1. PROBLEM SET 1

(1) Let $\alpha = \phi_1 dx + \phi_2 dy + \phi_3 dz$, where $\phi_1 \phi_2, \phi_3 \in \mathbb{C}[x, y, z]$, be a polynomial 1-form on \mathbb{C}^3 . Define a skew-symmetric bracket $\{-, -\}_{\alpha} : \mathbb{C}[x, y, z] \times \mathbb{C}[x, y, z] \to \mathbb{C}[x, y, z]$, by the formula

$$\{-,-\}_{\alpha}: \ \mathbb{C}[x,y,z] \times \mathbb{C}[x,y,z] \to \mathbb{C}[x,y,z], \quad \{f,g\}_{\alpha} := \frac{\alpha \wedge df \wedge dg}{dx \wedge dy \wedge dz}.$$
(1.0.1)

(Here the 3-form in the numerator is necessarily of the form $h dx \wedge dy \wedge dz$ for some polynomial h, and the fraction stands for that h).

- Show that the Jacobi identity holds for $\{-,-\}_{\alpha}$ iff the $\alpha \wedge d\alpha = 0$. (More generally, let *X* be a smooth variety, vol $\in Poly^3(X)$ a nonwhere vanishing 3-polyvector, and α a 1-form. Then, the bivector $\Pi = i_{\alpha}$ vol is Poisson iff $\alpha \wedge d\alpha = 0$.)
- Take $\alpha := d\phi$ for some nonzero polynomial ϕ Thus, $\{-, -\}_{d\phi}$ is a nonzero Poisson bracket on $\mathbb{C}[x, y, z]$. Find $\{x, y\}_{d\phi}$.
- Show that $\mathbb{C}[\phi]$, the subalgebra generated by ϕ , is contained in the Poisson center of $\mathbb{C}[x, y, z]$.
- Show that any sufficiently general level set of ϕ is a symplectic leaf.
- Deduce that the Poisson center equals

 $\{f \in \mathbb{C}[x, y, z] \mid f \text{ is algebraic over } \mathbb{C}[\phi]\}.$

- The Poisson bracket $\{-,-\}_{d\phi}$ descends to the quotient $A_{\phi} := \mathbb{C}[x, y, z]/(\phi)$. Classify all symplectic leaves in Spec A_{ϕ} in the case where ϕ has isolated critical points in \mathbb{C}^3 .
- (2) Let *G* be a connected Lie group with Lie algebra \mathfrak{g} .
 - Show that symplectic leaves in \mathfrak{g}^* are precisely the coadjoint *G*-orbits.
 - Let $\lambda \in \mathfrak{g}^*$ and $x, y \in \mathfrak{g}$, The vectors $u = \operatorname{ad}^* x(\lambda), v = \operatorname{ad}^* y(\lambda)$, where ad^* denotes the (co)adjoint action of \mathfrak{g} on \mathfrak{g}^* , are tangent to the *G*-orbit *O* of the element λ . Find $\omega(u, v)$, the value of the canonical symplectic 2-form ω on the leaf *O* at the vectors (u, v).
- (3) Let *G* be a Lie group and $H \subset G$ a Lie subgroup. Let $\mathfrak{g} = \operatorname{Lie} G$, resp. $\mathfrak{h} = \operatorname{Lie} H$, and identify $(\mathfrak{g}/\mathfrak{h})^*$ with $\mathfrak{h}^{\perp} \subset \mathfrak{g}^*$, the annihilator of the subspace $\mathfrak{h} \subset \mathfrak{g}$. We have natural identifications of vector bundles

$$T^*(G/H) \cong G \times_H (\mathfrak{g}/\mathfrak{h})^* \cong G \times_H \mathfrak{h}^\perp.$$
^(‡)

• Let $\lambda, \alpha, \beta \in \mathfrak{h}^{\perp}$ and $x, y \in \mathfrak{g}$. We view λ as an element of the fiber of $T^*(G/H)$ over the base point 1.H/H, and α, β as 'vertical tangent vectors' at $\lambda \in T^*(G/H)$, i.e. as elements of the tangent space $T_{\lambda}(T^*(G/H))$ which are tangent to the fiber of the projection $T^*(G/H) \to G/H$. Similarly, write $x(\lambda), y(\lambda)$ for the elements of $T_{\lambda}(T^*(G/H))$ tangent to the *G*-orbit of λ under the *G*-action on $T^*(G/H)$.

Let ω be the canonical symplectic 2-form on $T^*(G/H)$. Express each of the numbers:

$$\omega(\alpha,\beta), \ \omega(x(\lambda),y(\lambda)), \ \omega(x(\lambda),\alpha)$$

in terms of λ , α , β and x, y.

- The group *G* acts on *G*/*H* by left translations, so we have a Hamiltonian action of *G* on *T**(*G*/*H*). Give a formula for the corresponding moment map, viewed as a map *G* ×_{*H*} 𝔥[⊥] → 𝔅^{*}.
- (4) Let (V, ω) be a (finite dimensional) symplectic vector space and $\Gamma \subset Sp(V, \omega)$ a finite subgroup.
 - Classify all symplectic leaves in V/Γ .
 - More difficult: Let U be the unique open dense symplectic leaf in V/Γ and ω the corresponding symplectic 2-form on U. Prove that for any resolution of singularities

 $\pi : X \to V/\Gamma$ the 2-form $\pi^* \omega$, on $\pi^{-1}(U)$, extends to a regular (possibly degenerate) 2-form on the whole of *X*.

Hint: Given a resolution of singularities $\pi : X \to V/\Gamma$, consider a resolution of singularities of the variety $(X \times_{V/\Gamma} V)_{red}$.

2. PROBLEM SET 2

- (1) Let $\langle e, h, f \rangle$ be the standard basis of the Lie algebra $\mathfrak{g} = \mathfrak{sl}_2$. We identify $\mathbb{C}[\mathfrak{g}^*]$ with $\mathbb{C}[e, h, f]$.
 - Write an explicit formula for the Poisson bracket on $\mathbb{C}[e, h, f]$ transported from the canonical one on $\mathbb{C}[\mathfrak{g}^*]$.
 - Show that the Poisson center of the algebra $\mathbb{C}[e, h, f]$ is generated by the polynomial $P = h^2 + 2ef$.
- (2) Find explicit formulas for each of the maps μ defined below:
 - Let (V, ω) be a symplectic vector space. The natural action of $Sp(V, \omega)$, the symplectic group, on V is Hamiltonian. Identify $(\text{Lie } Sp(V, \omega))^*$ with $\text{Lie } Sp(V, \omega)$ via the trace pairing. Let $\mu : V \to \text{Lie } Sp(V, \omega)$ be the map obtained, using this identification, from the moment map $V \to (\text{Lie } Sp(V, \omega))^*$.
 - Let *G*, a Lie group, act on its Lie algebra g by the adjoint action. This gives a Hamiltonian action of *G* on *T*^{*}g = g^{*} × g with moment map *T*^{*}g = g^{*} × g → g^{*}. Given an invariant nondegenerate symmetric bilinear form (−, −) on g let µ : g × g → g be the map obtained from the moment map via the identifications g^{*} ≅ g, resp. *T*^{*}g = g^{*} × g ≅ g × g.
 - Let $\operatorname{Rep}(Q, d)$ be the variety of *d*-dimensional representations of a quiver Q. The group G_d acts on $\operatorname{Rep}(Q, d)$. Let $\mu : \operatorname{Rep}(\bar{Q}, d) \to \mathfrak{g}_d$ be the map obtained from the moment map $T^* \operatorname{Rep}(Q, d) \to (\mathfrak{g}_d)^*$ via the identifications $T^* \operatorname{Rep}(Q, d) \cong \operatorname{Rep}(\bar{Q}, d)$, resp. $(\mathfrak{g}_d)^* \cong \mathfrak{g}_d$.
- (3) Fix n ≥ 2 and let Γ_n ≃ Z/(n) be the group of n-th roots of unity. We have an imbedding Γ_n ↔ SL₂(ℂ), ζ ↦ diag(ζ, ζ⁻¹). Since SL₂(ℂ) = Sp(ℂ²), this gives a Γ_n-action on ℂ² that preserves the standard symplectic form. Hence, the induced Γ_n-action on the polynomial algebra ℂ[u, v] = ℂ[ℂ²], respects the Poisson bracket that comes from the symplectic form. Thus, the algebra ℂ[u, v]^{Γ_n} is a Poisson subalgebra of ℂ[u, v].

Construct an isomorphism of Poisson algebras

 $\mathbb{C}[u,v]^{\Gamma_n} \cong A_{\phi_n}$, where $\phi_n := x^2 + y^2 + z^n$.

(we've used the notation of Problem 1 from Problem Set 1.)

3. Problem set 3

(1) Let *V* be a finite dimensional vector space. The group GL(V) acts naturally on *V* and it also acts on $\mathfrak{gl}(V) = \operatorname{Lie} GL(V)$ by conjugation. We let GL(V) act diagonally on the vector space $\mathfrak{gl}(V) \oplus V$. This gives the Hamiltonian GL(V)-action on

$$T^*(\mathfrak{gl}(V) \oplus V) = \mathfrak{gl}(V) \oplus \mathfrak{gl}(V) \oplus V \oplus V^*.$$
^(†)

We will write an element of the cotangent space as a quadruple (x, y, i, j) where $x, y \in \mathfrak{gl}(V), i \in V, j \in V^*$.

• Find an explicit formula for the moment map

$$\mu: \mathfrak{gl}(V) \oplus \mathfrak{gl}(V) \oplus V \oplus V^* \to \mathfrak{gl}(V) \cong \mathfrak{gl}(V)^*.$$

- Show that the *GL*(*V*)-action on μ⁻¹(Id), the fiber of μ over the identity Id ∈ gl(*V*), is free. So, *M* := Spec(ℂ[μ⁻¹(Id)]^{*GL*(*V*)}), the corresponding Hamiltonian reduction, is a smooth symplectic affine variety.
- Find $\dim M$.

• Consider a collection of functions on the vector space (†) given by the formulas

$$a_n(x, y, i, j) = \operatorname{Tr}(x^n), \quad b_n(x, y, i, j) = \operatorname{Tr}(y^n), \qquad n = 1, 2, \dots$$

These functions are GL(V)-invariant, hence they descend to regular functions $\bar{a}_n, b_n \in \mathbb{C}[M]$. Show that

$$\{\bar{a}_n, \bar{a}_m\} = \{\bar{b}_n, \bar{b}_m\} = 0 \qquad \forall m, n \ge 1.$$

and find $\{\bar{a}_n, \bar{b}_m\}$ for all $1 \le m, n \le 2$.

- Use the First Fundamental Theorem of Invariant Theory to prove that if dim V = 2 then the functions $\bar{a}_1, \bar{a}_2, \bar{b}_1, \bar{b}_2$ generate $\mathbb{C}[M]$ as a Poisson algebra, i.e. that the only Poisson subalgebra of $\mathbb{C}[M]$ that contains all four functions $\bar{a}_n, \bar{b}_n, n = 1, 2$, is $\mathbb{C}[M]$ itself. (These functions do *not* generate $\mathbb{C}[M]$ as a commutative algebra !).
- (2) Let $W = \mathbb{Z}/(2) = \{1, s\}$ be the Weyl group of the root system \mathbf{A}_1 and $\mathbf{e} := \frac{1}{2}(1+s)$, an idempotent in the group algebra. Let $\mathsf{H}_{t,c}(\mathbf{A}_1)$ be the corresponding symplectic reflection algebra with parameters $t, c \in \mathbb{C}$ and $\mathsf{eH}_{t,c}(\mathbf{A}_1)$ is spherical subalgebra.
 - Show that, for $t \neq 0$, the algebra $eH_{t,c}(\mathbf{A}_1)e$ is generated by the elements ex^2 and ey^2
 - Establish an algebra isomorphism

$$\mathbf{e}\mathsf{H}_{1,c}(\mathbf{A}_1)\mathbf{e}\cong \mathcal{U}\mathfrak{g}/(\Delta),$$

for an appropriate central element $\Delta \in \mathcal{U}\mathfrak{g}$.

• Show that $eH_{0,c}(A_1)e$ is a commutative algebra and, moreover, the assignment $ex^2 \mapsto x$, $ey^2 \mapsto y$, extends uniquely to a Poisson algebra isomorphism

$$\mathbf{e}\mathsf{H}_{0,c}(\mathbf{A}_1)\mathbf{e} \xrightarrow{\sim} A_{\phi}$$

where $\phi = x^2 + y^2 + z^2 - \frac{c(c+1)}{2}$ (notation of Problem 1 from Problem Set 1).

(3) Let *G* be a connected semisimple group with trivial center, and (*e*, *h*, *f*) an sl₂-triple in g, the Lie algebra of g. The ad *h*-action on g is semisimple with integer eigenvalues, hence it gives a Z-grading g = ⊕_{i∈Z} g_i. Put p = ⊕_{i≥0} g_i. This is a parabolic subalgebra of g. Let *P* be the corresponding parabolic subgroup of *G*. The subspace g_{≥2} := ⊕_{i≥2} g_i, of g, is Ad *P*-stable, so we define

$$X := G \times_P \mathfrak{g}_{>2}.$$

The group *G* acts on *X* by $g : (h, x) \mapsto (gh, x)$ for all $g, h \in G, x \in \mathfrak{g}_{\geq 2}$. Further, the assignment $(h, x) \mapsto \operatorname{Ad} h(x)$ gives a *G*-equivariant map $\pi : X \to \mathfrak{g}$.

- Check that g≥2 is an Ad *P*-stable subspace of p and the *P*-orbit of the element e ∈ g≥2 is Zariski open and dense in g≥2. [Hint: Use representation theory of sl₂ to prove that the tangent space to this orbit equals g≥2.]
- Show that π is proper and its image equals $\operatorname{Ad} G(e)$, the closure of the *G*-orbit of *e* in \mathfrak{g} .
- Show that π restricts to an isomorphism $\pi^{-1}(\operatorname{Ad} G(e)) \xrightarrow{\sim} \operatorname{Ad} G(e)$, hence, it is a birational isomorphism of *X* and $\operatorname{\overline{Ad}} G(e)$.
- Identify g^{*} ≃ g and view Ad G(e) as a coadjoint orbit in g^{*}. Let ω be the canonical symplectic 2-form on that orbit.
 Show that the 2-form π^{*}ω on π⁻¹((Ad G(e)) extends to a regular, possibly degenerate,

Show that the 2-form $\pi^+\omega$ on $\pi^-((\operatorname{Ad} G(e)))$ extends to a regular, possibly degenerate, 2-form ω_X on X.

• Show that in the case where $\mathfrak{g}_i = 0$ for all odd *i* the 2-form ω_X is in fact nondegenerate.