Rational Points on Intersections of Quadrics

Roger Heath-Brown Notes by Tony Feng

This talk will have two halves. The first half is a survey of what is known about interserctions of quadrics, and then I'll describe work in progress about intersections of three quadrics.

1 Quadrics

We consider one quadratic form $Q(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$. We denote by Q the hypersurface $Q = 0$ in \mathbb{P}^{n-1} .

The *Hasse principle* plus *weak approximation* are equivalent to the statement that $Q(K)$ is dense in $Q(\mathbb{A}_{K})$.

We know that this holds for smooth quadrics. In addition, we know that $Q(A_k) \neq \emptyset$ if $n \geq 5$ and *K* is totally complex.

We would like this also to hold for intersections of more quadrics, but that's much more difficult. Let's go straightaway to the general situation: consider the intersection of $Q_1, \ldots, Q_r(x) \in K[x]$. There are two general approaches.

1. (Leep) Assume that *K* is totally complex. Suppose we have a number $n(r)$ such that whenever $n \ge n(r)$, implies that $Q_1 \cap \ldots \cap Q_r$ has at least one *k*-point. (For example, we can take $n(1) = 5$.)

Theorem 1.1. *If* $n \ge n(t) + tr + t$, then $Q_1 \cap ... \cap Q_r$ contains a t-plane defined over *k.*

Note that if $t = 0$, then this says there is a 0-plane, i.e. a point, over k ; this is just the hypothesis. If we take $t = 4$, then we are considering 4-planes, and any quadric in a 4-plane has a rational point (this is a reformulation of $n(1) = 5$). Therefore, we see that $n(r + 1) = n(r) + 4r + 4$ is admissible. An easy induction shows that $n(r) = 2r(r + 1) + 1$ is admissible.

2. (Hardy-Littlewood circle method, applied by Birch over Q and Skinner over *K*) This gives the Hasse principle, weak approximation, and asymptotic formulae. Here one needs $n \ge \rho + 2r(r + 1) + 1$. Here ρ is the dimension of the "Birch singular locus," and for a smooth intersection we have $\rho \in [0, r - 1]$.

It's useful to compare the outputs from these two methods.

• For Leep's method, there is no smoothness (or any other geometric) assumption. The bound is slightly better because there is no ρ . There are no local conditions required, at least at the finite places.

On the other hand, it doesn't give weak approximation and it's only for totally complex fields.

• Birch/Skinner's analytic approach works over an arbitrary field, gives weak approximations and asymptotic formulae.

Local conditions. First, there can always be local obstructions for real completions of *K* (e.g. if the form is positive-definite).

For finite places, $n \ge 5$ suffices for $r = 1$, and $n \ge 9$ suffices for $r = 2$. By Leep's method, $n \ge 2r(r + 1) + 1$ suffices in general. This isn't even sharp at $r = 2$, so we might ask what is.

Conjecture 1.2. $n \geq 4r + 1$ *always suffices.*

Theorem 1.3. If the cardinality of the residue field of K_v is at least $(2r)^r$, then $n \geq 4r + 1$ *su*ffi*ces.*

The residue field bound is not sharp: 37 is enough for $r = 3$.

2 Two quadrics

The Hasse principle and weak approximation may fail, even for smooth intersections.

Example 2.1*.* The intersection

$$
\begin{cases} x_1 x_2 - (x_3^2 - 5x_4^2) & = 0\\ (x_1 + x_2)(x_1 + 2x_2) - (x_3^2 - 5x_5^2) & = 0 \end{cases}
$$

fails the Hasse principle (example due to BSD). One can conjecture that the HP and WA hold for smooth intersections when $n \geq 6$.

Much of the knowledge about intersections of two quadrics can be found in a seminal paper from 1987 of Colliot-Thelene, S, Swinnerton-Dyer:

• Over a totally complex *K*, any two quadratic forms in $n \geq 9$ variables have a nontrivial common zero. (The corresponding result by Leep's method would give $n \geq$ 13).

To oversimplify, the argument is by handling smooth intersections, and then considering the singular possibilities case-by-case.

• For any *K*, the HP and WA hold for smooth intersections of for $n \geq 9$.

The paper proposes a plan of attack for intersections of two quadrics in eight variables.

Theorem 2.2 (Heath-Brown). *For any number field K, the HP and WA hold for smooth intersections of quadratics in n* \geq 8 *variables.*

Proof. This is a purely local question. The argument reduces to the residue field. Since the residue field might have characteristic 2, there is much consideration of quadratic forms in characteristic 2.

3 Three quadrics

Let $r = 3$.

Leep's method in its basic form handles $n \ge 25$, but there is an easy variant that handles $n \geq 21$. Of course, this only applies for *K* totally complex.

The Birch/Skinner approach handles $n \ge \rho = 25$, so that tells you that $n \ge 27$ suffices for smooth intersections. Also, $n \geq 17$ is sufficient to satify the local conditions at *all* finite places.

Goal: if $Q_1, Q_2, Q_3 \in k[x]$ are quadratic forms over a number field K defining a smooth intersection, then HP and WA hold for $n \geq 19$.

This beats the output from the analytic method by a lot.

3.1 Plan of attack

Let Q_i be the quadric $Q_i = 0$ and $R = Q_1 \cap Q_2 \cap Q_3$.

- 1. Replace Q_1, Q_2, Q_3 be more suitable generators for $\langle Q_1, Q_2, Q_3 \rangle$. In particular, we want that
	- *Q*³ is smooth and contains a 7-plane defined over *K*.
	- $Q_1 \cap Q_2$ is also smooth.

Why this 7-plane? Geometrically, Q_3 will contain a *t*-plane over \overline{K} for $t \leq \frac{n-1}{2}$ $\frac{-1}{2}$. Since quadrics have local points at finite places when $n \geq 5$, Q_3 automatically contains a 7-plane for such completions. (The importance behind 7 is that $7 = \frac{19-5}{2}$ $\frac{y-5}{2}$.) Then you have to do some fiddling at the infinite places, but we understand that well.

- 2. If *Q*³ contains one 7-plane *L* over *K*, then it contains a lot of them. Choose one such that $Q_1 \cap Q_2 \cap L$ is smooth, and contains points everywhere locally.
- 3. Apply the result on pairs of quadratic forms in 8 variables.