
1. PROBLEM SET 1

(1) Let α = φ1 dx + φ2 dy + φ3 dz, where φ,φ2, φ3 ∈ C[x, y, z], be a polynomial 1-form on
C3. Define a skew-symmetric bracket {−,−}α : C[x, y, z] × C[x, y, z] → C[x, y, z], by the
formula

{−,−}α : C[x, y, z]× C[x, y, z]→ C[x, y, z], {f, g}α :=
α ∧ df ∧ dg
dx ∧ dy ∧ dz

. (1.0.1)

(Here the 3-form in the numerator is necessarily of the form h dx ∧ dy ∧ dz for some poly-
nomial h, and the fraction stands for that h).
• Show that the Jacobi identity holds for {−,−}α iff the α ∧ dα = 0. (More generally,

let X be a smooth variety, vol ∈ Poly3(X) a nonwhere vanishing 3-polyvector, and α a
1-form. Then, the bivector Π = iαvol is Poisson iff α ∧ dα = 0.)
• Take α := dφ for some nonzero polynomial φ Thus, {−,−}dφ is a nonzero Poisson

bracket on C[x, y, z]. Find {x, y}dφ.
• Show that C[φ], the subalgebra generated by φ, is contained in the Poisson center of
C[x, y, z].
• Show that any sufficiently general level set of φ is a symplectic leaf.
• Deduce that the Poisson center equals

{f ∈ C[x, y, z] | f is algebraic over C[φ]}.

• The Poisson bracket {−,−}dφ descends to the quotient Aφ := C[x, y, z]/(φ). Classify
all symplectic leaves in SpecAφ in the case where φ has isolated critical points in C3.

(2) Let G be a connected Lie group with Lie algebra g.
• Show that symplectic leaves in g∗ are precisely the coadjoint G-orbits.
• Let λ ∈ g∗ and x, y ∈ g, The vectors u = ad∗ x(λ), v = ad∗ y(λ), where ad∗ denotes the

(co)adjoint action of g on g∗, are tangent to theG-orbitO of the element λ. Find ω(u, v),
the value of the canonical symplectic 2-form ω on the leaf O at the vectors (u, v).

(3) Let G be a Lie group and H ⊂ G a Lie subgroup. Let g = LieG, resp. h = LieH , and
identify (g/h)∗ with h⊥ ⊂ g∗, the annihilator of the subspace h ⊂ g. We have natural
identifications of vector bundles

T ∗(G/H) ∼= G×H (g/h)∗ ∼= G×H h⊥. (‡)

• Let λ, α, β ∈ h⊥ and x, y ∈ g. We view λ as an element of the fiber of T ∗(G/H) over
the base point 1.H/H , and α, β as ‘vertical tangent vectors’ at λ ∈ T ∗(G/H), i.e. as
elements of the tangent space Tλ(T ∗(G/H)) which are tangent to the fiber of the pro-
jection T ∗(G/H)→ G/H . Similarly, write x(λ), y(λ) for the elements of Tλ(T ∗(G/H))
tangent to the G-orbit of λ under the G-action on T ∗(G/H).
Let ω be the canonical symplectic 2-form on T ∗(G/H). Express each of the numbers:

ω(α, β), ω(x(λ), y(λ)), ω(x(λ), α)

in terms of λ, α, β and x, y.
• The group G acts on G/H by left translations, so we have a Hamiltonian action of G

on T ∗(G/H). Give a formula for the corresponding moment map, viewed as a map
G×H h⊥ → g∗.

(4) Let (V, ω) be a (finite dimensional) symplectic vector space and Γ ⊂ Sp(V, ω) a finite sub-
group.
• Classify all symplectic leaves in V/Γ.
• More difficult: Let U be the unique open dense symplectic leaf in V/Γ and ω the cor-

responding symplectic 2-form on U . Prove that for any resolution of singularities
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π : X → V/Γ the 2-form π∗ω, on π−1(U), extends to a regular (possibly degenerate)
2-form on the whole of X .
Hint: Given a resolution of singularities π : X → V/Γ, consider a resolution of singu-
larities of the variety (X ×V/Γ V )red.

2. PROBLEM SET 2

(1) Let 〈e, h, f〉 be the standard basis of the Lie algebra g = sl2. We identify C[g∗] with C[e, h, f ].
• Write an explicit formula for the Poisson bracket on C[e, h, f ] transported from the

canonical one on C[g∗].
• Show that the Poisson center of the algebra C[e, h, f ] is generated by the polynomial
P = h2 + 2ef .

(2) Find explicit formulas for each of the maps µ defined below:
• Let (V, ω) be a symplectic vector space. The natural action of Sp(V, ω), the symplectic

group, on V is Hamiltonian. Identify (LieSp(V, ω))∗ with LieSp(V, ω) via the trace
pairing. Let µ : V → LieSp(V, ω) be the map obtained, using this identification, from
the moment map V → (LieSp(V, ω))∗.
• LetG, a Lie group, act on its Lie algebra g by the adjoint action. This gives a Hamilton-

ian action ofG on T ∗g = g∗×g with moment map T ∗g = g∗×g→ g∗. Given an invari-
ant nondegenerate symmetric bilinear form 〈−,−〉 on g let µ : g×g→ g be the map ob-
tained from the moment map via the identifications g∗ ∼= g, resp. T ∗g = g∗×g ∼= g×g.
• Let Rep(Q, d) be the variety of d-dimensional representations of a quiverQ. The group
Gd acts on Rep(Q, d). Let µ : Rep(Q̄, d) → gd be the map obtained from the mo-
ment map T ∗Rep(Q, d)→ (gd)

∗ via the identifications T ∗Rep(Q, d) ∼= Rep(Q̄, d), resp.
(gd)

∗ ∼= gd.
(3) Fix n ≥ 2 and let Γn ∼= Z/(n) be the group of n-th roots of unity. We have an imbedding

Γn ↪→ SL2(C), ζ 7→ diag(ζ, ζ−1). Since SL2(C) = Sp(C2), this gives a Γn-action on C2 that
preserves the standard symplectic form. Hence, the induced Γn-action on the polynomial
algebra C[u, v] = C[C2], respects the Poisson bracket that comes from the symplectic form.
Thus, the algebra C[u, v]Γn is a Poisson subalgebra of C[u, v].

Construct an isomorphism of Poisson algebras

C[u, v]Γn ∼= Aφn , where φn := x2 + y2 + zn.

(we’ve used the notation of Problem 1 from Problem Set 1.)

3. PROBLEM SET 3

(1) Let V be a finite dimensional vector space. The group GL(V ) acts naturally on V and it
also acts on gl(V ) = LieGL(V ) by conjugation. We let GL(V ) act diagonally on the vector
space gl(V )⊕ V . This gives the Hamiltonian GL(V )-action on

T ∗(gl(V )⊕ V ) = gl(V )⊕ gl(V )⊕ V ⊕ V ∗. (†)
We will write an element of the cotangent space as a quadruple (x, y, i, j) where x, y ∈
gl(V ), i ∈ V, j ∈ V ∗.
• Find an explicit formula for the moment map

µ : gl(V )⊕ gl(V )⊕ V ⊕ V ∗ → gl(V ) ∼= gl(V )∗.

• Show that the GL(V )-action on µ−1(Id), the fiber of µ over the identity Id ∈ gl(V ), is
free. So, M := Spec(C[µ−1(Id)]GL(V )), the corresponding Hamiltonian reduction, is a
smooth symplectic affine variety.
• Find dimM .
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• Consider a collection of functions on the vector space (†) given by the formulas

an(x, y, i, j) = Tr(xn), bn(x, y, i, j) = Tr(yn), n = 1, 2, . . . .

These functions areGL(V )-invariant, hence they descend to regular functions ān, b̄n ∈
C[M ]. Show that

{ān, ām} = {b̄n, b̄m} = 0 ∀m,n ≥ 1.

and find {ān, b̄m} for all 1 ≤ m,n ≤ 2.
• Use the First Fundamental Theorem of Invariant Theory to prove that if dimV = 2

then the functions ā1, ā2, b̄1, b̄2 generate C[M ] as a Poisson algebra, i.e. that the only
Poisson subalgebra of C[M ] that contains all four functions ān, b̄n, n = 1, 2, is C[M ]
itself. (These functions do not generate C[M ] as a commutative algebra !).

(2) Let W = Z/(2) = {1, s} be the Weyl group of the root system A1 and e := 1
2(1 + s), an

idempotent in the group algebra. Let Ht,c(A1) be the corresponding symplectic reflection
algebra with parameters t, c ∈ C and eHt,c(A1)e its spherical subalgebra.
• Show that, for t 6= 0, the algebra eHt,c(A1)e is generated by the elements ex2 and ey2

• Establish an algebra isomorphism

eH1,c(A1)e ∼= Ug/(∆),

for an appropriate central element ∆ ∈ Ug.
• Show that eH0,c(A1)e is a commutative algebra and, moreover, the assignment ex2 7→
x, ey2 7→ y, extends uniquely to a Poisson algebra isomorphism

eH0,c(A1)e ∼→Aφ,

where φ = x2 + y2 + z2 − c(c+1)
2 (notation of Problem 1 from Problem Set 1).

(3) Let G be a connected semisimple group with trivial center, and (e, h, f) an sl2-triple in g,
the Lie algebra of g. The adh-action on g is semisimple with integer eigenvalues, hence it
gives a Z-grading g = ⊕i∈Z gi. Put p = ⊕i≥0 gi. This is a parabolic subalgebra of g. Let
P be the corresponding parabolic subgroup of G. The subspace g≥2 := ⊕i≥2 gi, of g, is
AdP -stable, so we define

X := G×P g≥2.

The group G acts on X by g : (h, x) 7→ (gh, x) for all g, h ∈ G, x ∈ g≥2. Further, the
assignment (h, x) 7→ Adh(x) gives a G-equivariant map π : X → g.
• Check that g≥2 is an AdP -stable subspace of p and the P -orbit of the element e ∈ g≥2

is Zariski open and dense in g≥2. [Hint: Use representation theory of sl2 to prove that
the tangent space to this orbit equals g≥2.]
• Show that π is proper and its image equals AdG(e), the closure of the G-orbit of e in g.
• Show that π restricts to an isomorphism π−1(AdG(e)) ∼→ AdG(e), hence, it is a bira-

tional isomorphism of X and AdG(e).
• Identify g∗ ∼= g and view AdG(e) as a coadjoint orbit in g∗. Let ω be the canonical

symplectic 2-form on that orbit.
Show that the 2-form π∗ω on π−1((AdG(e)) extends to a regular, possibly degenerate,
2-form ωX on X .
• Show that in the case where gi = 0 for all odd i the 2-form ωX is in fact nondegenerate.
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