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1 DEFORMATION QUANTIZATION

1 Deformation quantization

If g is a Lie algebra, then Ug is a deformation of Sym g. This has been known for at least 100
years. This is useful motivation for a lot of mathematics, but I don’t think it was actually
used to rigorously prove anything for a long time.

However, in the last 20 years people have realized that that this analogy can be made
rigorous.

One can think of symplectic resolutions as the semisimple Lie algebras of the
twenty-first century.

For a long time, people thought that semisimple Lie algebras are very special - their
representations lead to notions like Category O, etc. The new notion is that this is somehow
not that unique to semisimple Lie algebras.

1.1 Deformations

A deformation of some given object (an algebra, scheme, or whatever) is a flat family of
objects over a smooth base, whose fiber at a basepoint is the given object.

F

��

� � // F

��
b �
� // B

Let’s try to formalize what this means. To do so, it is useful to introduce the notion of a
deformation functor.

Definition 1.1. A (contravariant) deformation functor is a functor(
category of

pointed test schemes

)
→ Sets

sending S to the set of flat deformations over S , up to isomorphism. Given a map of test
schemes S → T , we can pull back any flat family over T to a flat family over S (which
explains the functoriality).

A semiuniversal deformation exists if there exists a moduli space for the objects, i.e if
there exists a formal schemeM such that

Def(S ) = Hom(S ,M) for all S .

This means that there exists a universal deformation overM, such that any other deforma-
tion is obtained by pullback.

F

��

// FM

��
S //M
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1 DEFORMATION QUANTIZATION

Remark 1.2. The “semi” refers to a lack of uniqueness in our definition.

Usually one takes test schemes to be S = Spec R where R is a local Artin ring (since we
are really interested in “local” issues, not necessarily global ones). If we are over a field,
then R is a finite-dimensional algebra with a unique maximal ideal m, which is nilpotent.

1.2 Quantization

Let A0 be a commutative algebra over a field k of characteristic 0.

Definition 1.3. A quantization of A0 is an associative algebra A/R, together with an isomor-
phism A/mA � A0.

A special case of this, which has been known for a long, is the notion of one-parameter
deformation. This is the special case R = k[~]/~n+1 for some n ≥ 1. Geometrically, one
says that A is an infinitesimal extension on A0 in a formal neighborhood:

A0

��

� � // A

��
0 �
� // Spec R �

� // Spec k[[~]] = D.

Definition 1.4. For any scheme X = Spec R, a 1-parameter quantization is a sheaf of
associative R-algebras O~ over X such that O~/~ � OX .

1.3 Poisson algebras

Definition 1.5. Let A be an associative algebra. A non-commutative Poisson bracket on A
is a bilinear form

{−,−} : A × A→ A

which is a Lie bracket, such that in addition

{ab, c} = a · {b, c} + {a, c} · b.

Example 1.6. For any A, we can take {a, b} = ab − ba.

Definition 1.7. A Poisson algebra is a commutative algebra with a non-commutative Pois-
son bracket.

Important construction. Let A be a first-order one-parameter deformation of a commuta-
tive algebra A0, i.e. A is a flat algebra over k[~]/~2, with a given isomorphism A/~A � A0.
Since A is flat over k[~]/~2, multiplication by ~ gives an isomorphism A/~A � ~A. Then
for any a, b ∈ A, we can take the commutator [a, b] = ab − ba. Since the A/~ � A0 is
commutative, we have

ab − ba ∈ ~A � A/~A � A0.
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1 DEFORMATION QUANTIZATION

In terms of formulas, this is “division by ~”: ab − ba 7→ 1
~ (ab − ba). The claim is that this

descends to a well-defined bilinear skew-symmetric bracket

{−,−} : A0 × A0 → A0.

This is automatically compatible with the Leibniz formula, but it may not satisfy Jacobi’s
identity. If the deformation A lifts to second order over k[~]/~2, then in fact the Jacobi
identity is satisfied, so A0 has the structure of Poisson algebra. (We need only the first order
deformation to define the bracket, but we need any extension to a second order deformation
to confirm the Jacobi identity.)

So we see that studying deformations naturally leds to studying Poisson algebras.

1.4 Relating quantizations and Poisson structures

We want to consider not only deformations over R = k[~]/~n+1. It’s not obvious which R
are reasonable to consider. The main candidate has motivation from within number theory.

Example 1.8. Let X be a scheme over a finite field Fp. We could ask to look at flat families

of schemes X
f
−→ A1 over Fp such that f −1(0) = X.

However, there is a totally different version of the question: you can instead consider
lifts of X to a scheme over Zp. This is also a kind of deformation, where the parameter is p
instead. This is a totally different type of test scheme, which leads to totally different types
of deformations.

The second problem is more interesting than the first, so that’s what we want to consider.
What are the test objects? They will be the set of finite dimensional local k[~]-algebras R,
with maximal ideal m such that ~ ∈ m. Moreover, they will be presented with a structure
map S = Spec R→ D (the formal disk).

Definition 1.9. Fix a Poisson algebra A0. We define the deformation functor

Def(A0) =

A |
A = associative flat R-algebra
with R-linear Poisson bracket

such that ab−ba=~{a,b} for all a,b∈A
and A/m = A0 as a Poisson algebra

 .
Since A is an R-algebra, A/~ is an R/~-algebra, equipped with a non-commutative Poisson
bracket coming from ab − ba = ~{a, b}.

Let Mquant → D be a semiuniversal deformation of (A0, {−,−})). This has a map to
MPoiss (the space of deformations of Poisson structures on A0), by the association of Pois-
son algebras to deformations.

Theorem 1.10 (Bezrukavnikov-Kaledin-Verbitsky). Let X be a smooth algebraic variety
over C such that H1(X,OX) = H2(X,OX) = 0. Suppose {−,−}0 is a non-degenerate Poisson
bracket on X (meaning on OX), i.e. X has an algebraic symplectic form ω0. Then

1. there exists a semi-universal deformation of X,
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1 DEFORMATION QUANTIZATION

2. There is an isomorphismMquant
∼
−→MPoiss × D.

3. The mapMPoiss → H2
dR(X) sending β 7→ [β] induces an isomorphism

MPoiss � H2(X,C)∧ω0
.

♠♠♠ TONY: [so there’s a map from the completion of cohomology to cohomology...?]

Remark 1.11. The second assertion says that studying quantizations is the same as studying
Poisson deformations plus some formal parameter ~.

Regarding the third assertion, observe that a deformation of doesn’t change the “con-
stant terms,” hence preserves non-generacy of a Poisson bracket.

Example 1.12. Consider Ug where g is semisimple. How does this fit into our picture? An
important subalgebra of Ug is Z(Ug). Now, Ug is has the PBW filtration, so we can form
the Rees algebra

R(Ug) =
∑
~iUg≤i ⊂ Ug[~]

and also the Rees algebra of the center,

R(Z(Ug)) ⊂ Z(Ug)[~].

Now A := R(Ug) is an algebra over R(Z(Ug)). We can interpret A as a flat family of asso-
ciative algebras over M := Spec R(Z(Ug)). Since R(Z(Ug)) ⊃ k[~], this has a projection
to A1

~
. When ~ = 0, the semisimplicity of the algebra implies that Spec R(Z(Ug)) is the

product of A1 and h/W (the Cartan modulo the Weyl action).
In analogy with the theorem, we should think ofM as being analogous toMPoiss (with

A as its universal family), and A1 as analogous to D. Then h/W would be the analogue of
Mquant.

Example 1.13. Let A0 = C[Cn×Cn]S n , the invariants of C[Cn×Cn] under the diagonal action
of S n. Now, C[Cn × Cn] has a natural Poisson structure, and A0 is a Poisson subalgebra.

One has a natural one-parameter Poisson deformation of A0. This would be really hard
to see if you didn’t know about the universal enveloping algebra. The idea is the following.
Instead of A0, you look at B := C[Cn ×Cn] o S n. Then you deform B instead. In particular,
B contains the element e = 1

n!
∑
σ∈S n σ. The key observation is that eBe � C[Cn × Cn]S n .

There is a family of deformations of B, denoted B~,c (the c is the “Poisson direction”)
with generators xi, yi for i = 1, . . . , n. It contains C[S n]. There are some tricky commutation
relations

[xi, yi] = ~ · 1 ± c
∑
j,i

si j si j = (i, j) transposition

[xi, y j] = csi j

[xi, x j] = 0

[yi, y j] = 0

and the commutation relations within C[S n] is the natural one.

5



1 DEFORMATION QUANTIZATION

Theorem 1.14. In the above notation, eB~,ce is a flat quantization of A0. For ~ = 0 and any
c, eB~=0,ce is commutative.

How does this fit into what we said before? We can write A0 = C[(Cn × Cn)/S n],
which is singular. The main theorem applied to smooth symplectic manifolds, but this is
neither smooth nor symplectic. Moreover, if you look at H2((Cn × Cn)/S n), you’ll see that
it vanishes. So that looks pretty bad, as far as the theorem goes.

To see how this fits, you have to realize that (Cn × Cn)/S n has a very special resolution
of singularities, namely by the Hilbet scheme Hilbn(C2), a smooth symplectic variety. It is
homotopic to the fiber over 0, which has a second cohomology group of rank 1. After you
realize this, you see that it fits perfectly: there is one quantum parameter and one classical
parameter to the space of quantizations.
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2 HOLOMORPHIC DEFORMATIONS

2 Holomorphic deformations

2.1 Algebraic version

Let X be a smooth algebraic variety, O its sheaf of regular functions, T its tangent sheaf,
and T ∗ = Ω1 its cotangent sheaf. Any Poisson bracket on O has the form

{ f , g} = 〈Π, d f ∧ dg〉

for some bivector Π ∈
∧2 T .

We have a map

O
d
−→ Ω1 iΠ

−→ T

sending f 7→ iΠd f = ξ f , where ξ f is the derivation ξ f (g) := { f , g}. Then the Jacobi identity
holds for {−,−} if and only if the association f 7→ ξ f takes {−,−} to the commutator of
vector fields. For the rest of the lecture, we will assume that Π is such that this holds.

Question: Can one define a natural bracket {−,−}1 on Ω1 that goes to [−,−] under iΠ?

Since α and β are 1-forms, α ∧ β ∈ Ω2. Abusing notation, we denote by iΠ(α ∧ β) the
contraction of Π with α ∧ β. This is a function, and we want a 1-form, so we try

{α, β}1 = d(iΠ(α ∧ β)).

Now, does this do what we want? It is easy to show from the definitions that

iΠ{α, β}1 = [iΠα, iΠβ]

whenever α, β are exact. But this equality can be checked locally, and in the smooth world
any closed form is locally exact, so that suggests that it should hold even for closed forms.
In the algebraic world, we can prove this by passing to the completion, where an algebraic
version of the Poincaré Lemma holds to show that any closed form is exact in a formal
neighborhood.

2.2 The twistor deformation

Let X be a smooth, complex-analytic manifold. Let O,T,Ω1 be the holomorphic sheaves of
functions, etc. In the analytic topological any closed form is locally exact, so we have the
exact sequence of sheaves

0→ C→ O
∂
−→ Ω1

exact = Ω1
closed → 0.

Corollary 2.1. If H1(X,OX) = H2(X,OX) = 0 then the boundary map is an isomorphism

H1(Ω1
closed) � H2(X,C).
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2 HOLOMORPHIC DEFORMATIONS

So we have maps

H2(X,C) = H1(X,Ω1
closed)→ H1(X,Ω1)

iΠ
−→ H1(X,T ).

Call this composition map σ. The group H1(X,T ) classifies first-order deformations of the
complex structure on X.

Here is a holomorphic version of Theorem 1.10.

Theorem 2.2. Assume that H1(X,OX) = H2(X,OX) = 0. For any ν ∈ H2(X,C), the first-
order deformation φ1 := σ(ν) extends to a formal 1-parameter deformation Xt of the com-
plex structure on X as a C∞-manifold structure, such that the Poisson bracket

{ f , g}t = 〈Π, d f ∧ dg〉.

is holomorphic for all t.

Note that while the formula { f , g}t = 〈Π, d f ∧ dg〉 appears to be independent of t,
the class of holomorphic functions from which f , g are drawn changes with the complex
structure, and hence with t. Therefore, this is in some sense varying with t.

Remark 2.3. (1) Assume that Π is non-degenerate. Then Π−1 = ω is a symplectic form, and
we have an isomorphism

MPoiss
∼
−→ H2(X)∧ω

which sends (Xt,Π) 7→ [ω] + tν.
(2) The theorem describes deformations of the symplectic structure along a “line corre-

sponding to ν.” These are called “twistor” deformations.

One of the interesting features of the holomorphic case is that the family of smooth
varieties is constant, so for instance their cohomology is constant, while the holomorphic
structure varies. In the algebraic case, the algebraic varieties honestly vary and there is no
notion of “underlying smooth manifold.”

Proof. Let Ωp,q be the sheaf of C∞-forms on X of type (p, q). Denote by ∂ and ∂ the usual
differentials, so d = ∂ + ∂.

A deformation of our complex structure is specified by deforming the operator ∂  
∂ − φt, where φt = tφ1 + t2φ2 + . . . and each φk ∈ Ω0,1(T ) has the form

φk =
∑

ai j(z, z)
∂

∂zi
dz j.

(Note that the first-order deformation φ1 is already determined.) Then the holomorphic
functions on Xt are those smooth functions f ∈ C∞(X) such that

∂ f
∂z j

=
∑

j

ai j(t; z, z)
∂ f
∂zi

8



2 HOLOMORPHIC DEFORMATIONS

where
φt =

∑
ai j(t)

∂

∂zi
dz j.

The integrability condition is that 0 = ∂
2
t , which amounts to the usual Maurer-Cartan equa-

tions
∂φt = [φt, φt].

Recall that φ ∈ Ω0,1(T ), so the bracket here means “bracket on the vector field part and
wedge on the differential forms part.” The heuristic way to think of this is as T ⊗Ω0,•, with
T considered as the “interesting” part and Ω0,• as parameters, i.e. Ω0,• is the “ground ring.”
Thus the bracket of the thing with itself may not be zero, because the “coefficients” are not
constants.

Then Π is holomorphic with respect to φt if and only if

LφtΠ = 0.

By the Dolbeault isomorphism theorems, Hi(X,O) � H0,i
∂

(X,C), which vanish for i = 1, 2
by the assumptions. I’ll assume for simplification that the ν in the hypothesis is represented
by a (1, 1)-form ν such that ∂ν = ∂ν = 0 (this is without loss of generality because of the
cohomological vanishing).

It turns out that if we satisfy the first equation, then the second one basically comes for
free, so most of the effort is in constructing φt. This is done by inductively solving for the
higher order terms in terms of the lower ones.

1. For the coefficient of t, we need
∂φ1 = 0.

But
∂φ1 = ∂iΠν = iΠ∂ν = 0

by the assumption ∂ν = 0.

2. For the coefficient of t2, we need

∂φ2 = [φ1, φ1].

So what we need to show that [φ1, φ1] is ∂-closed, because then it will automatically
be exact, by the vanishing of H0,2

∂
(X,C). Let σ = iΠ as before, so φ1 = σ(ν). Recall

that ν is a ∂-closed 1-form, and we discussed that for closed 1-forms iΠ takes the
Poisson bracket {−,−}1 to the commutator bracket on vector fields (this was done
for 1-forms rather than (1, 1)-forms, but we may clearly just as well ignore the z
coefficients)

[φ1, φ1] = ∂[σ(ν), σ(ν)]

= σ(∂{ν ∧ ν}1)

= σ(∂σ(ν2))

9



2 HOLOMORPHIC DEFORMATIONS

Then taking ∂, we find that

∂[φ1, φ1] = ∂σ∂σ(∂ν ∧ ν)

but this vanishes ∂ν = 0. The point was that ∂ commutes with everything, because σ
is defined in terms of the holomorphic coordinates.

It turns out to be important to track the form of φ2. Since ∂(σ(ν∧ ν)) = 0, there exists
a β such that σ(ν ∧ ν) = ∂β. Then taking φ2 = σ∂β solves the equation.

Let us digress a bit to discuss the bigger picture. If we want to extend a first-order de-
formation to second-order (say), we would like to show that the obstructions, which
may be identified with some cohomology group, vanish. But this is often not true.
That doesn’t necessarily mean that your particular first-order deformation doesn’t ex-
tend, but that you have to show that its obstruction is 0. It’s hard to get a handle on the
obstruction, so you have a little extra information to get from each order deformation
to the next. For us, that extra bit of leverage is the special form of the answer for φ j.

3. In general, the idea is to look for a solution of the form φi+2 = σ∂ · βi. Then we’ll set

βt = β0 + tβ1 + . . . .

Once you solve the relevant equations for the 1-forms, you can apply σ to obtain the
solutions for vector fields. In the end, we reduce to solving

∂βt = {βt, βt}.

We already have β0 = β. Now we just have to solve recursively. We have

∂βn = {β1, βn−1} + {β2, βn−2} + . . . + {βn−1, β1}.

You just have to check that this form is closed. You can show by induction that

∂βn =
∑

i+ j+k=n

{βi, {β j, βk}}

and then the Jacobi Identity guarantees that this vanishes.

The conclusion is that you obtain a final answer of the form

φt = tσ(ν + t∂βt).

Then you have to check the holomorphicity condition, which is

Lσ(ν + t∂βt)Π = 0.

But that is an immediate consequence of what ν + t∂βt is. Indeed, ν is closed and t∂βt is
exact. But we have that Lσ? = 0 whenever ? is ∂-closed. �
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3 SEMI-POSITIVE VARIETIES

3 Semi-positive varieties

3.1 Definitions and examples

Let (X, ω) be a holomorphic symplectic manifold. Let ν be the class of a Kähler form on X
(the main example is when ν is the first chern class of an ample line bundle).

Suppose we have a (Poisson) deformation

X �
� //

��

X

��

Xt = f −1(t)? _oo

��
0 �
� // C t? _oo

Since X is symplectic, its the Poisson structure is non-degenerate at t = 0. Then it will be
non-degenerate for small t, so we can think of this X as a family of symplectic manifolds
in some neighborhood of t = 0.

Now comes a key idea of Mori from the minimal model theory.

Lemma 3.1. There can be no family Ct ⊂ Xt of compact complex curves.

Proof. We show this at the formal level, where Xt is the twistor deformation family from
Theorem 2.2.

We choose an identification H•(Xt) � H•(X) ♠♠♠ TONY: [what’s an easy way to see
this?]. The then family Ct defines a family of homology classes [Ct] ∈ H2(Xt,Z). But since
H2(Xt,Z) is “discrete” this class [Ct] must be constant, independent of t. Now we consider
the integral ∫

[Ct]
ωt.

On one hand, it vanishes formally because ωt|Ct = 0 (since it’s a holomorphic 2-form on
a curve). On the other hand, the construction of the twistor deformation was that [ωt] =

[ω] + tν. Therefore, the above is ∫
C
ω + tν = t

∫
C
ν

but the right hand side is positive because ν is a Kähler form. �

Definition 3.2. Call a variety X semi-positive if

• X is quasi-projective,

• there is an action of C× on X such that XC
×

is projective,

• for all x ∈ X, the limit for this action limz→0 zx exists.
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3 SEMI-POSITIVE VARIETIES

Example 3.3. Let X be afffine. Then giving a C× action on X is the same as giving a
Z-grading on the coordinate ring of X:

C[X] =
⊕
i∈Z

C[X](i).

Then X is semi-positive if and only if C[x](i) = 0 for all i < 0 and C[X](0) = C.

Example 3.4. We can always define the affinization of X to be Xaff = Spec Γ(X,OX). If C×

acts on X, then by functoriality C× acts on Xaff . If in addition X → Xaff is proper, then X
is semi-positive if and only if Xaff is semi-positive. (We probably need to assume that X is
quasiprojective to start out.)

The main example is when X → Xaff is a resolution of singularities.

Example 3.5. There is one notable exception, namely Higgs bundles. Let Σ be a smooth
projective curve. If G is a reductive group, then we denote by BunG(Σ) the moduli stack of
G-bundles on Σ, and the Higgs bundle is HiggsG(Σ) = T ∗ BunG(Σ).

I don’t want to get into the theory of stacks, so I’ll focus on the stable part Higgsst. This
is a scheme. There are cases where some connected component is smooth. Then such a
Higgsss is semipositive.

• The C× action comes from dilation of the fibers of the cotangent bundle T ∗ BunG(Σ).

• There is a Hitchin map
Higgsss proper

−−−−→ CN ,

This is the affinization map for Higgsss. The action of C× on CN is contracting. The
fixed point set is the fiber over 0, and since the map is proper that means that the fixed
locus on Higgsss is proper.

3.2 Properties

Let X be a semi-positive variety.

1. (Compactification)

Definition 3.6. Let X be smooth projective. Define

Xbad := {x ∈ X | lim
z→∞

zx exists}.

X has a canonical completion

X
open
↪→ X = X t (X \ Xbad)/C×.

Example 3.7. If X = An, then X = Pn.

Now (X \ Xbad)/C× may not be smooth, but it is at least rationally smooth: it has
orbifold singularities.

12



3 SEMI-POSITIVE VARIETIES

2. (BB Decomposition) Let XC
×

=
⊔

i Fi (this is smooth because the action is smooth).
There is a BB decomposition X =

∐
Xi, where

Xi = {x ∈ X | lim
z→0

zx ∈ Fi}.

Moreover, Xi is a vector bundle over Fi.

The original theorem of BB applied to proper varieties. Now, our X is not necessarily
proper, but it has the canonical compactification from (1), and as t → 0, the two
pieces X and (X \ Xbad)/C× must stay away from each other, so the result can be
boostrapped to this case.

3. (Purity) We have an isomorphism of cohomology H•(X) � H•(XC
×

), and the coho-
mology is pure.

Proposition 3.8. Let f : X → C be smooth and equivariant. Suppose that z ∈ C× act on C
by multiplication by zm, where m > 0. Let Xt = f −1(t). Then:

1. the restriction map H•(X)→ H•(Xt) is an isomorphism for all t, and

2. H•(Xt) is pure.

Sketch of proof. By base change on C, we can reduce to the case m = 1. We may write

X = X0︸︷︷︸
closed

t (C× × X1)︸     ︷︷     ︸
open

.

Since we know that H•(X) is pure, and the C× contracts all of the fibers to X0 (so that the
inclusion H•(X0)→ H•(X) is an isomorphism), we know that the statement holds for t = 0.
Then we have to check the fibers over t , 0, and by C×-equivariance we can reduce to a
single value of t, say t = 1. We have the triple

X0 ↪→ X ←↩ C× × X1.

Then we get the standard exact triangle

i∗CX0[?]
i∗
−→ CX

j∗
−→ CC××X1

which induces a long exact sequence in cohomology

. . .→ Hi(X0)→ Hi(X)→ Hi(C× × X1)→ . . . .

Since Hi(X0) and Hi(X) are pure, this splits into short exact sequences. We know the first
and second terms are isomorphic, and the third term by the Kunneth formula. So the short
exact sequences are

0→ H•(X0)→ H•(C×) ⊗ H(X1)→ H•+1(X0).

Now, we have an isomorphism H•(C×) � C[0] ⊕ C[2] where the grading refers to the
weights, so the only possibility is that H•(X0) maps isomorphically to C[0] ⊗ H•(X1) and
C[2] ⊗ H•(X1) maps isomorphically H•+1(X0). Thus, H•(X1) is also pure. �
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3 SEMI-POSITIVE VARIETIES

Proposition 3.9. Let X be smooth and semi-positive. Suppose X → Xaff is proper, and that
X has an algebraic symplectic form ω with weight m > 0. Finally, assume that H1(OX) =

H2(OX) = 0. Let Xt be the holomorphic twistor deforming ν (the Kähler class). Then

1. If F is C×-equivariant coherent sheaf on X, then

H•(X,F ) =
⊕
m∈Z

H•(Xan,Oan
X ⊗OX F )(m).

2. The twistor deformation Xt is algebraic.

3. The twistor deformation extends to a deformation X → C with fiber X over 0 and Xt

over t, which is C×-equivariant where C× acts on C with weight m.

X �
� //

��

X

��

Xt = f −1(t)? _oo

��
0 �
� // C t? _oo

4. The map Xt → Xaff
t is finite for all t , 0.

Proof of 4. That π0 is proper implies πt is proper for all t ♠♠♠ TONY: [why?]. If Xt had
a component of positive dimension, then since it is proper it would contains a projective
curve C1 ⊂ X1 (without loss of generality, by the equivariance). Moving C1 moving it by
the C× action would produce a family of curves, which is impossible by the result at the
beginning. Therfore, the dimension of the fiber must be 0, hence the fiber must be finite,
and proper plus quasifinite implies finite.

�

Corollary 3.10. If X → Xaff is a resolution of singularities (i.e. birational), then Xt � Xaff
t

for all t , 0.

Proof. By the proposition, Xt → Xaff
t is birational and finite, hence an isomorphism. �
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4 Symplectic resolutions

4.1 Main theorem

Definition 4.1. A symplectic variety (X, ω) is called a symplectic resolution if X → Xaff is
a resolution of singularities.

For the next set of results, we assume:

Running hypotheses. Let (X, ω) be a symplectic resolution, such that X is semipositive
and the symplectic form ω has weight m > 0.

Theorem 4.2. Under the running hypotheses,

1. There exists a universal Poisson deformation

X //

π
��

X

π̃
��

Xt

��

oo

Xaff //

��

Xaff

��

Xaff
t

oo

��
0 // H2(X,C) too

which is C×-equivariant, and where C× acts on H2(X) by z 7→ zm.

2. For sufficiently generic t ∈ H2(X), Xt is affine (so in particular equal to its affiniza-
tion).

3. We have H•(π−1(0)) � H•(X) � H•(X).

Theorem 4.3. Under the running hypotheses, there exists a C×-equivariant quantization
O~ of C[~]-algebras on X (the universal symplectic deformation.

The global sections Γ(O~) form a free graded associative algebra C[H2(X) × C~]. For
ν ∈ H2(X), the specialization ∈ Aν := Γ(O~)|ν,~=1 is a filtered associative algebra, with
associated graded C[X] = C[Xaff].

Theorem 4.4. Under the running hypotheses, let

π : X → Xaff

be the affinization map. Then for all x ∈ Xaff , the fibral homology H∗(π−1(x)) is generated
by algebraic cycles. In particular there is no odd homology, and all even homology is pure
of Tate type.

15
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4.2 Proof of big theorem

Now we want to sketch the proof of Theorem 4.4. Let 0 ∈ Xaff be the (unique) fixed point
(cut out by the augmentation ideal).

• We know that H•(π−1(0)) � H•(X) because the C×-action defines a contraction from
X to π−1(0).

• Denote by K(X) the Grothendieck group of Coh(X) tensored with Q. There is a map

K(X)
ch
−−→ H•(X)

given by the Chern character. The image of the Chern character is always contained
in the span of the algebraic cycles inside H•(X), because by definition Chern classes
come from algebraic cycles. So it suffices to show that the Chern character is surjec-
tive.

• How could one ever show that the Chern character is surjective? There is a useful
general criterion which we now discuss.

Definition 4.5. We say that X has decomposable diagonal in K-theory if [O∆] ∈
K(X × X) (where O∆ is the structure sheaf of ∆(X) ⊂ X × X) is in the image of the
map

K(X) � K(X)→ K(X × X).

Lemma 4.6. Suppose that Y is a smooth projective variety with decomposable diag-
onal. Then ch : K(Y)→ H•(Y) is surjective.

Proof. Suppose [O∆] =
∑

[Ei � Fi]. Then we have

ch (O∆) =
∑

ch Ei � ch Fi ∈ H•(Y × Y).

But ch (O∆) = [Y∆] + (higher degree). This implies that

[Y∆] =
∑

c′i � c′′i

where c′i , c
′′
i are algebraic cycles. Now we use a trick, namely that the class of the

diagonal is the identity for the convolution operator, i.e. [Y∆] ∗ c := (p2)∗p∗1c = c.
Then, for any c ∈ H•(Y) we have

c = [Y∆] ∗ c

=
∑

(c′i � c′′) ∗ c

=
∑
〈c′′i , c〉 · c

′
i

which is manifestly an algebraic cycle. �
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Unfortunately, we can’t apply this directly because our X is not projective.

• How could we show that X has a decomposable diagonal? This can be shown to
follow from another general property, which we now introduce.

Definition 4.7. A coherent sheaf T on Y is called a tilting generator if

Exti(T ,T ) = 0 for all i > 0

and for any F , 0 in Db
coh(Y),

R Hom(T ,F ) , 0.

Now comes the crucial point, which is a combination of the theorems of Kaledin,
Bezrukavnikov, etc.

Theorem 4.8 (Bezrukavnikov-Kaledin + Kaledin). If (X, ω) is a symplectic resolu-
tion then there exists a tilting generator.

Proof sketch. Reduce to finite characteristic, and then use Roman’s favorite trick,
which is that quantization in positive characteristic is almost commutative. �

• Fix a tilting generator T . Consider the algebra A = Hom(T ,T ) � R Hom(T ,T
(because the higher Exts vanish by definition). Then we have two facts:

1. By generalities on homological algebra, the functor R Hom(T ,−) gives an equiv-
alence Db

coh(Y)→ Db(A −mod).

2. (Grothendieck’s homological characterization of smoothness) Y is smooth if
and only if Db

coh(Y) has finite homological dimension.

Corollary 4.9. If T is a tilting generator and Y is smooth, then A has finite homo-
logical dimension.

• We claim that if A is an algebra with finite homological definition, then A has a finite
projection resolution by A-bimodules:

A← P1 � Q1 ← . . .← Pn � Qn

where the Pi (resp. Qi) are are projective left (resp. right) A-modules.

Indeed, by definition A has finite projective resolutions, and one just has to take care
that the resolution can be chosen of this form. We’ll come back to this later and show
why this special form of the resolution can be chosen.

If we know this, then we’re done because it means that O∆ � A has a resolution of
the desired type. (Apply the equivalence of categories twice, to Y and Y × Y , to see
that A as an (A, A)-bimodule must corresponds to O∆.)

We also still have to deal with the issue that our X is not projective.

17
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• Let X be our resolution. By the C×-action, we have a grading

C[X] = C[Xaff] = A =
⊕
i≥0

Ai

such thatA0 = C and dimCAi < ∞. (See Example 3.3.)

It is easy to show that one can choose T to be C×-equivariant. Then we have a
grading also on A := Hom(T ,T ), which contains A in its center, since the homo-
morphisms are always algebras over the regular functions, and we claim that A is a
finitely generated submodule overA. In particular, Ai = 0 for almost all i < 0.

Conjecture 4.10 (Bezrukavnikov). One can choose T so that Ai = 0 for all i < 0.

We claim that if A = Hom(T ,T ) has no negative degrees, then by some simple
homological algebra A is Koszul. Thus, the conjecture would imply that Db

coh(Y) is
equivalent to modules over a Koszul algebra, which is a really strong consequence.

• We now want to proved the existence of a resolution of the form

A← P1 � Q1 ← . . .← Pn ⊗ Qn

The situation looks like the completion of a semi-simple algebra, because if you trun-
cate A at very high degrees, then it is a finite-dimensional algebra. We understand the
situation of finite-dimensional algebras pretty well: if you quotient by the nilradical
then you get a semisimple algebra, and then you can lift projectives across the nilrad-
ical. That reduces to proving the statement for a finite-dimensional simple algebra,
which is a matrix algebra. Then projectives are free, and it’s obvious that free over a
tensor product is a tensor product of frees.

More precisely, A/A>N for all N � 0 is a finite-dimensional algebra, and one can
proved that the desired kind of resolution exists for A/A>N . Then one takes a limit
over N → ∞. If A has some negative degrees, then one has to take some care, but the
argument still works.

• Working equivariantly, one can extend the argument to show that X has decompos-
able diagonal in equivariant K-theory. (The structure sheaf of the diagonal is an
equivariant sheaf, and you show that everything can be taken to be equivariant.)

• We claim that if we have a variety X with decomposable diagonal in equivariant K-
theory, then the fixed point set XC

×

has decomposable diagonal in ordinary K-theory.
In the semipositive situation, XC

×

is a smooth projective variety. So we have proved
the theorem for the fixed point set.

• The conclusion is that H∗(XC
×

) is spanned by algebraic cycles, and then BB implies
that H∗(X) is also.

18
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Remark 4.11. We’ve shown the result for X and the central fiber. How do you get the result
for the general fiber? Kaledin has proved that you can choose a slice S x ⊂ Xaff such that in
π−1(S x)→ S x, x is the central fiber (necessarily for a different C×-action).

Example 4.12. For the Springer resolution π : Ñ → N , it was conjectured around 1976 that
H•(π−1x) is generated by algebraic cycles. It was proved by DeConcini-Lusztig-Procesi in
1991, but by a “case-by-case” analysis for each possible fixed point set. Kaledin’s proof,
which we have sketched here, is the only conceptual one that we know, even in the special
case of the Springer resolution.
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