∈ T (A) : degα(t) ≤ c2∀α ∈ ∆}. In other words (by Iwasawa

decomposition), for every E of rank d over X, there is at least one flag

0 ⊂ E0 ⊂ E1 ⊂ . . . ⊂ Ed = E
such that deg(Ej+1/Ej)− deg(Ej/Ej−1) ≤ c2 for all j.

Proof. Take a subline bundle L ⊂ E with E1 = 〈L〉 (the saturation) such that

1 ≤ deg E − ddegL+ d(1− g) ≤ d. (5.1)

Why is this possible? The lower bound comes from Riemann-Roch applied toH0(E⊗
L∨), which is non-zero as soon as there exists L ↪→ E . The upper bound comes from
the inequality

deg E1 ≥ detL ≥ deg E
d
− g

which comes from the non-existence of extensions with too large separation of degree
(by Serre duality).
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By induction, we can lift a filtration with this property E/E1. The only question
is to check the desired inequality for i = 1. If E is semistable we can conclude as
follows: the analog of (5.1) holds to tell us that

E2 − d deg E1 + 2(1− g) ≤ 2

so

deg E2/E1 − deg E1 = deg E2 − 2 deg E1

≤ 2− 2(1− g) = 2g.

If E is not semistable, take an HN filtration, whose associated subquotients
are semistable by definition. We apply the conclusion from the semistable case to
each subquotient. The only issue is to check that the inequality still holds at the
endpoints. The desired inequalities end up following from the semistability.

�

Theorem 5.14. Let K ⊂ G(O) be a compact open subgroup. There exists an
open subset CK ⊂ G(A) satisfying

(1) Z(A)G(F )CK = CK , i.e. CK is invariant under Z(A)G(F ), and
(2) Z(A)G(F )\CK/K is finite.

Moreover, suppϕ ⊂ CK for all cuspidal ϕ.
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6. The work of Drinfeld
(Arthur Cesar le Bras)

6.1. Notation. Let k = Fq, X/k a smooth projective, geometrically connected
curve over k. Let F = k(X). Chooose a point ∞ ∈ |X|, and assume for simplicity
that deg∞ = 1.

Let F = k(X), F∞ be the completion of F at ∞. Let C∞ be the completion of
a separable closure of F∞, and A = H0(X \ {∞},O).

6.2. Elliptic modules.
6.2.1. Definition. The seed of shtukas were Drinfeld’s “elliptic modules”. Let Ga

be the additive group, and K a characteristic p field. We set K{τ} = K ⊗Z Z[τ ],
with multiplication given by

(a⊗ τ i)(b⊗ τ j) = abp
i ⊗ τ i+j .

We have an isomorphism K{τ} ∼= EndK(Ga) sending
m∑
i=0

ai ⊗ τ i 7→

(
X 7→

m∑
i=0

aiX
pi

)
.

If am is the largest non-zero coefficient, then the degree of
∑m

i=0 ai ∈ K{τ} is defined
to be pm. The derivative is defined to be the constant term a0.

Definition 6.1. Let r > 0 be an integer and K a characteristic p field. An
elliptic A-module of rank r is a ring homomorphism

φ : A→ K{τ}
such that for all non-zero a ∈ A, deg φ(a) = |a|r∞.

We can also make a relative version of this definition.
Definition 6.2. Let S be a scheme of characteristic p. An elliptic A-module of

rank r over S is a Ga-torsor L/S, with a morphism of rings φ : A→ EndS(L) such
that for all points s : Spec K → S, the fiber Ls is an elliptic A-module of rank r.

Remark 6.3. The function a 7→ φ(a)′ (the latter meaning the derivative of φ(a))
defines a morphism of rings i : A→ OS , i.e. a morphism θ : S → Spec A.

6.2.2. Level structure. Let I be an ideal of A. Let (L, φ) be an elliptic module
over S. Assume that S is an A[I−1]-scheme, i.e. the map θ factors through θ : S →
Spec A \ V (I).

Let LI be the group scheme defined by the equation φ(a)(x) = 0 for all a ∈ I.
This is an étale group scheme over S with rank #(A/I)r. An I-level structure on
(L, ϕ) is an A-linear isomorphism

α : (I−1/A)rS
∼−→ LI .

Choose 0 ( I ( A. We have a functor

F rI : A[I−1]− Sch→ Sets

sending S to the set of isomorphism classes of elliptic A-modules of rank r with
I-level structure, with θ being the structure morphism.
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Theorem 6.4 (Drinfeld). F rI is representable by a smooth affine scheme M r
I

over A[I−1].

6.3. Analytic theory of elliptic modules.
6.3.1. Description in terms of lattices. Let Γ be an A-lattice inC∞. (This means

a discrete additive subgroup of C∞ which is an A-module.) Then we define

eΓ(x) = x
∏

x∈Γ−0

(1− x/γ).

Drinfeld proved that this is well-defined for all x ∈ C∞, and induces an additive
surjection:

eΓ : C∞/Γ
∼−→ C∞.

Given Γ, we define a function

φΓ : A→ EndC∞(Ga)

by the following rule. For a ∈ A, there exists φΓ(a) such that

φΓ(a)eΓ(x) = eΓ(ax) for all x ∈ C∞.

If Γ is replaced by λΓ, for λ ∈ C∗∞, then φΓ doesn’t change. Therefore, φΓ is a
function on homothety classes of A-lattices.

Theorem 6.5 (Drinfeld). The function Γ 7→ φΓ induces a bijection between{
rank r projective A-lattices

in C∞/homothety

}
↔

 rank r elliptic A-modules
over C∞ such that φ(a)′ = a

/isomorphism


Remark 6.6. Under this bijection, an I-level structure equivalent to an A-linear

isomorphism (A/I)r ∼= Γ/IΓ for the lattices.
6.3.2. Uniformization. We now try to parametrize the objects on the left hand

side of (6.5). First we parametrize the isomorphism classes. Let Y be a projective
A-module of rank r. Then we have a bijection{

homothety classes of A-lattices in C∞
isomorphic to Y as A-modules

}
↔ C×∞\Inj(F∞ ⊗A Y,C∞)/GLA(Y ).

Next we observe that there is a bijection

C×∞\Inj(F∞ ⊗A Y,C∞)↔ Pr−1(C∞) \
⋃

(F∞-rational hyperplanes),

given by sending u ∈ Inj(F∞ ⊗A Y,C∞) to [u(e1), . . . , u(er)]. This is called the
Drinfeld upper half plane Ωr−1.

As Spec A = X \ ∞, a projective A-module of rank r is the same as a vector
bundle of rank r on X \∞. We saw yesterday that there is an isomorphism (Weil’s
uniformization){

rank r vector bundles on X \∞
plus generic trivialization

}
/isom.↔ GLr(A

∞
F )/

∏
v 6=∞

GLr(Ov).
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Set GLr(Â) :=
∏
v 6=∞GLr(Ov), and

GLr(Â, I) := ker
(

GLr(Â)→ GLr(Â/I)
)
.

In conclusion, there is a natural bijection

M r
I (C∞) ∼= GLr(F )\(GLr(A

∞
F )/GLr(Â, I)× Ωr(C∞))

This can be upgraded into an isomorphism of rigid analytic spaces:

Theorem 6.7 (Drinfeld). We have an isomorphism of rigid analytic spaces over
F∞:

(M r
I )an = GLr(F )\(GLr(A

∞
F )/GLr(Â, I)× Ωr(C∞)).

6.4. Cohomology of M2
I and global Langlands for GL2.

6.4.1. Cohomology of the Drinfeld upper half plane. We now outline Drinfeld’s
proof of global Langlands for GL2 using the moduli space of elliptic modules. Set
r = 2, and Ω := Ω2. Then one has

Ω(C∞) = P1(C∞)\P1(F∞).

There is a map λ from Ω(C∞) to the Bruhat-Tits tree, sending (z0, z1) to the ho-
mothety class of the norm on F 2

∞ defined by

(a0, a1) ∈ F 2
∞ 7→ |a0z0 + a1z1|.

The pre-image of a vertex is P1 minus q+1 open unit disks, and the pre-image of an
open edge is an annulus (which can be thought of as P1 minus 2 open disks). There
is an admissible covering of Ω given by {Ue := λ−1(e)} as e runs over the closed
edges. We have an exact sequence

H1(Ω,Z/n)→
∏
e∈E

H1(Ue,Z/n)→
∏
v∈V

H1(Uv,Z/n)

and using this, we get that for ` 6= p, the vector space H1
ét(Ω,Q`) is naturally the

space of harmonic cochains on the Bruhat-Tits tree, which is the set of functions c
from oriented edges to Q` satisfying

(1) c(−e) = −c(e) and
(2)

∑
e∈E(v) c(e) = 0.

Any such harmonic cochain defines a (Q`-valued) measure on ∂Ω = P1(F∞). In
other words, we have

H1
ét(Ω,Q`) = (C∞(P1(F∞),Q`)/Q`)

∗ ∼= St∗.

The isomorphism is GL2(F∞)-invariant.



6. THE WORK OF DRINFELD (ARTHUR CESAR LE BRAS) 33

6.4.2. Cohomology ofM2
I . Now we use the uniformization ofM2

I . We can rewrite
it as follows:

M2,an
I =

(
Ω×GL2(F )\GL2(AF )/GL2(Â, I)

)
/GL2(F∞).

(Some elementary trickery is required to go from the previous formulation to the one
above.) Now you use the Hochschild-Serre spectral sequence for Y → Y/Γ to get a
long exact sequence

0→ H1(Γ, H0(Y,Q`))→ H1(Y/Γ,Q`)→ H1(X,Q`)
Γ → . . . .

From this we deduce

H1
ét(M

2
I ⊗F F ,Q`)

∼= HomGL2(F∞)(St, C∞(GL2(F )\GL2(AF )/GL2(Â, I))⊗ sp

where sp is a 2-dimensional representation of Gal(F∞/F∞), which should be the
Galois representation corresponding to Steinberg. This isomorphism is compatible
for the action of GL2(AF )×Gal(F∞/F∞).

Remark 6.8. This is cheating a little; we really need to work with a compacti-
fication of M2

I instead.
Drinfeld shows that

lim−→
I

H1(M
2
I ⊗F F ,Q`) =

⊕
π

π∞ ⊗ σ(π)

where π runs over cuspidal automorphic representations of GL2(AF ) with π∞ ∼=
St. Here σ(π) is a Gal(F/F ) representation. Moreover, Drinfeld shows that at
unramified places, πv and σ(πv) correspond by local Langlands.

6.4.3. The local Langlands correspondence. Using this, one can construct the
local Langlands correspondence for GL2 overK, a characteristic p local field. Indeed,
let π be a supercuspidal representation of GL2(K). Write K = Fv for a global F .
Choose a global automorphic representation Π such that Πv

∼= π and Π∞ ∼= St. By
the work of Drinfeld, we get σ(Π) and we know that Πw and σ(Π)w have the same
ε-factors and L-functions at all w outside some finite set S. Then for any global
Hecke character χ, we have∏

w

Lw(Πw ⊗ χw) =
∏
w

εw(Πw ⊗ χw)
∏
w

Lw(Π∨w ⊗ χ−1
w ⊗ ωΠw)

and similarly for σ(Π). We can divide these two equalities by the product for w /∈ S,
getting an equality of two finite products∏

w∈S
ε′w(Πw ⊗ χw) =

∏
w∈S

ε′w(σ(Π)w ⊗ χw)

where ε′w(τ) = εw(τ)L(τ∨⊗ωτ )
L(τ) .

Now for a trick: we can choose χ such that χv = 1 and χw is very ramified
for all other w ∈ S − v, thus forcing the L-factors at those w to be 1. Then
ε′w(Πw ⊗ χw) = ε(Πw ⊗ χw) only depends on χw. In this way one can isolate an
equality for the ε and L-factors of Πv = π.
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6.5. Elliptic sheaves. (This material is from a discussion session.) We will
explain the connection between elliptic modules and shtukas. The relation passes
through an intermediate object called an “elliptic sheaf”.

Definition 6.9. An elliptic sheaf of rank r > 0 with pole at ∞ is a diagram

. . . Fi−1 Fi Fi+1 . . .

. . . τFi−1
τFi τFi+1 . . .

ji ji+1

τ ji

ti

τ ji+1

ti+1

(here as usual τ∗F = (IdX ×FrobS)∗F) with Fi bundles of rank r, such that j and
t are OX×S-linear maps satisfying

(1) Fi+r = Fi(∞) and ji+r ◦ . . . ◦ ji+1 is the natural map Fi ↪→ Fi(∞).
(2) Fi/j(Fi−1 is an invertible sheaf along Γ∞.
(3) For all i, Fi/ti(τ∗Fi−1) = is an invertible sheaf along Γz for some z : S →

X \∞ (independent of i).
(4) For all geometric points s of S, the Euler characteristic χ(F0|Xs) = 0.
Definition 6.10. Let J ⊂ A be an ideal cutting out the closed subset I ⊂

Spec X. An I-level structure on an elliptic sheaf is a diagram

F0|I×S

OrI×S

τF0|I×S

∼
f

∼
τf

Theorem 6.11. Let z : S → Spec A \ I. Then there exists a bijection, functorial
in S, rank r elliptic A-modules

with J-level structure
such that φ(a)′ = z(a)

 /isom.↔

 rank r elliptic sheaves over S
with zero z

and I-level structure

 /isom.

We’ll define the map for S = Spec K. Let (Fi, j., t.) be an elliptic sheaf. Define
Mi = H0(X ⊗k K,Fi), and

M = lim−→Mi = H0((X −∞)⊗K,Fi).
This is a module over A⊗k K.

The t. induce a map t : M →M which satisfies
• t(am) = at(m), for a ∈ A
• t(λm) = λqt(m), for λ ∈ K.

This t makes M a module over K{τ}. Furthermore:
• Because the zero and pole are distinct, t induces an injection

τ (Fi/j(Fi−1))→ Fi+1/j(Fi).
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This implies that τ : Mi/Mi−1 →Mi+1/Mi is injective.
• We claim that M0 = 0. Otherwise, we would have for some i < 0 a non-
zero x in Mi \Mi−1. The previous bullet point implies that for all m ≥ 0,
we have tmx ∈ Mi+m \Mi+m−1, so dimMm ≥ m + 1 because there are
independent vectors (x, tx, . . . , tmx). For really large m, we would then
have χ(Fm) = m = dimMm ≥ m+ 1, a contradiction to χ(F0) = 0.
• For all i, Mi/Mi−1 is 1-dimensional by similar estimates as in the previous
bullet point. Finally, if u is a non-zero element ofM1, we haveM ∼= K{τ}u.

The action of A gives a ring homomorphism A
φ−→ EndK{τ}(M) = K{τ}.

• The action of A on M/Kτ(M) ∼= M1 being in the fiber of F1 at z implies
φ(a)′ = z(a).

One can show that if (Fi, t, j) is an elliptic sheaf, then for all i

t(τ∗Fi−1) = Fi ∩ t(τ∗Fi)as subsheaves of Fi+1.

You can actually reconstruct the entire elliptic sheaf from the triangle

F0 F1

τFi

j

t

which is just a shtuka!
You can’t go in the other direction - shtukas are more general. (You need to

impose special conditions, namely “supersingular”, on shtukas to construct elliptic
sheaves.)



36

7. Analytic RTF: Geometric Side
(Jingwei Xiao)

7.1. The big picture. Yesterday we defined a certain “geometric” quantity
Ir(f). Today we will define an “analytic” quantity Jr(f). Both of these have two
expansion: ∑

u∈P1(F )−0 Iγ(u, f) Ir(f)
∑

π Ir(π, f). (7.1)

and ∑
u∈P1(F )−0 Jγ(u, f) Jr(f)

∑
π Jr(π, f). (7.2)

The left sides of (7.1), (7.2) are expansions in terms of orbital integrals. The right
side are the quantities that we want to compare: Jr(π, f) ∼ L(r)(πF , 1/2), and
Ir(π, f) = 〈[ShtT ]π, f ∗ [ShtT ]π〉. The functions f are “test functions” which provide
the flexibility to isolate the terms of interest.

7.2. The relative trace formula. Let F be a global field, the function field
of X for X/Fq. Let G/F be a reductive group, and H1, H2 ↪→ G subgroups over F .
We’ll write [G] := G(F )\G(A), and similarly for Hi.

7.2.1. The kernel. Let A = AF , [G] = G(F )\G(A). For f ∈ C∞c (G(A)), we
define the kernel function

Kf (g1, g2) :=
∑

γ∈G(F )

f(g−1
1 γg2).

The point is that G(A) acts on C∞(G(F )\G(A)), and for φ ∈ C∞(G(F )\G(A)) we
have

π(f) · φ =

∫
G(F )\G(A)

Kf (g1, g2)φ(g2) dg2. (7.3)

The relative trace formula involves the quantity∫
[H1]×[H2]

Kf (h1, h2) dh1dh2 (7.4)

7.2.2. The geometric expansion. The geometric expansion of (7.4) is∫
[H1]×[H2]

∑
γ∈G(F )

f(h−1
1 γh2) dh1dh2

=
∑

γ∈H1(F )\G(F )/H2(F )

∫
[H1]×[H2]

∑
δ∈H1(F )γH2(F )

f(h−1
1 δh2) dh1dh2

Rearranging, one rewrites this as

=
∑

γ∈H1(F )\G(F )/H2(F )

∫
(H1×H2)γ(F )\H1(A)×H2(A)

f(h−1
1 γh2).

Here γ denotes the stabilizer of γ:

(H1 ×H2)γ := {(h1, h2) : h−1
1 γh2 = γ}.
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7.2.3. The spectral expansion. Now we rewrite (7.3) in a different way. The idea
is to decompose

Kf ≈
∑

π cuspidal

∑
φ

π(f)φ⊗ φ

where φ runs over orthogonal basis of π. This is a bit of lie, as one also needs to
consider the residual and Eisenstein parts, but it roughly works. Using this, we can
rewrite

(7.3) =
∑
π

∑
φ

∫
[H1]

π(f)φdh1 ·
∫

[H2]
φdh2

Here the term
∫

[H1] π(f)φ is a “period” PH1(π(f)φ).
7.2.4. The split subtorus. For G = PGL2, set H1 = H2 = A to be the diagonal

torus of G. For f ∈ C∞c (G(A)) we get a kernel function Kf . We consider the integral∫
[A]×[A]

Kf (h1, h2)|h1h2|sη(h2)

where if h =

(
x

y

)
then |h| = |x/y|, and η : A×F → {±1} is the character corre-

sponding by class field theory to F ′/F .
There’s an issue with this integral. Since A ∼= Gm/F , [A] := F×\A×F is not

compact, since
[A]/

∏
x

O×x = Pic(X).

This has infinitely many connected components, which are finite since they are iso-
morphic to Pic0(X). To regularize the integral, define

[A]n =

{(
x

y

)
: v(x/y) = n

}
.

We have a map
v : A×F /

∏
O×x → Z

sending v(πx) = logq(qx) for any x ∈ |X|.
The [An] are compact, so we can talk about∫

[A]n1×[A]n2

K(h1, h2)|h1h2|sη(s) ds.

This is actually a polynomial in qs.

Proposition 7.1. For each f , there exists N such that |n1|+ |n2| ≥ N implies∫
[A]n1×[A]n2

Kf (h1, h2)η(h2)|h1h2|s = 0.

Assuming this claim, we can define the regularized integral∫ reg

[A1]×[A2]
:=
∑
n1,n2

∫
[A]n1×[A]n2
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7.3. Spectral expansion. The goal of this section is to establish the identity

Jr(f) =
∑

u∈P1(F )−0

Jγ(u, f).

7.3.1. The invariant map. We have seen that in the RTF, we care about the
double coset space

H1(F )\G(F )/H2(F ).

For G = PGL2, H1 = H2 = A we can define an invariant map

A(F )\PGL2(F )/A(F )→ P1 − {1}

by (
a b
c d

)
7→ bc

ad
.

Proposition 7.2. For x ∈ P1(F )− {1}, we have

inv−1(x) =



single orbit x 6= 0,∞(
1

1 1

)
,

(
1 1

1

)
,

(
1

1

)
x = 0(

1

1 1

)
,

(
1 1

1

)
,

(
1

1

)
x =∞

Also, γ is regular semisimple iff inv(γ) 6= 0,∞.

7.3.2. Expansion. This lets us write

J(f, s) =
∑

γ∈A(F )\G(F )/A(F )

J(γ, f, s)

where

J(γ, f, s) =

∫
[A]×[A]

Kf,γ(h1, h2)|h1h2|sη(h2) dh2

and

Kf,γ(h1, h2) =
∑

δ∈A(F )γA(F )

f(h−1
1 δh−1

2 ).

For u ∈ P1(F )− {1}, we define

J(u, f, s) =
∑

γ∈A(F )\G(F )/A(F )
inv(γ)=u

J(γ, f, s).
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7.3.3. Higher derivatives. Now we define

Jr(f) =

(
d

ds

)r
J(f, s)|s=0.

Similarly, we have a decomposition

Jr(u, f) =

(
d

ds

)r
J(u, f, s)|s=0.

Also
Jr(f) =

∑
u∈P1(F )−{1}

Jr(u, f).

7.4. The case r = 0. The goal is to establish the identity∑
u∈P1(F )−0

Iγ(u, f) = Ir(f).

Yesterday we defined
I0(f) := 〈Sht0

T , f ∗ Sht0
T 〉.

Let F ′/F be a quadratic extension. Define T = ResF ′/F Gm,F ′/Gm,F . It turns
out that we also have an equality

I0(f) =

∫
[T ]×[T ]

Kf (h1, h2).

The Waldspurger formula can be reinterpreted in these terms:∑
γ∈A(F )\G(F )/A(F )

J0(γ, f) = J0(f) ∼ L(π, 0).

While ∑
γ∈T (F )\G(F )/T (F )

I0(γ, f) = I0(f) ∼
∫

[T ]
φπ.

7.5. The equality I0(f) = J0(f). The strategy to relate the things is to relate
the orbital integrals. So we first need to relate the orbits.

7.5.1. Matching double cosets. Let G = PGL2 or D×/F×, where D is a quater-
nion algebra over F (with an embedding F ′ ↪→ D).

Theorem 7.3. We have

A(F )\PGL2(F )rss/A(F ) =
∐

G=PGL2 or D×/F×
T (F )\G(F )rss/T (F ).

Proof. We consider G = PGL2 or D×. Let H = M2(F ) or D, so G = H×. We
have an embedding F ′ ↪→ H.

There exists ε ∈ H(F ) such that εxε−1 = x for x ∈ F ′. The choice of ε is
unique up to multiplication by (F ′)×. By computation, ε2 ∈ Z(H) = F , so [ε2] ∈
F×/Nm(F ′)× is well-defined.

Proposition 7.4. The element [ε2] ∈ F×/Nm(F ′)× determines H.
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We have an invariant map

T (F )\H×/T (F )
inv−−→ P1(F )− {1}

sending

h1 + εh2 7→
h2h2

h1h1

ε2.

The image lands in ε2 ·Nm((F ′)×), and is equal in the regular semisimple case since
this is equivalent to h1h2 6= 0. �

7.5.2. Matching orbital integrals. Now that we’ve matched up the double cosets,
we turn to showing that I0(f) = J0(f) for f =

∏
v∈|X| fv ∈ HG a bi-K-invariant

function. Writing out the expansion, this comes down to∑
u

I0(u, f) =
∑
u

J0(u, f)

This becomes a fundamental lemma type statement.
Consider F ′v/Fv a quadratic extension. Let f ∈ C∞(PGL2(Fv)) be bi-K-invariant.

We have

A(Fv)\PGL2(F )/A(Fv) = T (Fv)\PGL2(Fv)/T (Fv)
∐

T (Fv)\D×/T (Fv)

By Theorem 7.3, each γ on the left side matches up with a γ1 ∈ T (Fv)\PGL2(Fv)/T (Fv)
or γ2 ∈ T (Fv)\D×/T (Fv). One can then compute by hand that the corresponding
orbital integrals are equal.

• If γ ↔ γ1 ∈ T (Fv)\PGL2(Fv)/T (Fv), then

±
∫
A(F )×A(F )

f(h−1
1 γh2)η(h2) =

∫
T (F )×T (F )

f(h−1
1 γh2)

so I0(u, f) = J0(u, f).
• If γ ↔ γ2 ∈ T (Fv)\D×/T (Fv), then∫

A(F )×A(F )
f(h−1

1 γh2)η(h2) dh2 = 0

so the extra double cosets do not contribute.
This shows that

I0(f) = J0(f).
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8. Analytic RTF: Spectral Side
(Ilya Khayutin)

8.1. Decomposition of the kernel. Recall that we defined

J(f, S) =

∫
[A]×[A]

Kf (h1, h2)|h1h2|sη(h2) dh1dh2.

We have an action of G(A), and hence C∞c (G(A)), on the space of automorphic
functions L2

0([G]). We are going to try to decompose the kernel functions into three
parts:

Kf (x1, x2) = Kf,cusp + Kf,sp + Kf,Eis

corresponding to cuspidal, "special", and Eisenstein. This idea is essentially due to
Selberg.

8.1.1. The cuspidal part. We have

Kf,cusp =
∑
π

Kf,π

where
Kf,π(x, y) =

∑
φ

π(f)φ(x)φ(y).

where φ runs over an orthonormal basis.
8.1.2. The special part. Using the determinant map, we have a map

χ : [G]→ F×\A×/(A×)2 → {±1}.
Then

Kf,sp,χ(x, y) = π(f)χ(x)χ(y).

This is the same expression as for the cuspidal part, actually - it just looks much
simpler because it is 1-dimensional.

8.1.3. The Eisenstein part. The Eisenstein part will be defined later.
8.1.4. Goals:
(1) Identify f ∈ H such that Kf,Eis = 0.
(2) For such f , show that

Jπ(f) =
∑
φ

P(π(f)ϕ)Pη(ϕ)

〈ϕ,ϕ〉
.

8.2. Satake isomorphism. Let HG be the spherical Hecke algebra of G. By
definition,

HG =

′⊗
x∈|X|

Hx.

For A ⊂ G the split torus, we have A ∼= Gm. Then HA =
⊗′HA,x, and the local

Hecke algebras are all isomorphic to

HA,x ∼= Q[F×x /O×x ] ∼= Q[t−1
x , tx]

where tx = 1$−1
x O×x .
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The Weyl group action is, in this normalization,

ιx(tx) = qxt
−1
x .

The Satake homomorphism
Satx : Hx → HA,x

sends hx 7→ tx + qxt
−1
x . In fact Satx is an isomorphism onto the subgroup of Weyl

invariants.
The local Satake homomorphisms extend to a global one:

Sat : H → HιA.

8.3. Eisenstein ideal.
8.3.1. Definition of Eisenstein ideal. We can identify A×/O× ∼= Div(X). There

is a map Div(X)→ Pic(X). Now, HA ∼= Q[Div(X)]→ Q[Pic(X)].
The Weyl involution descends to ιPic on Q[Pic(X)],

1L 7→ qdegL1L−1 .

Thus we have a map

aEis : H Sat−−→ HιA → Q[Pic(X)]ι.

Definition 8.1. We define the Eisenstein ideal to be IEis := ker aEis.

Theorem 8.2. For f ∈ IEis,

Kf,Eis(x, y) = 0.

Before we can prove this, we need to say what Kf,Eis is. And before that, we
need to define the Eisenstein series.

8.3.2. Eisenstein series. The Eisenstein representations are induced from A, so
we should first parametrize the representations of A, which are necessarily characters.
Note that

A(A) = A× ∼= A1 × αZ

for some choice of α ∈ A with |α| = q. For a character

χ : F×\A1 → C×

we can extend to a character

χ0 : F×\A→ C×

by sending χ(α) = 1.
More generally, for any u ∈ C we get a character

χu : F×\A1 → C×

sending χu(a) = χ0(a)|a|u.

For B = An U and U =

(
1 x

1

)
, we define the modular character

δB : B(A)→ A×
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by

δB

(
a b

d

)
= a/d.

Finally, we define
φ : B(A)→ C×

by b 7→ χ0(a/d).
Definition 8.3. We define the induced (Eisenstein) representation Vχ,u by

Vχ,u = {ϕ ∈ C∞(G(A)) | ϕ(bg) = χ(b)|δB(b)|1/2+uϕ(g)∀b ∈ B(A)}.

8.3.3. The Eisenstein kernel. Take ϕi orthogonal basis of Vχ. Then

Kf,Eis(x, y) =
∑
χ

Kf,Eis,χ(x, y)

and

Kf,Eis,χ(x, y) =
log q

2πi

∫ 0+2πi/ log q

0+0i

∑
i,j

(ρχϕj , ϕi)E(x, ϕi, u, χ)E(y, ϕj , u, x) du

8.3.4. Proof of Theorem 8.2. Any f ∈ H is unramified, so fχ,u is periodic under
u 7→ u+ 2πi

log q . If χ is unramified, then

Kf,Eis,χ =
log q

2πi

∫ 2πi
log q

0
(ρχ,u(f)1K ,1K) . . . du.

It is a property of the Satake transform that

Tr(ρχ,u(f)) = χu+1/2(Sat(f)) (8.1)

Inflate the character χu+1/2 : F×\A×/O× → C× to χu+1/2 : A×/O× → C×. Thus
we get a character of HA. Then (8.1) reads

Tr(ρχ,u(f)) = χu+1/2(aEis(f)) = 0.

�

8.4. Relation to L-functions.
8.4.1. Normalization of L-function. We have

L(πF ′ , s) = L(π, s)L(π ⊗ η, s).

The functional equation reads

L(πF ′ , s) = ε(π, s)L(πF ′ , 1− s)

where
ε(π, s) = q−8(q−1)(s−1/2).

Definition 8.4. We define the normalized L-function

L(πF ′ , s) = ε(πF ′ , s)
−1/2 L(πF ′ , s)

L(π,Ad, 1)
.
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We write
J(f, s) =

∑
π

Jπ(f, s)

where

Jπ(f, s) =
∑
ϕ

P(π(f)ϕ, s)Pη(ϕ, s)
〈ϕ,ϕ〉

for ϕ ∈ πK . Here for any character χ,

Pχ(ϕ, s) =

∫
[A]
ϕ

(
h

1

)
χ(h)|h|s dh

If we write

I(s, ϕ, χ) =

∫
F×\A×

ϕ

(
h

1

)
χ(h)|h|s−1/2 dh (8.2)

and ϕ̃(g) = ϕ(tg−1), then we have a functional equation

I(s, ϕ, χ) = I(1− s, ϕ̃, χ).

8.4.2. Whittaker model. To relate Jr(f) with derivatives of L-functions, we use
“Whittaker models”, which are automorphic variants of Fourier coefficients.

Let ϕ ∈ Vπ. Then we get

ϕ : U(F )\U(A)→ C

as follows. Note that U ∼= Ga, since

U =

(
1 ∗

1

)
.

Since U(F )\U(A) = F\A for a character ψ : F\A→ C× we can identify

(̂F\A) ∼= {ψ(γx) | x ∈ A, γ ∈ F}.

Then we can define a Whittaker function

Wϕ,ψγ (g) =

∫
F\A

ϕ

((
1 n

1

)
g

)
ψ−1(γh) dn (8.3)

Now we use a trick: by a change of variables, (8.3) is equal to

=

∫
F\A

ϕ

((
γ−1

1

)(
1 n

1

)(
γ

1

)
g

)
ϕψ−1(n) dn

Call this Wϕ,ψ(γg). Then we have a “Fourier expansion”

ϕ =
∑
γ∈F

Wϕ,ψ(γg).

Since f is cuspidal, the 0th Fourier coefficient vanishes. Also we have the identity

Wϕ,ψ(ng) = ψ(n)Wϕ(g).
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In fact, this whole discussion applies locally, and we can define the local Whit-
taker function Wϕ,ψ,x. The Whittaker function decomposes locally:

Wϕ,ψ =
∏
x∈|X|

Wϕ,ψ,x.

If we write (8.2) as

I(s, ϕ, χ) =

∫
F×\A×

∑
γ∈F×

Wϕ(γg)

(
h

1

)
|h|s−1/2χ(h)dh

=

∫
A×

Wϕ

(
h

1

)
. . . dh.

Here we have used that since we are integrating over F×\A× a sum over F×, we
just get an integral over A× of something that decomposes locally as a product of
local integrals. That’s basically what an L-function is, so it is not surprising that
the result is related to an L-function. However, there’s an issue of test vectors. For
almost all places, you get the right local factor. But at the finitely many bad places,
you need to calculate a constant factor.
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9. Geometric Interpretation of Orbital Integrals
(Yihang Zhu)

9.1. Geometric expansion. This is is a talk about “geometrization of the
geometric side of the analytic RTF”. Yesterday we introduced J(f, s). This has
a geometric expansion and a spectral expansion; we will focus on the geometric
expansion:

J(f, s) =
∑

u∈P1(F )−{1}

J(u, f, s).

9.1.1. Orbital integrals. The regular semisimple orbital integrals correspond to
u 6= 0,∞:

J(u, f, s) = J(γ, f, s) =

∫
A(A)×A(A)

f(h−1
1 γh2)|h1h2|sη(h2) dh1dh2

where inv(γ) = u. For these γ, there are no convergence issues because the conjugacy
class is closed in G(A), and f has compact support in G(A). So no regularization
is needed in this case.

We can restrict our attention to Hecke functions of the form f = hD, for D an
effective divisor.

9.1.2. Observation. We can compute the orbital integral on GL2, as follows. If
γ̃ is a lift of γ, and D =

∑
nxx, we can define

h̃ :=
⊗
x

h̃nx,x ∈ Hx(GL2)

where
h̃nx,x = 1Mat2(Ox)val(det)=nx

∈ Hx(GL2).

Remark 9.1. The h̃D is not a pullback of hD; rather, it is a lift.

Lemma 9.2. We have

J(γ, hD, s) =

∫
∆(Z(A))\(Ã×Ã)(A)

h̃D(h−1
1 γ̃h2)|α(h1)α(h2)|sη(α(h2)) dh1dh2.

Here Ã is the diagonal torus in GL2, and α :

(
a

d

)
7→ a/d.

Proof. Clear. �

9.1.3. Geometrization. Note that h̃D(h−1
1 γ̃h2) only depends on the value of h1

and h2 in Ã(A)/Ã(O). Since Ã ∼= G2
m, we have

Ã(A)/Ã(O) ∼= (Gm(A)/Gm(O))2 = (DivX)2.

The condition that h̃D = 1 defines a subset of ∆(DivX)\(DivX)4. We’ll first
describe the subset in (DivX)4 before quotienting by center. It will be denoted
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Definition 9.3. We define ÑD,γ̃ ⊂ (DivX)4 to be the set of (E1, E2, E
′
1, E

′
2) ∈

Div(X)4 which are all effective, such that the rational map O2 γ̃−→ O2 induces a
holomorphic map

O2 O2

O(−E1)⊕O(−E2) O(−E′1)⊕O(−E′2)

γ̃

φγ̃

such that Divϕγ̃ = D. Finally, we define

Nγ̃,D := Ñγ̃,D/∆(DivX).

The upshot is

J(γ, hD, s) =
∑

E1,E2,E′1,E
′
2∈Nγ̃,D

q− deg(E1−E2+E′1−E′2)sη(E1)η(E2)

Since η is a quadratic character, we can rewrite this as

J(γ, hD, s) =
∑

E1,E2,E′1,E
′
2∈Nγ̃,D

q− deg(E1−E2+E′1−E′2)sη(E1 − E′1)η(E2 − E′1) (9.1)

Here h1 ↔ (E′1, E
′
2) and h2 ↔ (E1, E2).

The idea of geometrization is that the formula (9.1) should be expressible as the
sum, over k-points of a scheme, of the value at that point of the function associated
to a sheaf on the scheme. Through this we can relate the formula to Lefschetz
cohomology.

9.2. The moduli spaces.
Definition 9.4. Let X̂d → PicdX be the moduli space of sections, i.e.

X̂d(S) =

{
(L, s) :

L = degree d line bundle on X × S
s ∈ H0(X × S,L)

}
.

Let Xd = SymdX = Xd//Sd. This is a scheme, with a natural embedding
Xd ↪→ X̂d sending

(t1, . . . , td) 7→ (O(t1 + . . .+ td), 1).

This is an isomorphism onto the open subscheme of Xd where the section is not the
zero section.

Note that X̂d \Xd
∼−→ PicdX . The composition

Xd ↪→ X̂d → PicdX

is the Abel-Jacobi map.
Definition 9.5. For d = degD, let

Σd =

{(
d11 d12

d21 d22

)
| dij ∈ Z≥0, d11 + d22 = d12 + d21 = d

}
Given d ∈ Σd, we define the moduli space Ñd classifying



50

• four line bundles K1,K2,K
′
1,K

′
2 such that

degK ′i − degKj = dij .

• A map ϕ : K1 ⊕K2 → K ′1 ⊕K ′2, which we can write as

ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
with ϕij : Ki → K ′j , satisfying some technical conditions. One example is if
d11 < d22, d12 < d21

ϕ11 6= 0, ϕ12 6= 0 (9.2)

and ϕ21, ϕ22 are not both 0.

There is an obvious action of PicX on Ñd, and we define

Nd = Ñd/PicX .

Definition 9.6. We define the moduli space Ad classifying (∆, a, b) where

• ∆ ∈ PicdX and
• a, b ∈ H0(X,∆) are global sections not vanishing simultaneously.

Remark 9.7. The scheme Ad is covered by two pieces

Xd ×PicdX
X̂d

and
X̂d ×Picd Xd.

The morphism Xd → PicdX is representable, the fibers being vector spaces, hence Ad
is a scheme.

Definition 9.8. We define a map

fd : Nd → Ad

sending

(K1,K2,K
′
1,K

′
2) 7→ (K ′1 ⊗K ′2 ⊗K∨1 ⊗K∨2 , ϕ11 ⊗ ϕ22, ϕ12 ⊗ ϕ21).

Proposition 9.9. Nd enjoys the following properties.
(1) Nd is a geometrically connected scheme over k.
(2) If d ≥ 4g − 3, Nd is smooth of dimension 2d− g + 1.
(3) The morphism fd is proper.

Proof. Use the non-vanishing conditions to find a covering of Nd analogous to
the covering of Ad discussed above. This imnplies (1) + (3). (Properness reduces
to properness of Xdij .) For (2), by Riemann-Roch the map X̂dij → Pic

dij
X is smooth

of relative dimension 1− g + dij if dij is large. If d is large then at least one of the
relevant dij is large, and you use that one to run this argument. �
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9.3. Geometrization of the analytic RTF. We now define a crucial local
system Ld on Nd. By geometric class field theory there is a rank 1 local system
on the Picard scheme of X corresponding to the quadratic character η. We first
define a local system Ld on X̂d as the pullback of this local system via the map
X̂d → PicX → PiccoarseX .

There is an open embedding

Nd ↪→ (X̂d11 × X̂d22)×PicdX
(X̂d12 × X̂d21) (9.3)

given by the universal ϕij ’s. Finally, we define the rank 1 local system Ld on Nd to
be the restriction of the local system

Ld11 �Q` � Ld12 �Q` on (X̂d11 × X̂d22)×PicdX
(X̂d12 × X̂d21)

to Nd via (9.3).
Definition 9.10. We define

δ : Ad → X̂d

to be the morphism sending

(∆, a, b) 7→ (∆, a− b).
We also define

AD := δ−1(O(D), 1) ∼= Γ(X,OX(D)).

and the invariant map
invD : AD(k)→ P1(F )− {1}

sending a 7→ 1− a−1, viewing a as a rational function in F .

Proposition 9.11. Assume u 6= 0,∞.
(1) If u /∈ Im invD, then J(u, hD, s) = 0.
(2) If u = invD(a) for a ∈ AD(k), then

J(u, hD, s) =
∑
d∈Σd

q(2d12−d)s Tr(Froba, Rfd,∗Ld)a

Proof. (2) We have a bijection

ND,γ̃
∼−→ Na(k)

where Na(k) =
⊔
d∈Σd

f−1
d (a) sending

(E1, E2, E
′
1, E

′
2) 7→ (O(−E1),O(−E2),O(−E′1),O(−E′2), ϕγ̃).

Use (9.1) and the definition of Ld. �
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10. Definition and properties of Md

(Jochen Heinloth)

10.1. Goal. Let X be a (smooth, projective, geometrically connected) curve
over a finite field k, and ν : X ′ → X a degree 2 étale cover.

Let T := (ResX′/X Gm)/Gm. We can embed T into “ PGL2 ” = Aut(ν∗OX′)/O∗X .
Remark 10.1. We can also view T as the norm-1 subgroup of the Weil restric-

tion:

1→ T → ResX′/X Gm
Nm−−→ Gm → 1

We can put these two definitions together to get an exact sequence

1→ Gm → ResX′/X Gm
t7→t(σ∗t)−1

−−−−−−−→ ResX′/X Gm
Nm−−→ Gm → 1. (10.1)

The goal is to compute the intersection number

〈ShtT , hD ∗ ShtT 〉ShtG

where G = PGL2.

10.2. The moduli space Md.
10.2.1. Relation to intersection numbers. Recall the shtuka space is

ShtT Hkµ

BunT BunT ×BunT
Id,Frob

The idea is that the shtuka construction is complicated, so we should try to do the
BunT intersection first. So we should try to compute “ BunT ∩hD ∗ BunT ”.

Every time we want to do a PGL2-computation we actually push it to a GL2-
computation. So as usual, set T̃ = ResX′/X Gm and G̃ = GL2. Note that Bun

T̃
can just be thought of as parametrizing line bundles on X, by the definition of Weil
restriction.

So we want to compute the intersection

? Hkd

Bun
T̃
×Bun

T̃
Bun2×Bun2

(L,L′) (ν∗L, ν∗L′)

In terms of the previous talks, d = degD. Recall that Hkd parametrizes maps of
vector bundles E ↪→ E ′ with quotient a torsion sheaf of degree d.
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Definition 10.2. We define M̃d to be the fibered product

M̃d Hkd

Bun
T̃
×Bun

T̃
Bun2×Bun2

Remark 10.3. What we are calling M̃d is called M̃♥d in the paper, but we’re
going to omit it because we’ll be working with it most often.

10.2.2. The functor of points. Let’s try to compute the functor of points of M̃d.
View Bun

T̃
as PicX′ . The bottom horizontal map sends

(L,L′) 7→ (ν∗L, ν∗L′).

The space M̃d (which is analogous to a “Hitchin space”) parametrizes

{(L,L′, ψ : ν∗L → ν∗L′) | deg cokerψ = d}.

Let’s digest this. We need L,L′ ∈ Pic∗X ×Pic∗+dX , and ψ is equivalent to (by adjunc-
tion)

ϕ : ν∗ν∗L → L′

We have ν∗ν∗L = L ⊕ σ∗L. So ϕ is equivalent to

ν∗ν∗L = L ⊕ σ∗L α,β−−→ L′

which amounts to the data of two maps

L α−→ L′

σ∗L β−→ L′

10.2.3. Compactification. We now introduce a compactification ofMd.

Definition 10.4. We define M̃d to be the moduli space classifying
• L,L′ ∈ Pic∗X′ ×Pic∗+dX′ ,
• Maps

α : L → L′

β : L → σ∗L′

such that α, β are not both 0.

Remark 10.5. The bar on M̃d is because we haven’t imposed an injectivity
condition on ψ. This space is just called M̃d in the paper.

There is an action of PicX on M̃d, and we finally defineMd := M̃d/PicX .

Remark 10.6. Obviously M̃d isn’t of finite type, since it has infinitely many
components. Since ν∗ : Pic∗X → Pic2∗

X′ hits “half” the components, Md is of finite
type. In fact it has exactly 2 components.
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The map
ψ : ν∗L → ν∗L′

when pulled back to X ′ becomes

ν∗ψ : ν∗ν∗L → ν∗ν∗L′

and is given by

ν∗ψ =

(
α σ∗β
β σ∗α

)
so det ν∗ψ = Nmα−Nmβ. We have

M̃d = M̃d \ {Nmα = Nmβ},
and

Md = [M̃d/PicX ].

10.2.4. The moduli space Ad.
Definition 10.7. We define the moduli space Ad parametrizing
• ∆ ∈ PicX ,
• a, b ∈ H0(X,∆) where a and b never simultaneously vanish.

Thus
Ad = X̂d ×PicX X̂d − Z(PicdX)

where Z(PicdX) = (PicX ×PicX X̂d ∪ X̂d ×PicX PicX), embedding as the locus where
a or b vanish.

Remark 10.8. Again we point out that the notation has changed from the
paper and previous talks. What is being called Ad used to be called Ad, and what
is being called Ad is called A♥d in the paper.

10.2.5. The map f . There is a map

f : Md → Ad = X̂d ×PicX X̂d − Z(PicdX)

sending

(L,L′, α, β) 7→ (Nm(L′)⊗Nm(L)−1, a := Nm(α), b := Nm(β))

SoMd is the pre-image of Ad := 〈(L, a, b) : a = b).

10.3. Properties ofMd. We begin with an important alternate description of
Md. There is a map

ι : Md → X̂ ′d ×PicX X̂
′
d.

Recall that X̂ ′d ×PicX X̂
′
d parametrizes

• L,L′ ∈ PicX′ ,
• α ∈ H0(X ′,L), β ∈ H0(X ′,L′) not both 0,
• c : Nm(L) ∼= Nm(L′)}.

In these terms, ι sends

(L,L′, α, β) 7→ (L′ ⊗ L−1,L′ ⊗ σ∗L−1, α, β, canonical).

Proposition 10.9. Keeping the notation above, the map ι is an isomorphism
onto the open subset where a, b don’t both vanish.
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Proof. We can ignore the sections; the interesting part is to keep track of the
map on bundles, which looks like

(Pic∗X′ ×Pic∗+dX′ )/PicX → (PicdX′ ×PicX PicdX′)

sending
(L,L′) 7→ (L′ ⊗ L−1,L′ ⊗ σ∗L−1). (10.2)

We’ll show that this is an isomorphism by describing the inverse.
By “looping” the sequences

1→ T → ResF ′/F Gm
Nm−−→ Gm → 1

and
1→ Gm → ResF ′/F Gm → T → 1

we obtain exact sequences of groups stacks

1→ BunT → PicX′
L⊗σ∗L−−−−→ PicX → 1 (10.3)

and
1→ PicX → PicX′

L⊗σ∗L−1

−−−−−−→ BunT → 1. (10.4)
Suppose we have a point (M,M′, c : Nm(M) ∼= Nm(M′)) on the right hand side
of (10.2). Then (10.3) tells us that since M and M′ have the same norm, they
differ by a T -bundle. By (10.4), there exist L,L′ such that M = L′ ⊗ L−1 and
M′ = L′ ⊗ σ∗L−1, and this choice is unique up to multiplication by an element of
PicX .

�

Proposition 10.10. If chark 6= 2 thenMd is a Deligne-Mumford stack.

Proof. Md is covered by the open stacks X ′d ×PicX X̂ ′d and X̂ ′d ×PicX X ′d,
describing when the sections α and β don’t vanish, respectively. By symmetry,
it suffices to show that one of these is Deligne-Mumford. Consider the cartesian
diagram

X ′d ×PicX X̂
′
d X̂ ′d

PicX′

X ′d PicX′ PicX

π

Nm

Nm

The map π is representable, since the fiber over L is H0(X ′,L).
The map Nm is a torsor under ker(PicX′

Nm−−→ PicX), which is the Prym variety
Prym(X ′/X)/µ2, since µ2 is precisely the group of automorphisms of the norm map
on line bundles.

This implies that the fibered product is Deligne-Mumford. �
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Remark 10.11. Alternatively, we can establish the Deligne-Mumford property
by showing that the automorphisms groups are étale, i.e. have vanishing tangent
space. We can compute the tangent space to the map

PicX′
Nm−−→ PicX

as follows. The map on tangent spaces is

TNm = H1(X ′,OX′) = H1(X, ν∗OX)
trace−−−→ H1(X,OX)

and the infinitesimal deformations of this map is the kernel of H0(X ′,OX′)
trace−−−→

H0(X,OX), which is just multiplication by 2.

Corollary 10.12. Md is smooth if d > 2g′ − 1.

Proof. The map X̂ ′d → PicdX′ is a vector bundle if d > 2g′ − 1 by Riemann-
Roch, and X̂ ′d ×PicX X

′
d =Md. �

Proposition 10.13. The morphism f : Md → Ad is proper. Therefore its re-
striction to f : Md → Ad is also proper.

Proof. Recall that f is the map

X̂ ′d ×PicX X̂
′
d − (both 0) Nm−−→ X̂d ×PicX X̂d − (both 0)

where (both 0) refers to the substack where both global sections vanish. So it suffices
to show that the norm map X̂ ′d → X̂d is proper. Note that this is obvious on fibers,
since both X ′d

νd−→ Xd and PicX′
Nm−−→ PicX are proper, the first map being even finite

and the second map having the Prym variety as its kernel.
To give a formal proof, we compactify. If we define

X̂d = {L ∈ PicdX , s ∈ PH0(X,L ⊕OX)}

then the natural map X̂d → PicX is obviously proper, so X̂d is proper. We have an
open embedding X̂d ↪→ X̂d sending (L, s) 7→ (L, [s : 1]). Note that

X̂ ′d = [(X̂ ′d ×A1 − both 0)/Gm]

X̂d = [(X̂d ×A1 − both 0)/Gm]

where X̂d×A1 parametrizes (L, s ∈ H0(L), f ∈ H0(OX)), and similarly for X ′. The
substack (both 0) refers to the locus where s = f = 0. Then we have a cartesian
diagram

X̂ ′d X̂ ′d

X̂d X̂d

and X̂ ′d → X̂d is proper, so X̂ ′d → X̂d is proper. �



Part 4

Day Four



11. Intersection theory on stacks
(Michael Rapoport)

The aim is to introduce intersection theory on stacks which are only locally of
finite type, like the moduli stack of shtukas. Fortunately, we only need the Q-theory,
which makes things easier.

11.1. Definition of Ch(X)Q.
11.1.1. Chow groups for finite type.
Definition 11.1. Let X/k be a DM stack, finite type over k. Then we define

Ch∗(X)Q = Z∗(X)Q/∂W∗(X)Q

where
• Z∗(X)Q =

⊕
V Q with V running over irreducible reduced closed substacks

of dimension ∗, and
• W∗(X)Q =

⊕
W k(W )∗ ⊗Z Q with the same index set, and k(W ) viewed

as a rational function to A1
k; the inclusion into Z∗(X) is by the “boundary”

as in the usual case for schemes.
11.1.2. Generalization to locally finite type. When X is locally finite type over

k, we replace Z∗(X)Q with Zc,∗(X)Q and Wc,∗(X)Q, where the subscript c indicates
that we only take substacks proper over Spec k. We have

Chc(X) = lim−→
Y f.t. ⊂X

Ch∗(Y )Q = lim−→
U open ⊂X

Ch∗,c(U)Q.

11.1.3. Degree map. We want to define a map

deg : Chc,0(X)Q → Q.

Since we are working with stacks, we need to account for stabilizers.
Definition 11.2. Let x ∈ X be represented by a geometric point x : Spec ks →

X. We define

deg x := [(ksep)Γx : k] · 1

|Aut(xs)|
.

11.1.4. Intersection pairing. Now let X be smooth, locally of finite type, and
pure dimension n. Then we have an intersection product

Chc,i(X)Q × Chc,j(X)Q → Chc,i+j−n(X)Q (11.1)

defined as follows. Let Y1, Y2 be closed substacks of X, which are proper over k.
Then (11.1) is the colimit of the finite-type intersection products

Chi(Y1)Q × Chj(Y2)Q → Chi+j−n(Y1 ∩ Y2)→ Chc,i+j−n(X)Q.

The first map is subtle to define: it is the refined intersection product

(ζ1, ζ2) 7→ X ×(X,X) (ζ1 × ζ2).
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What does this mean? It is a special case of the refined Gysin morphism. Start with
the fibered product diagram

W V

X Yi

where i is a regular embedding of codimension e. Then we get a refined Gysin
morphism

i! : Chi(V )Q → Chi+e(W )Q

and we define
X ×(X,X) (ζ1 × ζ2) := ∆!(ζ1 × ζ2).

Thus we have finally constructed the product

Chc,i(X)Q × Chc,j(X)Q → Chc,i+j−n(X)Q

Then composing with the degree map, we get an intersection pairing

〈, 〉X : Chc,j(X)Q × Chc,n−j(X)Q → Q.

Remark 11.3. (i) We have a cycle class map

clX : Chc,j(X)Q → H2n−2j
c (X ⊗k k,Q`(n− j))

and the intersection product is compatible with cup product.
(ii) Consider

c Chn(X ×X)Q = lim−→
Z⊂X×X

Ch∗(Z)Q

such that pr1|Z is proper. This is a Q-algebra. It acts on each Chc,j(X)Q via

(ξ, ζ) = pr2∗(ξ ·(X×X) pr∗1ζ).

Now that we have a definition, the problem is that we can’t really calculate. So
instead we pass to K groups.

11.2. Relation to K-theory. For technical reasons, we need to relate the
Chow groups to K-theory. First we recall K-theory of schemes of finite type over
k. Let K ′0(X) be the Grothendieck group of the abelian category of coherent OX -
modules. Let K ′0(X)Q be the rationalization.

11.2.1. The naïve filtration. We have a filtration

K ′0(X)naive
Q,≤m = Im (K0(Coh(X)≤m)Q → K ′0(X)Q)

where Coh(X)≤m is the subcategory of coherent sheaves with support of dimension
at most m.

We have a natural graded map

φX : Ch∗(X)Q → Grnaive
∗ (K ′0(X))Q

sending
[V ] : 7→ class of OV .
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This is an isomorphism: we have a commutative diagram

K0(Coh(X)≤m)Q Grnaive
m (X)Q

Zm(X)Q Chm(X)Q

supp ψX

where the map supp sends F 7→
∑

dimV=m µV (F) · [V ].
This discussion was for schemes. For stacks, all definitions extend but it’s not

clear if the map
K0(Coh(X)≤m)Q

Zm(X)Q Chm(X)Q

factors through K ′0(X)naive
≤m .

11.2.2. The not-so-naïve filtration. This problem is solved in the paper under
the assumption

(*) there exists a finite flat presentation U → X where U is an
algebraic space of finite type over k.

Define K ′0(X)Q,≤m to be the set of α ∈ K ′0(X)Q such that there exists a finite
presentation π : U → X with π∗(α) ∈ K ′0(U)naive

Q,≤m.
Example 11.4. It may happen that K ′0(X)Q,≤m is non-zero for m < 0. (Of

course, this doesn’t happen for the naïve filtration.) LetX = [∗/G]. ThenK ′0(X)Q =
RepQ(G), and K ′0(X)Q,≤−1 is the augmentation ideal (in particular, non-zero). In-
deed, when we pull back via the cover ∗ → [∗/G], anything in the augmentation
ideal becomes 0 in K0(∗).

In general, we have an inclusion K ′0(X)naive
Q,≤m ⊂ K ′0(X)Q,≤m, which is an equality

if X is an algebraic space.

The filtration just defined enjoys expected functoriality properties: compatibility
with flat pullback and under proper pushforward.

Let X be a DM stack satisfying (*). Then there is a homomorphism

ψX : Grm(K ′0(X)Q)→ Ch∗(X)Q

induced by a commutative diagram

K0(Coh(X)≤m)Q K ′0(X)naive
Q,≤m K ′0(X)Q,≤m

Zm(X)Q Chm(X)Q

ψX

We now come to a key technical point, which the compatibility of K-theory with
the refined Gysin homomorphism. We will describe two situations in which we can
deduce a good compatibility relationship.
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11.2.3. (A): Compatibility with the refined Gysin homomorphism. Consider the
cartesian diagram

X ′ Y ′

X Y

g

f ′

h

f

Assumptions (A).
• Assume that X ′ satisfies (*).
• Assume that f is the composition of a regular embedding of codimension
e and smooth morphism of relative dimension e − d. (Note that this is
automatic if X and Y are smooth.)

We have two maps: the refined Gysin morphism

f ! : Ch∗(Y
′)Q → Ch∗−d(X

′)Q

and the pullback on K-theory

f∗ : K ′0(Y ′)Q → K ′0(X ′)Q

sending F 7→ (f ′)−1(F)
L
⊗(f◦g)−1OY (f ′)−1(OY ).

Proposition 11.5. Under the assumptions (A):
(1) The pullback f∗ sends K ′0(Y ′)naive

Q,≤m to K ′0(X ′)Q,≤m and hence induces a
map

Grnaive
m f∗ : Grnaive

m K ′0(Y ′)Q → Grm−dK
′
0(X ′)Q.

(2) We have a commutative diagram

Grnaive
m K ′0(Y ′)Q

K0(Coh(X)≤m)Q Grm−d(X
′)Q

Zm(Y ′)Q Chm−d(X
′)Q

Grnaive(f ′)∗

supp

If we also assume that Y ′ satisfies ∗, then we can fill this in to

Grnaive
m K ′0(Y ′)Q

K0(Coh(X)≤m)Q GrmK
′
0(Y ′)Qs Grm−d(X

′)Q

Zm(Y ′)Q Chm(Y ′)Q Chm−d(X
′)Q

Grnaive(f ′)∗

supp
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11.2.4. (B): Compatibility with Gysin map. Again consider a cartesian diagram

X ′ Y ′

X Y

g

f ′

h

f

Assumptions (B).
• Assume h is representable.
• Assume that the normal cone of f is a vector bundle of constant virtual
dimension. (We will apply this to (Id,Frob) : X → X × X, where X is
smooth, so this is certainly satisfied.)
• Assume that there exists a commutative diagram

U V

X Y

u v

f

where U and V are smooth surjective maps from schemes of finite type and
i is a regular embedding.

Write dimY ′ = n and dimX ′ = n− d.

Proposition 11.6. Under the assumptions (B), the following diagram is com-
mutative:

K ′0(Y ′)Q K ′0(X ′)Q

Chn(Y ′)Q = Zn(Y ′)Q Zn−d(X
′)Q = Chn−d(X

′)Q.

f∗

supp

11.3. The octahedron lemma. Consider a commutative diagram

A X B

U S V

C Y D

Let N be the fiber product as in

N A×B × C ×D

X ×S Y ×S U ×S V (X ×S U)× (X ×S Y )× (Y ×S U)× (X ×S V )

Lemma 11.7. There are canonical isomorphisms

(C ×Y D)×U×SV (A×X B) ∼= N ∼= (C ×U A)×Y×SX (D ×V B).
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Theorem 11.8. Assume everybody is smooth, except B (the “bad” object) of
dimension dA, dB, . . .. Also assume that the fiber products (on the left) C ×Y D,
U ×S V , C ×U A, Y ×S X have the expected dimension. Further assume that each of
the fiber diagrams

A×X B B

A X

and
D ×V B B

D V

satisfy the compatibility conditions (A) or (B). Finally assume that both fiber dia-
grams

N A×X B

C ×Y D U ×S V
and

N D ×V B

C ×U A Y ×S X
satisfies the compatibility condition (A). Let n = dimN . For the diagram

N D ×V B B

N A×X B B

α d

δ a

we have δ!a![B] = d!α![B].

Roughly speaking, the proof proceeds by using the relation to K-theory, and
lifting the statement to the level of derived stacks.
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12. LTF for Cohomological Correspondences
(Davesh Maulik)

12.1. Motivation. We want to compute an intersection number

Ir(hD) = 〈Sht′T , Sht′T , 〉Sht′G
.

The shtuka involves some sort of Frobenius.

Sht H

M M ×MΓ:=Id×Frob

We’ll rewrite this intersection in another order, so that at the end the answer will
be presented as a refined Gysin pullback via Frobenius, which we can then compute
in terms of a cohomological trace.

Recall the “usual” Grothendieck-Lefschetz trace formula.

Theorem 12.1. Let X0 be a variety over Fq, and X = X0 ×Fq Fq.∑
i

(−1)i Tr(Frob | H i
c(X, E)) =

∑
x∈X0(Fq)

Tr(Frobx | Ex).

Outline of
(1) Cohomological correspondences.
(2) Trace formula.
(3) Application.

12.2. Cohomological correspondences.
12.2.1. Setup. To convey the idea, we’re just going to work with schemes. Let

k = k be an algebraically closed field, and X a scheme of finite type over k. Let
D(X) := Db

c(X,Q`). If f : X → Y is a map then we have functors

f∗, f! : D
b(X)→ Db(Y )

and
f∗, f ! : Db(Y )→ Db(X)

and adjunctions

Id→ f∗f
∗

f!f
! → Id .

12.2.2. Borel-Moore homology. Let π : X → Spec k, then KX = π!Q` is the
dualizing sheaf.

Example 12.2. If X is smooth of dimension n, then KX = Q`[2n](n).
Definition 12.3. We define the Borel-Moore homology

HBM
d (X) := H−d(KX).

If f : X → Y is proper, then we have a trace map

Tr: HBM
0 (X)→ HBM

0 (Y )
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via
f!KX = f!f

!KY → KY .

using that KX = f !KY .
Think of HBM

0 as being a receptacle for 0-cycles (it is the target of cycle class
map from Ch0) , and this as being pushforward of cycles. In particular, if X is
proper over k then the pushforward for the structure map X → Spec k is the degree
map

HBM
0 (X)

deg−−→ Q`.

12.2.3. Cohomological correspondences.
Definition 12.4. Given X1, X2 a correspondence between X1, X2 is a diagram

C

X1 X2

c1 c2

Given Fi ∈ D(Xi), a cohomological correspondence is an element

u ∈ HomC(c∗1F1, c
!
2F2) = HomX2(c2!c

∗
1F1,F2).

Example 12.5. For a morphism f : X → Y , we have f∗Q` = Q` = Id! Q`. This
gives a cohomological correspondence, which is admittedly trivial.

Example 12.6. Let X2 be smooth of dimension n. Then KX2 = Q`[2n](n), so
c!

2Q` = KC [−2n](−n). So the cohomological correspondences between Q` and Q`

are maps
Q` → KC [−2n](−n) = HBM

2n (c)(−n).

We get a Borel-Moore homology class from any cycle, which gives a map

Ch(C)→ CorrC(Q`,Q`).

12.2.4. Maps on cohomology. If c1 is proper, then from a cohomological corre-
spondence u we can define a map

RΓc(u) : RΓc(X1,F1)→ RΓc(X2,F2).

Indeed, we have a map of sheaves

F1 → c1∗c
∗
1F1 = c1!c

∗
1F1

(using that c1 is proper in the second equality) which induces on cohomology

RΓc(X1,F1)→ RΓc(C, c
∗
1F1)

u−→ RΓc(C, c
!
2F2) = RΓc(X2, c2!c

!
2F2)→ RΓc(X2,F2).

More generally, given a diagram of correspondences

X1 C X2

Y1 D Y2

f1

c1 c2

f f2

d1 d2
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if (a) f and f1 are proper, and (b) c1 and d1 are proper then we can define a
pushforward

[f ]! : CorrC(F1,F2)→ CorrD(f1!F1, f2!F2).

This generalizes the previous construction, which is the special case with Y1 = D =
Y2 = Spec k sending a correspondence u 7→ RΓC(u) ∈ Corrpt(RΓc(F1), RΓc(F2)).

12.3. Trace formula.
12.3.1. Self correspondences. Suppose we have a correspondence between X and

itself:
C

X X

c1 c2

If c1 is proper, then we have an endomorphism of RΓc(u) on RΓc(X,F ). The
fundamental question is: what is its trace?

In a relative situation, if we have a map of correspondences

C

X X

S

S S

c1 c2

f f

then [f ]!(u) is an endomorpism of f!F .
12.3.2. The trace. Consider the cartesian square

Fix(c) C

X X ×X

∆′

c′ c=c1×c2

∆

Definition 12.7. We define a trace map

RH omC(c∗1F , c!
2F)→ ∆′∗KFix(c). (12.1)

as follows. We have

RH omC(c∗1F , c!
2F) ∼= c!(D(F)� F)→ c!(∆∗KX)

where D(−) = RH om(−,KC) is Verdier duality, and then we apply base change.
Applying H0 to (12.1), we get

Tr: CorrC(F ,F)→ H0(Fix,KFix(c)) = HBM
0 (Fix(c)).
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Now suppose β is a connected component of Fix(c), so we have

HBM
0 (Fix) =

⊕
β∈πC(Fix)

HBM
0 (Fixβ).

Assume further that β is proper over k. Then we can push forward to k and take
the degree.

Definition 12.8. In the situation above, we define the local terms

LTβ(u) = deg(Tr(u)β) ∈ Q`.

Example 12.9. For the correspondence

k

k k

c1 c2

the cohomological correspondences are just Hom(F ,F) and the trace as defined
above coincides with the usual trace.

12.3.3. The local-global formula.
Example 12.10. ForX smooth of dimension n and F = Q`, we have CorrC(Q`,Q`) =

HBM
2n (C)(−n). There is a cycle class map

Chn(C)→ CorrC(Q`,Q`) = HBM
2n (C)(−n)

Tr−→ HBM
0 (Fix)

The claim is that the diagram commutes:

Chn(C) CorrC(Q`,Q`) = HBM
2n (C)(−n)

Ch0(Fix) HBM
0 (Fix)

∆! Tr

Theorem 12.11. The trace commutes with proper pushforward. In other words,
if

C

X X

D

Y Y

f f
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is a map of correspondences, with f proper, then the following diagram commutes:

CorrC(F, F ) HBM
0 (Fix(c))

CorrD(f!F, f!F ) HBM
0 (Fix(d))

Tr

[f ]! f!

Tr

(12.2)

Corollary 12.12. If C,X are proper over k, then

Tr(RΓc(u)) =
∑
β

LTβ(u).

Proof. The left side corresponds to the left path of the commutative diagram
in (12.2), and the right side corresponds to the right path in (12.2). �

This is what is usually called the Lefschetz-Verdier trace formula.
12.3.4. The naïve local terms. There are two issues with the trace formula. First,

how do you actually compute the local terms? Consider a correspondence

C

X X

c1 c2

with c2 is quasifinite. Given y ∈ Fix(c), with x = c1(y) = c2(y), we can define

uy : Fx → Fx

as follows. We have a cohomological correspondence

(c2!, c
∗
1F ) =

⊕
z 7→x

c∗1F |z → Fx

by adjunction from

Fx ↪→
⊕
z 7→x

F |c1(z).

Definition 12.13. The Tr(uy) defined above is called the naïve local term.
Example 12.14. The naïve local term does not necessarily coincide with the

local terms computed above. Consider translation x 7→ x+ 1 on P1 → P1. Then

LT∞(u) = 2

whereas the naive local term is Tr(u∞) = 1. The naïve local term doesn’t know
that the fixed point ∞ should have multiplicity 2; it only counts the physical fixed
points. An example in the same spirit is the map x 7→ x+ 1 on A1.

Another issue is that we need properness. We can solve that by compactifying
everything, but then you get local terms at infinity, which may be non-zero (as we
saw in the preceding example).
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12.3.5. A special case. Let X0 be a variety over k = Fq and X = X0 ×Fq Fq.
Consider the correspondence

XFrob

X X

Let u = Frob∗ E → E . Then the local terms coincide with the naïve local terms. In
other words,

(1) For all s ∈ X0(Fq), we have

LTs(u) = Tr(us).

(2) We have
Tr(RΓc(u)) =

∑
s

Tr(us, Es).

Why? The idea is that Frobenius is contracting near fixed points. For s ∈ Fix,

Frob−1(mn
x)OX ⊂ mn+1

x OX
for some n ≥ 0. Geometrically, this means that if we pass to the normal cone we get
an endomorphism which contracts everything to the origin.

12.4. Applications to the appendix. Consider a correspondence

C

M M

c1 c2

Assume
• c1 is proper, and
• M is smooth of dimension n, and
• we have a proper map f : C → S.

Let γ ∈ Chn(C)Q. Suppose we have a map of cartesian squares

Sht C

M M ×M

S(Fq) S

S S × S

Γ

fΓ:=Id×Frob

∆

Id×Frob

Then we can write
Sht =

∐
s∈S(Fq)

Shts .
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We can pull back (Γ!γ)s = contribution of Shts. This is in Ch0(ShtS)Q, which is
proper, so we can apply the degree map to get something in Q. We want a formula
for it, so set

〈γ,ΓFrob〉s := deg(Γ!γ)s.

Theorem 12.15. We have

〈γ,ΓFrob〉s = Tr((f!cl(γ))s ◦ Frobs | (f!Q`)s).

The argument has two steps: compatibility of trace with proper pushforward,
and the special case discussed in §12.3.5.

The first idea is to replace the correspondence C with Frobenius, by composing
C

c1−→ M with C
c1−→ M

Frob−−−→ M . This gives a C ′ which lives over the Frobenius
correspondence for S.

C ′

M M

S

S S

f

Frob ◦c1

Frob

The second idea is to use the compatibility of trace with proper pushforward to
express this as a trace on S, from which one gets the answer.
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13. Definition and description of HkµM,d: expressing Ir(hD) as a trace
(Liang Xiao)

13.1. New moduli spaces.
13.1.1. Goal. Recall that ν : X ′ → X is an étale (geometrically connected) dou-

ble cover. Let D be an effective divisor on X of degree d. We have constructed a
map

θµ : ShtµT → Sht
′µ
G := ShtµG×Xr(X ′)r.

The goal is to understand the intersection number

Ir(hD) := 〈θµ∗ [ShtµT ], hD ∗ θµ∗ [ShtµT ]〉
Sht
′µ
G

∈ Q.

13.1.2. The stack ShtµM,D. For formal reasons, Ir(hD) coincides with the inter-
section number in the product:

ShtµM,D Sht
′µ
G (hD)

ShtµT ×ShtµT Sht
′µ
G ×Sht

′µ
G

To be clear, let us flesh out the definition of ShtµM,D.

Definition 13.1. We first define the moduli stack S̃ht
µ

M,D parametrizing
(1) Modifications of line bundles

L0
f0
99K L1

f1
99K . . .

fr
99K Lr

τ∼= L0,

with modification points at x′1, . . . , x′r.
(2) Modifications of line bundles

L′0
f ′0
99K L′1

f ′1
99K . . .

f ′r
99K L′r

τ∼= L′0,
with modifications points also at the same x′1, . . . , x′r as above, because by
definition the following diagram commutes:

ShtµM,D Sht
′µ
G (hD) (X ′)r

ShtµT ×ShtµT Sht
′µ
G ×Sht

′µ
G (X ′)r × (X ′)r

(3) Compatible modifications

ci : ν∗Li ↪→ ν∗L′i
such that det(ν∗L′i/c(ν∗Li)) is an invertible sheaf on D × S.

The stack S̃ht
µ

M,D/PicX(k) has an action of PicX(k) as usual. Finally, we have

ShtµM,D = S̃ht
µ

M,D/PicX(k).
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As we saw yesterday, datum (3) in Definition 13.2 is equivalent to the data of

(α•, β•) : L• ⊕ σ∗L• → L′•.
The central object of this talk is a “Hecke version” of this moduli space.

13.1.3. The stack HkµM,d.

Definition 13.2. Define H̃k
µ

M,d whose S-point are:
(1) x′1, . . . , x′r ∈ X ′(S),

(2) L0
f0
99K L1

f1
99K . . .

fr
99K Lr,

(3) L′0
f ′0
99K L′1

f ′1
99K . . .

f ′r
99K L′r,

(4) A commutative diagram

L′0 L′1 . . . L′r

L0 L1 . . . Lr

σ∗L′0 σ∗L′1 . . . σ∗L′r

f ′1 f ′2 f ′r

f1

α0

β0

f2

α1

β1

fr

αr

βr

f ′1 f ′2 f ′r

(13.1)

such that each row in (13.1) gives a point of H̃k
µ

T over x′1, . . . , x′r, and each
column

L′i

Li

σ∗L′i

αi

βi

gives a point of M̃d, which really just means that

degL′i − degL = d

and
Nm(αi) 6= Nm(βi)

(this is the ♥ condition in the paper).
Finally, we define

HkµM,d := H̃k
µ

M,d/PicX .

There is a map

HkµM,d (x′,L′•
α•←− L•

β•−→ σ∗L′•)

Md (L′•
α•←− L•

β•−→ σ∗L′•)
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Remark 13.3. We have a cartesian diagram

ShtµM,d HkµM,d

Md Md ×Md

γ0×γr
Id×Frob

13.1.4. Relation to Hitchin fibration. Set H := Hk1
M,d. Then we have

(13.1)HkµM,d = H×Md
H×Md

. . .×Md
H︸ ︷︷ ︸

r terms

(13.2)

where the maps H →Md are γ1, and the mapsMd ← H are γ0.

Lemma 13.4. The composition

HkµM,d (x′,L′•
α•←− L•

β•−→ σ∗L′•)

Md (αi : Li → L′i;βi : Li → σ∗L′i)

Ad (∆ := Nm(L′i)⊗Nm(Li)−1,Nm(αi),Nm(βi))

γi

fM

is independent of i.

Proof. We have Ad ⊂ X̂d ×PicdX
X̂d, included as the open locus where the

sections take distinct values. Consider

L′i Li σ∗L′i

L′i+1 Li+1 σ∗L′i+1

at x′

αi

βi

at x′ at x′

αi+1

βi+1

so
L′i+1 ⊗ L−1

i+1
∼= L′i(x′)⊗ (Li(x′))−1 ∼= L′i ⊗ L−1

i

and α = αi+1 under this identification, and Nm(βi) = Nm(βi+1). (So in fact, all the
maps agree to a slightly more refined space, X̂ ′d ×PicdX

X̂d.) �

13.1.5. The � locus. Consider the following “nice locus”.

HkµM,d

Md Md

Ad

γ0 γr

fM fM
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We denote by A�d ⊂ Ad the open substack (∆, a, b) where b 6= 0, and for our other
moduli spaces we use � to denote the full pre-image of A�d. Thus we have the
commutative diagram:

HkµM�,d

M�d M�d

A�d

γ0 γr

fM fM

Lemma 13.5 (Description of H�). We have a diagram of cartesian squares

M�d H� M�d

X̂ ′d ×PicdX
X ′d X̂ ′d ×PicdX

Id X̂ ′d ×PicdX
X ′d

X ′d I ′d X ′d

γ0 γr

pr2 pr2 pr2

where I ′d = {(D,x) ∈ X ′d ×X ′ | x′ ∈ D} and the maps are

X ′d I ′d X ′d

D (D,x′) D − x′ + σ(x′)

Proof. A point of H� is a diagram

L′i Li σ∗L′i

L′i+1 Li+1 σ∗L′i+1

at x′

αi βi

at x′ at σ(x′)

αi+1 βi+1

The content of the statement is that we can resconstruct this diagram from the top
row, plus the point x′. If we know where x′ is. Indeed, from this information we
get αi for free, as Li+1 = Li(x′). The map βi is also unique if it exists, but we do
not get its existence for free, since we need it to be a regular (rational than rational)
map. Its divisor is determined by the condition

Div(βi) + σ(x′) = Div(βi+1) + x′

and we need Div(β1) to be effective, so since the � locus forces σ(x′) 6= x′, the
requirement for βi to exist is

x′ ∈ Div(βi).

�
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Corollary 13.6. The map

γ = γi : HkµM�,d →M
�
d

is finite surjective (because I ′d → X ′d is). Therefore

dim HkµM,d = dimM�d = 2d− (g − 1).

13.2. Trace formula for intersection number. Let [H�] be the class of the
Zarisi closure of H� in Ch2d−g+1(H)Q. As we have seen, this gives a cohomological
correspondence in Corr(Q`,Md

,Q`,Md
) via the diagram

H

Md Md

We can then push this down via

H

Md Md

Ad Ad Ad

fM fM

to obtain a cohomological correspondence on the Hitchin space

fM![H�] : RfM!Q` → RfM!Q`.

We have a map δ : Ad → Xd sending (∆, a, b) 7→ (∆, a − b). The preimage of a
divisor D ∈ Xd will be denoted AD.

Theorem 13.7. Suppose D is an effective divisor of degree d ≥ max{4g−3, 2g}.
Then

Ir(hD) =
∑

a∈AD(k)

Tr((fM! ◦ [H�]a)r Froba, (RfM!Q`)a)

Proof. Recall the diagram

ShtµM,d HkµM,d

Md Md ×Md Ad

Ad Ad ×Ad

γ0×γr

fM

Id×Frob

fM×fM

∆Id×Frob
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The map from HkµM,d factors through the diagonal of Ad × Ad, which implies that
ShtµM,d is fibered over Ad(k):

ShtµM,d
∼=

⊔
a∈Ad(k)

ShtµM,d(a).

So we have a map⊕
D∈Xd(k) Ch0(ShtµM,D)Q ∼= Ch0(ShtµM,d)Q Ch2d−g+1(HkµM,d)Q

(Id,Frob)!ζ ζ

�

In the next talk the proof of the following theorem will be sketched:

Theorem 13.8 (Theorem 6.6). There exists ζ ∈ Ch2d−g+1(H) such that ζ|H� is
the fundamental cycle, and

Ir(hD) = deg(Id,Frob)!ζ

Then it follows from the trace formula that

Ir(hD) =
∑

a∈AD(k)

Tr((fM!cl(ζ))a ◦ Froba, (RfM!Q`)a)

=
∑

a∈AD(k)

Tr((fM!cl([H�]))a ◦ Froba, (RfM!Q`)a)

Remark 13.9. There’s a technical issue that ζ and [H�] aren’t the same, but
at least they’re the same on the � locus. You can show by dimension estimate that
the difference on the boundary doesn’t contribute.
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14. Alternative calculation of Ir(hD)
(Yakov Varshavsky)

14.1. Overview. The goal is to sketch the proof of Theorem 6.6, which was
stated last time:

Theorem 14.1 (Theorem 6.6). Let D be an effective divisor on X, of degree
d ≥ max{2g′ − 1, 2g}. Then there exists ζ ∈ Ch2d−g+1(HkµM,d)Q such that

(1) ζ|HkµM�,d
is the fundamental class, and

(2) deg((Id,Frob!)ζ)D = Ir(hD) = 〈[ShtµT ], hD ∗ [ShtµT ]〉ShtµG
.

The strategy of the proof is to:

(1) Give a formula for ζ.
(2) Prove that ζ satisfies properties (1), (2) of Theorem (14.1).

The basic idea is that Sht is the intersection of something with the graph of
Frobenius. On the right hand side of Theorem 14.1(2), we are taking an intersection
of objects obtained by intersecting with the graph of Frobenius. On the left hand
side, we are intersecting first and then intersecting with the graph of Frobenius. That
these coincide is the substance of the “octahedron lemma” from Rapoport’s talk.

14.2. The fundamental diagram. Consider the commutative diagram of al-
gebraic stacks

A11 A12 A13

A21 A22 A23

A31 A32 A33

α

β

Think of A13 as the “bad” object. Thus, also fibered products involving it are also
“bad”, while all objects not involving it are “good”. We’ll be more precise about
this shortly. The point is that we can take the fiber product of the rows and then
columns, or columns and then rows.

If we take the fibered products of rows first, then we get

A11 A12 A13 A1∗

A21 A22 A23 A2∗

A31 A32 A33 A3∗

α

β δ
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If we take the fibered products of columns first, then we get and

A11 A12 A13

A21 A22 A23

A31 A32 A33

A∗1 A∗2 A∗3

α

β

γ

Proposition 14.2. The two fiber products A1∗ ×A2∗ A3∗ and A∗1 ×A∗2 A∗3 are
canonically equivalent.

From the diagrams we have refined Gysin maps

Ch(A13)
α!

−→ Ch(A1∗)
δ!−→ Ch(A1∗ ×A2∗ A3∗)

Ch(A13)
β!

−→ Ch(A∗3)
γ!−→ Ch(A∗1 ×A∗2 A∗3).

Thanks to Proposition 14.3 it is meaningful to ask if they agree.

Proposition 14.3. Assume that
• the Aij are smooth equidimensional all i, j 6= 1, 3,
• the A2∗, A3∗, A∗1, A∗2 are smooth of expected dimension,
• the map α, β, γ, δ satisfy assumptions (A) and (B) from Rapoport’s talk.

Then we have

δ!α![A13] = γ!β![A13] ∈ Ch(A1∗ ×A2∗ A3∗) = Ch(A∗1 ×A∗2 A∗3).

The content of Proposition 14.3, as compared to Proposition 14.2, is that Propo-
sition 14.3 involves both “derived fiber products” and classical fiber products. There-
fore, the content of Proposition 14.3 is that the “derived fiber product = usual fiber
product”. The assumptions are there to make that true.

14.3. Application to shtukas.
14.3.1. The fundamental diagram. We are interested in the specialization of the

fundamental diagram to shtukas:

HkµT ×HkµT Hk
′r
G×Hk

′r
G Hk

′r
G,d

Bun2
T ×Bun2

T Bun2
G×Bun2

G Hd ×Hd

BunT ×BunT BunG×BunG Hd

Πµ×Πµ

Id×Frob

Π×Π

Id×Frob Id×Frob
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Some of the objects of this diagram haven’t even been defined yet; we will give the
definitions (and recall old ones) shortly.

The fibered products column-wise will be

HkµT ×HkµT Hk
′r
G×Hk

′r
G Hk

′r
G,d

Bun2
T ×Bun2

T Bun2
G×Bun2

G Hd ×Hd

BunT ×BunT BunG×BunG Hd

ShtµT ×ShtµT Sht
′r
G×Sht

′r
G Sht′G,d

Πµ×Πµ

Id×Frob

Π×Π

Id×Frob Id×Frob

θµ×θµ

The fibered products row-wise will be

HkµT ×HkµT Hk
′r
G×Hk

′r
G Hk

′r
G,d Hk

′r
G,d

Bun2
T ×Bun2

T Bun2
G×Bun2

G Hd ×Hd Md ×Md

BunT ×BunT BunG×BunG Hd Md

Πµ×Πµ

Id×Frob

Π×Π

Id×Frob Id×Frob Id×Frob

Definition 14.4. The total fiber product is denoted ShtµM,d. This can be viewed
as the fiber product of the column-wise fiber products, or as the fiber product as the
row-wise fiber products, thanks to Proposition 14.2.

14.3.2. Explication of the terms. Now we’re going to tell you what these things
are.

• Hd is the Hecke stack. We can viewHd = H̃d/PicX , where H̃d parametrizes
modifications

φ : E ↪→ E ′

with cokerφ is finite over S and flat of rank d.
• The map BunT → BunG sends L 7→ ν∗L.
• The stacks HkµT and HkµG

∼= HkrG parametrize modifications of type µ be-
tween chains of bundles. It is perhaps easier to phrase things in terms of
Hkµ2 , which parametrize chains of modifications

E0 E1 . . . Er
at x1 at x2 at xr

Then we define HkrG = H̃k
r

G/PicX , and Hk
′r
G,d = HkrG×Xr(X ′)r.
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• The stack H̃k
r

G,d parametrizes “modifications of (modifications of type µ) of
degree d": that is, chains of rank 2 vector bundles

E0 E1 . . . Er

E ′0 E ′1 . . . E ′r

at x1 at x2 at xr

at x1 at x2 at xr

such that the rows are in HkrG and the columns are in Hd. As usual, we
require the modifications of both at x1, . . . , xr. We define HkrG = (X ′)r×Xr

Hk
′r
G.

• Finally we set HkrG,d = H̃k
r

G,d/PicX and Hk
′r
G,d = H̃k′

′r

G,d/PicX .

The potentially bad objects in the diagram are Hk
′r
G,d and everything that in-

volves it: Sht′G,d and Hk
′r
M,d. Everything else is smooth. To show this, you first study

the objects in the big diagram. For example, the map Hk
pr1−−→ BunG is smooth of

relative dimension 2d. (We’ve already seen this for d = 1: there is one dimension for
the choice of point and one dimension coming from the P1 parametrizing the choice
of modification type at that point.)

14.3.3. Intersection numbers. Specializing Propositions 14.2, 14.3 we get:

Corollary 14.5. We have

(Id,Frob)!(Πµ ×Πµ)!([Hk
′r
G,d]) = (θµ × θµ)!(Id×Frob)!([Hk

′r
G,d]) ∈ Ch0(ShtµM,d)

Definition 14.6. We now define ζ := (Πµ ×Πµ)!(Hk
′r
G) ∈ Ch2d−g+1(Hk

′r
Md

).
We then need to check that ζ enjoys the following two properties promised in

Theorem 14.1.
(1) Consider the fiber product

HkµM,d Hk
′r
G,d

HkµT ×HkµT Hk
′r
G×Hk

′r
G

The total space HkM,d is bad, and hard to understand. However, we claim that
the open substack HkM�,d has the expected dimension. Then the claim is that
[ζ] ∈ Ch(HkM�,d) is the fundamental class.

(2) We know that we can write

ShtµMd
=

⊔
D∈Xd(k)

ShtµM,D,
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which implies that Ch0(ShtµMd
)Q =

⊕
Ch0(ShtµM,D)Q. Using Corollary 14.5, we

have

deg((Id,Frob!)ζ)D = deg[(Id,Frob)!(Πµ ×Πµ)!([Hk
′r
G,d]) |ShtµM,D

]

= (θµ × θµ)!(Id×Frob)!([Hk
′r
G,d]) ∈ Ch0(ShtµM,d)

To establish Theorem 14.1 (2), we need to show that

(θµ × θµ)!(Id×Frob)!([Hk
′r
G,d]) ∈ Ch0(ShtµM,d) = Ir(hD).

Note that (θµ×θµ)!(Id×Frob)! = [Sht
′r
G]. We use that we have the cartesian diagram

ShtMD
ShtG(hD)

ShtµT ×ShtµT Sht
′r
G×Sht

′r
G

We have the compatibility relation “pullback then restrict to DS is the same as
restrict to D and then pullback”, so

Ir(hD) := 〈θµ∗ [ShtµT ], hD ∗ θµ∗ [ShtµT ]〉
= 〈(θµ × θµ)∗([ShtµT ]× [ShtµT ]),pr∗[Sht′G(hD)]〉

Sht
′r
G × Sht

′r
G

= deg(θµ × θµ)![Sht
′r
G]

as desired.
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15. Comparison of Md and Nd; the weight factors
(Ana Caraiani)

15.1. Review.
15.1.1. Goal. Let D be an effective divisor on X of degree d ≥ max{2g′−1, 2g}.

We have an associated Hecke function hD. The goal is to prove the key identity
(Theorem 8.1 in the paper)

(log q)−rJr(hD) = Ir(hD)

We’ll use the notation in the paper [YZ]:

Ad = (X̂d ×PicdX
X̂d) \ both sections vanish.

(This is consistent with talks up to Wednesday morning, but inconsistent with the
ones afterwards.)

To prove this we’ll use the geometrization of both sides that we have been de-
veloping, and which we now review.

15.1.2. The analytic side. On the analytic side, the geometrization takes the
form

(log q)−rJr(hD) =
∑
d∈Σd

∑
a∈AD(k)

(2d12 − d)r · Tr(Froba, (RfNd∗Ld)a). (15.1)

Remark 15.1. We obtained this formula from geometrization of Tr(u, hD) by
taking the sum over invariants u ∈ P1(F )− {1}

The analytic side was geometrized by the moduli space Nd. Recall that we
defined a map

RfNd∗ : Nd → Ad
in the following way: it is the restriction to an open substack of the “addition” map

addd11,d22 × addd12,d21 : (X̂d11 × X̂d22)×PicdX
(X̂d12 × X̂d21)→ X̂d ×PicdX

X̂d.

Also, recall that the local system Ld from (15.1) was the restriction to Nd from
(X̂d11 × X̂d22)×PicdX

(X̂d12 × X̂d21) of

(Ld11 �Q`)� (Ld12 �Q`)

where for d′ ≥ 0, Ld′ is the local system on X̂ pulled back from the local system on
Picd

′
X corresponding to

L := (ν∗Q`)
σ=−1, ν : X ′ → X.

Note that Ld|Xd′⊂X̂d′ is descended from L�d
′ on Xd′ . The upshot is that on the open

substack Xd′ ⊂ X̂d′ we understand the local system Ld very concretely, so we have
a chance of computing H∗(Xd′ , Ld′).
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15.1.3. The geometric side. On the geometric side, the geometrization takes the
form

Ir(hD) =
∑

a∈AD(k)

Tr((fM![H�]a)r ◦ Froba, (RfM!Q`)a).

Here the point is that one can understand [H�] as the fundamental class over the
“nice” locus �. The map fM : Md → Ad was the norm map

X̂ ′d ×PicdX
X̂ ′d

ν̂d×ν̂d−−−−→ X̂d ×PicdX
X̂d.

15.1.4. The comparison. We have reduced to a comparison of traces on coho-
mology:∑
d∈Σd

∑
a∈AD(k)

(2d12−d)r·Tr(Froba, (RfNd∗Ld)a) ∼
∑

a∈AD(k)

Tr((fM![H�]a)r◦Froba, (RfM!Q`)a).

To tackle this, we’ll first compare the local systems. So the strategy is:
(1) Compute RfM!Q`.
(2) Compute RfNd!Ld.
(3) Compute the action of fM![H�].
The idea is to use the “perverse continuation principle”. This tells us that if we

know that RfM!Q` and RfNd!Ld satisfy certain special properties, then we can es-
tablish an “identity” between them globally if we can do it over a “nice” open set. This
is important technically because the geometrization process was that we understood
the relevant moduli spaces well over a nice open subset, but not everywhere.

For this we need to show that the sheaves are (shifted) perverse, and moreover
that they are the middle extension of their restriction to a “nice” open subset of Ad.
The poins is that middle extensions are completely determined by their restriction
to the open subset. So we’ll compare RfM!Q` and RfNd!Ld on an open subset, using
the representation theory of finite groups.

We probably won’t have time to do everything, so we’ll focus on (1).

15.2. The geometric side. We want to compute RfM!Q`. Let

j : X◦d ↪→ Xd ↪→ X̂d

to be the locus of multiplicity-free divisors.
Taking pre-images of X◦d , we get a étale Galois covers

(X ′)d,◦
{±1}d−−−−→ Xd,◦ Sd−→ X◦d︸ ︷︷ ︸

Gal={±1}doSd

.

Let χi : {±1}d → {±1} be the character which is non-trivial on the first i factors,
and trivial on the last d− i factors.

Let Si,d−i ∼= Si × Sd−i be the stabilizer of the first i elements. Let Γd(i) =

{±1}i o Si,d−i ⊂ Γd := {±1}d o Sd. Since the Si,d−i-action on {±1}i stabilizes the
character χi, we can inflate χi to Γd(i) as χi � 1, and then we set

ρ(i) = IndΓd
Γd(i)(χi � 1).
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Note that this has dimension
(
d
i

)
. It determines an irreducible local system L(ρi)

on X◦d . We want to extend this to a (shifted) perverse sheaf Ki = (j!∗L(ρi)[d])[−d].
This is called the middle extension: it is a perverse extension of L(ρi)[d] to X̂d,
which is characterized by the following property:

If Z := X̂d − X◦d , and i : Z ↪→ X̂d, then (j!∗L(ρi)[d])[−d] is the
unique (shifted) perverse extension of L(ρi)[d] such that it has no
subobjects or quotients of the form i∗M where M is perverse on
Z.

This condition can be rephrased in terms of “support and co-support” conditions.
Perverse sheaves form an abelian subcategory of D = Db

c(X̂d). They are defined by
support and co-support conditions. The support condition cuts out a subcategory
pD≤0 ⊂ D, and the co-support condition is the Verdier dual of the support condition,
cutting out pD≥0 ⊂ D.

The middle extension
Ki = j!∗(L(ρi)[d])

is the unique perverse extension such that i∗K ∈ pD≤−1(Z), and i!K ∈ pD≥1(Z).

Proposition 15.2. Assume that d ≥ 2g′−1. Then we have a canonical isomor-
phism of shifted perverse sheaves on Ad:

RfM!Q`
∼=

d⊕
i,j=0

(Ki �Kj)|Ad

Proof. Recall that fM is the restriction of

ν̂d × ν̂d : X̂ ′d × X̂ ′d → X̂d × X̂d.

Since these maps are proper, we can use base change and the Künneth formula to
reduce to showing:

Rν̂d∗Q`
∼=

d⊕
i=0

Ki.

We argue this by showing that Rν̂d∗Q` is a middle extension (up to shift) and then
computing over the “good” open set.

Why is Rν̂d∗Q` a middle extension? Actually this follows from a general princi-
ple: ν̂d : X̂ ′d → X̂d is a small map, which means that

codim{y ∈ X̂d | dim ν̂−1
d (y) ≥ r} > 2r for r ≥ 1.

We can check this explicitly: the map ν̂d is a union of νd : X ′d → Xd and Nm: PicdX′ →
PicdX . Since νd : X ′d → Xd is finite, the only positive dimensional fibers live over
PicdX ↪→ X̂d. The codimension here is d− g+ 1, while the dimension of the fibers in
this locus is g − 1. So the map will clearly be small for large enough d.

Now, it is formal that if ν̂d is proper and and the source X̂ ′d is smooth and
geometrically irreducible, then

Rν̂d∗Q` = j!∗(Rν
◦
d∗Q`)
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where ν◦d : (X ′)◦d → X◦d (Why? You check the support condition by bounding the
cohomological dimension of fibers, and the complex is automatically self-dual because
the map is proper, so you get the cosupport condition for free. The strictness of the
inequality gets you the middle extension property).

Now it’s enough to show that

Rν◦d∗Q`
∼=

d⊕
i=0

L(ρi)

This is just an equality of local systems, so it follows from a purely representation-
theoretic fact:

IndΓd
Sd

1 =
d⊕
i=0

(IndΓd
Γd(i) χi � 1).

To prove this, make a dimension count and show that there is a Γd(i)-equivariant
embedding χi � 1 ↪→ Q`[Γd/Sd]. This can be done explicitly: send

χi � 1 7→ 1χi =
∑

ε∈Γd/Sd

χ(ε)ε.

�

15.3. The analytic side. Next we want to compute RfNd!Ld on Ad. Here one
wrinkle is that the map fNd → Ad is actually not small. It is obviously finite on
B := Xd ×PicdX

Xd ⊂ Ad. So the problem occurs on

Ad \ B = ({0} ×Xd)︸ ︷︷ ︸
=:C

t (Xd × {0})︸ ︷︷ ︸
=:C′

.

Let’s think about what the fibers look like over C. A point of C is just a divisor, say
(0, D). Assume d11 < d22; then by the definition of Nd (which we admittedly skated
over) ϕ11 6= 0 and ϕ22 = 0. So the fiber is

f−1
Nd (0, D) = Xd11 × add−1

d12,d21
(D). (15.2)

This has dimension d11, which can go up to about d/2. You can check that the
smallness just fails by a constant factor of about g for all d.

However, we don’t really need smallness. If you think about the argument we
just made, you’ll see that it’s enough to bound the cohomological dimension (as
opposed to dimension) of fibers of fNd to conclude that the pushforward is a middle
extension.

By (15.2) the cohomology of the geometric fiber over (0, D) is then H∗(Xd11 ⊗k
k, Ld11) ⊗ H0(add−1

d12,d21
(D) ⊗k k, Ld12). We can ignore the second factor, since it

doesn’t effect the cohomological dimension. Since Ld11 is a non-trivial local system,

H∗(Xd11 ⊗k k, Ld11) ∼=
d∧

(H1(X,Ld11)[−d11]).

which vanishes if d11 > 2g − 2.
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The upshot is that RfNd∗Ld is the middle extension for large enough d. Then
you want to show that

add◦j,n−j∗(Lj �Q`) ∼= L(ρj) on X◦d .

where
add◦j,n−j : (Xj ×Xd−j)

◦ → X◦d .

The local system Lj �Q` corresponds to χj � 1 on (Xj ×Xd−j)
◦.

15.4. Weight factors. We’ve completely run out of time to discuss the weight
factors. The punchline is that, by using perversity, one can compute the Hecke action
on A�d using Lemma 6.3 of Liang Xiao’s talk. This ends up giving the weight factors
d− 2j on Ki �Kj .
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16. Horocycles
(Lizao Ye)

16.1. Outlook. Let G = PGL2, B ⊂ G be the Borel, and H ⊂ B be the torus.
(Actually, it is better to regard H as a quotient of B.)

Consider the diagram

ShtB

ShtG ShtH

Xr

We basically want to prove

Jr(π) = Ir(π).

What we have is Jr = Ir. So we need to have some spectral decomposition. This has
been done for the analytic side. The geometric side rests on spectral decomposition
of the cohomology of shtukas, H2r(ShtG). This is achieved by an analysis of the
Hecke action.

16.2. Hecke action. Let D ↪→ X be a divisor. We have defined a correspon-
dence

ShtG(hD)

ShtG ShtG

The stack ShtG(hD) parametrizes modifications of iterated shtukas

(E. ↪→ E ′. ).

In fact, for every g =
⊗
gv ∈ G(AF ), we get a correspondence ShtG(g). This

defines an algebra homomorphism

HG → EndH i(ShtG).

We sketch why this is the case.
Recall that the ring structure on the Hecke algebra is defined by convolution:

1Kg1K ∗ 1Kg2K =
∑

g3∈K\G/K

[g−1
3 Kg1K ∩Kg−1

2 K : K] · 1Kg3K
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The fibered product of ShtG(g1) and ShtG(g2) is basically several copies of ShtG(g3):

?

ShtG(g1) ShtG(g2)

ShtG ShtG ShtG

In fact the number [g−1
3 Kg1K ∩ Kg−1

2 K : K] is the number of copies of ShtG(g3)
appearing in the fiber product.

16.3. The constant term map. We are going to define a constant term map

Hr
c (ShtG)→ H0

c (ShtH).

We begin by considering the diagram

ShtB,η

ShtG,η ShtH,η

p q

where η is the generic point of Xr, and the subscript η denotes restriction to the
generic fiber. Since we have restricted everything to the generic fiber, we have
dim ShtG,η = r, dim ShtB,η = r/2, and dim ShtH,η = 0.

Theorem 16.1 (Drinfeld-Varshavsky). The map ShtB,η → ShtG,η is finite un-
ramified.

We need this properness, because to define a map on cohomology from a coho-
mological correspondence requires properness of the first map.

Definition 16.2. The constant term map is the composition

CT : Hr
c (ShtG)

p∗−→ Hr
c (ShtB)

q∗−→ H0
c (ShtH).

The key point is that the constant term map is compatible with the Satake
homomorphism.

Proposition 16.3. For h ∈ HG, we have

CT ◦ h = Sat(h) ◦ CT.
Proof. Consider the diagram

ShtH ShtH(hx) ShtH

ShtB ShtB

ShtG ShtG(hx) ShtG
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Define a middle term ShtB(hx) to make the bottom right square cartesian. We claim
that it automatically makes the bottom left square cartesian.

ShtH ShtH(hx) ShtH

ShtB ShtB(hx) ShtB

ShtG ShtG(hx) ShtG

Let’s unravel the claim. The stack ShtB(hx) parametrizes modifications

L L′

E E ′at x

The fact that both diagrams are cartesian amounts to saying that given the datum

L

E E ′at x

we can fill it in to
L L′

E E ′at x

Indeed, we take L′ to be the saturation of the image of L in E ′.
Thanks to the cartesian-ness, base change applies to the squares in the dia-

gram. Therefore, we get an obvious compatibility relation by following two maps
H∗c (ShtG)→ H∗c (ShtH).

To finish, we recall that the constant term

HG → HH
sends

hx 7→ tx + qxt
−1
x .

The middle row
ShtB L99 S 99K ShtB (16.1)

maps points as in
L L L′ L′

E E E ′ E ′

The middle object ShtB(hx) is a disjoint union of two things. One is where the
modification occurs in the sub, and one is where it doesn’t. In that latter case,
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it occurs in the quotient. Write ShtB(hx) = S1 t S2, where S1 parametrizes the
modifications with L ∼= L′ and S2 parametrizes the modifications with M ∼= M′.
Then we can separate the correspondence (16.1) into two ones:

ShtB
∼←− S2

qx:1 étale−−−−−−→ ShtB (16.2)

and
ShtB

1:qx étale←−−−−−− S1
∼−→ ShtB (16.3)

�

16.4. Statement of the main theorem. There’s a finite type substack of
ShtG outside of which the map from ShtB is an isomorphism. Thus ShtB is the
“infinite part” of ShtG. So the cohomology of ShtG on this infinite part is the same
as on the corresponding part of ShtB, which can then be calculated by pushforward
to ShtH . The ShtH is a Pic0(Fq)-torsor over X, which we understand well. So the
issue is in understanding the fibers of ShtB → ShtH .

Theorem 16.4. For large enough degrees, fibers of ShtdB → ShtdH are isomorphic
to an affine space G

r/2
a divided by a finite étale group scheme Z.

Corollary 16.5. Let πG : ShtG → Xr. For large d, the cone of

RπG!(Sht<dG )→ RπG!(Sht≤dG )

has cone some locally constant sheaf on Xr, concentrated in degree r.



17. COHOMOLOGICAL SPECTRAL DECOMPOSITION AND FINISHING THE PROOF (CHAO LI)93

17. Cohomological spectral decomposition and finishing the proof
(Chao Li)

17.1. Overview. The goal is to prove the main theorem:

Theorem 17.1. For all f ∈ HG,
(log q)−rJr(f) = Ir(f).

If we have proved this for all f , then we can apply spectral decomposition. On
the left side, we use the analytic spectral decomposition to extract the term

λπ(f)L(r)(πF ′ , 1/2).

On the right side we use the cohomological spectral decomposition to extract the
term

〈[ShtT ]π, f ∗ [ShtT ]π〉.
If we then take f = 1K ∈ H then we get

L(r)(πF ′ , 1/2) = 〈[ShtT ]π, [ShtT ]π〉.
So we arrive at the desired higher Gross-Zagier formula.

The most difficult intersection is the self-intersection. Allowing the choice of hD
for large D lets us take the intersection in easier cases, and then deduce it for the
one we really want.

The strategy is to show that validity of the identity for hD for all D with d :=
degD � 0 (in fact, d ≥ max{2g′− 1, 2g}) is enough to deduce it for all f ∈ H. This
implication uses only elementary commutative algebra. What makes it possible is
finiteness properties of the action of H on the middle-dimensional cohomology of
shtukas.

17.2. Key finiteness theorems. Let HG =
⊗

x∈|X|Hx be the Hecke algebra.
It acts on the vector space V := H2r

c (ShtG,Q`). The difficulty is that V is infinite-
dimensional, because ShtG is only locally of finite type.

Example 17.2. For r = 0, V = A = C∞c (G(F )\G(A)/K,Q`) = AEis ⊕
Acusp. The cuspidal part is finite-dimensional, but the Eisenstein part is infinite-
dimensional.

Therefore, we bring in the Eisenstein ideal to kill the Eisenstein part. Recall we
have the Satake transform

aEis : HG
Sat−−→ HGm = Q`[DivX(k)]� Q`[PicX(k)].

This is compatible with the local Satake transforms

HG HGm

HG,x HGm,x

hx tx + qxt
−1
x .

Sat

Sat
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Definition 17.3. We define

IEis := ker(HG → Q`[PicX(k)]).

The map aEis is surjective:

HG/IEis
∼= Q`[PicX(k)]ι.

Thus ZEis := Spec H/IEis ↪→ Spec H is a reduced, 1-dimensional subvariety.
Remark 17.4. A Q`-point of Spec H is a map

HG
s−→ Q`.

The condition that this is in ZEis says that it factors through

HG HG/IEis Q`

Q`[PicX(k)]ι

So it factors through a character χ : PicX(k)→ Q
∗
` , and the definition of the Eisen-

stein ideal implies that
s(hx) = χ(tx) + qxχ(t−1

x ).

Example 17.5. For χ = 1, we see that s(hx) = 1 + qx. This is analogous to
Mazur’s Eisenstein ideal, Tp 7→ 1 + p.

Theorem 17.6. IEis · V is finite-dimensional over Q`.

Proof. We have a stratification

ShtG =
⋃
d

Sht≤dG

where each Sht≤dG is an open substack of finite type. Then

V = lim−→
d

H2r
c (Sht≤dG ).

The difference between the cohomology of Sht<dG and Sht≤dG can be explicitly under-
stood in terms of horocycles when d > 2g − 2. By the discussion of horocycles, for
πG : ShtG → Xr,

Cone(Rπ<dG! Q` → Rπ≤dG! Q`) = RπdGm!Q`[−r],
which is moreover a local system concentrated in degree r.

So when d � 0, we understand how the cohomology grows, and we also under-
stand the Hecke action. By the local constancy, it then suffices to show that on the
geometric generic fiber η (so the middle dimension is r) the vector space

IEis ·Hr
c (ShtG,η)

is finite-dimensional over Q`.
For any finite-type substack of ShtG,η, we get finiteness of cohomology for free. So

it would be great to show that IEis ·V lies in Hr
c (U) for some finite type U ⊂ ShtG,η.
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To this end it suffices to show that if we take U = Sht≤dG for sufficiently large d, then
for all f ∈ IEis the composition

Hr
c (ShtG)

f∗−→ Hr
c (ShtG)→ Hr

c (ShtG)/ Im Hr
c (U)

is 0, as this implies that IEis · V is in the finite-dimensional vector space Im Hr
c (U).

We can extend the map through the injection (for large enough d)

Hr
c (ShtG)/ Im Hr

c (U) ↪→
∏

d′>2g−2

H0(Shtd
′

Gm
)

which comes from the study of horocycles

Hr
c (ShtG) Hr

c (ShtG) Hr
c (ShtG)/ Im Hr

c (U)

∏
d′>2g−2H0(Shtd

′
Gm

)

f∗

Since the last map in the composition is an injection, it suffices to show that the
dashed arrow is 0. To this end, we extend the diagram

Hr
c (ShtG) Hr

c (ShtG) Hr
c (ShtG)/ Im Hr

c (U)

∏
dH0(ShtdGm

)
∏
H0(ShtdGm

)
∏
d′>2g−2H0(Shtd

′
Gm

)

If f ∈ IEis, then Sat(f)∗ = 0 by the definition of IEis and the compatibility of the
Satake homomorphism with the constant term map, so

f ∗ (Hr
c (ShtG)) ⊂ Im (Hr

c (U)→ Hr
c (ShtG))

is finite-dimensional. �

Here is another important theorem, which we don’t have time to prove.

Theorem 17.7. V is a finitely generated module over Hx for all x ∈ |X|.

17.3. Cohomological spectral decomposition. We’re only interested in the
Hecke action on V and through the Satake transform, so we make the following
definition:

Definition 17.8. We define H = Im (HG → End(V )×Q`[PicX(k)]).

Corollary 17.9. H is a finitely generated algebra over Q`.

Proof. SinceH ↪→ EndHx(V ⊕Q`[PicX(k)]) and V andQ`[PicX(k)] are finitely
generated Hx-modules, we deduce that H is a finitely generated module over Hx.
Therefore, it is a finitely generated algebra over Q`. �

Theorem 17.10. We have
(1) Spec Hred = ZEis ∪ Zr0 where Zr0 is finite. Here ZEis is 1-dimensional and

Zr0 is a finite set of closed points.
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(2) V = VEis ⊕ V0 as HG-modules, with

suppVEis ⊂ ZEis

and
suppV0 = Zr0 .

17.4. Proof of the main identity.

Lemma 17.11. Let I ⊂ Hx be a non-zero ideal. Then for any m ≥ 1,

I + {hnx, n ≥ m} = Hx.

Proof. We can identify Hx ∼= Q`[t, t
−1]ι ∼= Q`[t + t−1]. Under this identifica-

tion,
hnx = tn + tn−2 + . . .+ t−n.

So the proof reduces to showing that

I + {tn + t−n : n ≥ m} = Q`[t+ t−1].

This is an elementary exercise in algebra. �

Note that the validity of I(f) = J(f) only depends on the image of f inside
H := Im (H ↪→ End(V ) ⊕ End(A)) which is a finitely generated Q`-algebra by
Corollary 17.9.

Definition 17.12. Let H′d0 ⊂ HG be the subalgebra of H generated by the
elements hD for all degD ≥ d0.

Lemma 17.13. For any d0 ≥ 1, there exists an ideal I ⊂ H such that
(1) I ⊂ Im (H′d0 → H), and
(2) H/I is finite dimensional.

Proof. Commutative algebra using the key finiteness theorems. �

Using Lemmas 17.11 and 17.13, we deduce the result needed for the main identity.

Corollary 17.14. For any d0 ≥ 1, the composition

H′d0 ↪→ H→ H
is surjective.

Proof. Take I as in Lemma 17.13. Since I is generated by hD for degD ≥ d0,
it suffices to show that the composition

H′d0 ↪→ H→ H → H/I
is surjective.

Consider the corresponding local statement: for all x ∈ |X|, we have a map

Hx ∩H′ ↪→ Hx → Im (Hx) ⊂ H/I.
Lemma 17.13 (2) tells us that H/I is finite-dimensional. Therefore Im (Hx) is finite-
dimensional. By Lemma 17.11, noting that the image of I in Hx is non-zero because
Im (Hx) is finite-dimensional, Hx ∩H′ � Im (Hx).
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Since this works for every x, we get the surjectivity of the global map

H′ ↪→ H� H� H/I
as desired.

�
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