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Abstract. We study a symplectic variant of algebraic K-theory of the integers, which comes

equipped with a canonical action of the absolute Galois group of Q. We compute this action
explicitly. The representations we see are extensions of Tate twists Zp(2k − 1) by a trivial

representation, and we characterize them by a universal property among such extensions.

The key tool in the proof is the theory of complex multiplication for abelian varieties.
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1. Introduction

1.1. Motivation and results. Let Sp2g(Z) be the group of automorphisms of Z2g preserving

the standard symplectic form 〈x, y〉 =
∑g
i=1(x2i−1y2i − x2iy2i−1). The group homology

Hi(Sp2g(Z); Zp) (1.1)

with coefficients in the ring of p-adic numbers, carries a natural action of the group Aut(C)
which comes eventually from the relationship between Sp2g(Z) and Ag, the moduli stack of
principally polarized abelian varieties; we discuss this in more detail in §1.2. It is a natural
question to understand this action; indeed, studying the actions of Galois automorphisms on
(co)homology of arithmetic groups has been a central concern of number theory.

It was proved by Charney ([Cha87, Corollary 4.5]) that the homology groups (1.1) are
independent of g, as long as g ≥ 2i + 5, in the sense that the evident inclusion Sp2g(Z) ↪→
Sp2g+2(Z) induces an isomorphism in group homology. These maps are also equivariant for
Aut(C), and so it is sensible to ask how Aut(C) acts on the stable homology

Hi(Sp∞(Z); Zp) := lim−→
g

Hi(Sp2g(Z); Zp).

The answer to this question with rational Qp-coefficients is straightforward. The homology
in question has an algebra structure induced by Sp2g1 × Sp2g2 ↪→ Sp2(g1+g2), and is isomorphic
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to a polynomial algebra:

H∗(Sp∞(Z); Qp) ' Qp[x2, x6, x10, . . . ]

and Aut(C) acts on x4k−2 by the (2k − 1)st power of the cyclotomic character. The elements
x2, x6, . . . , can be chosen primitive with respect to the coproduct on homology.

With Zp coefficients, it is not simple even to describe the stable homology as an abelian
group. However, the situation looks much more elegant after passing to a more homotopical
invariant—the symplectic K-theory KSpi(Z; Zp)—which can be regarded as a distillate of the
stable homology. We recall the definition in §1.2; for the moment we just note that Aut(C)
also acts on the symplectic K-theory and there is an equivariant morphism

KSpi(Z; Zp)→ Hi(Sp∞(Z); Zp) (1.2)

which, upon tensoring with Qp, identifies the left-hand side with the primitive elements in the
right-hand side. In particular,

KSpi(Z; Zp)⊗Qp
∼=

{
Qp(2k − 1), i = 4k − 2 ∈ {2, 6, 10, . . . },
0 else,

(1.3)

where Qp(2k − 1) denotes Qp with the Aut(C)-action given by the (2k − 1)st power of the
cyclotomic character.

The identification of (1.3) can be made very explicit. The moduli stack of principally polar-
ized abelian varieties carries a Hodge vector bundle (see §1.2) whose Chern character classes
induce maps ch2k−1 : H4k−2(Sp2g(Z); Zp) → Qp. Passing to the limit g → ∞ and composing
with (1.2) gives rise to homomorphisms cH : KSp4k−2(Z; Zp)→ Qp for all k ≥ 1; then cH ⊗Qp

recovers (1.3).

1.1.1. Statement of main results. For each n, let Q(ζpn) be the cyclotomic field obtained by
adjoining pnth roots of unity, and let Hpn be the maximal everywhere unramified abelian
extension of Q(ζpn) of p-power degree; put Hp∞ =

⋃
Hpn . We regard these as subfields of C.

Main theorem (see Theorem 7.8). Let p be an odd prime.
(i) The map cH : KSp4k−2(Z; Zp)→ Zp(2k − 1) is surjective and equivariant

for the Aut(C) actions;
(ii) The kernel of cH is a finite p-group with trivial Aut(C) action;
(iii) The action of Aut(C) factors through the Galois group Γ of Hp∞ over Q.

The short exact sequence

Ker(cH) ↪→ KSp4k−2(Z; Zp)
cH−→ Zp(2k − 1) (1.4)

is initial among all such extensions of Zp(2k − 1) by a Γ-module with
trivial action (all modules being p-complete and equipped with continuous
Γ-action).

In particular, the extension of Aut(C)-modules Ker(cH)→ KSp4k−2(Z; Zp)→ Zp(2k− 1) is
not split if Ker(cH) is nontrivial, and in this case the Aut(C)-action does not factor through the
cyclotomic character. In fact Ker(cH) is canonically isomorphic to the p-completed algebraic
K-theory K4k−2(Z; Zp) which, through the work of Voevodsky and Rost, and Mazur and Wiles,
we know is non-zero precisely when p divides the numerator of ζ(1− 2k) (see [Wei05, Example
44]). The first example is k = 6, p = 691. The group Γ = Gal(Hp∞/Q) itself is a central object
of Iwasawa theory; it surjects onto Z×p via the cyclotomic character, with abelian kernel. In
general Γ is non-abelian, with its size is controlled by the p-divisibility of ζ-values.
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Remark 1.1. The theorem addresses degree 4k − 2; this is the only interesting case. For
i = 4k or 4k + 1 with k > 0, we explain in §3 that KSpi(Z; Zp) = 0. For i = 4k + 3,
KSp4k+3(Z; Zp) ∼= K4k+3(Z; Zp) is a finite group, and we establish in §7.7 that the Aut(C)-
action on KSpi(Z; Zp) is trivial in those cases.

1.1.2. Other formulations. There are other, equally reasonable, universal properties that can be
formulated. For example—and perhaps more natural from the point of view of number theory—
KSp4k−2(Z; Zp) can be considered as the fiber, over Spec C, of an étale sheaf on Z[1/p]; then it
is (informally) the largest split-at-Qp extension of Zp(2k − 1) by a trivial étale sheaf. See §7.5
for more discussion of this and other universal properties.

1.1.3. The prediction of the Langlands program is—informally—that “every Galois represen-
tation that looks like it could arise in the cohomology of arithmetic groups, in fact does so
arise.” In the cases at hand there is no more exact conjecture available; but we regard the uni-
versality statement above as fulfilling the spirit of this prediction. The occurrence of extensions
as in (1.4) is indeed familiar from the Langlands program, where they arise (see e.g. [Rib76]) in
the study of congruences between Eisenstein series and cusp forms. They arise in our context
in a very direct way, and our methods are also quite different.

It would be of interest to relate our results to the study of the action of Hecke operators on
stable cohomology; the latter has been computed for GLn by Calegari and Emerton [CE16].

1.1.4. Consequences. Before we pass to a more detailed account, let us indicate a geometric
implication of this result (which is explained in more detail in §8).

If A → S is an principally polarized abelian scheme over Q with fiber dimension g then
one has a classifying map S → Ag. If S is projective over Q of odd dimension (2k − 1), then

we get a cycle class [S] ∈ H4k−2(Ag; Zp) which transforms according under Gal(Q/Q) by the
(2k − 1)st power of the cyclotomic character. (Examples of this situation can be constructed
arising from a Shimura variety, or from the relative Jacobian of a family of curves.) By pairing
[S] with the Chern character of the Hodge bundle, we get a characteristic number

cH([S]) ∈ Q

of the family. If the numerator of cH([S]) is not divisible by p then [S] splits the analogue of
the sequence (1.4), but replacing KSp4k−2 by H4k−2. Now, in the range when p > 2k we may
in fact identify KSp4k−2 as a quotient of H4k−2 as a Galois module (see §8), and thereby the
sequence (1.4) itself splits. Comparing with our theorem, we see that

p > 2k divides numerator of ζ(1− 2k) =⇒ p divides numerator of cH([S]). (1.5)

In other words, our theorem gives a universal divisibility for characteristic numbers of families
of abelian varieties over Q.

1.2. Symplectic K-theory of Z: definition, Galois action, relationship with usual K-
theory. We now give some background to the discussion of the previous section, in particular
outlining the definition of symplectic K-theory and where the Galois action on it comes from.
For the purposes of this section we adopt a slightly ad hoc approach to K-theory that differs
somewhat from the presentation in the main text (§3), but is implicit in the later discussion
where the Galois action is constructed (§6.2). More detailed explanations are given in the later
text.

First let us explain in more detail the Galois action on the homology of Sp2g(Z) with Zp
coefficients. As usual in topology, the group homology of a discrete group such as Sp2g(Z) can
be computed as the singular homology of its classifying space BSp2g(Z), which can be modeled
by the quotient of a contractible Sp2g(Z)-space with sufficiently free action. In the case at
hand, there is a natural model for this classifying space that arises in algebraic geometry:
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The group Sp2g(Z) acts on the contractible Siegel upper half plane hg (complex symmet-
ric g × g matrices with positive definite imaginary part) and uniformization of abelian vari-
eties identifies the quotient hg//Sp2g(Z), as a complex orbifold, with the complex points of
Ag in the analytic topology. Since hg is contractible, we may identify the cohomology group
Hi(Sp2g(Z); Z/pnZ) with the sheaf cohomology of the constant sheaf Z/pnZ on Ag,C, which
by a comparison theorem is identified with étale cohomology. The fact that Ag is defined over
Q associates a map of schemes σ : Ag,C → Ag,C to any σ ∈ Aut(C), inducing a map on (étale)
cohomology. This is Pontryagin dualized to an action on Hi(Sp2g(Z); Z/pnZ), for all n, and
hence an action on (1.1) by taking inverse limit. (Here we used that arithmetic groups have
finitely generated homology groups, in order to see that certain derived inverse limits vanish.)

1.2.1. Definition of symplectic K-theory. Next let us outline one definition of symplectic K-
theory. We will do so only with p-adic coefficients, and in a way that is adapted to discussing
the Galois action; a more detailed exposition from a more sophisticated viewpoint is given in
§3.

The first step is the insight, due to Sullivan, that there is an operation on spaces (or homotopy
types) that carries out p-completion at the level of homology. In particular, there is a p-
completion map

BSp2g(Z)→ BSp2g(Z)∧p
inducing an isomorphism in mod p homology and hence mod pn homology, and whose codomain
turns out to be simply connected (at least for g ≥ 3 where Sp2g(Z) is a perfect group). Moreover,
the Aut(C) action that exists on the mod pn homology of the left hand side can be promoted
to an actual action of Aut(C) on the space BSp2g(Z)∧p .

Although the space BSp2g(Z) has no homotopy in degrees 2 and higher, its p-completion
does. As with (1.1), these homotopy groups are eventually independent of g; the resulting
stabilized groups are the (p-completed) symplectic K-theory groups denoted

KSpi(Z; Zp) := lim−→
g

πi(BSp2g(Z)∧p )

in analogy with the p-completed algebraic K-theory groups Ki(Z; Zp), which can be similarly
computed as colimgπi(BGLg(Z)∧p ).

The action of Aut(C) on the space BSp2g(Z)∧p now gives an action of Aut(C) on KSpi(Z; Zp),
for which the Hurewicz morphism

KSpi(Z; Zp)→ Hi(Sp∞(Z); Zp) (1.6)

is equivariant.

Remark 1.2. Although it is not obvious from the presentation above, these groups KSpi(Z; Zp)
are in fact the p-completions of symplectic K-groups KSpi(Z) which are finite generated abelian
groups (see §3). However, the Aut(C) action exists only after p-adically completing.

1.2.2. We also recall what is known about the underlying Zp-modules (ignoring Galois-action).
These results are deduced from Karoubi’s work on Hermitian K-theory [Kar80], combined with
what is now known about algebraic K-theory of Z. The upshot is isomorphisms for k ≥ 1 and
odd primes p,

KSp4k−2(Z; Zp)
(cB ,cH)−−−−−→ K4k−2(Z; Zp)× Zp

KSp4k−1(Z; Zp)
(cB ,cH)−−−−−→ K4k−1(Z; Zp)

and vanishing homotopy groups in degrees ≡ 0, 1 mod 4. Here:

- The homomorphism cB arises from the evident inclusion Sp2g(Z) ⊂ GL2g(Z).
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- The homomorphism cH is obtained as the composite

KSp4k−2(Z; Zp)→ H4k−2(BSp2g(Z); Qp)
cH→ Qp.

Here the final map is the Chern character of the g-dimensional (Hodge) vector bundle
arising from Sp2g(Z) ↪→ Sp2g(R) ' U(g); the composite map is valued in Zp even
though the Chern character involves denominators in general, reflecting one advantage
of homotopy over homology.

1.3. Method of proof and outline of paper. For the present sketch we consider the reduc-
tion of symplectic K-theory modulo q = pn; one recovers the main theorem by passing to a
limit over n.

Remark 1.3. Rather than näıvely reducing homotopy groups modulo q, it is better to consider
the groups KSpi(Z; Z/q) which sit in a long exact sequence with the multiplication-by-q map
KSpi(Z; Zp)→ KSpi(Z; Zp). But that is the same in degree 4k − 2 since KSp4k−3(Z; Zp) = 0.

The basic idea for proving the main theorem is to construct enough explicit classes on which
one can compute the Galois action. In more detail, the theory of complex multiplication (CM)
permits us to exhibit a large class of complex principally polarized abelian varieties with actions
of a cyclic group C with order q. If A→ Spec (C) comes with such an action then the induced
action on H1(A(C)an; Z), singular homology of the complex points in the analytic topology,
gives a homomorphism C → Sp2g(Z). This gives a morphism

πsi (BC; Z/q) −→ KSpi(Z; Z/q)

from the stable homotopy groups of the classifying space BC to symplectic K-theory. The
left hand side contains a polynomial ring1 on a degree 2 element, the “Bott element,” and the
image of this ring produces a supply of classes in KSp.

Let us call temporarily call classes in KSpi(Z; Z/q) arising from this mechanism CM classes.
We shall then show, on the one hand, that CM classes generate all of KSpi(Z; Z/q). On the
other hand the Main Theorem of Complex Multiplication allows us to understand the action
of Aut(C) on CM classes. Taken together, this allows us to compute the Aut(C) action on
KSpi(Z; Z/q).

The contents of the various sections are as follows:

• §2, K-theory and its relation to algebraic number theory: We review facts about ho-
motopy groups, Bott elements, K-theory, and the relation of K-theory and étale coho-
mology. From the point of view of the main proof, the main output here is Proposition
2.17, which identifies the transfer map from the K-theory of a cyclotomic ring to the
K-theory of Z in terms of algebraic number theory: namely, a transfer in the homology
of corresponding Galois groups.
• §3, Symplectic K-theory: We review the definition of symplectic K-theory, and recall

the results of [Kar80] which, for odd p, lets us describe KSpi(Z; Zp) and KSpi(Z; Z/q)
in terms of usual algebraic K-theory. The conclusions we need are summarized in
Theorem 3.5.

• §4, Construction of CM classes in symplectic K-theory: The point of §4 is to set up
the theory of CM in a slightly unconventional form that allows the CM classes to be
easily defined. One key output of the section is the sequence (4.6): it formulates the
construction of CM abelian varieties as a functor between groupoids. We also prove in
Proposition 4.7 a technical result about the existence of “enough” CM abelian varieties
associated to cyclotomic fields.

1This is an advantage of stable homotopy over homology: the latter (in even degrees) is a divided power
algebra.
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• §5, CM classes exhaust all of symplectic K-theory: We give the construction of CM
classes and prove that that they exhaust all of symplectic K-theory (see in particular
Proposition 5.1). To prove the exhaustion one must check both that KSp is not too large
and that there are enough CM classes. These come, respectively, from the previously
mentioned Proposition 2.17 and Proposition 4.7.
• §6 Computation of the action of Aut(C) on CM classes: The action of Aut(C) on CM

classes can be deduced from the “Main Theorem of CM,” which computes how Aut(C)
acts on moduli of CM abelian varieties. (In its original form this is due to Shimura and
Taniyama; we use the refined form due to Langlands, Tate, and Deligne.) We recall
this theorem, in a language adapted to our proof, in §6.3.
• §7, Proof of the main theorem (Theorem 7.1). The results of the previous sections

have already entirely computed the Galois action. More precisely, they allow one to
explicitly give a cocycle that describes the extension class of (1.3). In §7.3 we explicitly
compare this cocycle to one that describes the universal extension and show they are
equal.

The remainder of §7 describes variants on the universal property (e.g. passing be-
tween Z/q and Zp coefficients, or a version for Bott-inverted symplectic K-theory which
also sees extensions of negative Tate twists).
• §8, Consequences in homology. The stable homology Hi(Sp∞(Z); Zp) naturally surjects

onto KSpi(Z; Zp), at least for i ≤ 2p − 2. In this short section we use this to deduce
divisibility of certain characteristic numbers of families of abelian varieties defined over
Q.

Remark 1.4. Let us comment on the extent to which our result depends on the norm residue
theorem, proved by Voevodsky and Rost. The p-completed homotopy groups KSp∗(Z; Zp) in

our main theorem may be replaced by groups we denote KSp(β)
∗ (Z; Zp) and call “Bott inverted

symplectic K-theory” see Subsection 7.6. They agree with π∗(LK(1)KSp(Z)), the so-called
K(1)-local homotopy groups.

The norm residue theorem can be used to deduce that the canonical map KSpi(Z; Zp) →
KSp

(β)
i (Z; Zp) is an isomorphism for all i ≥ 2. Independently of the norm residue theorem,

the main theorem stated above may be proved with KSp
(β)
4k−2(Z; Zp) in place of KSpi(Z; Zp).

Besides the simplification of the proof, this has the advantage of giving universal extensions of
Zp(2k − 1) for all k ∈ Z, including non-positive integers.

In our presentation we have chosen to work mostly with KSp∗(Z; Zp) instead of KSp(β)
∗ (Z; Zp),

for reasons of familiarity. A more puritanical approach would have compared KSp∗(Z; Zp) and

KSp(β)
∗ (Z; Zp) at the very end, and this would have been the only application of the norm

residue theorem.

1.4. Notation. For q any odd prime power, we denote:

• Oq the cyclotomic ring Z[e2πi/q] obtained by adjoining a primitive qth root of unity to
Z, and Kq = Oq ⊗Q its quotient field. For us we shall always regard these as subfields

of C. We denote by ζq ∈ Oq the primitive qth root of unit e2πi/q.
• Z′ := Z[ 1

p ], and O′q := Oq[ 1
p ].

• We denote by Hq the largest algebraic unramified extension of Kq inside C whose Galois
group is abelian of p-power order. Thus Hq is a subfield of the Hilbert class field, and
its Galois group is isomorphic to the p-power torsion inside the class group of Oq.
• For a ring R, we denote by Pic(R) the groupoid of locally free rank one R-modules, and

by π0Pic(R) the group of isomorphism classes, i.e. the class group of R. In particular,
the class group of Oq is denoted π0Pic(Oq).
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• There are “Hermitian” variants of the Picard groupoid that will play a crucial role for
us. For the ring of integers OE in a number field E, P+

E will denote the groupoid of

rank one locally free OE-modules endowed with a OE-valued Hermitian form, and P−E
will denote the groupoid of rank one locally free OE-modules endowed with a skew-
Hermitian form valued in the inverse different. See §4.2 for details of these definitions.

We emphasize that q is assumed to be odd. Many of our statements remain valid for q
a power of 2, and we attempt to make arguments that remain valid in that setting, but for
simplicity we prefer to impose q odd as a standing assumption.
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2. Recollections on algebraic K-theory

This section reviews algebraic K-theory and its relation with étale cohomology. Since it is
somewhat lengthy we briefly outline the various subsections:

• §2.1 is concerned with summarizing facts about stable and mod q homotopy groups; in
particular we introduce the Bott element in the stable homotopy of a cyclic group.

• After a brief discussion of infinite loop space machines in §2.2, we review algebraic
K-theory in §2.3. In §2.4 we discuss the Picard group and Picard groupoid, which are
used to analyze a simple piece of algebraic K-theory.

• A fundamental theorem of Thomason asserts that algebraic K-theory satisfies étale
descent after inverting a Bott element (defined in mod q algebraic K-theory in §2.5).
We review this theorem and its consequences in §2.6.

• §2.7 uses Thomason’s results to compute Bott-inverted K-theory of Z and of Oq in
terms of étale (equivalently, Galois) cohomology.

• Finally, in Proposition 2.17 we rewrite some of the results of §2.7 in terms of homology
of Galois groups, which is most appropriate for our later applications. Specifically, the
Proposition identifies the transfer map from the K-theory of a cyclotomic ring to the
K-theory of Z in a corresponding transfer in the group homology.

We do not claim any substantial original results in this section. Most of the statements in
this section follow quickly from work of Thomason and Voevodsky, but do not appear in the
literature in the form written here, so we take the opportunity to spell them out.

2.1. Recollections on stable and mod q homotopy. Recall that, for a topological space
Y , the notation Y+ means the space Y

∐
{∗} consisting of Y together with a disjoint basepoint.

Each space gives rise to a spectrum Σ∞+ Y , namely the suspension spectrum on Y+, and con-
sequently we can freely specialize constructions for spectra to those for spaces. In particular,
the stable homotopy groups of Y are, by definition, the homotopy groups of the associated
spectrum:

πsk(Y ) = πk(Σ∞+ Y ) := lim−→
n

[Sk+n,ΣnY+],
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where [−,−] denotes homotopy classes of based maps. We emphasize that πs∗ is defined for an
unpointed space Y . (In some references, it is defined for a based space, and in those references
the definition does not involve an added disjoint basepoint).

Remark 2.1. One could regard πs∗(Y ) as being the “homology of Y with coefficients in the
sphere spectrum,” and it enjoys the properties of any generalized homology theory. There is a
Hurewicz map πs∗(Y ) → H∗(Y ), which is an isomorphism in degree ∗ = 0 and a surjection in
degree 1.

We will be interested in the corresponding notion with Z/q coefficients. For any spectrum
E, the homomorphisms πi(E)→ πi(E) which multiply by q ∈ Z fit into a long exact sequence

· · · → πi(E)
q−→ πi(E)→ πi(E ∧ (S/q))→ πi−1(E)

q−→ πi(E)→ . . . ,

where the spectrum S/q is the mapping cone of a degree-q self map of the sphere spectrum.
For q > 0 we write

πi(E; Z/q) := πi(E ∧ (S/q))
for these groups, the homotopy groups of E with coefficients in Z/q. Correspondingly, we
get stable homotopy groups πs∗(Y ; Z/q) for a space Y . These have the usual properties of a
homology theory.

2.1.1. The Bott element in the stable homotopy of a cyclic group. The stable homotopy of the
classifying space of a cyclic group contains a polynomial algebra on a certain “Bott element”
in degree 2. This will be a crucial tool in our later arguments, and we review it now.

We recall (see [Oka84]) that for q = pn > 4 the spectrum S/q has a product which is unital,
associative, and commutative up to homotopy. It makes π∗(E; Z/q) into a graded ring when E
is a ring spectrum, graded commutative ring when the product on E is homotopy commutative.
In the rest of this section we shall tacitly assume q > 4 in order to have such ring structures
available. (In fact everything works also in the remaining case p = q = 3 with only minor
notational updates: see Remark 2.19.)

For the current subsection §2.1.1 set Y := B(Z/q), the classifying space of a cyclic group
of order q. This Y has the structure of H-space, in fact a topological abelian group, and
correspondingly πs∗(Y ) has the structure of a graded commutative ring.

Recall that q is supposed odd. Then there is a unique element (the “Bott class”) β ∈
πs2(Y ; Z/q) such that, in the diagram

β ∈ πs2(Y ; Z/q) πs1(Y ; Z)

0 H2(Y ; Z/q) H1(Y ; Z)[q] Z/q

Hur∼ (2.1)

the image of β in the bottom right Z/q is the canonical generator 1 of Z/q. In fact, the Hurewicz
map Hur above is an isomorphism.

Remark 2.2. The diagram (2.1) exists for all q, but for q a power of 2 the map πs2(Y ; Z/q)→
H2(Y ; Z/q) is not an isomorphism. There is a class in πs2(Y ; Z/q) fitting into (2.1) when q is a
power of 2, but the diagram above does not characterize it. To pin down the correct β in that
case, note that the map S1 → Y inducing Z → Z/q on π1 extends to M(Z/q, 1) = S1 ∪q D2,
the pointed mapping cone of the canonical degree q map S1 → S1, and one can construct β
starting from the identification of πsk(Y ; Z/q) = lim−→n

[ΣnM(Z/q, k − 1),ΣnY+].

Lemma 2.3. The induced map Z/q[β]→ πs∗(Y ; Z/q) is a split injection of graded rings.
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Proof. The map a→ e2πia/q is a homomorphism from Z/q to S1 and it gives rise to a line bundle
L on Y . In turn this induces a map from the suspension spectrum of Y+ to the spectrum ku
representing topological K-theory, and thereby induces on homotopy groups a map

πs∗(Y ; Z/q)→ π∗(ku; Z/q).

This map is in fact a ring map.
We claim that the class β is sent to the reduction of the usual Bott class Bott ∈ π2(ku);

this implies that Z/q[β] → πs∗(Y ; Z/q) is indeed split injective, because π∗(ku; Z/q) is, in
non-negative degrees, a polynomial algebra on this reduction. The Bott class in π2(ku; Z) '
π2(BU,Z) is characterized (at least up to sign, depending on normalizations) by having pairing
1 with the first Chern class of the line bundle L arising from det : U → S1. It sufficies then to
show that

〈β̄, c1(L)〉 = 1 ∈ Z/q,

where β̄ ∈ H2(Y ; Z/q) is the image of β in by the Hurewicz map, and c1(L) is the first Chern
class of L considered as a line bundle on Y .

This Chern class is the image of j ∈ H1(Y ; R/Z) by the connecting homomorphismH1(Y,R/Z)→
H2(Y,Z) arising from the map Z→ R

e2πix→ R/Z. Therefore c1(L) ∈ H2(Y,Z) is obtained from
the tautological class τ ∈ H1(Y,Z/q) by the connecting map δ associated to Z → Z → Z/q,
and the reduction of c1(L) modulo q is simply the Bockstein of τ . Therefore, the pairing of
c1(L) with β is the same as the pairing of τ with the Bockstein of β; this last pairing is 1, by
definition of β. �

Remark 2.4. The reasoning of the proof also shows the following: had we replaced the mor-
phism j : Z/q → S1 by ja (for some a ∈ Z), then the corresponding element in π2(ku; Z/q) is
also multiplied by a.

2.2. Infinite loop space machines. Recall that associated to a small category C, there is
a classifying space |C|, which is the geometric realization of the nerve of C (a simplicial set).
In particular π0(|C|) is the set of isomorphism classes. A symmetric monoidal structure on C
induces in particular a “product” |C| × |C| → |C| which is associative and commutative up to
homotopy. The theory of infinite loop space machines associates to the symmetric monoidal
category C a spectrum K(C) and a map

|C| → Ω∞K(C). (2.2)

Up to homotopy this map preserves products, and the induced monoid homomorphism π0(|C|)→
π0(Ω∞K(C)) is the universal homomorphism to a group, namely, the “Grothendieck group” of
the monoid. The map (2.2) can be viewed as a derived version of the universal homomorphism
from a given monoid to a group.

2.3. Algebraic K-theory: definitions. For a ringR, let P(R) denote the symmetric monoidal
groupoid whose objects are finitely generated projective R-modules, morphisms are R-linear
isomorphisms, and with the Cartesian symmetric monoidal structure (i.e., direct sum of R-
modules). The set π0(P(R)) of isomorphism classes in P(R) then inherits a commutative
monoid structure. Write |P(R)| for the associated topological space (i.e. geometric realization
of the nerve of P(R)). Direct sum of projective R-modules is a symmetric monoidal structure
on P(R) and induces a map ⊕ : |P(R)| × |P(R)| → |P(R)|.

As recalled above, there is a canonically associated spectrum K(R) := K(P(R)) and a
“group completion” map

|P(R)| → Ω∞K(R).
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The algebraic K-groups of R are defined as the homotopy groups of K(R). Alternately, for
i = 0, it is the projective class group K0(R) while for i > 0 it may be defined as

Ki(R) := πiBGL∞(R)+,

the homotopy groups of the Quillen plus construction applied to the commutator subgroup of
GL∞(R) = lim−→n

GLn(R).2

When R is commutative, we also have product maps

Ki(R)⊗Kj(R)→ Ki+j(R),

induced from tensor product of R-modules, making K∗(R) into a graded commutative ring.

Definition 2.5. We define the mod q algebraic K-theory groups of R to be

Ki(R; Z/q) := πi(K(R); Z/q).

In the case R = Z we define the p-adic algebraic K-theory groups via

Ki(Z; Zp) := lim←−
n

Ki(Z; Z/pn).

(This is the correct definition because of finiteness properties of K∗(Z; Z/pn); in general, we
should work with “derived inverse limits.”)

2.3.1. Adams operations. Finally, let us recall that (again for R commutative, as shall be the
case in this paper) there are Adams operations ψk : Ki(R) → Ki(R) for k ∈ Z satisfying the
usual formulae. We shall make particular use of ψ−1, which in the above model is induced
by the functor P(R) → P(R) sending a module M to its dual D(M) := HomR(M,R) and an
isomorphism f : M →M ′ to the inverse of its dual D(f) : D(M ′)→ D(M).

2.4. Picard groupoids. We now define certain spaces which can be understood explicitly
and used to probe algebraic K-theory. They are built out of categories that we call Picard
groupoids.

Definition 2.6. (The Picard groupoid.) For a commutative ring R, let Pic(R) ⊂ P(R) be the
subgroupoid whose objects are the rank 1 projective modules, with the symmetric monoidal
structure given by ⊗R.

The associated space |Pic(R)| inherits a group-like product

⊗R : |Pic(R)| × |Pic(R)| → |Pic(R)|,
and there are canonical isomorphisms of abelian groups π0(|Pic(R)|) = H1(Spec (R); Gm) (the
classical Picard group) and π1(|Pic(R)|, x) = H0(Spec (R); Gm) = R× for any object x ∈
Pic(R). The higher homotopy groups are trivial.

When R is a ring of integers, Pic(R) is equivalent to the groupoid whose objects are the
invertible fractional ideals I ⊂ Frac(R) and whose set of morphisms I → I ′ is {x ∈ R× | xI =
I ′}.

The tensor product of rank 1 projective modules gives a product on the space |Pic(R)| and
makes the stable homotopy groups πs∗(|Pic(R)|) into a graded-commutative ring. We have a
canonical ring isomorphism Z[π0(Pic(R))] → πs0(|Pic(R)|) from the group ring of the abelian
group π0(Pic(R)) ∼= H1(Spec (R); Gm). The fact that stable homotopy (being a homology
theory) takes disjoint union to direct sum implies that the product map

πs∗(BR
×)⊗ Z[π0(Pic(R))]

∼=−→ πs∗(|Pic(R)|). (2.3)

2The group completion theorem can be used to induce a comparison between K0(R) × BGL∞(R)+ and
Ω∞K(R), roughly speaking by taking direct limit over applying [R] ⊕ − : |P(R)| → |P(R)| infinitely many
times and factoring over the plus construction.
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is an isomorphism.
The inclusion functor induces maps |Pic(R)| → |P(R)| → Ω∞K(R) preserving ⊗R, at least

up to coherent homotopies. The adjoint map Σ∞+ |Pic(R)| → K(R) is then a map of ring
spectra, and we get a ring homomorphism

πs∗(BR
×)⊗ Z[π0(Pic(R))]

∼=−→ πs∗(|Pic(R)|)→ K∗(R). (2.4)

2.5. Bott elements in K-theory with mod q coefficients.

Definition 2.7. The algebraic K-theory of R with mod q coefficients is defined asKi(R; Z/q) :=
πi(K(R); Z/q).

As discussed earlier, K∗(R; Z/q) has the structure of a graded-commutative ring for q =
pn > 4.

Let us next recall the construction of a canonical Bott element in K2(R; Z/q) associated to
a choice of primitive qth root of unity ζq ∈ R×. The choice of ζq induces a homomorphism
Z/q → GL1(R). Regarding GL1(R) as the automorphism group of the object R ∈ Pic(R) gives
a map B(Z/q) → |Pic(R)|. Now we previously produced a “Bott element” β ∈ πs2(B(Z/q));
under the maps (2.4) we have

β ∈ πs2(B(Z/q))→ πs2(|Pic(R)|; Z/q)→ K2(R; Z/q).

The image is the Bott element and shall also be denoted β ∈ K2(R; Z/q). More intrinsically,
this discussion gives a homomorphism

β : µq(R)→ K2(R; Z/q) (2.5)

which is independent of any choices; since our eventual application is to subrings of C where
we will take ζ = e2πi/q, we will not use this more intrinsic formulation.

2.6. Bott inverted K-theory and Thomason’s theorem. The element β ∈ K2(R; Z/q)
may be inverted in the ring structure (when q > 8), leading to a 2-periodic Z-graded ring
K∗(R; Z/q)[β−1] called Bott inverted K-theory of R, when R contains a primitive qth root of
unity. As explained in [Tho85, Appendix A] we can still make sense of this functor when R does
not contain primitive qth roots of unity: the power βp−1 ∈ K2p−2(Z[µp]; Z/p) comes from a
canonical element in K2p−2(Z; Z/p), also denoted βp−1 (even though it is not the (p−1)st power
of any element of K∗(Z; Z/p)), whose pn−1st power lifts to an element of K2pn−1(p−1)(Z; Z/pn).
Inverting the image of these elements gives a functor

X 7→ K∗(X; Z/q)[β−1]

from schemes to Z-graded Z/q-modules (graded commutative (Z/q)-algebras when q > 4),
where q = pn as before. For typographical ease, we will denote this via K(β):

K
(β)
∗ (X; Z/q) = K∗(X; Z/q)[β−1].

In the case X = Spec Z, we also define the p-adic Bott-inverted K-theory groups

K
(β)
∗ (Z; Zp) := lim←−

n

K
(β)
∗ (Z; Z/pn).

Remark 2.8. As also recalled in [Tho85, Appendix A] this may be implemented on the
spectrum level as follows: Adams constructed spectrum maps Σm(S/pn) → (S/pn) for m =
2pn−1(p−1) when p is odd, with the property that it induces isomorphisms Z/q = π0(ku;Z/q)→
πm(ku; Z/q) = Z/q, where ku is the topological K-theory spectrum, and we can let T be the
homotopy colimit of the infinite iteration S/q → Σ−m(S/q) → Σ−2m(S/q) → . . . . Then

K
(β)
∗ (X; Z/q) is canonically the homotopy groups of the spectrum K(X) ∧ T . We will on

occasion denote this spectrum as K(β)(X; Z/q).
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2.6.1. Étale descent and Thomason’s spectral sequence. The main result of [Tho85] is an étale
descent property for the Bott inverted K-theory functor. (Because of this, Bott-inverted K-
theory is essentially the same as Dwyer–Friedlander’s “étale K-theory” [DF85], at least in
positive degrees. See also [CM21] for a recent perspective.)

For a scheme X over Spec (Z[1/p]), Thomason constructs a convergent spectral sequence

E2
s,t = H−set (X;µ⊗(t/2)

q )⇒ K
(β)
t+s(X; Z/q), (2.6)

concentrated in degrees s ∈ Z≤0 and t ∈ 2Z. (Existence and convergence of the spectral
sequence requires mild hypotheses on X, satisfied in any case we need.) The spectral sequence
arises as a hyperdescent spectral sequence for K(β), regarded as a sheaf of spectra on the étale
site of X.

Since the Adams operations ψa act on K(β) through maps of sheaves of spectra when a 6≡
0 mod p, there are compatible actions of Adams operations on the spectral sequence. The
operation ψa acts by multiplication by at/2 on E2

s,t and in particular ψ−1 acts as +1 on the
rows with t/2 even and as −1 on the rows where t/2 is odd.

2.6.2. Comparison with algebraic K-theory. This étale descent property makes Bott-inverted
K-theory amenable to computation. On the other hand, it is a well known consequence of the
norm residue theorem (due to Voevodsky and Rost) that when X is a scheme over Spec (Z[1/p])
satisfying a mild hypothesis, the localization homomorphism K∗(X; Z/q) → K∗(X; Z/q)[β−1]
is an isomorphism in sufficiently high degrees. We briefly spell out how this comparison between
K-theory and Bott inverted K-theory follows from the norm residue theorem (see [HW19] for
a textbook account of the latter) in the cases of interest:

Proposition 2.9. For X = Spec (Z′) or X = Spec (O′q), the localization map

Ki(X; Z/q)→ K
(β)
i (X; Z/q)

is an isomorphism for all i > 0 and a monomorphism for i = 0. (It is in fact also an isomor-
phism for i = 0, as will be proved in §2.7). The same assertion holds for Spec (Z) or Spec (Oq)
if we suppose i ≥ 2.

Proof sketch. For any field k of finite cohomological dimension (and admitting a “Tate-Tsen
filtration”, as in [Tho85, Theorem 2.43]), there are spectral sequences converging to both do-
main and codomain of the map K∗(k; Z/p) → K(β)(k; Z/p). In the codomain it is the above-
mentioned spectral sequence of Thomason, applied to X = Spec (k), and in the domain it is
the motivic spectral sequence. There is a compatible map of spectral sequences, which on the
E2 page is the map from motivic to étale cohomology

H−smot(Spec (k); (Z/p)(t/2))→ H−set (Spec (k);µ⊗t/2p ).

induced by changing topology from the Nisnevich to étale topology. The norm residue theorem
implies that this map is an isomorphism for t/2 ≥ −s. Below this line the motivic cohomology
vanishes but the étale cohomology need not. If cdp(k) = d we may therefore have non-trivial
étale cohomology in E2

−d,2d−2 which is not hit from motivic cohomology, and the total degree
d − 2 of such elements is the highest possible total degree in which this can happen. By
convergence of the spectral sequences, the map

Ki(k; Z/p)→ K
(β)
i (k; Z/p)

is an isomorphism for i ≥ d− 1 and an injection for i = d− 2; the same conclusion follow with
Z/q coefficients by induction using the long exact sequences.



THE GALOIS ACTION ON SYMPLECTIC K-THEORY 13

This applies to k = Q which has p-cohomological dimension 2 (we use here that p is odd) and
k = F` which has p-cohomological dimension 1 for ` 6= p, as well as finite extensions thereof.
Finally, Quillen’s localization sequence∨

` 6=p

K(F`)→ K(Z′)→ K(Q)

and its Bott-inverted version imply that Ki(Z
′; Z/q) → K

(β)
i (Z′; Z/q) is an isomorphism for

i ≥ 1 and a monomorphism for i = 0, and a similar argument applies when X = Spec (O′q).
The final assertion results from using Quillen’s localization sequence to compare Z and Z′,

plus Quillen’s computation of the K-theory of finite fields [Qui72]. For reference we state this
as Lemma 2.10, and expand on the proof below. �

Lemma 2.10. The map Z → Z′ induces an isomorphism on mod q K-theory in all degrees
except 1, where K1(Z′; Z/q) ∼= Z/q⊕K1(Z; Z/q). The same assertion holds true for Oq → O′q.
In particular, the maps K

(β)
∗ (Z; Z/q)) → K

(β)
∗ (Z′; Z/q) and K

(β)
∗ (Oq) → K

(β)
∗ (O′q; Z/q) are

both isomorphisms in all degrees.

Proof. Quillen’s devissage and localization theorems [Qui73, Section 5] gives fiber sequences

K(Fp)→ K(Z)→ K(Z′)

K(Fp)→ K(Oq)→ K(O′q).

His calculation [Qui72] of K-theory of finite fields implies Ki(Fp; Z/q) = 0 for i 6= 0, while
K0(Fp; Z/q) = Z/q. Finall we note the homomorphisms K0(Z) → K0(Z′) and K0(Oq) →
K0(O′q) are injective – the latter because the prime above p in Oq is principal. �

2.7. Some computations of Bott-inverted K-theory in terms of étale cohomology.
In this section, we shall use Thomason’s spectral sequence (2.6)

E2
s,t = H−set (X;µ⊗(t/2)

q )⇒ K
(β)
t+s(X; Z/q),

to compute Bott-inverted K-theory of number rings in terms of étale cohomology. By Propo-
sition 2.9, many of the results can be directly stated in terms of K-theory. Through this use
of Proposition 2.9, our main result – in the form stated in the introduction – depends on the
norm residue theorem; but that dependence is easily avoided by replacing KSp4k−2(Z; Zp) by
its Bott-inverted version, see Subsection 7.6.

We recall that we work under the standing assumption that q is odd.

Lemma 2.11. We have the following isomorphisms, for all k ∈ Z:

K
(β)
4k−2(O′q; Z/q)(+) ∼= H2(Spec (O′q);µ⊗2k

q )

K
(β)
4k−2(O′q; Z/q)(−) ∼= H0(Spec (O′q);µ⊗(2k−1)

q )

K
(β)
4k (O′q; Z/q)(+) ∼= H0(Spec (O′q);µ⊗2k

q )

K
(β)
4k (O′q; Z/q)(−) ∼= H2(Spec (O′q);µ⊗2k+1

q ).

In odd degrees we have an isomorphism

K
(β)
2k−1(O′q; Z/q) ∼= H1

et(Spec (O′q);µ⊗kq ) (2.7)

and ψ−1 acts by (−1)k.

Finally, the map Ki(O′q; Z/q) → K
(β)
i (O′q; Z/q) is an isomorphism for all i ≥ 0, and the

map Ki(Oq; Z/q)→ K
(β)
i (Oq; Z/q) is an isomorphism for i = 0 or i ≥ 2.
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Proof. We apply (2.6) to X = Spec (O′q). This scheme has étale cohomological dimension 2, so
the spectral sequence is further concentrated in the region −2 ≤ s ≤ 0. The spectral sequence
must collapse for degree reasons, since no differential goes between two non-zero groups (since
only t ∈ 2Z appears). Convergence of the spectral sequence gives in odd degrees (2.7).

In even degrees we obtain a short exact sequence

0→ H2
et(Spec (O′q);µ⊗kq )→ K

(β)
2k−2(O′q; Z/q)→ H0

et(Spec (O′q);µ⊗k−1
q )→ 0.

For odd q this sequence splits canonically, using the action of the Adams operation ψ−1 on the
spectral sequence: it acts as (−1)k on the kernel and as (−1)k−1 on the cokernel in the short
exact sequence.

For the final assertion for O′q: by Proposition 2.9 we need only consider i = 0, and by
injectivity in degree 0 it follows in that case from a computation of orders: both sides have
order q · #(Pic(Oq)/q). (Alternatively prove surjectivity as in Corollary 2.12 below.) The
version for Oq follows from Lemma 2.10. �

The isomorphisms in different degrees in Lemma 2.11 are intertwined through the action
of β in an evident way; this switches between + and − eigenspaces. For example, the group

K
(β)
4k−2(Oq; Z/q)(−) is isomorphic to Z/q for any k ∈ Z, generated by β2k−1. We want to make

the isomorphism on the + eigenspace in degree 4k − 2 more explicit.

Corollary 2.12. The map

π0(Pic(Oq))/q → K
(β)
4k−2(Oq; Z/q)(+)

[L] 7→ β2k−1 · ([L]− 1)

is an isomorphism of groups (where the group operation is induced by tensor product in the
domain and direct sum in the codomain). More invariantly, in the notation of (2.5), the
isomorphism may be written

π0(Pic(Oq))⊗ µq(Oq)⊗(2k−1) → K
(β)
4k−2(Oq; Z/q)(+)

[L]⊗ ζ⊗(2k−1) 7→ β(ζ)2k−1 · ([L]− 1),
(2.8)

valid for any L ∈ Pic(Oq) and any ζ ∈ µq(Oq). In this formulation the isomorphism is
equivariant for the evident action of Gal(Kq/Q) ∼= (Z/q)× on both sides.

A similar result holds for K
(β)
4k (Oq; Z/q), except the roles of positive and negative eigenspaces

for ψ−1 are reversed.

Proof. Multiplication by β2k−1 : K
(β)
0 (O′q; Z/q)(−) → K

(β)
4k−2(O′q; Z/q)(+) is an isomorphism

which under the isomorphisms of Lemma 2.11 corresponds to multiplication by ζ
⊗(2k−1)
q : H2(Spec (O′q);µq)→

H2(Spec (O′q);µ
⊗(2k−1)
q ), so it suffices to prove that the composition

π0(Pic(O′q))/q → K0(O′q; Z/q)(−) → K
(β)
0 (O′q; Z/q)(−) Lem. 2.11−−−−−−→ H2

et(Spec (O′q);µq)
[L] 7→ [L]− 1

(2.9)

is an isomorphism. The mod q étale Chern class [L] 7→ c1(L) induces an isomorphism between
the same two groups, so it suffices to identify (2.9) with c1. This identification is well known3,
and follows by tracing through the isomorphism between Bott inverted K-theory and étale
cohomology induced by Thomason’s spectral sequence. See also Remark 2.13 for a shortcut. �

3In a preprint version of our paper we outlined a proof [FGV20, Proof of Corollary 2.12] of this well known
fact, since we were not able to locate a proof in the literature.
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Remark 2.13. For the reader who prefers to keep both the norm residue theorem and Thoma-
son’s spectral sequence as black boxes not to be opened, it may be shorter to consider the two
maps

π0(Pic(O′q))/q → K0(O′q; Z/q)(−) → K
(β)
0 (O′q; Z/q)(−)

separately. The first is an isomorphism by the usual splitting K0(O′q; Z/q) ∼= Z⊕ π0(Pic(O′q))
and the second by the final part of Lemma 2.11. That route gives a proof that (2.9) is an
isomorphism without inspecting what the map is, at the cost of appealing to the norm residue
theorem, thus invalidating Remark 1.4.

Lemma 2.14. For all k ∈ Z we have

K
(β)
4k−2(Z′; Z/q)(+) ∼= H2(Spec (Z′);µ⊗2k

q )

K
(β)
4k−2(Z′; Z/q)(−) ∼= H0(Spec (Z′);µ⊗(2k−1)

q )

K
(β)
4k (Z′; Z/q)(+) ∼= H0(Spec (Z′);µ⊗2k

q )

K
(β)
4k (Z′; Z/q)(−) ∼= H2(Spec (Z′);µ⊗2k+1

q ).

In odd degrees we have K
(β)
2k−1(Z′; Z/q) ∼= H1(Spec (Z′);µ⊗kq ) for all k, on which ψ−1 acts as

(−1)k.

Finally, the map Ki(Z
′; Z/q)→ K

(β)
i (Z′; Z/q) is an isomorphism for all i ≥ 0 and the map

Ki(Z; Z/q)→ K
(β)
i (Z; Z/q) is an isomorphism for for i = 0 or i ≥ 2.

Recall our standing assumption that q is odd.

Proof. Similarly to the prior analysis we get canonical isomorphisms

K
(β)
2k−1(Z′; Z/q) ∼= H1

et(Spec (Z′);µ⊗kq )

in odd degrees, and in even degrees we have short exact sequences

0→ H2
et(Spec (Z′);µ⊗kq )→ K

(β)
2k−2(Z′; Z/q)→ H0

et(Spec (Z′);µ⊗k−1
q )→ 0, (2.10)

canonically split into positive and negative eigenspaces for ψ−1 when q is odd. The periodicity of

these groups has longer period though: multiplying with βp
n−1(p−1) increases k by pn−1(p− 1).

As before the asssertion comparing K-theory and Bott-inverted K-theory of Z′ follows from
Proposition 2.9 by computing orders, and the assertion for Z uses Lemma 2.10. �

Proposition 2.15. Suppose that q is odd. Let Gal(Kq/Q) ∼= (Z/q)× act on K∗(O′q; Z/q) by
functoriality of algebraic K-theory. Then the homomorphisms(

K
(β)
4k−2(O′q; Z/q)(+)

)
Gal(Kq/Q)

→ K
(β)
4k−2(Z′; Z/q)(+)(

K
(β)
4k (O′q; Z/q)(−)

)
Gal(Kq/Q)

→ K
(β)
4k (Z′; Z/q)(−),

induced by the transfer map K∗(O′q; Z/q) → K∗(Z
′; Z/q), are both isomorphisms. (Here

(−)Gal(Kq/Q) denotes coinvariants for Gal(Kq/Q).)

Remark 2.16. It will follow implicitly from the proof that the transfer map behaves in the
indicated way with respect to eigenspaces for ψ−1, but let us give an independent explanation
for why the transfer map K∗(Oq; Z/q) → K∗(Z; Z/q) commutes with the Adams operation
ψ−1. This may seem surprising at first, since the forgetful map from Oq-modules to Z-modules
does not obviously commute with dualization. The “correction factor” is the dualizing module
ω, isomorphic to the inverse of the different d, which will play an important role later in the
paper. In this case the different is principal, and any choice of generator leads to a functorial
isomorphism between the Z-dual and the Oq-dual.



16 TONY FENG, SOREN GALATIUS, AKSHAY VENKATESH

Proof. The argument is the same in both cases, and uses naturality of Thomason’s spectral
sequence with respect to transfer maps: there is a map of spectral sequences which on the E2

page is given by the transfer in étale cohomology and on the E∞ page by (associated graded
of) the transfer map in K-theory. This naturality is proved in Section 10 of [BM15], the
preprint version of [BM20]. In our case the spectral sequences collapse, and identify the two

homomorphisms in the corollary with the maps on E−2,4k
2 and E−2,4k+2

2 , respectively. Hence
we must prove that the transfer maps(

H2
et(Spec (O′q);µ⊗tq )

)
Gal(Kq/Q)

→ H2
et(Spec (Z′);µ⊗tq )

are isomorphisms for all t or, equivalently, that their Pontryagin duals are isomorphisms. By
Poitou–Tate duality, the Pontryagin dual map may be identified with

π∗ : H1
c (Spec (Z′);µ⊗(1−t)

q )→
(
H1
c (Spec (O′q);µ⊗(1−t)

q )
)Gal(Kq/Q)

,

where the “compactly supported” cohomology is taken in the sense of [GV18, Appendix], i.e.,
defined as cohomology of a mapping cone. In this context we may apply a relative Hochschild-
Serre spectral sequence4 to give an exact sequence

0→ H1((Z/q)∗;H0
c (Spec (O′q);µ⊗(1−t)

q ))→ H1
c (Spec (Z′);µ⊗(1−t)

q )

→ H1
c (Spec (O′q);µ⊗(1−t)

q )(Z/q)∗ → H2((Z/q)∗;H0
c (Spec (O′q);µ⊗(1−t)

q )).

Now, the compactly supported cohomology group H0
c (Spec (O′q);µ

⊗(1−t)
q ) is the kernel of

the restriction map µq(O′q)⊗(1−t) → µq(Qp[µq])
⊗(1−t), which is an isomorphism. The exact

sequence then precisely becomes the desired isomorphism. �

2.8. Bott inverted algebraic K-theory and homology of certain Galois groups. In
this subsection we express Bott inverted algebraic K-theory of cyclotomic rings of integers in
terms of certain Galois homology groups. This will be useful later one, when trying to relate
K-theory to extensions of Galois modules.

Let H̃q ⊂ C be the Hilbert class field of Kq = Q[ζq] ⊂ C, the maximal abelian extension

unramified at all places. Class field theory asserts an isomorphism π0(Pic(Oq)) ∼= Gal(H̃q/Kq),

given by the Artin symbol. Let Hq ⊂ H̃q be the largest extension with p-power-torsion Galois
group, so that the Artin symbol factors over an isomorphism

π0(Pic(Oq))⊗ Zp
∼=−→ Gal(Hq/Kq)

[p] 7→
(
Hq/Kq

p

)
.

(2.11)

It is easy to check that this map is equivariant for the action of Gal(Kq/Q) which acts in the
evident way on the domain, and on the codomain the action is induced by the short exact
sequence

Gal(Hq/Kq)→ Gal(Hq/Q)→ Gal(Kq/Q). (2.12)

The following diagram gives the main tool through which we will understand the transfer

map tr : K
(β)
4k−2(Oq; Z/q)(+) → K

(β)
4k−2(Z; Z/q)(+). To keep typography simple, we write (in

the statement and its proof) µq for µq(C), and for a Galois extension E/F of fields, we write
H∗(E/F,−) for the group homology of the group Gal(E/F ).

4The relative Leray spectral sequence is noted in a topological context, for example, in Exercise 5.6 of
[McC01]. This implies such a spectral sequence for pairs of finite groups, and then for profinite groups by a
limit argument.
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Proposition 2.17. For all k ∈ Z there is a commutative diagram, with all horizontal maps
isomorphisms

H1(Hq/Kq;µ
⊗(2k−1)
q )

i∗����

π0(Pic(Oq))⊗ µ⊗(2k−1)
q

Art
∼=
oo ∼= // K(β)

4k−2(Oq; Z/q)(+)

tr
����

H1(Hq/Q;µ
⊗(2k−1)
q )

∼= // K(β)
4k−2(Z; Z/q)(+),

(2.13)

where:

• the map denoted i∗ is induced by the inclusion Gal(Hq/Kq) ⊂ Gal(Hq/Q);
• the map denoted Art is induced by the Artin map (2.11), together with the identification

H1(Hq/Kq, µ
⊗(2k−1)
q ) ' µ⊗(2k−1)

q ⊗Gal(Hq/Kq);
• the top arrow labeled “∼=” is the map of (2.8), i.e. the product of the map [L] 7→ [L]−

1 ∈ K0(Oq; Z/q)(−) composed with K0(Oq; Z/q)(−) → K
(β)
0 (Oq; Z/q)(−) and β2k−1 :

µq(C)⊗(2k−1) → K
(β)
4k−2(Oq; Z/q)(−);

• the bottom arrow labeled “∼=” is induced by the rest of the diagram.

The same assertion holds without Bott-inversion of the K-theory for k ≥ 1.

Proof. That the right top arrow is an isomorphism was already proved in Corollary 2.12. We

have also seen that K
(β)
4k−2(Oq; Z/q)(+) → K

(β)
4k−2(Z; Z/q)(+) induces an isomorphism from the

Gal(Kq/Q) coinvariants on the source: see Proposition 2.15, Lemma 2.10 and Proposition 2.9.
Therefore, we need only verify the corresponding property for i∗: it induces an isomor-

phism from the Gal(Kq/Q)-coinvariants on the source. This follows from the Hochschild–Serre
spectral sequence for the extension (2.12), which gives an exact sequence

H2(Kq/Q;µ⊗(2k−1)
q )→ H0(Kq/Q;H1(Hq/Kq;µ

⊗(2k−1)
q ))→ H1(Hq/Q;µ⊗(2k−1)

q )

→ H1(Kq/Q;µ⊗(2k−1)
q ). (2.14)

Considering the action of the central element c ∈ Gal(Kq/Q) given by complex conjugation we
see that the two outer terms vanish (the “center kills” argument).

For the last sentence use Lemma 2.11 and Lemma 2.14. �

Remark 2.18. Let c ∈ Gal(Hq/Q) be complex conjugation. Then H0(〈c〉;µ⊗(2k−1)
q ) = 0 =

H1(〈c〉;µ⊗(2k−1)
q ). Therefore the map

H1(Hq/Q;µ⊗(2k−1)
q )→ H1(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)

q )

is an isomorphism; on the right we have “relative” group homology, i.e. relative homology of
classifying spaces. This relative group homology may therefore be substituted in place of the
lower left corner of (2.13). This observation will be significant later.

Remark 2.19. The case p = q = 3 is anomalous in that the Moore spectrum S/3 does not
admit a unital multiplication which is associative up to homotopy. It does admit a unital and
homotopy commutative multiplication though, which induces graded commutative—but a priori
possibly non-associative—ring structures on K∗(O3; Z/3) and K∗(Z; Z/3). There is no problem
in defining Bott inverted K-theory, e.g. as in Remark 2.8, and according to [Tho85, A.11] the
construction of the spectral sequence holds also in this case. The Bott element β ∈ K2(O3; Z/3)
is defined as before, and multiplication by β defines an endomorphism of K∗(O3; Z/3). Iterating
this endomorphism 2k−1 times gives a homomorphism K0(O3; Z/3)→ K4k−2(O3; Z/3), which
we use to give meaning to expressions like β2k−1([L]− 1) in this section.
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In this interpretation the results of this section hold also in the case p = q = 3. Multiplication
by powers of a Bott element also appear in Section 5, we leave it to the diligent reader to verify
that similar remarks apply there.

3. Symplectic K-theory

In this section, we define the symplectic K-theory of the integers. Our main goal is to state
and prove Theorem 3.5, which shows that this symplectic K-theory, with Z/q-coefficients, splits
into two parts: one arising from the + part of the algebraic K-theory of Z, and the other from
the − part of topological K-theory.

3.1. Definition of symplectic K-theory. Just asK-theory arises from the symmetric monoidal
category of projective modules, symplectic K-theory arises from the symmetric monoidal cat-
egory of symplectic modules:

Consider the groupoid whose objects are pairs (L, b), where L is a finitely generated free Z-
module and b : L×L→ Z is a skew symmetric pairing whose adjoint L→ L∨ is an isomorphism,
and whose morphisms are Z-linear isomorphisms f : L → L′ such that b′(fx, fy) = b(x, y) for
all x, y ∈ L. This groupoid becomes symmetric monoidal with respect to orthogonal direct
sum (L, b)⊕ (L′, b′) = (L⊕L′, b+ b′), and we shall denote it SP(Z). The corresponding space
|SP(Z)| then inherits a product structure, and as before we get a spectrum KSp(Z) and a
group-completion map

|SP(Z)| → Ω∞KSp(Z).

The positive degree homotopy groups of KSp(Z) can be computed via the Quillen plus con-
struction (with respect to the commutator subgroup of Sp∞(Z) = π1(BSp∞(Z))).

Definition 3.1. The mod q symplectic K-theory groups of Z are defined as

KSpi(Z; Z/q) := πi(KSp(Z); Z/q)

and the p-adic symplectic K-theory groups can be defined5 as

KSpi(Z; Zp) := lim←−
n

KSpi(Z; Z/pn).

3.2. Hodge map and Betti map. The groups KSpi(Z; Z/q) are described in Theorem 3.5
below. The result is stated in terms of two homomorphisms, the Hodge map and the Betti map,
which we first define.

3.2.1. The Betti map.

Definition 3.2. Let cB : KSp(Z) → K(Z) be the spectrum map defined by the forgetful
functor SP(Z)→ P(Z). We shall use the same letter cB to denote the induced homomorphism
on mod q homotopy groups

cB : KSpi(Z; Z/q)→ Ki(Z; Z/q).

3.2.2. The Hodge map. The Hodge map is more elaborate. It arises from the functors of

symplectic Z-modules︸ ︷︷ ︸
SP(Z)

→ symplectic R-modules︸ ︷︷ ︸
SP(Rtop)

← Hermitian C-vector spaces︸ ︷︷ ︸
U(Ctop)

. (3.1)

where the entries are now regarded as symmetric monoidal groupoids that are enriched in
topological spaces. In more detail:

5Or equivalently as the homotopy groups of the p-completion of the spectrum KSp(Z). These agree because
the homotopy groups of KSp(Z) are finitely generated abelian groups.
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• Let SP(Rtop) be the groupoid (enriched in topological spaces) defined as SP(Z) but
with R-modules L and R-bilinear symplectic pairings b : L × L → R. We regard it
as a groupoid enriched in topological spaces, where morphism spaces are topologized
in their Lie group topology, inherited from the topology on R (the superscript “top”
signifies that we remember the topology, as opposed to considering R as a discrete
ring).
• Write U(Ctop) for the groupoid (again enriched in topological spaces) whose objects

are finite dimensional C-vector spaces L equipped with a positive definite Hermitian
form h : L ⊗C L → C, and morphisms the unitary maps topologized in the Lie group
topology.
• The functor U(Ctop)→ SP(Rtop) is obtained by sending a unitary space (L, h), as in

(ii), to the underlying real vector space LR, equipped with the symplectic form Im h.
This functor induces a bijection on sets of isomorphism classes and homotopy equiva-
lences on all morphisms spaces, because U(g) ⊂ Sp2g(R) is a homotopy equivalence.

We equip these categories with the symmetric monoidal structures given by direct sum. Then,
as discussed in the Appendix, the diagram (3.1) gives rise to a diagram of Γ-spaces and thereby
to a diagram of spectra:

KSp(Z)→ KSp(Rtop)← ku, (3.2)

where we follow standard notation in using ku (connective K-theory) to refer to the spectrum
associated to U(Ctop). The last arrow here is a weak equivalence, i.e. induces an isomorphism on
all homotopy groups. Indeed, as noted above,

∐
g BU(g) '

∐
g BSp2g(R) is a weak equivalence,

therefore the group completions are weakly equivalent, therefore Ω∞(ku) → Ω∞(KSp(Rtop))
is a weak equivalence, and so the map ku → KSp(Rtop) of connective spectra is a weak
equivalence.

In the homotopy category of spectra, weak equivalences become invertible, and so the dia-
gram (3.2) induces there a map KSp(Z)→ ku.

Definition 3.3. The Hodge map is the morphism

cH : KSp(Z)→ ku

in the homotopy category of spectra that has just been constructed. The map cH induces a
homomorphism

KSpi(Z; Z/q)→ πi(ku; Z/q)

which we shall also call the Hodge map. By Bott periodicity, the target is Z/q when i is even
and 0 when i is odd.

Remark 3.4 (Explanation of terminology). With reference to the relationship between sym-
plectic K-theory and moduli of principally polarized abelian varieties (§1.2) the Hodge map is
related to the Chern classes of the Hodge bundle whose fiber over A is H0(A,Ω1), and thus
to the “Hodge realization” of A. On the other hand, the Betti map is related to the “Betti
realization” H1(A,Z).

3.3. Determination of symplectic K-theory in terms of algebraic K-theory. As ex-
plained above, the Adams operation ψ−1 induces an involution of K∗(Z; Z/q) which gives a
splitting for odd q into positive and negative eigenspaces. There are also Adams operations on
ku, and their effect on homotopy groups are very easy to understand. In particular, ψ−1 acts
as (−1)k on π2k(ku) ∼= Z. The main goal of this section is to explain the following result.

Theorem 3.5. For odd q = pn, the homomorphism

KSpi(Z; Z/q)→ (Ki(Z; Z/q))(+) ⊕ (πi(ku; Z/q))(−) (3.3)
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defined by the Betti and Hodge maps, composed with the projections onto the indicated eigenspaces
for ψ−1, is an isomorphism. (We will refer later to the induced isomorphism as the Betti-Hodge
map). In particular we get for k ≥ 1

KSp4k−2(Z; Z/q) ∼= H2(Spec (Z′);µ⊗2k
q )⊕ (Z/q).

The latter statement follows from the first using Corollary 2.14. Using the other statements
of that Corollary, taking the inverse limit over n, and using that Ki(Z) and KSpi(Z) are finitely
generated for all i to see that the relevant derived inverse limits vanish, we deduce the following.

Corollary 3.6. For odd p and i > 0, the groups KSpi(Z; Zp) are as in the following table, with
the identifications given explicitly by the Betti-Hodge map:

i mod 4 0 1 2 3
KSpi(Z; Zp) 0 0 Ki(Z; Zp)⊕ Zp Ki(Z; Zp)

Remark 3.7. The relationship between K-theory and Hermitian K-theory is more complicated
when the prime 2 is not inverted, and is well understood only quite recently. See [CDH+20a,
CDH+20b, CDH+20c]6 as well as [HM], [HSV19] and [Sch19].

We consider only odd primes in this paper, where the isomorphism (3.3) can be deduced
from the work of Karoubi [Kar80].

3.4. Symplectic K-theory and Grothendieck–Witt theory. Symplectic K-theory as de-
fined above is a special case of Grothendieck–Witt theory, introduced by Karoubi and Villa-
mayor [KV71] under the name of Hermitian K-theory. In the original definition the input is a
ring A equipped with an anti-involution x 7→ x and an element ε ∈ A such that εε = 1. These
groups were denoted εLn(A), and for n > 0 defined as

εLn(A) = πn(BεO(A)+),

where εO(A) is the direct limit as g → ∞ of certain subgroups εOg,g(A) ⊂ GL2n(A). The
special case A = Z and ε = −1 is closely related to symplectic K-theory, because εOg,g(Z) is a
subgroup of Sp2g(Z) of finite index 2g−1(2g + 1), and a transfer argument can be used to show
that the inclusion induces a homomorphism

−1Ln(Z)→ KSpn(Z)

which becomes an isomorphism after inverting 2.
After inverting 2, we have a splitting Kn(Z)[ 1

2 ] = Kn(Z)[ 1
2 ](+)⊕Kn(Z)[ 1

2 ](−) into eigenspaces

of the Adams operation ψ−1, and it follows7 from the main result of [Kar80] that there is an
isomorphism

KSpn(Z)[ 1
2 ]
∼=−→
(
Kn(Z)[ 1

2 ]
)(+) ⊕

(
−1Wn(Z)[ 1

2 ]
)
,

for certain groups −1Wn(Z)[ 1
2 ] which vanish when n 6≡ 2 mod 4 and are isomorphic to Z[ 1

2 ]

when n ≡ 2. Moreover, the projection KSpn(Z)[ 1
2 ]→ Kn(Z)[ 1

2 ](+) is induced by the inclusions

of discrete groups Sp2g(Z)→ GL2g(Z) and the inclusion Kn(Z)[ 1
2 ](+) → KSpn(Z)[ 1

2 ] is induced
by the hyperbolic construction GLg(Z) ↪→ Sp2g(Z).

In the notation of [CDH+20b, CDH+20c] and [HS21], our KSp(Z) agrees by definition with
what is denoted GW−scl (Z) and GWs

cl(Z;−Z) there. The subscript “cl” is short for “classical”
and denotes that these are defined as homotopy groups of a Quillen plus-construction, as in

6The second author wishes to thank Fabian Hebestreit, Markus Land, Kristian Moi, and Thomas Nikolaus

for helpful conversations.
7In an earlier version of the paper, we explained in more detail how to deduce this isomorphism from Karoubi’s

main result. We decided this was unnecessary, not least in light of the thorough treatment in [CDH+20a,
CDH+20b, CDH+20c, HS21].
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Karoubi’s work and in our discussion of KSp(Z). The main result of [HS21] compares that
with a spectrum GW−gs(Z) = GW(Dp(Z), Ϙ−gs), whose definition is based on chain complexes
instead of discrete abelian groups, which by an instance of the main theorem of [CDH+20b] fits
into a cofiber sequence with algebraic L-theory and the homotopy orbits of the involution on
algebraic K-theory. The upshot is a fiber sequence of spectra of the form

K(Z)hC2
→ KSp(Z)→ τ≥0L

−s(Z), (3.4)

an instance of [HS21, Corollary 8.3.5] for example. After inverting 2, we obtain a spectrum
level splitting K(Z)[ 1

2 ] ' K(Z)[ 1
2 ](+) ⊕K(Z)[ 1

2 ](−), and the cofiber sequence (3.4) becomes

K(Z)[ 1
2 ](+) → KSp(Z)[ 1

2 ]→ τ≥0L
−s(Z)[ 1

2 ], (3.5)

where the first map is induced by the hyperbolic construction (i.e., sending a finitely generated
abelian group M to M ⊕M∨ equipped with the standard symplectic form). The sequence
is canonically split by the spectrum map KSp(Z) → K(Z)[ 1

2 ](+) induced by the inclusion

Sp2g(Z)→ GL2g(Z). Finally, πnL
−s(Z)[ 1

2 ] coincides8 with Karoubi’s −1Wn(Z)[ 1
2 ].

3.5. Proof of Theorem 3.5. The proof requires the following non-triviality result about the
Hodge map in degrees ≡ 2 mod 4, proved in Section 5.1.

Proposition 3.8. The homomorphism

KSp4k−2(Z; Z/p)→ π4k−2(ku; Z/p) ∼= Z/p

induced by the Hodge map is non-zero for all k ≥ 1.

This proposition, valid under our standing assumption that p is odd, implies that the ho-
momorphism KSp4k−2(Z)→ π4k−2(ku) ∼= Z is non-zero, and in fact that it becomes surjective
after inverting 2. The proof (in Proposition 5.2) amounts to constructing a spectrum map
Σ∞+ B(Z/p)→ KSp(Z) whose composition with the Hodge map is nonzero in π4k−2(−; Z/p).

Proof of Theorem 3.5, assuming Proposition 3.8. Isomorphism with p-local coefficients implies
isomorphism with mod q = pn coefficients, so we have isomorphisms

πi(KSp(Z); Z/q) = πi(GW−gs(Z); Z/q)
∼=−→ Ki(Z; Z/q)(+) ⊕ πi(L−s(Z); Z/q),

while we wish to show that

πi(KSp(Z); Z/q)
(cB ,cH)−−−−−→ Ki(Z; Z/q)(+) ⊕ πi(ku; Z/q)(−) (3.6)

is an isomorphism. By inspection the groups πi(ku; Z/q)(−) and πi(L
−gs(Z); Z/q) are abstractly

isomorphic for all i ≥ 0. Since all the groups involved here are finite, it suffices to show that (3.6)
is surjective. Composing the hyperbolization map Ki(Z; Z/p)→ KSpi(Z; Z/p) with the Betti-
Hodge map induces

(1 + ψ−1, 0) : Ki(Z; Z/p)→ Ki(Z; Z/p)× πi(ku; Z/p)(−),

because the composition with the Hodge map may be identified with the map K(Z) → ku
arising from the inclusion Z → Ctop composed with 1 + ψ−1, which lands in the positive
eigenspace. Hence the image of (3.6) contains the first summand. The second summand is
nonzero only for i congruent to 2 modulo 4, and the claim follows from Proposition 3.8. �

Remark 3.9. A similar argument shows that on the level of spectra, there is a weak equivalence

KSp(Z)[ 1
2 ]
'−→ K(Z)[ 1

1+ψ−1 ]× ku[ 1
1−ψ−1 ].

8We point out that Karoubi’s notation L is a special case of the GW from [CDH+20a, CDH+20b, CDH+20c].
The L-theory in the latter papers are more similar to Karoubi’s W -groups
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3.6. Bott inverted symplectic K-theory. This subsection is in fulfillment of Remark 1.4,
but is not logically necessary for the main presentation of our results.

Recall from Remark 2.8 that there is a spectrum T such that K(β)(X; Z/q) = π∗(K(X)∧T ),
and that T is defined as a mapping telescope of a self-map ΣmS/q → S/q with m = 2pn−1(p−1),
chosen with the property that it induces an isomorphism πi(K) → πi+m(K) for all i when K
denotes periodic complex K-theory. Such a map is often called a v1 self-map, and serves as
a replacement for multiplication by the Bott element. We may then define “Bott inverted
homotopy groups” of any spectrum E as the homotopy groups of E ∧ T , although this is more
commonly called v1-inverted homotopy groups and denoted

πi(E; Z/q)[v−1
1 ] = πi(E ∧ T ) = colim

(
πi(E; Z/q)→ πi+m(E; Z/q)→ . . .

)
,

where the maps in the direct limit are induced by the chosen v1 self-map.
For example, the natural map ku→ K from connective to periodic complexK-theory induces

isomorphisms

πi(ku; Z/q)[v−1
1 ]→ πi(K; Z/q)[v−1

1 ]← πi(K; Z/q),

for all i ∈ Z. In this notation we have

K
(β)
i (X; Z/q) = πi(K(X); Z/q)[v−1

1 ],

and we may completely similarly define

KSp
(β)
i (Z; Z/q) := πi(KSp(Z); Z/q)[v−1

1 ]. (3.7)

Also, we define the p-adic Bott-inverted symplectic K-theory groups

KSp
(β)
i (Z; Zp) := lim←−

n

KSp
(β)
i (Z; Z/pn).

Since colimits preserve isomorphisms, we immediately deduce the following.

Corollary 3.10. The Bott inverted symplectic K-theory groups of Z are given by isomorphisms

KSp
(β)
i (Z; Z/q)

(cB ,cH)−−−−−→ K
(β)
i (Z; Z/q)(+) × πi(K; Z/q)(−)

for all i ∈ Z. �

These groups are periodic in i and in particular they are likely non-zero in negative degrees.
We then obtain isomorphisms

KSp
(β)
i (Z; Zp)

(cB ,cH)−−−−−→ K
(β)
i (Z; Zp)

(+) × πi(K; Zp)
(−)

of Zp-modules. These are still non-zero in many negative degrees, but are no longer periodic
of any degree.

Remark 3.11. To elaborate upon Remark 1.4, we explain that these inverse limits of Bott
inverted mod pn groups may be re-expressed using K(1)-localization. The K(1)-localization
of a spectrum E consists of another spectrum LK(1)E and a map E → LK(1)E with various
good properties. (The functor LK(1) depends on p, which is traditionally omitted from the
notation.) The defining properties include that the induced homomorphism in K/p-homology
(K/p)∗(E)→ (K/p)∗(LK(1)E) is an isomorphism, where K denotes periodic complex K-theory
and K/p = (S/p) ∧K. More relevant for us is that it “implements inverting v1”, see [Rav84,
Theorem 10.12], and we have canonical isomorphisms

KSp
(β)
i (Z; Z/q) ∼= πi(LK(1)KSp(Z); Z/q)

KSp
(β)
i (Z; Zp) ∼= πi(LK(1)KSp(Z)).
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4. Review of the theory of CM abelian varieties

In the main part of this section, we discuss the theory of abelian varieties with complex
multiplication (CM). In order to motivate why we are doing this, let us first explain how KSp
is related to abelian varieties, and then outline how the theory of complex multiplication can
be used to produce classes in KSp(Z).

4.1. Abelian varieties, symplectic K-theory, and the construction of CM classes. As
discussed in the outline in §1.3, we are going to construct certain “CM classes” in the symplectic
K-theory of Z. Let us first go from abelian varieties to K-theory, before considering how CM
enters the picture.

There is a functor between groupoids

Ag(C)→ SP(Z). (4.1)

Here the domain Ag(C) denotes the groupoid of principally polarized abelian varieties and
isomorphisms between such. In particular, we do not take the topology of C into account at
this moment.

An object in Ag(C) consists of an abelian variety A → Spec (C) together with a polarization,
which is given by a line bundle L → A ×Spec (C) A, rigidified by a non-zero section of L over
(e, e). The reference map A → Spec (C) allows us to take “Betti” homology H∗(A(C); Z)
and cohomology, and c1(L) ∈ H2(A(C) × A(C); Z) defines a skew symmetric pairing on L =
H1(A(C); Z) which is perfect because the polarization is principal. We therefore have an
object (H1(A; Z), c1(L)) ∈ SP(Z). Similarly isomorphisms in Ag(C) are sent to isomorphisms
in SP(Z), so (4.1) induces |Ag(C)| → |SP(Z)| → Ω∞KSp(Z) and then by adjunction a map
of spectra

Σ∞+ |Ag(C)| → KSp(Z). (4.2)

Next we explain what CM classes are. We take a principally polarized abelian variety A
that admits an action of the cyclotomic ring Oq = Z[e2πi/q] ⊂ C. In particular, the cyclic

group Z/q acts on A (where 1 ∈ Z/q acts via e2πi/q) giving rise to a morphism of groupoids
B(Z/q)→ Ag(C), whence

Σ∞+ (B(Z/q))→ Σ∞+ |Ag(C)| → KSp(Z).

Now take homotopy with mod q coefficients. On the left, we get the stable homotopy of B(Z/q)
with mod q coefficients; in §2.1.1 we described a polynomial algebra Z/q[β] inside this homotopy
ring. The image of powers of β under the composite in KSp∗(Z; Z/q) are, by definition, the
“CM classes” of §1.3. (A more precise version of this discussion is given after Proposition 5.1).

Now let us review how principally polarized abelian varieties with an action of Oq are pa-
rameterized. We will work a little more generally: for any 2g-dimensional abelian variety A,
the dimension of any commutative Q-subalgebra of End(A)⊗Q is at most g. If equality holds,
then A is said to have “complex multiplication” (or CM for short), and the ring End(A) is
necessarily a CM order:

Definition 4.1. (1) A CM field is, by definition, a field extension of Q which is a totally

imaginary extension of a totally real field E+, i.e. E ∼= E+(
√
d) where all embeddings

E+ → C have real image, and all take d to negative real numbers.9 A CM algebra is a
product of CM fields.

(2) A CM order is an order in a CM algebra E stable by conjugation.
Here “order” means a subring O 6 E which is free as a Z-module and for which

O⊗Z Q→ E is an isomorphism; and “conjugation” is the unique automorphism x 7→ x̄
of E which induces conjugation in any homomorphism E ↪→ C.

9In the literature one sometimes sees a slightly broader definition of CM fields, including totally real fields.
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We can construct CM abelian varieties as follows: taking O a CM-order, let a 6 O be an
ideal, and Φ : O ⊗ R ' Cg an isomorphism. Then (O ⊗ R)/a has the structure of complex
analytic torus. To give it an algebraic structure, one must polarize the resulting torus: one needs
a symplectic Z-valued pairing on the first homology group a. To get it one chooses a suitable
purely imaginary element u ∈ O⊗Q and considers the symplectic form (x, y) ∈ a×a 7→ Tr(xuȳ).
All CM abelian varieties over C arise from this construction.

The resulting construction produces a complex abelian variety A from the data O, a,Φ, u.
For any automorphism σ ∈ Aut(C) the twist σ(A), i.e. the abelian variety obtained by applying
σ to a system of equations defining A, necessarily arises from some other data (O′, a′,Φ′, u′).
The Main Theorem of Complex Multiplication in its sharpest form, describes how to compute
this new data. This theorem (in a slightly weaker form) is due to Shimura and Taniyama, and
it will eventually be used by us to compute the action of Aut(C) on CM classes in KSp(Z; Z/q).

In our presentation – designed to simplify the interface with algebraic K-theory – we will
regard the basic object as the O-module a together with the skew-Hermitian form x, y 7→ xuȳ,
valued in aua. We will interpret the construction sketched above as a functor of groupoids

P−E = groupoid of skew-Hermitian O-modules
ST−→ Ag(C).

The composition of this functor with (4.1) Ag(C) → SP(Z) associates to a skew-Hermitian
module an underlying symplectic Z-module.

Remark 4.2. The appearance of Hermitian forms is quite natural from the point of view of
the theory of Shimura varieties: indeed, the set of abelian varieties with CM by a given field E
is related to the Shimura variety for an associated unitary group.

4.2. Picard groupoids. Recall from Section 2.6 that for a commutative ring R we have defined
Pic(R) as the groupoid whose objects are rank 1 projective R-modules and whose morphisms
are R-linear isomorphisms between them. For a ring with involution, there is a version of this
groupoid where the objects are equipped with perfect sesquilinear forms.

Definition 4.3. For a commutative ring O with involution x 7→ x and an O-module L we shall
write L for the module with the same underlying abelian group but O-action changed by the
involution. For a rank 1 projective O-module ω equipped with an O-linear involution ι : ω → ω
we shall write P(O, ω, ι) for the following groupoid:

- Objects are pairs (L, b) where L is a rank 1 projective O-module and b : L⊗O L → ω
an isomorphism satisfying b(x⊗ y) = ι(b(y ⊗ x)).

We may equivalently view b as a function L × L → ω which is O-linear in the first
variable and conjugate O-linear in the second variable, and we will frequently do this
below.

- Morphisms (L, b)→ (L′, b′) areO-linear isomorphisms φ : L→ L′ such that b′(φ(x), φ(y)) =
b(x, y) for all x, y ∈ L.

There are some instances of this construction of particular interest for us. Take E to be a
CM field and O to be its ring of integers (i.e., the integral closure of Z in E), with involution
the conjugation x 7→ x̄.

(i) P+
E , the groupoid of Hermitian forms on O:

Take ω = O with the conjugation involution and set P+
E = P(O, ω, ι).

(ii) P+
E⊗R, the groupoid of Hermitian forms on E ⊗R:
As in (i), but now replacing O by O ⊗R and ω by O ⊗R = ω ⊗R, i.e. PE⊗R =

P(O ⊗R,O ⊗R, ι⊗R).
(iii) P−E , the groupoid of skew-Hermitian forms on O valued in the inverse different:
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Take ω = d−1 the inverse different10 for E, with the negated conjugation involution
−ι : z 7→ −z̄ and set P−E = P(O, d−1,−ι).

(iv) P−E⊗R, the groupoid of skew-Hermitian forms on E ⊗R:
As in (iii), but tensoring with R.

Now, given (L, b) ∈ P−E , we shall write LZ for the Z-module underlying L. It is a free
Z-module of rank 2g = dimQ(E), and inherits a bilinear pairing

LZ × LZ → Z

(x, y) 7→ −TrEQ(b(x, y)).
(4.3)

This pairing is readily verified to be skew-symmetric and perfect (i.e., the associated map
LZ → L∨Z is an isomorphism) so that associating to (L, b) ∈ P−E the free Z-module with the
pairing above defines a functor

P−E → SP(Z). (4.4)

We shall return to this in Section 4.3 below.
Finally, we comment on monoidal structure. Unlike Pic(R), we do not have a symmetric

monoidal structure on P(O, ω, ι) in general. However, if we take ω = O equipped with the
involution on O, then P+

E = P(O,O, ι) has the structure of a symmetric monoidal groupoid,
and more generally:

Definition 4.4. Let (O, ω, ι) and (O, ω′, ι′) be as above (same underlying ring with involution,
two different invertible modules with involution). Define a functor

P(O, ω, ι)× P(O, ω′, ι′) ⊗−→ P(O, ω ⊗O ω′, ι⊗ ι′) (4.5)

as (L, b)⊗ (L′, b′) = (L⊗O L′, b⊗ b′), where (b⊗ b′)(x⊗ x′, y ⊗ y′) = b(x, y)b(x′, y′).

In particular this construction gives a symmetric monoidal structure on P+
E and an “action”

bifunctor P+
E × P

−
E → P

−
E .

4.3. Construction of CM abelian varieties. Let E be a CM field. We will now construct
the map ST : P−E → Ag(C) promised in §4.1. In fact this factors the functor P−E → SP(Z) of
(4.4).

P−E
ST→ Ag(C)

(4.1)−−−→ SP(Z). (4.6)

To construct the functor ST, start with an object (L, b) ∈ P−E . We shall equip LR/LZ with
the structure of a principally polarized abelian variety. In order to do so it is necessary to
specify, firstly, a complex structure J on LR, and secondly a Hermitian form on LR whose
imaginary part is a perfect symplectic pairing LZ × LZ → Z. (This data can be used, as in
[Mum08, Section I.2], to construct an explicit ample line bundle on LR/LZ whose first Chern
class is the specified symplectic pairing.)

We begin by specifying the symplectic pairing: it is given by the expression of (4.3), i.e.

LZ × LZ → Z

(x, y) 7→ −TrEQb(x, y).
(4.7)

(The sign is a purely a convention—the opposite convention would lead to other signs elsewhere,
e.g. the inequality in (4.10) below would be the other way around.) The definition of d−1 makes
this form Z-valued and perfect, by the corresponding properties of b. The real-linear extension

10The inverse different d−1 is, by definition,

d−1 = {y ∈ E | TrEQ(xy) ∈ Z for all x ∈ O}.

which is canonically isomorphic to HomZ(O,Z), with module structure defined by (a.f)(x) = f(ax); under this
identification the trace d−1 → Z is sent to the functional on HomZ(O,Z) given by precomposition with Z→ O.
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of this symplectic form is the imaginary part of a Hermitian form on LR in a complex structure;
we specify this complex structure and Hermitian form next.

A CM type Φ for E is, by definition, a subset Φ ⊂ HomRings(E,C) with the property that
the induced map

E ⊗R→ CΦ (4.8)

is an isomorphism; equivalently, Φ contains precisely one element in each conjugacy class {j, j}.
Such a Φ determines a complex structure on LR, for (4.8) gives E⊗R the structure of C-algebra.

If Φ is a CM type, then

TrEQb(x, y) = 2Re

(∑
j∈Φ

j(b(x, y))

)
,

where we used that TrEQ(x) =
∑
j:E→C j(x) ∈ Q ⊂ C, where the sum is over all ring homomor-

phisms E → C. In particular, the function LR × LR → C given by

〈x, y〉b = −2i

(∑
j∈Φ

j(b(x, y))

)
, (4.9)

has (4.7) for imaginary part. Moreover, 〈−,−〉b is Hermitian with respect to the complex
structure on LR induced by Φ. Finally, 〈−,−〉b is positive definite precisely for the unique
CM-type Φ = Φ(L,b), defined as

Φ(L,b) := {j : E → C | Im(jb(x, x)) ≥ 0 for all x ∈ LR} (4.10)

i.e. the embeddings sending b(x, x) ∈ E ⊗R to the upper half-plane for all x ∈ LR. We shall
say that Φ(L,b) is the CM structure on E associated to the object (L, b) ∈ P−E . Evidently, it
depends only on the image of (L, b) under the base change functor

P−E
−⊗ZR−−−−→ P−E⊗R

To summarize, to (L, b) we have associated:

- a complex structure on LR (the one induced from Φ(L,b) via (4.8));
- a positive definite Hermitian form 〈−,−〉b on this complex vector space; the imaginary

part of this form restricts to the symplectic form (4.7).

The quotient LR/LZ thus has the structure of a principally polarized abelian variety over C;
we denote it by ST(L, b).

The O-module structure on L gives a homomorphism

O → End ST(L, b),

which is a homomorphism of rings with involution when the target is given the Rosatti involution
induced by the polarization of ST(L, b). Acting by an element of a ∈ O gives an endomorphism
of ST(L, b), which will be an automorphism if a ∈ O×, but not necessarily one that preserves
the polarization: the polarization is given by a line bundle L on ST(L, b)× ST(L, b), and the
correct statement is that

(a, 1)∗(L ) = (1, a)∗(L ). (4.11)

However, acting by an element of the subgroup {a ∈ O× | xx = 1} does preserve the polariza-
tion.

The association (L, b) 7→ ST(L, b) defines the desired functor

ST : P−E → Ag(C). (4.12)
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Remark 4.5. In fact, the association (L, b) 7→ ST(L, b) can be made into an equivalence by
modifying the target category. Namely, consider principally polarized abelian variety A over
the complex numbers together with a map ι : O → End(A) that respects the polarization in the
sense of (4.11). Such form a groupoid in an evident way (the morphisms being isomorphisms of
abelian varieties respecting polarization and O-action); call this groupoid AOg (C). The functor
ST defined in (4.12) factors through

P−E −→ A
O
g (C)

and this is an equivalence: an inverse functor sends (A, ι) to (L, b), where L = H1(A(C); Z),

and b : L× L→ d−1 is uniquely specified by the requirement that −TrEQb(x, y) coincides with
the skew-symmetric pairing on L induced by the principal polarization.

Remark 4.6. As in (4.5), there is a tensor bifunctor P−E × P
+
E → P

−
E .

If (X, q) ∈ P(O,O, ι+) is positive definite – that is, q(x, x) ∈ O+ is totally positive for all x ∈
X – then this tensor operation can be described algebraically via “Serre’s tensor construction”
[AK]: if (L′, b′) = (L, b)⊗ (X, q) then

ST(L′, b′) ∼= ST(L, b)⊗O (X, q), (4.13)

the abelian variety representing the functor R 7→ Hom(Spec (R),ST(L, b))⊗OX, equipped with
a polarization induced by that of A(L, b) and q.

If q is not positive definite it seems difficult to give an explicit description such as (4.13). For
example, tensoring with (X, q) = (O,−1), where “−1” denotes the form x ⊗ y 7→ −xȳ, sends
A = ST(L, b) to its “complex conjugate” variety A. (In the discussion above, it replaces the
CM type Φ(L,b) with its complement.)

4.4. Construction of enough objects of P−E for a cyclotomic field. We now specialize
to the case when E = Kq ⊂ C, the cyclotomic field generated by the qth roots of unity. We
shall prove a slightly technical result about the existence of enough objects in the groupoid
P−Kq ; this is the key setup in our later verification (Proposition 5.1) that CM classes exhaust

symplectic K-theory.
Recall that a CM structure on Oq, the ring of integers of Q(µq), may be defined either as an

R-algebra homomorphism C→ Oq⊗R, or as a set of embeddings Oq → C containing precisely
one element in each equivalence class {j, j̄} under conjugation. As in (4.10) each object (L, b)
of the groupoid P−Kq picks out a CM type, which we denote as Φ(L,b); explicitly, (L⊗R, b⊗R)

is isomorphic to Oq ⊗ R with Hermitian form given by (x, y) 7→ xuȳ for some u ∈ Oq ⊗ R
purely imaginary, and the CM type is given by those embeddings for which the imaginary part
of j(u) is positive.

Proposition 4.7. Let Φ be a CM structure on Oq and let L ∈ Pic(Oq). Then there exist
objects (B1, b1) and (B2, b2) of P−Kq such that

(i) [B1][B2] = [L][L]−1 ∈ π0(Pic(Oq)),
(ii) Φ(B1,b1) = Φ(B2,b2) = Φ.

Proof. Let ζq = e2πi/q ∈ Oq as usual, and recall that the different d ⊂ Oq is principal and

generated by11 q/(ζ
q/p
q − 1). The element w = (1 − ζ2)/(1 − ζ) = (1 + ζ) is a unit in Oq and

has the property that w = ζ−1
q w. If we set

δ := wq/p
q

ζ
q/p
q − 1

,

11To justify this, see [Was97, Proposition 2.7] for the calculation of the discriminant, from which it’s easy to
deduce the statement about the different, using that Kq/Q is totally ramified over p.
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it follows that (δ) = d and δ = −δ, i.e. δ is purely imaginary. The inverse different ideal
d−1 ⊂ Kq is therefore also principal, generated by the purely imaginary element δ−1.

It is now easy to satisfy (i): set

B′1 = Oq b′1(x, y) = δ−1xy

B′2 = L⊗ L−1
b′2(x⊗ φ, y ⊗ ψ) = δ−1 · ψ(x) · φ(y)

where in the first line x ∈ Oq and y ∈ Oq, and in the second line x ⊗ φ ∈ B′2 = L ⊗ L−1
and

y⊗ψ ∈ B′2 ∼= L⊗L−1 (and the evaluation pairing between L and L−1 comes from viewing L−1

as the dual of L). It is clear that the pairings B′i ⊗Oq B
′
i → Kq defined by the two formulae

give isomorphisms onto (δ−1) = ωOq , and the fact that δ is totally imaginary implies that

bi(x, y) = −bi(y, x), so that we indeed have two objects (Bi, bi) ∈ P−Kq . It is also obvious that

[B′1][B′2] = [L][L]−1 ∈ π0Pic(Oq). These objects do not necessarily satisfy (ii) though: any
complex embedding j : Kq → C will take b1(x, x) and b2(x, x) to a non-negative real multiple
of the imaginary number j(δ−1), so in fact Φ(B′1,b

′
1) = Φ(B′2,b

′
2) = Φ0, where

Φ0 = {j : Kq → C | Im(j(δ−1)) > 0}.
To realize other CM structures we shall use the tensor product (4.5) and set

(B1, b1) = (B′1, b
′
1)⊗ (X, q)

(B2, b2) = (B′2, b
′
2)⊗ (X, q)−1

for a suitable object (X, q) ∈ P+
Kq

. We shall choose (X, q) using the following Lemma:

Lemma 4.8. Let O+
q ⊂ K+

q denote the ring of integers in K+
q = Q[cos(2π/q)], the maximal

totally real subfield of Kq, and let S = Hom(O+
q ,R) be the set of real embeddings of Oq. For

any function f : S → {±1} there exists a non-zero prime element t ∈ O+
q such that

• sgn(j(t)) = f(j) for all j ∈ S,
• tOq = xx for a (prime) ideal x ⊂ Oq.

We give the proof of the lemma below, but let us first explain why it permits us to conclude
the proof. Let X be the Oq-module underlying x and define a sesquilinear pairing on X by

q(x, y) = t−1xy.

This defines an isomorphism q : X ⊗Oq X → Oq, and q(x, y) = q(y, x) since t is totally real.

Hence we have an object (X, q) ∈ P+
Kq

. Now the difference between Φ(L,b)⊗(X,q) and Φ(L,b) is

precisely determined by the signs of t under the real embeddings of K+
q , which are controlled

by the function f in the lemma, which may be arbitrary. �

Proof of Lemma 4.8. This will be a consequence of the Chebotarev density theorem in algebraic
number theory, which produces a prime ideal with a specified splitting behavior in a field
extension; for us the extension is H+

q Kq/Kq, where H+
q is the narrow Hilbert class field of K+

q ,

that is, the largest abelian extension of K+
q that is unramified at all finite primes.

Restriction defines an isomorphism

Gal(H+
q Kq/K

+
q )

∼−→ Gal(H+
q /K

+
q )×Gal(Kq/K

+
q ), (4.14)

(the map is surjective because Kq/K
+
q is totally ramified at the unique prime above q and

H+
q /K

+
q is unramified, so the inertia group at q maps trivially to the first factor and surjects

to the second factor). Now class field theory defines an isomorphism

Art :
{±1}S × fractional ideals

principal signed ideals

∼−→ Gal(H+
q /K

+
q ) (4.15)
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where the principal signed ideals are elements of the form (sign(λ), λ) for λ a nonzero element
of K+

q . The map from left to right is the Artin map on fractional ideals, and sends the −1
factor indexed by j ∈ S to the complex conjugation above j.

By the Chebotarev density theorem, there exists a prime ideal t of K+
q whose image under

(4.14) is trivial in the second factor, and, in the first factor, coincides with Art(f × trivial).
Triviality in the second factor forces t to be split in Kq/K

+
q ; the condition on the first factor

forces t = tO+
q where the sign of j(t) is given by f(j), for each j ∈ S. �

5. CM classes exhaust symplectic K-theory

The primary goal of this section is to verify that the construction of classes in symplectic
K-theory sketched in §4.1 in fact produces all of symplectic K-theory in the degrees of interest.

In more detail: we have constructed a sequence (4.6) P−E
ST→ Ag(C)→ SP(Z) associated to

a CM field E; the functor ST produces a CM abelian variety from a skew-Hermitian module
over the ring of integers of E. There are induced maps of spaces |P−E | → |Ag| → |SP(Z)| →
Ω∞KSp(Z), where the last map is the group completion map. By adjunction there are associ-
ated map of spectra

Σ∞+ |P−E | → Σ∞+ |Ag(C)| → KSp(Z). (5.1)

We emphasize that Ag(C) is a discretely topologized groupoid, that is to say, the topology on C
plays no role. This makes the middle term of (5.1) rather huge. In this section we show that
the composition of (5.1) is surjective on homotopy, in the degrees of interest:

Proposition 5.1. Take E = Kq, the cyclotomic field. The composition

πs4k−2(|P−Kq |; Z/q)→ KSp4k−2(Z; Z/q). (5.2)

is surjective for all k ≥ 1.

More precisely, we show that a certain natural supply of classes in the source already surject
on the target. All objects (L, b) ∈ P−E have automorphism group the unitary group U1(O) =

{x ∈ O | xx = 1}, so we get a homotopy equivalence |P−E | ' BU1(O)×π0(P−E ) and since stable
homotopy takes disjoint union to direct sum we get isomorphisms analogous to (2.3)

πs∗(|P−E |) ∼= πs∗(BU1(O))⊗ Z[π0(P−E )]

πs∗(|P−E |; Z/q) ∼= πs∗(BU1(O); Z/q)⊗ Z[π0(P−E )]
(5.3)

In the case E = Kq with ring of integers Oq, we get a map Z/q → O×q sending a to e2πia/q,
and thereby

πs2(B(Z/q); Z/q)→ πs2(BU1(Oq); Z/q),
The left-hand side contains a distinguished “Bott element” β, which generates a polynomial
algebra in πs2(B(Z/q); Z/q), as discussed in (2.1.1). We denote by the same letter its image
inside the right-hand side.

What we shall show, in fact, is that elements of the form β2k−1⊗[(L, b)] ∈ πs4k−2(|P−Kq |,Z/q),
with (L, b) ∈ π0P−Kq , generate the image of (5.2). To show this, we use Theorem 3.5, which

provides a sufficient supply of maps out of KSp, namely the Hodge map cH and the Betti map
cB . In §5.1, we compute cH◦(5.1), and in §5.2 we compute cB◦(5.1). We them assemble the
results in the final section §5.3.

5.1. Hodge map for CM abelian varieties. We first describe the composition

BZ/q × π0(P−Kq ) ' |P
−
Kq
| → Ω∞KSp(Z)

cH−−→ Z×BU,
which is most conveniently expressed one path component at a time.
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5.1.1. Reminders on the Hodge map. Recall that the Hodge map KSp(Z) → ku arose from

a zig-zag of functors SP(Z) → SP(Rtop)
'←− U(Ctop), as in (3.1). Understanding the Hodge

map KSp(Z)→ ku therefore involves inverting the weak equivalence, which informally amounts
reducing a structure group from Sp2g(R) to U(g). Roughly speaking, for a symplectic real
vector space we must choose compatible complex structures and Hermitian metrics with the
given symplectic form as imaginary part.

5.1.2. Computation of the Hodge map for P−Kq . For the symplectic vector spaces arising from

objects (L, b) ∈ P−E by the construction in §4.3 above we already produced such a choice.
Indeed, the Hermitian inner product 〈−,−〉b from (4.9) and the CM structure Φ(L,b) on E
induces exactly this structure on LR = L ⊗R. This observation gives the diagonal arrow in
the following diagram

P−Kq //

��

SP(Z)

��
P−Kq⊗R //

%%

SP(Rtop)

U(Ctop).

'

OO

Restricting the composition P−Kq → U(Ctop) to the object (L, b) and its automorphism group

µq = Aut(L, b), we may describe the composition

{(L, b)}//µq ↪→ P−Kq → U(Ctop), (5.4)

(where {(L, b)}//µq is shorthand for the full sub-groupoid of P−Kq on the object (L, b)) as follows.

Giving a functor {(L, b)}//µq → U(Ctop) is equivalent to giving a unitary representation of µq,
and in these terms the composition (5.4) corresponds to the unitary representation⊕

j∈Φ(L,b)

j|µq (5.5)

where we recall that ΦL,b consists of various complex embeddings Kq ↪→ C, and we may
therefore regard each restriction j|µq : µq → U1(C) ⊂ C× as a 1-dimensional (unitary) repre-
sentation of µq. The CM structure Φ(L,b) depends only on the image of (L, b) under the base

change functor P−Kq
−⊗ZR−−−−→ P−Kq⊗R so the same is true for the functor (5.4), up to natural

isomorphism.
Finally, we use this discussion to compute the image of Bott elements under the Hodge map.

The embeddings O → C are parameterized by s ∈ (Z/q)×: the sth embedding js satisfies
js(e

2πi/q) = e2πis/q. As discussed in §2.1.1, j1 induces a homomorphism of graded rings

(j1)∗ : πs∗(BZ/q; Z/q)→ π∗(ku,Z/q),

and this sends the Bott element β ∈ πs2((BZ/q); Z/q) to the mod q reduction of the usual Bott
element – we denote this by Bott. The powers of Bott generate the mod q homotopy groups of
ku. More generally we have

(ja)∗(β) = a · Bott ∈ π2(ku; Z/q),

and in particular (ja)∗(β
i) = ai · (j1)∗(β

i) = ai · Botti for any a ∈ (Z/q)× (cf. Remark 2.4).
Combining with (5.5) we arrive at the following formula:
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Proposition 5.2. As above, take (L, b) ∈ π0P−Kq , giving a class βi[L, b] ∈ πs2i(|P
−
Kq
|; Z/q).

The image of βi[L, b] under the map of homotopy groups induced by (cf. (5.1)) Σ∞+ |P−Kq | →
Σ∞+ |Ag(C)| → KSp(Z)→ ku is given by( ∑

a∈(Z/q)∗:ja∈Φ

ai
)

Botti ∈ π2i(ku; Z/q). (5.6)

Moreover, for any odd i there exists a CM structure Φ on Kq = Oq ⊗ Q for which the ele-
ment (5.6) is a generator for π2i(ku; Z/q) ∼= Z/q.

Proof. The previous discussion already established (5.6), so we turn our attention to the last
assertion. Since Botti generates, we must find a CM structure satisfying∑

a∈(Z/q)∗:ja∈Φ

ai ∈ (Z/q)×.

Equivalently, we must find a subset X ⊂ (Z/q)× containing precisely one element from each
subset {a,−a} ⊂ (Z/q)×, such that ∑

a∈X
ai ∈ (Z/q)×.

Choose such a set X arbitrarily, and let X ′ be obtained from X by switching the element in
which X intersects {1,−1}. Then

∑
a∈X a

i and
∑
a∈X′ a

i differ by (−1)i − 1 = −2, and so at
least one is a unit in Z/q. �

Remark 5.3. For p = 2 it seems a similar argument shows that there exists a Φ for which
(5.6) is twice a generator.

5.2. Betti map for CM abelian varieties. Next we treat the composition of (5.1) with the
Betti map. The map P → Ag(C) sends (L, b) to an abelian variety with underlying space
A = LR/LZ, from which we read off H1(A; Z) = LZ. This implies a diagram of functors

P−E //

��

SP(Z)

��
Pic(O) �

� // P(O)
forget // P(Z),

commuting up to natural isomorphism, where the vertical maps are induced by forgetting
the pairings, i.e., (L, b) 7→ L. Passing to the associated spaces and composing with group
completion maps we get a diagram of spectra

Σ∞+ |P−E | //

��

KSp(Z)

��
Σ∞+ |Pic(O)| // K(O)

tr // K(Z),

(5.7)

where the map tr : K(O)→ K(Z) is the “transfer map” induced by the functor P(O)→ P(Z)
sending a projective O-module to its underlying (projective) Z-module.

As explained in Section 2.6, the homotopy groups of the spectrum in the lower left corner
are πs∗(|Pic(O)|) = πs∗(BO×) ⊗ Z[π0(Pic(O))] and with mod q coefficients πs∗(BO×; Z/q) ⊗
Z[π0(Pic(O))], similar to (5.3). Commutativity of the induced diagram on homotopy groups
gives the following, after we specialize to the case of E = Kq,O = Oq:
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Corollary 5.4. Notation as above. The composition

πs4k−2(|P−E |; Z/q)→ KSp4k−2(Z; Z/q)
cB−−→ K4k−2(Z; Z/q)(+)

sends the element β2k−1 · [(L, b)] (in the notation of (5.3)) to the element tr(β2k−1 · ([L]− 1)) ∈
K4k−2(Z; Z/q)(+). Here [(L, b)] ∈ π0(P−Kq ) is any element, and [L]−1 ∈ K0(O) is the projective

class associated to [L] ∈ Pic(O). �

Proof. Commutativity of the diagram (5.7) yields

β2k−1 · [(L, b)] 7→ tr(β2k−1 · [L]) = tr(β2k−1 · ([L]− 1)) + tr(β2k−1).

Now tr(β2k−1 · ([L] − 1)) ∈ K4k−2(Z; Z/q)(+) and tr(β2k−1) ∈ K4k−2(Z; Z/q)(−), cf. Re-
mark 2.16. Since the image of cB : KSp4k−2(Z; Z/q) → K4k−2(Z; Z/q) is contained in the

(+1)-eigenspace, commutativity of the diagram (5.7) implies that tr(β2k−1) = 0, which proves
the claim. �

Remark 5.5. Alternatively, the vanishing of tr(β2k−1) ∈ K4k−2(Z; Z/q) may be seen by
identifying tr with the transfer map in étale cohomology

H0(O′q;µ2k−1
q )

tr−→ H0(Z′;µ2k−1
q ),

which sends β2k−1 ∈ µq(O′q)⊗(2k−1) to the sum of all its Galois translates. This vanishes for
the same reason as ∑

a∈(Z/q)×

ai = 0 ∈ Z/q

when p− 1 does not divide i, and in particular for any odd i.

5.3. Surjectivity. Recall that in Theorem 3.5 we proved that the combination of the Hodge
and Betti maps define an isomorphism

KSp4k−2(Z; Z/q)
(cH ,cB)−−−−−→ π4k−2(ku; Z/q)(−) ×K4k−2(Z; Z/q)(+). (5.8)

Proof of Proposition 5.1. The coordinates of β2k−1[L, b], under the map above, have been com-
puted in Proposition 5.2 and Corollary 5.4. They are given by:{

Hodge: cH(β2k−1 · [L, b]) = Bott2k−1∑
a∈ΦL,b

a2k−1 ∈ π4k−2(ku; Z/q),

Betti: cB(β2k−1 · [L, b]) = tr(β2k−1 · ([L]− 1)) ∈ K4k−2(Z; Z/q).

By Proposition 5.2, there exists a CM structure Φ for which
∑
a∈Φ a

2k−1 is invertible in (Z/q).
It therefore suffices to prove that for any CM structure Φ0,

{tr(β2k−1 · ([L]− 1)) | Φ(L,b) = Φ0} generates K4k−2(Z; Z/q)(+), (5.9)

which is what we shall do.
For any [L] ∈ Pic(Oq), there exist by Proposition 4.7 two objects (L1, b1), (L2, b2) ∈ P−Kq

satisfying Φ(L1,b1) = Φ(L2,b2) = Φ0, and whose images in π0(Pic(Oq)) satisfy

[L1][L2] = [L][L]−1.

The corresponding elements in K0(Oq) then satisfy [L1]+[L2] = [L]−[L]+2. Applying the same
Proposition with [L] = 1 = [Oq] gives (L3, b3), (L4, b4) ∈ P−Kq with [L3] + [L4] = 2 ∈ K0(Oq).
We then have

tr
(
β2k−1 · ([L1] + [L2]− [L3]− [L4])

)
= tr

(
β2k−1 · ([L]− 1))− tr(β2k−1 · ([L]− 1)

)
= tr

(
β2k−1 · ([L]− 1)

)
+ tr

(
β2k−1 · ([L]− 1)

)
= 2tr

(
β2k−1 · ([L]− 1)

)
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where the last line used that the automorphism of K(Oq) induced by the involution on Oq
sends β 7→ −β and [L] 7→ [L], and that the transfer map is invariant under this automorphism
(as the underlying Z-modules of M and M are equal).

Proposition 2.17 implies that the elements tr
(
β2k−1 · ([L]− 1)) ∈ K4k−2(Z; Z/q)(+) generate

as [L] range over all of π0(Pic(Oq)), and since q is odd the factor of 2 does not matter for
surjectivity. �

Remark 5.6. The method used here to produce elements of KSp4k−2(Z; Z/q) is very similar to
the method used by Soulé [Sou81] to produce elements in algebraic K-theory of rings of integers.
In our notation the elements he constructs in K4k+1(Z; Z/q)(−) are of the form tr(β2k ·u) with
u ∈ O×q /q = K1(Oq; Z/q)(−). By a compactness argument he lifts his elements from the mod
q = pn theory to the p-adic groups, which can also be done here.

Related ideas were also used by Harris and Segal [HS75].

6. The Galois action on KSp and on CM abelian varieties

Now that we understand the abstract (Z/q)-module KSp4k−2(Z; Z/q) and how to produce
elements in it, we will study the Galois action on it. The first task is to define the action. We
give the construction in §6.2. In §6.3 we compute the action of the Aut(C) on CM classes.

6.1. Galois conjugation of complex varieties. Given a C-scheme X, we obtain a C-scheme
σX by “applying σ to all the coefficients of the equations defining X.” More formally, we are
given a pair (X,φ) consisting of an underlying scheme X and a reference map φ : X → Spec (C),
and we define

σ(X,φ) = (X,Spec (σ−1) ◦ φ),

i.e. we simply postcompose the reference map with the map Spec (σ−1) : Spec (C)→ Spec (C)
while the underlying schemes are equal (not just isomorphic). The resulting C-scheme σ(X,φ) =:
(σX, σφ) fits in a cartesian square

σX X

Spec C Spec C.

σφ

Id

φ

σ

(6.1)

The rule (X,φ) 7→ (σX, σφ) extends to a functor from C-schemes to C-schemes in an evident
way.

Applying this construction when X = A → Spec (C) is a complex abelian variety gives a
new complex abelian variety, which inherits a principal polarization from that of A. We arrive
at a functor

Ag(C)
σ−→ Ag(C),

which agrees up to natural isomorphism with applying the “functor of points” Ag to Spec (σ) :
Spec (C)→ Spec (C), because coordinates on Ag are coefficients of the equations defining the
abelian varieties (e.g. using the Hilbert scheme atlas on Ag as in [MFK94a, Section 6]). In this
way we get an action12 of Aut(C) on the groupoid Ag(C) and hence on the space |Ag(C)|.

12We prefer not to take the cartesian square (6.1) as the definition of σ(X,φ): with our definitions (σ ◦
σ′)(X,φ) is equal to σ(σ′(X,φ)), which ensures we get an actual action on |Ag(C)|. This issue is mostly

cosmetic, and could presumably alternatively be handled by “keeping track of higher homotopies”.
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6.2. Construction of the Galois action on homotopy of KSp. Recall from Section 4.1
that we consider the functorAg(C)→ SP(Z) induced by sending a principally polarized abelian
variety A to π1(A(C)an, e), equipped with the symplectic form induced from the polarization.
We emphasize that we here regard Ag(C) as just a groupoid in sets, so the domain of this
spectrum map is rather huge: for example πs0(|Ag(C)|) is the free abelian group generated
by π0(|Ag(C)|), the (uncountable) set of isomorphism classes of complex principally polarized
abelian varieties.

Proposition 6.1. For all k ≥ 1 and odd q = pn, the map

πs4k−2(|Ag(C)|; Z/q)→ KSp4k−2(Z; Z/q)

induced by (4.2) is surjective, when g ≥ ϕ(q) = pn−1(p− 1).

Proof. It suffices to consider g = φ(q) since otherwise we may use any A0 ∈ Ag−φ(q)(Q) to
define a map A0 ×− : Aφ(q) → Ag. We consider the spectrum maps of (5.1)

Σ∞+ |P−Kq | → Σ∞+ |Ag(C)| → KSp(Z).

Since the composition induces a surjection on mod q stable homotopy, by Proposition 5.1, the
same must be true for the second map alone. �

As in §6.1 any σ ∈ Aut(C) induces a functor Ag(C)→ Ag(C) and hence an automorphism of
the spectrum Σ∞+ |Ag(C)| and in turn an action of Aut(C) on πs∗(|Ag(C)|; Z/q). The following
proposition characterizes the Galois action on symplectic K-theory.

Proposition 6.2. For any k ≥ 1 and odd prime power q = pn, there is a unique action of
Aut(C) on KSp4k−2(Z; Z/q) for which the homomorphisms

πs4k−2(|Ag(C)|; Z/q)→ KSp4k−2(Z; Z/q)

are equivariant for all g.

Proof sketch. We have seen that these homomorphisms are surjective for sufficiently large g, so
for σ ∈ Aut(C) there is at most one homomorphism

πs4k−2(|Ag(C)|; Z/q) //

σ∗

��

KSp4k−2(Z; Z/q)

σ∗

��
πs4k−2(|Ag(C)|; Z/q) // KSp4k−2(Z; Z/q)

(6.2)

making the diagram commute. If these exist for all σ, uniqueness guarantees that composition
is preserved, inducing an action. It remains to see existence; this proof is somewhat technical
and is given in the Appendix. �

Remark 6.3. The spectrum level action constructed in the Appendix should probably be
viewed as more intrinsic than the particular statement of the proposition. From an expositional
point of view, the main advantage of the statement of the proposition is that it uniquely
characterizes the action on homotopy groups which we are studying, at least in degrees 2 mod
4, while not making explicit reference to étale homotopy type. This allows us to quarantine
the fairly technical theory of étale homotopy type to the proof of Proposition 6.2.

It will also be clear from the spectrum level construction that the actions of Aut(C) on
KSp4k−2(Z; Z/pn) are compatible over varying n, including in the inverse limit n→∞, so that
the universal property for each n also determines the action on the p-complete symplectic K-
theory groups KSp4k−2(Z; Zp). The spectrum level action also induces an action on homotopy
groups in degrees 4k − 1, which by Corollary 3.6 is the only other interesting case when p is
odd. In Subsection 7.7 we prove that the action on KSp4k−1(Z; Zp) is trivial.
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Lemma 6.4. The Betti map

KSp4k−2(Z; Z/q)
cB−−→ K4k−2(Z; Z/q)

is equivariant for the subgroup 〈c〉 ⊂ Aut(C), where c denotes complex conjugation, and
K4k−2(Z; Z/q) is given the trivial action.

Proof. The composite πs4k−2(|Ag(C)|; Z/q) → KSp4k−2(Z; Z/q) is induced from the functor
Ag(C) → P(Z) sending an abelian variety A → Spec (C) to H1(A(C)an; Z). Complex con-
jugation induces a functor Ag(C) → Ag(C) which we’ll denote A 7→ Ac on objects. The
fact that complex conjugation is continuous on C implies that the induced bijection A(C) →
Ac(C) is continuous in the analytic topology, and hence induces a canonical isomorphism
H1(A(C)an; Z)→ H1(Ac(C)an; Z). Therefore the diagram

|Ag(C)|

c

��

// |P(Z)|

|Ag(C)|

::

commutes up to homotopy It follows that the homomorphism

πs4k−2(|Ag(C)|; Z/q)→ πs4k−2(BGL2g(Z); Z/q)→ K4k−2(Z; Z/q)

coequalizes c∗ and the identity. The claim is then deduced from surjectivity of πs4k−2(|Ag(C)|; Z/q)→
KSp4k−2(Z; Z/q). �

Remark 6.5. It may be deduced from our main theorem that cB : KSp4k−2(Z; Zp)→ K4k−2(Z; Zp)

is also equivariant for Gal(Qp/Qp) ⊂ Aut(C) for suitable isomorphisms C ∼= Qp, see Subsec-
tion 7.5. It would be interesting to understand whether that equivariance could be seen more
geometrically.

6.3. Galois conjugation of CM abelian varieties. Fix a CM field E. It follows from
Remark 4.5 that there exists a functor of groupoids making the following diagram commutative:

P−E
ST //

Fσ

��

Ag(C)

σ

��
P−E

ST // Ag(C),

The main theorem of complex multiplication, originally due to Shimura and Taniyama for
automorphisms fixing the reflex field, and extended to the general case by Deligne and Tate,
effectively provides a formula for Fσ.

Let H be the Hilbert class field of the CM field E. We will formulate the result only when
E (so also H) is Galois over Q. Let Φ = Φ(L, b) ⊂ Emb(E,C) be the CM structure on E
determined by (L, b) ∈ P−E . Let c denote the complex conjugation on E and choose for each
τ ∈ Emb(E,C) an extension wτ : H → C to a complex embedding of H, such that

wτc = wcτ = cwτ .

Then for each σ ∈ Gal(H/Q) and τ ∈ Emb(E,C), both σwτ and wστ give embeddings H → C
extending στ and, therefore, w−1

στ σwτ ∈ Gal(H/K).
The following theorem computes much of the action of Fσ on the homotopy of P−E , in the

cases of interest.
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Theorem 6.6. (i) The map π0(Fσ) : π0(P−E )→ π0(P−E ) is given on each fiber of π0P−E →
π0P−E⊗R (i.e., upon fixing the CM type) by tensoring, as in (4.5), with a certain

[(X, q)] ∈ π0P+
E determined by σ and the CM type.

Moreover, the class of [X] under the Artin map π0(Pic(OE))
Art−−→ Gal(H/K)ab is

given by

Art (X) = class of

[∑
τ∈Φ

w−1
στ σwτ

]
in Gal(H/K)ab. (6.3)

(ii) In the case E = Kq the map on higher homotopy groups

π∗(Fσ) : πs∗(|P−E |,Z/q)→ πs∗(|P−E |,Z/q) (6.4)

is Z/q[β]-linear, that is to say, it sends [βj(L, b)] to βjσ([L, b]), with notation as de-
scribed after Proposition 5.1.

For example, (X, q) = (Oq,−1) when σ = c is complex conjugation, see Remark 4.6.

Proof. (i) We defined in Remark 4.6 a tensoring bifunctor P−E ×P
+
E → P

−
E , such that, for each

(L, b) ∈ P−E and each positive definite (Y, h) ∈ P+
E we have

ST((L, b)⊗ (Y, h)) ∼= ST(L, b)⊗O (Y, h),

where on the right we have the Serre tensor construction, cf. Remark 4.6. Because applying σ
commutes with the Serre tensor construction, this implies that

Fσ((L, b)⊗ (Y, h)) ∼= Fσ(L, b)⊗ (Y, h),

naturally in (L, b) and (Y, h). Now, π0(P−E ) is a torsor under the tensoring action of π0(P+
E ),

and this induces on each fiber of π0(P−E )→ π0(P−E⊗R) the structure of torsor under the positive

definite subgroup of π0(P+
E ). Hence the action of π0(Fσ) on any such fiber is through tensoring

with the class of a particular (X, q) ∈ P+
E . To complete the proof of (i), we need to pin down

the explicit formula for (X, q), which is given in [Mil07, Theorem 4.2] except there Milne has
replaced the Artin map by its refinement A×f,E/E

× → Gal(Q/E)ab.

(ii) Writing P+
E

pos.def. ⊂ P+
E for the full subgroupoid on the positive definite (Y, h), naturality

implies that (6.4) is linear over the graded ring πs∗(|P+
E

pos.def.|; Z/q), which contains Z/q[β]

because Z/q ∼= U1(Oq) is the automorphism group of (Y0, h0) = (Oq, 1) ∈ P+
E

pos.def.
. �

7. The main theorem and its proof

Recall from Theorem 3.5 that there is an isomorphism

KSp4k−2(Z; Z/q) π4k−2(ku; Z/q)×K4k−2(Z; Z/q)(+).
(cH ,cB)

∼

Let us recall that π4k−2(ku; Z/q) is a cyclic of order q, generated by the 2k − 1st power of
the Bott class Bott ∈ π2(ku; Z/q). For purposes of making Galois equivariance manifest, we
will in the current section identify

π4k−2(ku; Z/q)
∼−→ µ⊗2k−1

q

via Bott2k−1 7→ ζ⊗2k−1
q . By means of this identification, the target of the map cH can be

considered to be µ⊗2k−1
q .

Theorem 7.1. Let Hq ⊂ C be the largest unramified extension of Kq with abelian p-power
Galois group. Let G = Gal(Hq/Q), and let 〈c〉 6 G be the order 2 subgroup generated by
complex conjugation.
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(i) The Galois action on KSp4k−2(Z; Z/q) factors through G.
(ii) The sequence

Ker(cH)→ KSp4k−2(Z; Z/q)
cH→ µ⊗2k−1

q (7.1)

is a short exact sequence of G-modules, where the G-action on Ker(cH) is understood
to be trivial, and the action on µq is via the cyclotomic character.

(iii) The sequence (7.1) is universal for extensions of µ
⊗(2k−1)
q by a trivial Z/q[G]-module.

In detail, the final assertion (iii) means that the sequence is the initial object of a category

CZ/q(G;µ
⊗(2k−1)
q ) of extensions of G-modules of µ

⊗(2k−1)
q by a trivial G-module. This category

and its basic properties are discussed in §7.1.

Remark 7.2. It turns out to be technically more convenient to work in a more rigid category
of sequences equipped with splitting, and we will in fact prove the following statements:

(ii’) There is a unique splitting of the sequence that is equivariant for the action
of 〈c〉; explicitly the kernel of cB maps isomorphically to µ⊗2k−1

q under cH
and yields such a splitting.

(iii’) The sequence (7.1) is universal for extensions of µ⊗2k−1
q by a trivial Z/q[G]-

module that are equipped with a 〈c〉-equivariant splitting.

We will first give some generalities on universal extensions in §7.1. We then verify (i) and
(ii) in §7.2, and then (iii) in §7.3. Finally, we give a number of related universal properties in
§7.4, 7.5.

7.1. Cocycles and universal extensions.

Definition 7.3. Let G be a discrete group, H 6 G a subgroup, and M a Λ[G]-module for some
coefficient ring Λ. We consider a category CΛ(G,H;M) of “extensions of M by a trivial G-
module, equipped with an H-equivariant splitting”. More precisely, the objects of CΛ(G,H;M)
are triples (V, π, s) where V is a Λ[G]-module, π ∈ HomΛ[G](V,M) and s ∈ HomΛ[H](M,V )
satisfy s ◦ π = idM , and the Λ[G]-module T = Ker(π) has trivial G-action; the morphisms
(V, π, s)→ (V ′, π′, s′) are those φ ∈ HomΛ[G](V, V

′) for which π′ ◦ φ = π and φ ◦ s = s′.
We also consider the variant CΛ(G;M) where there is only given (V, π) with Λ[G]-linear

π : V →M and morphisms satisfy only π′ ◦φ = π. (As a warning, this is not the same category
as CΛ(G, {e};M).)

Objects of CΛ(G,H;M) may be depicted as short exact sequences of Λ[G]-modules

T V M.π

s

(7.2)

equipped with Λ[H]-equivariant splittings. The identity map of M evidently gives a terminal
object in this category.

We will show that the category CΛ(G,H;M) always has an initial object, which we call the
universal extension and denote

T univ V univ M, .π

s

(7.3)

We will also see that there is a canonical isomorphismH1(G,H;M) ∼= T univ (whereH1(G,H;−)
is relative group homology). Any other object of CΛ(G,H;M) arises by pushout from the
universal extension, so we think of (7.3) as being the “most non-trivial” object in CΛ(G,H;M).

To an object (7.2) of CΛ(G,H;M), as above, we associate a function α : G×M → T , by

α(g,m) = g.(s(m))− s(g.m). (7.4)
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This function satisfies

(i) for every g ∈ G, the function α(g,m) is Λ-linear in m ∈M ,
(ii) α(g,m) = 0 when g ∈ H,

(iii) the cocycle condition

α(gg′,m) = α(g, g′.m) + α(g′,m). (7.5)

Now, the rule (m, t) 7→ s(m) + t defines a Λ[H]-linear isomorphism M × T ∼→ V , with respect
to which

g.(m, t) = (g.m, t+ α(g,m)), (7.6)

so the object (7.2) is described uniquely by the Λ-module T and the function α. This defines an
equivalence of categories between CΛ(G,H;M) and a category whose objects are pairs (T, α)
and whose morphisms are Λ-linear maps f : T → T ′ such that f(α(g,m)) = α′(g,m).

Recall also that group homology H∗(G;M) is calculated by a standard “bar” complex with

Ci(G;M) = Z[Gi]⊗Z M ∼= Λ[Gi]⊗Λ M.

The inclusion i : H ⊂ G gives an injection C∗(H; ResGHM)→ C∗(G;M) and we let C∗(G,H;M)
be the quotient; in particular C0(G,H;M) = 0. Its homology is the relative group homology

H∗(G,H;M), which sits in a long exact sequence with i∗ : H∗(H; ResGHM) → H∗(G;M). For
an object (7.2) the cocycle α defines a Λ-linear map

C1(G;M) = Z[G]⊗M ∼= Λ[G]⊗Λ M
α−→ T, (7.7)

and the conditions (ii) and (iii) say that this map has both C1(H; ResGHM) and ∂C2(G;M) in
its kernel. Therefore α gives a Λ-linear map

H1(G,H;M)
[α]−−→ T. (7.8)

Lemma 7.4. The rule associating [α] of (7.8) to the extension (7.2) defines an equivalence of
categories between CΛ(G,H;M) and the category of Λ-modules under H1(G,H;M). In partic-
ular, the category C(G,H;M) has an initial object

T univ → V univ �M

wherein T univ ∼= H1(G,H;M), the relative group homology.

Proof. Indeed, the functor in the other direction is described as follows: given f : H1(G,H;M)→
T , define α : G×M → T by composing f with the canonical maps G×M → C1(G,H;M)→
H1(G,H;M), and set V = M × T with G-action given by (7.6). The identity map of
H1(G,H;M) then corresponds to an initial object with T univ = H1(G,H;M). �

Remark 7.5. The proof above also gives an explicit description of the map T univ → T arising
from the universal map to another object (7.2): first extract α : G×M → T as in (7.4), extend
to an additive map (7.7) and factor as in (7.8).

There are natural situations where one can drop H.

Lemma 7.6. (a) If H0(H;M) = 0 = H1(H;M), then the forgetful functor

CΛ(G,H;M)→ CΛ(G;M)

is an equivalence. In particular the image of the initial object of CΛ(G,H;M) is initial
in CΛ(G;M).
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(b) If H0(H,M) = 0, then the forgetful functor

CΛ(G,H;M)→ CΛ(G;M)H-split

is an equivalence, where, on the right, we take the full subcategory of CΛ(G;M) consist-
ing of sequences which admit splittings as sequences of H-modules.

Proof. If we regard an object (7.2) as an extension of Λ[H]-modules, it is classified by an
element of Ext1

Λ[H](M,T ) and two splittings differ by an element of HomΛ[H](M,T ). Under the

vanishing assumption of (a), both these groups vanish; so the splitting is unique and hence the
forgetful functor is an equivalence. In the setting of (b) only the latter group vanishes, which
still implies that the stated forgetful functor is an equivalence. �

In the absense of a specified H, it can be shown that CΛ(G;M) admits an initial object if
and only if H0(G;M) = 0, and in this case the kernel is H1(G;M). (Note that CΛ(G;M) is not
the same as CΛ(G, {e};M).)

7.2. Proof of (i) and (ii) of the main theorem. We briefly recall some of the prior results
before proceeding to the proof. We have constructed maps

πs4k−2(|P−Kq |; Z/q)→ KSp4k−2(Z; Z/q)
(cH ,cB)−→ π4k−2(ku; Z/q)×K4k−2(Z; Z/q)(+).

Recall from (5.3) that each class [(L, b)] ∈ π0(P−Kq ) gives a class β2k−1[(L, b)] ∈ πs4k−2(|P−Kq |; Z/q);
here β ∈ πs2(|P−Kq |; Z/q) is a Bott element induced by the primitive root of unity e2πi/q = ζq ∈
Oq. With this notation, we have previously verified:

(a) Under the composite map, the images of elements β2k−1[(L, b)] generate the codomain
KSp4k−2 (proof of Proposition 5.2).

(b) (Proposition 5.2 and Corollary 5.4) Explicitly, the image of β2k−1[(L, b)] is(∑
a:ja∈Φ a

2k−1
)
Bott2k−1 ∈ π4k−2(ku; Z/q)

β2k−1[(L, b)]

tr(β2k−1([L]− 1)) ∈ K4k−2(Z; Z/q)(+)

cH

cB

(7.9)

where:
– tr : K∗(Oq; Z/q)→ K∗(Z; Z/q) is the transfer,
– Φ = Φ(L,b) ⊂ Hom(Kq,C) is the CM type associated to (L, b) by (4.10), and

ja ∈ Hom(Kq,C) is the embedding that sends ζq 7→ e2πia/q, for a ∈ (Z/q)×,
– On the right, Bott ∈ π2(ku; Z/q) is the mod q reduction of the Bott element.

(c) (By (6.4) and surrounding discussion): The action of σ ∈ Aut(C) on πs4k−2(|P−Kq |; Z/q)
sends

β2k−1[(L, b)] 7→ β2k−1[(L, b)⊗ (X, q)] (7.10)

for a certain (X, q) ∈ P+
Kq

depending only on the CM type Φ(L,b) and σ; the image of X

under the Artin map was described in Theorem 6.6 and depends only on the restriction
of σ to Hq.

Lemma 7.7. In the extension

Ker(cH)→ KSp4k−2(Z; Z/q)
cH−−→ µ⊗(2k−1)

q ,
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the action of Aut(C) factors through Gal(Hq/Q). The map cH is equivariant for this action,

and the action on Ker(cH) it is trivial. Finally, the kernel of cB maps isomorphically to µ
⊗(2k−1)
q

under cH , splitting the above sequence equivariantly for 〈c〉.

Proof. By point (a) above, the action of Aut(C) is determined by its action on classes β2k−1[(L, b)]
and by point (c) this action indeed factors through Gal(Hq/Q).

Morally speaking, the equivariance of cH arises simply from the fact that one can define the
Hodge class via algebraic geometry. We give a formal argument by a direct computation, using
the explicit formula in (b) above. By Corollary 3.6 and point (a) above, we know the images
of β2k−1[(L, b)] under πs4k−2(|P−Kq |; Z/q) → KSp4k−2(Z; Z/q) generate all of KSp4k−2(Z; Z/q).

Therefore, it suffices to check the equivariance for Aut(C) acting on β2k−1[(L, b)].
According Proposition 5.2, cH sends

β2k−1[(L, b)] 7→

 ∑
a:ja∈Φ

a2k−1

Bott2k−1 ∈ π4k−2(ku; Z/q).

Evidently this only depends on the CM type of (L, b), which can be described as the set of
characters by which K×q acts on the tangent space of the associated abelian variety ST(L, b)
(cf. §4.3).

Now, consider the action of K×q on the tangent space of σST(L, b). This is the same under-

lying scheme as ST(L, b) but with its structure map to Spec (C) twisted by Spec (σ−1), so that
as a C-vector space,

Te(σST(L, b)) = Te(ST(L, b))⊗C,σ C.

Therefore, σ ∈ Aut(C/Q) acts on Φ by post-composition with σ. Under the identification
Emb(Kq,C) ∼= (Z/q)×, this is identified with multiplication by χcyc(σ) ∈ (Z/q)×, the cyclo-
tomic character of σ. Hence we find that

cH(σ · β2k−1[(L, b)]) =

 ∑
a:ja∈σΦ

a2k−1

Bott2k−1

=

 ∑
a:ja∈Φ

χcyc(σ)2k−1a2k−1

Bott2k−1

= χcyc(σ)2k−1cH(β2k−1[(L, b)]).

This shows the equivariance of cH , as desired.
Now we check that the Galois action on ker(cH) is trivial. In the course of proving Proposition

5.1 we have seen – see (5.9) – that, as (L, b) ranges over objects in P−Kq inducing a fixed

CM structure Φ(L,b) = Φ ⊂ Emb(Kq,C), the values of cB([(L, b)]) = tr(β2k−1 · ([L] − 1)) ∈
K4k−2(Z; Z/q)(+) exhaust that group. Therefore it suffices to see that if [(L, b)] and [(L′, b′)]
induce the same CM structure on Kq, then σ ∈ Aut(C) acts trivially on the element

tr(β2k−1 · ([L]− 1))− tr(β2k−1 · ([L′]− 1)). (7.11)

According to point (c) above, σ ∈ Aut(C/Q) takes β2k−1[(L, b)] 7→ β2k−1[(L, b) ⊗ (X, q)]
where (X, q) depends on (L, b) only through the CM type Φ(L,b). Using the formula ([L ⊗Oq
X]− 1) = ([L]− 1) + ([X]− 1) ∈ K0(Oq) (which is seen by noting that both sides having same
rank and determinant) we get an equality inside K4k−2(Z; Z/q)

cB(β2k−1 · [(L, b)⊗ (X, q)]) = cB(β2k−1 · [(L, b)]) + tr(β2k−1([X]− 1)), (7.12)
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where [X] depends on (L, b) only through its CM type. Therefore, Aut(C) acts trivially on the
expression (7.11) in which (L, b) and (L′, b′) have the same CM type, as desired.

The last part, about the equivariance of the splitting for the subgroup 〈c〉 generated by
conjugation, follows from Lemma 6.4. �

This concludes the proof of parts (i) and (ii) of Theorem 7.1, as well as the statements of
(ii’) about splitting.

7.3. Proof of (iii) of the main theorem. It remains to prove (iii) of Theorem 7.1. The
properties verified in Lemma 7.7 show that in the sequence

Ker(cH)→ KSp4k−2(Z; Z/q)
cH→ µ⊗(2k−1)

q (7.13)

defines an object of CZ/q(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)
q ). Our final task is to prove that it is an

initial object in this category. This will prove (iii’) of Theorem 7.1, from which (iii) follows by
Lemma 7.6.

Let us denote “the” initial object of CZ/q(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)
q ) by T univ → V univ →

µ
⊗(2k−1)
q . Now Lemma 7.4 gives an abstract isomorphism of Ker(cH) with T univ, via the

isomorphisms:

Ker(cH)
cB→ K4k−2(Z; Z/q)(+) (2.13)−→ H1(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)

q ). (7.14)

(In the case at hand H1(Gal(Hq/Q), 〈c〉;µ⊗2k−1
q ) = H1(Gal(Hq/Q);µ⊗2k−1

q ) since the homol-

ogy of 〈c〉 on µ⊗2k−1
q is trivial in all degrees.) We shall show that, with reference to this

identification, the 1-cocycle

α : Gal(Hq/Q)× µ⊗(2k−1)
q → Ker(cH) (7.15)

(arising from (7.13) and its splitting via cB) is identified with the tautological 1-cocycle valued

in H1(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)
q ). This will complete the proof of Theorem 7.1 (iii’) by Lemma

7.4 and the discussion preceding it.
Denote by Pr the projection of KSp4k−2(Z; Z/q) to Ker(cH) with kernel Ker(cB). For σ ∈

Gal(Hq/Q) and m ∈ µ⊗2k−1
q , we have in the notation of §7.1 the equality α(σ,m) = Pr ◦(g −

id)(m̃) where m̃ ∈ KSp4k−2(Z; Z/q) is any element with cH(m̃) = m. Therefore, the value of

the cocycle α on σ ∈ Gal(Hq/Q) and cH(β2k−1[(L, b)]) ∈ µ⊗(2k−1)
q is given by

α(σ, cH(β2k−1[(L, b)])) = Pr ◦ (σ − id) ◦ β2k−1[(L, b)] ∈ Ker(cH).

By Theorem 6.6, we have σ(β2k−1[(L, b)]) = β2k−1 ·[(L, b)⊗(X, q)] where (X, q) is determined
explicitly by the CM type of (L, b). Hence

Pr ◦ (σ − id) ◦ β2k−1[(L, b)] = β2k−1[(X, q)].

Under the identification (7.14), the class βk−1[(X, q)] is sent to the Artin class of X pushed
forward via Gal(Hq/Kq)→ Gal(Hq/Q). In detail, there is a diagram:

Pr ◦ (σ − id) ◦ β2k−1[(L, b)] tr(β2k−1([X]− 1)) ι∗(Art(X)⊗ ζ2k−1
q )

Ker(cH) K4k−2(Z; Z/q)(+) H1(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)
q ).

cB
∼

(2.13)

∼

∈ ∈ ∈

• In the middle, we used (7.10) and (7.12); tr is the K-theoretic trace from Oq to Z;
• On the right, we used Proposition 2.17; Art(X) is the Artin map applied to the class

of X in the Picard group of Oq, and ι∗ is induced on homology by the inclusion ι :
Gal(Hq/Kq)→ Gal(Hq/Q).
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Therefore, using the explicit formula in the Main Theorem of CM given in (6.3), we find:

α(σ, cH(β2k−1[(L, b)])) =

 ∏
ϕ∈Φ(L,b)

w−1
σϕσwϕ

⊗ ζ⊗(2k−1)
q

∈ C1(Gal(Hq/Q);µ⊗(2k−1)
q )� H1(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)

q ).

Now we manipulate this expression using that we are allowed to change this expression by

elements of C1(〈c〉;µ⊗(2k−1)
q ) and ∂C2(Gal(Hq/Q);µ

⊗(2k−1)
q ), without affecting the homology

class. The latter gives a relation (cf. (7.5))

(g1g2)⊗m ∼ g1 ⊗ g2m+ g2 ⊗m, g1, g2 ∈ Gal(Hq/Q), m ∈ µ⊗(2k−1)
q (7.16)

from which we also deduce

0 = (gg−1)⊗m = g ⊗ g−1m+ g−1 ⊗m, g ∈ Gal(Hq/Q), m ∈ µ⊗(2k−1)
q . (7.17)

By repeated application of (7.16) we get∏
ϕ∈Φ

w−1
σϕσwϕ

⊗ ζ⊗(2k−1)
q =

∑
ϕ∈Φ

(w−1
σϕσwϕ ⊗ ζ⊗(2k−1)

q ) ∈ H1(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)
q ).

(7.18)
Similarly, by combining (7.16) and (7.17) we get

w−1
σϕσwϕ ⊗ ζ⊗(2k−1)

q = w−1
σϕ ⊗ σϕ(ζ⊗(2k−1)

q ) + σ ⊗ ϕ(ζ⊗(2k−1)
q ) + wϕ ⊗ ζ⊗(2k−1)

q

= −wσϕ ⊗ ζ⊗(2k−1)
q + σ ⊗ ϕ(ζ⊗(2k−1)

q ) + wϕ ⊗ ζ⊗(2k−1)
q .

(7.19)

Finally, observe that∑
ϕ∈Φ

wσϕ ⊗ ζ⊗(2k−1)
q =

∑
ϕ∈Φ

wϕ ⊗ ζ⊗(2k−1)
q ∈ C1(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)

q )

for q odd. Indeed, σΦ is another CM type, which contains exactly one representative from
each conjugate pair of embeddings E ↪→ C, and also, by construction wcϕ = cwϕ, and cwϕ ⊗
ζ
⊗(2k−1)
q − wϕ ⊗ ζ⊗(2k−1)

q belongs to C1(〈c〉;µ⊗(2k−1)
q ).

We deduce the formula

α(σ, cH(β2k−1[(L, b)])) =
∑

ϕ∈Φ(L,b)

σ ⊗ ϕ(ζ⊗(2k−1)
q )

= σ ⊗
( ∑
ϕ∈Φ(L,b)

ϕ(ζ⊗(2k−1)
q )

)
= σ ⊗ cH(β2k−1[(L, b)]).

Since this holds for any (L, b) ∈ P−Kq , which generate under cH by Proposition 5.2, we deduce

the simple formula

α(σ, x) = [σ ⊗ x] ∈ H1(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)
q ),

which verifies the claim made after (7.15) and thereby completes the proof. �
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7.4. Universal property of symplectic K-theory with Zp coefficients. We have finished
the proof of the universal property characterizing the Aut(C)-action on KSp4k−2(Z; Z/q) for
all k and all odd prime powers q = pn. By taking inverse limit over n, this also determines the
action on KSp4k−2(Z; Zp). We shall now formulate a universal property adapted to this limit.

We need some generalities on profinite group homology. This has no real depth in our
case as it only serves as a notation to keep track of inverse limits of finite group homology.
Let G be a profinite group. Let Λ be a coefficient ring, complete for the p-adic topology. A
topological Λ-module will be a Λ-module M such that each M/pn is finite and the induced
map M → lim←−M/pn is an isomorphism; we always regard M as being endowed with the p-adic

topology. These assumptions are not maximally general, cf. [RZ10]: among profinite abelian
groups our assumptions on M are equivalent to it being a finitely generated Zp-module.

Define the completed group algebra

Λ[[G]] := lim←−
n,U

Λ

pnΛ
[G/U ]

the limit ranging over open subgroups U and positive integers n. If M is a topological Λ-module
with a continuous action of G, then M carries a canonical structure of Λ[[G]] module, since the
G-action on each M/pnM factors through the quotient by some open subgroup Un.

We define the profinite group homology with Λ coefficients by tensoring M with the bar
complex (Λ[[Gm]])m, where the tensor product is now completed tensor product, and taking
homology. That is to say:

m-chains for (G,M) = lim←−
U,n:U⊂Un

M

pnM
[(G/U)m]

(we refer to §5–6 of [RZ10] for a more complete discussion).
Since this complex is the inverse limit of the complexes computing homology of G/Un acting

on M/pn, and taking an inverse limit of a system of profinite groups preserves exactness, we
have

H∗(G,M) = lim←−
U,n:U⊂Un

H∗(G/U,M/pn). (7.20)

Finally, we can similarly define relative group homology H1(G,H;M) for H 6 G using the
induced map on chain complexes.

One verifies that the contents of §7.1 go through when G,H,Λ are as just described. Namely,

one has a category CΛ(G,H;M) of extensions T V M.π

s

where:

• T, V,M are topological Λ-modules with continuous G-action (the maps are automati-
cally continuous by definition of the topology).

• s is equivariant for H.

For any object in this category, there is a map H1(G,H;M)→ T which may be constructed
in a similar fashion to (7.8) (although the kernel of V/pn → M/pn need not be T/pn, this
becomes true after passing to the inverse limit). One verifies, as before, that an object is
universal if and only if this map H1(G,H;M)→ T is an isomorphism.

Theorem 7.8. Let Γ = Gal(H∞/Q) be the Galois group of H∞ =
⋃
Hpn over Q, and c ∈

Gal(H∞/Q) the conjugation. The sequence

Ker(cH)→ KSp4k−2(Z; Zp)
cH−−→ Zp(2k − 1) (7.21)

of G-modules is uniquely split equivariantly for 〈c〉 ⊂ G. The resulting sequence is initial both
in the category CZp(Γ, 〈c〉; Zp(2k − 1)) and in the category CZp(Γ; Zp(2k − 1)).
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Proof. The induced map

H1(Γ, 〈c〉; Zp(2k − 1))→ Ker(cH)

is an isomorphism, because it is an inverse limit of corresponding isomorphisms for the sequences
(7.23). That we can ignore c follows from (the profinite group analogue of) Lemma 7.6. �

7.5. Universal property using full unramified Galois group. We now reformulate the
universal property of the extension with reference to the étale fundamental group of Z[1/p], or,
in Galois-theoretic terms,

G := Galois extension of largest algebraic extension Q(p) of Q unramified p.

For the results that involve explicit splittings of the sequence, we need to carefully choose a
decomposition group for G. Let

℘(q) = {prime ideals of Hq above p}.

The subset ℘(q)c fixed by complex conjugation is nonempty, because ℘(q) has odd cardinality
[Hq : Kq]. The sets ℘(q)c form an inverse system of nonempty finite sets as one varies q through
powers of p; since the inverse limit of such is nonempty, there exists a prime p of H∞ =

⋃
qHq

inducing an element of ℘(q)c on each Hq. We extend p as above to Q(p) in an arbitrary way.
Let

Gp 6 G

be the decomposition group at p.

Remark 7.9. In fact, Vandiver’s conjecture is equivalent (for any n) to the statement that
℘(q) is a singleton. Indeed, if c fixes two different primes p and p′ in Hq lying over p, then
conjugation by c preserves the subset Trans(p, p′) ⊂ Gal(Hq/Kq) which transports p to p′. But
since p is totally split in Hq/Kq, Trans(p, p′) consists of a single element, so conjugation by
c must fix a nontrivial element of Gal(Hq/Kq). Equivalently, by class field theory, c must fix
a non-trivial element of the p-part of Pic(Kq), i.e. the p-part of Pic(K+

q ) is non-trivial. But

Vandiver’s conjecture predicts exactly that the p-part of Pic(K+
p ) is trivial, which is equivalent

to the statement that the p-part of Pic(K+
q ) is trivial for all q = pn by [Was97, Corollary 10.7].

Theorem 7.10. Let p be chosen as above. The exact sequence

Ker(cH)→ KSp4k−2(Z; Zp)
cH−−→ Zp(2k − 1) (7.22)

of G-modules is uniquely split for Gp; the kernel of the Betti map maps isomorphically to
Zp(2k − 1) and furnishes this unique splitting. The resulting sequence is initial in the category
CZp(G,Gp; Zp(2k − 1)) and in the category CZp(G,Zp(2k − 1))Gp-split (see Lemma 7.6).

Remark 7.11. Let us rephrase this in geometric terms. By virtue of its Galois action
KSp(Z; Zp) can be considered as (the C-fiber of) an étale sheaf over Z[1/p]. This structure
arises eventually from the fact that the moduli space of abelian varieties has a structure of
Z[1/p]-scheme. The last assertion of the Theorem can then be reformulated:

The étale sheaf on Z[1/p] defined by KSp(Z; Zp) is the universal extension of
Zp(2k− 1) by a trivial étale sheaf which splits when restricted to the spectrum
of Qp.

More formally we consider the category whose objects are étale sheaves F over Z[1/p] equipped
with π : F � Zp(2k − 1) whose kernel is a trivial sheaf, and with the property that π splits
when restricted to Spec Qp. Our assertion is that the sheaf defined by KSp, together with its
Hodge morphism to Zp(2k − 1), is initial in this category.
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We deduce Theorem 7.10 from Theorem 7.1 in stages. First (Lemma 7.12) we replace the
role of complex conjugation by a decomposition group. Next (Lemma 7.13) we pass from
Gal(Hq/Q) to G. Finally we pass from Z/q coefficients to Zp.

Lemma 7.12. The sequence

Ker(cH)→ KSp4k−2(Z; Z/q)
cH−−→ µ⊗(2k−1)

q

of Gal(Hq/Q)-modules is uniquely split for the decomposition group Gal(Hq/Q)p, where p ∈
℘(q)c is any prime fixed by complex conjugation. The resulting sequence with splitting is uni-

versal in CZ/q(Gal(Hq/Q),Gal(Hq/Q)p;µ
⊗(2k−1)
q ).

Note that, in particular, any splitting that is invariant by this decomposition group is also
invariant by 〈c〉; so the unique splitting referenced in the Lemma is in fact provided by the
Betti map.

Proof. The cyclotomic character Gal(Hq/Q) → (Z/q)× restricts to an isomorphism on the
decomposition group at p, and in particular this decomposition group is abelian; thus c ∈
Gal(Hq/Q)p is central, and so H0(Gal(Hq/Q)p;µ

⊗(2k−1)
q ) = H1(Gal(Hq/Q)p;µ

⊗(2k−1)
q ) = 0,

which permits us to apply Lemma 7.6. �

Lemma 7.13. The sequence

Ker(cH)→ KSp4k−2(Z; Z/q)
cH−−→ µ⊗(2k−1)

q (7.23)

now considered as G-modules, is uniquely split for Gp by the kernel of the Betti map. The

resulting sequence with splitting is universal in CZ/q(G,Gp;µ
⊗(2k−1)
q ), defined as in §7.4.

Proof. That the sequence is uniquely split follows from the same property for Gal(Hq/Q), and
that this unique splitting comes from ker(cB) is as argued after Lemma 7.12. As in (7.8) one

gets H1(G,Gp;µ
⊗(2k−1)
q ) → Ker(cH) which we must prove to be an isomorphism. This map

factors through the similar map for Gal(Hq/Q), and so it is enough to show that the natural
map f of pairs of groups:

(G,Gp)
f→ (Gal(Hq/Q),Gal(Hq/Q)p). (7.24)

induces an isomorphism on relative H1 with coefficients in µ
⊗(2k−1)
q .

The action on Q(ζq) gives a surjection G� (Z/q)×, which factors through Gal(Hq/Q) and
restricts there to an isomorphism Gal(Hq/Q)p ∼= (Z/q)×. Write G0 for the kernel, and similarly
define

G0
p 6 G

0, {e} = Gal(Hq/Q)0
p 6 Gal(Hq/Q)0.

From the morphism to (Z/q)× we obtain (as in the proof of Proposition 2.15) compatible spec-
tral sequences computingH∗(G,Gp) in terms ofH∗(G

0, G0
p) and similarly forH∗(Gal(Hq/Q)0,Gal(Hq/Q)0

p).
By the same argument as in (2.14) the maps

(Z/q)× coinvariants on H1(G0, G0
p;µ⊗(2k−1)

q )→ H1(G,Gp;µ⊗(2k−1)
q )

is an isomorphism, and the same for Gal(Hq/Q). (Here the flanking terms of (2.14) vanish for
even simpler reasons, because relative group H0 always vanishes.)

Therefore, it is sufficient to verify that

f0 : (G0, G0
p)→ (Gal(Hq/Q)0,Gal(Hq/Q)0

p)

induces an isomorphism on first homology with µ
⊗(2k−1)
q coefficients. The coefficients have

trivial action by definition of the groups, and it suffices to consider Zp coefficients because
relative H0 vanishes. But H1(G0, G0

p)⊗Zp is the Galois group of the maximal abelian p-power
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extension of Kq that is unramified everywhere and split at p; this coincides with Hq because
Hq/Kq is already split at p. �

Proof of of Theorem 7.10. The sequence (7.22) is the inverse limit of the sequences (7.23), and
the existence of a splitting follows from this. Uniqueness follows from the fact that Gp surjects
to (Zp)

×, and thus contains an element acting by −1 on Zp(2k − 1) and trivially on Ker(cH).
Finally the induced map

H1(G,Gp; Zp(2k − 1))→ Ker(cH)

is an isomorphism, because it is an inverse limit of corresponding isomorphisms for the sequences
(7.23). �

7.6. Universal properties of Bott-inverted K-theory. We have seen that symplectic K-
theory realizes certain universal extensions of µ⊗2k−1

q as Galois modules, for k a positive integer.
It is natural to ask if the universal extensions of other cyclotomic powers is realized in a similar
way. Here we explain that for negative k, the Bott-inverted symplectic K-theory provides such
a realization.

By Corollary 3.10, we have short exact sequences for Bott-inverted symplectic K-theory
(discussed in 3.6):

0→ K
(β)
4k−2(Z; Z/q)→ KSp

(β)
4k−2(Z; Z/q)→ µq(C)⊗2k−1 → 0 (7.25)

and

0→ K
(β)
4k−2(Z; Zp)→ KSp

(β)
4k−2(Z; Zp)→ Zp(2k − 1)→ 0. (7.26)

Our main theorems have analogues for Bott inverted symplectic K-theory:

Theorem 7.14. Let k be any (possibly negative!) integer.

(1) Let notation be as in Theorem 7.1. The extension (7.25) is initial in CZ/q(Gal(Hq/Q), 〈c〉;µ⊗(2k−1)
q ).

(2) Let notation be as in Theorem 7.8. The extension (7.26) is initial in both CZp(Γ, 〈c〉; Zp(2k−
1)) and in the category CZp(Γ,Zp(2k − 1)).

(3) Let notation be as in Theorem 7.10. The extension (7.26) is initial in CZp(G,Gp; Zp(2k−
1)).

Proof. As above, parts (2) and (3) follow formally from (1) by an inverse limit argument, so it
suffices to prove (1). By Proposition 2.9, for positive k these short exact sequences agree with
the ones where β is not inverted, and hence of course enjoys the same universal property. For
non-positive k the universal property for the short exact sequence (7.25) is deduced immediately
by periodicity in k. �

Remark 7.15. The natural map

KSp(Z; Zp)→ KSp
(β)
i (Z; Zp)

is an isomorphism whenever i ≥ 0, but from a conceptual point of view it may be preferable to

work entirely with KSp(β)
∗ (Z; Zp). For one thing, the universal property for (7.26) is in some

ways more interesting, in that we see universal extensions of Zp(2i− 1) for all i ∈ Z, not only

i > 0. Secondly, the relationship between K
(β)
∗ (Z; Zp) and étale cohomology of Spec (Z′) does

not depend on the work of Voevodsky and Rost, and therefore not on any motivic homotopy
theory.
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7.7. Degree 4k − 1. For odd p the homotopy groups of KSp∗(Z; Zp) are non-zero only in
degrees ∗ ≡ 2 mod 4 and ∗ ≡ 3 mod 4. We shall prove that the Galois action is trivial in the
latter case.

Proof. There is a homomorphism

πs∗(point; Zp)→ K∗(Z; Zp) (7.27)

induced by the natural functor S 7→ Z[S] from the symmetric monoidal category of sets (under
disjoint union) to the symmetric monoidal category of free Z-modules (under direct sum).

The work of Quillen in [Qui76] implies that this map is surjective in degree 4k − 1. More
precisely, if we choose an auxiliary prime ` for which the class of ` topologically generates Z×p ,
then Quillen’s work implies that the composite map

πs∗(point; Zp)→ K∗(Z; Zp)→ K∗(F`; Zp)

is surjective; on the other hand, the latter map is an isomorphism by the norm residue theo-
rem13.

There is also a natural map

πs∗(point)→ KSp∗(Z; Zp) (7.28)

arising from the functor of symmetric monoidal categories sending a finite set S to Z[S]⊗(Ze⊕
Zf), equipped with the symplectic form 〈s ⊗ e, s′ ⊗ f〉 = δss′ . When composed with cB , the
map (7.28) recovers twice (7.27); but p is odd and cB is injective by Theorem 3.3, so it follows
that (7.28) is also surjective in degree 4k − 1.

The proof may now be finished by showing that πs4k−1(point)→ KSp4k−1(Z; Zp) is equivari-
ant for the trivial action on the domain. Indeed, it is induced by {∗} → A1(C), sending the
point to some chosen elliptic curve E → Spec (C). Since we may choose E to be defined over
Q, the map is indeed equivariant for the trivial action on πs4k−1(point). �

Remark 7.16. Let us sketch an alternative argument: we will show that the map KSp4k−1(Z; Zp)→
K4k−1(F`; Zp) (which is a group isomorphism by the Norm Residue Theorem, as in the first
proof, plus Theorem 3.5) is equivariant for the trivial action on K4k−1(F`; Zp).

This map comes from the functor

Ag(C)→ SP(Z)→ P(F`)

sending a complex abelian variety A → Spec (C) to the F`-module H1(A; F`). The latter
is canonically identified with A[`] ⊂ A(C), the `-torsion points. These are defined purely
algebraically and hence the `-torsion points of A and of σA are equal F`-modules for σ ∈
Aut(C). Therefore this composite functor intertwines the natural action of Aut(C) on the
étale homotopy type of Ag,C with the trivial action on |P(F`)|, from which it may be deduced
that KSp∗(Z; Zp)→ K∗(F`; Zp) is indeed equivariant for the trivial action on K∗(F`; Zp).

Remark 7.17. Poitou–Tate duality implies the isomorphism

H2(G,Gp; Zp(2k − 1)) ∼= K4k−1(Z; Zp) = KSp4k−1(Z; Zp).

13Appealing to the norm residue theorem reduces this to checking that the restriction map H1(Z′;Zp(2k))→
H1(F`;Zp(2k)) in étale cohomology is an isomorphism. Since these groups are finite, this map is identified via the
connecting homomorphism with the map H0(Z′,Qp/Zp(2k))→ H0(F`,Qp/Zp(2k)). Now, H0(Z′,Qp/Zp(2k))

is invariants of Qp/Zp(2k) for the Z×p -action via χ2k−1
cyc , and H0(F`,Qp/Zp(2k)) is the invariants for the

subgroup of Z×p generated by the element `.
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One may wonder whether the homotopy groups KSp4k−2(Z; Zp) and KSp4k−1(Z; Zp) are shad-
ows of one “derived universal extension” of Zp(2k − 1) as a continuous Zp[[G]]-module split
over Gp. Or better yet, whether there is a (Gp-split) sequence of spectra

LK(1)K(Z)(+) → LK(1)KSp(Z)→ K(−)

in a suitable category of spectra with continuous G-actions, characterized by a universal prop-
erty. Here K = LK(1)ku denotes the p-completed periodic complex K-theory spectrum.

8. Families of abelian varieties and stable homology

In this section, we give a more precise version of (1.5) from the introduction. The proof also
illustrates a technique of passing to homology from homotopy.

Suppose π : A→ X is a principally polarized abelian scheme over a smooth, n-dimensional,
projective complex variety X. The Hodge bundle ω = Lie(A)∗ defines a vector bundle ωX
on X, and we obtain characteristic numbers of the family by integrating Chern classes of this
Hodge bundle. In particular, if dimX = n then for any partition n = (n1, . . . , nr) of n with
each ni odd, we have a Chern number

sn(A/X) :=

∫
X

chn1(ωX) ^ . . . ^ chnr (ωX) ∈ Q.

Our results then imply divisibility constraints for the characteristic numbers of such families
where A/X is defined over Q (that is: A, X and the morphism A→ X are all defined over Q):

Theorem 8.1. Suppose that A/X is defined over Q. For each partition n of n as above, the
characteristic number sn(A/X) is divisible by each prime p ≥ maxj(nj) such that, for some i,
p divides the numerator of the Bernoulli number Bni+1 .

Proof. (Outline): In what follows we shall freely make use of étale homology of varieties and
algebraic stacks, which can be defined as the compactly supported cohomology of the dualizing
sheaf.

The assumption p ≥ ni implies that chni lifts to a Z(p)-integral class. In particular we

have universal chni(ω) ∈ H2ni(Ag,C; Zp(ni)). The family A/X induces a classifying map
f : X → Ag,C, hence a cycle class in H2n(Ag,C; Zp) transforming according to the nth power
of the cyclotomic character; more intrinsically we get an equivariant Zp(n) → H2n(Ag,C; Zp).
Taking cap product with

∏
j 6=i chnj (ω) gives Zp(ni) −→ H2ni(Ag,C; Zp), whose pairing with

chni(ω) is the Chern number sn(A/X) ∈ Z(p) = Q ∩ Zp. Assuming for a contradiction that
this number is not divisible by p, the morphism

H2ni(Ag,C,Zp)
chni (ω)
−−−−−→ Zp(ni) (8.1)

splits as a morphism of Galois modules.
We wish to pass from this homological statement to a K-theoretic one. To do so we use

some facts about stable homology

Hi(Sp∞(Z); Zp) = lim−→
g

Hi(Sp2g(Z); Zp)

(the limit stabilizes for i < (g − 5)/2 by [Cha87, Corollary 4.5]) that will be explained in the
next subsection. This stable homology carries a Pontryagin product, arising from the natural
maps Sp2a×Sp2b → Sp2a+2b; in particular we can define the “decomposable elements” of Hi as
the Zp-span of all products x1 ·x2 where x, y have strictly positive degree, and a corresponding
quotient space of “indecomposables.”

We will be interested in a variant that is better adapted to Zp coefficients. Define integral
decomposables in H∗(Sp∞(Z); Zp) as the Zp-span of all x1 · x2 and β(x′1 · x′2) where xi ∈
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H∗(Sp∞(Z); Zp), x
′
i ∈ H∗(Sp∞(Z); Z/pk) have positive degree and β is the Bockstein induced

from the sequence 0→ Zp → Zp → Z/pkZ→ 0. Correspondingly this permits us to define an
indecomposable quotient

Hi(Sp∞(Z); Zp)Ind =
Hi(Sp∞(Z); Zp)

integral decomposables
.

Then the fact that we shall use (generalizing a familiar property of rational K-theory, see
[Nov66, Theorem 1.4])) is that the composite of the Hurewicz map and the quotient map

KSpi(Z)⊗ Zp −→ Hi(Sp∞(Z); Zp)Ind (8.2)

is an isomorphism for i ≤ 2p− 2. We sketch the proof of this fact in §8.1 below. In particular,
there is a map H2ni(Sp2g(Z); Zp) → KSp2ni(Z; Zp) (by mapping to stable homology followed

by (8.2)
−1

); this map is Galois equivariant and intertwines (8.1) with the Hodge map cH , and
therefore the sequence (7.21) is also split.

But this gives a contradiction: By Theorem 7.8, the sequence (7.21) is non-split as long as
ker(cH) is nonzero, which by Theorem 3.5 is the case precisely when H2

ét(Z[1/p]; Zp(ni+1)) 6= 0,
which by Iwasawa theory (see [KNQDF96, Cor 4.2]) is the case precisely when p divides the
numerator of Bni+1. �

Remark 8.2. One can explicitly construct various examples of this situation, e.g.:

(i) We can take X to be a projective Shimura variety of PEL type; the simplest example
is a Shimura curve parameterizing abelian varieties with quaternionic multiplication.

(ii) There exist many such families of curves, i.e. embeddings of smooth proper X intoMg,
and then the Jacobians form a (canonically principally polarized) abelian scheme over
X.

(iii) The (projective) Baily-Borel compactification of Ag has a boundary of codimension g;
consequently, thus, a generic (g − 1)-dimensional hyperplane section gives a variety X
as above.

It should be possible to dirctly verify the divisibility at least in examples (i) and (ii), where it
is related to (respectively) divisibility in the cohomology of the Torelli mapMg → Ag and the
occurrence of ζ-values in volumes of Shimura varieties.

8.1. Stable homology and its indecomposable quotient. The proof of (8.2) is a conse-
quence of a more general fact about infinite loop spaces, formulated and proved in Theorem
8.4. Let E be a p-complete connected spectrum (all homotopy in strictly positive degree) and
let X = Ω∞E be the corresponding infinite loop space. We consider the composition

πi(E) = πi(X)→ Hi(X; Zp)→ Hi(X; Zp)Ind (8.3)

of the Hurewicz homomorphism and the quotient by “integral indecomposables.” As above,
the latter space is defined as I2 +

∑
βkI

2
k where:

• I is the kernel of the augmentation H∗(X; Zp)→ Zp = H∗(pt; Zp);
• Ik is the kernel of the similarly defined H∗(X; Z/pkZ)→ Z/pkZ;
• βk : H∗(X; Z/pkZ) → H∗−1(X; Zp) is the Bockstein operator associated to the short

exact sequence 0→ Zp → Zp → Z/pkZ→ 0.

Example 8.3. Let E be the Eilenberg–MacLane spectrum with Ek = K(Z/2Z, k + 1), so
that X = RP∞ = K(Z/2Z, 1). As is well known, H∗(X; Z/2Z) is a divided power algebra
over Z/2Z and H∗(X; Z2) is additively Z/2Z in each odd degree. Hence I2 = 0 for degree
reasons so I/I2 = I is the entire positive-degree homology. In contrast, I1 = H>0(X; Z/2Z) is
one-dimensional in all positive degrees whereas I2

1 ⊂ I1 is one-dimensional when the degree is
not a power of two, but zero when the degree is a power of two.
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Since β1 : H∗(X; Z/2Z) → H∗(X; Z2) is surjective in positive degrees we may deduce that
in this case the integral indecomposables

I/(I2 + β1(I2
1 ))

is Z/2Z in degrees of the form 2i − 1 and vanishes in all other degrees.

Theorem 8.4. For X = Ω∞E as above, the homomorphism (8.3) is an isomorphism in degrees
∗ ≤ 2p− 2.

Proof of Theorem 8.4. Let us first sketch why the result is true whenX is a connected Eilenberg–
MacLane space, i.e. X = K(Zp, n) or K(Z/pkZ, n) for n ≥ 1. In that case X has the structure
of a topological abelian group, and the singular chains C∗(X; Zp) form a graded-commutative
differential graded algebra (cdga). In the case X = K(Zp, n) there is a cdga morphism

A = Zp[x]→ C∗(X; Zp)

from the free cdga on a generator x in degree n, and in the case X = K(Z/pkZ, n) a cdga
morphism

A = Zp[x, y | ∂y = x]→ C∗(X; Zp)

where x has degree n and y has degree n+ 1, in both cases inducing an isomorphism Hn(A)→
Hn(X; Zp). In both cases the mapping cone is acyclic in degrees ∗ ≤ 2p − 1, as follows either
by inspecting the explicitly known H∗(X; Fp), see [Car54, Theorems 4,5,6] (also stated in e.g.
[McC01, Theorem 6.19]), or by an induction argument (the case n = 1 is a calculation of mod
p group homology of Zp or Z/pk, the induction step is by the Serre spectral sequence). The
map therefore induces an isomorphism in homology in degrees ∗ ≤ 2p− 2, and it is clear that
H∗(A)Ind is generated by the class of x.

A general X = Ω∞E may be replaced by its Postnikov truncation τ≤2p−2X, which splits as
a product of Eilenberg–MacLane spaces, up to homotopy equivalence of loop spaces. Indeed,
the deloop Ω∞ΣE can have non-vanishing homotopy in degrees ∗ ≥ 2 only, and the shortest
possible k-invariant is P1 : K(Z/p, 2) → K(Z/p, 2p). Hence τ≤2p−2X splits as a product of
Eilenberg–MacLane spaces, and this splitting respects the H-space structure. Hence the result
follows by induction from the final Lemma 8.5. �

Lemma 8.5. If X and Y are connected H spaces of finite type, then the natural map

H∗(X; Zp)Ind ⊕H∗(Y ; Zp)Ind → H∗(X × Y ; Zp)Ind

is an isomorphism.

Proof. There are “natural maps” induced by X → X×Y , Y → X×Y , and the two projections,
all of which are H-space maps. A formal argument shows that one composition gives the
identity map of H∗(X; Zp)Ind ⊕H∗(Y ; Zp)Ind and hence that H∗(X; Zp)Ind ⊕H∗(Y ; Zp)Ind →
H∗(X × Y ; Zp)Ind is injective. (This much would also be true if we only take quotient by I2

and not all the βk(I2
k).)

The algebra H∗(X×Y ) may be calculated additively by the Kunneth formula, and the main
issue in this lemma is to deal with non-vanishing Tor terms. By the finite type assumption,
the homology of X and Y will be direct sums of groups of the form Zp and Z/pkZ. Pick such
a direct sum decomposition. Then each Z/pkZ summand in H∗(X) and Z/plZ summand in
H∗(Y ) pair to give a Z/pdZ summand in the Tor term, where d = min(k, l). It is not hard to
see that this summand must be in the βd(I

2
d). Indeed, a generator may be chosen as βd(xy),

where βd(x) and βd(y) are generators for the pd torsion in the Z/pkZ and Z/plZ summands of
H∗(X) and H∗(Y ) respectively.
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We have shown that the multiplication map H∗(X) ⊗ H∗(Y ) → H∗(X × Y ) becomes sur-
jective after taking quotient by

∑
βk(I2

k), but then it must remain surjective after passing to
augmentation ideals and taking further quotients. �

Appendix A. Construction of the Galois action on symplectic K-theory

The goal of this Appendix is to supply details for an argument sketched in the main text,
viz. the construction of the Galois action on symplectic K-theory in the proof of Proposition
6.2. The contents are as follows:

In Subsection §A.1 we review notation and basic definition concerning Γ-spaces, and in
Subsection A.2 we review two ways to to extract a space from a simplicial scheme quasiprojective
over Spec (C). One might be called “Betti realization” and the other “étale realization”. Then
in §A.2.2 we explain how to relate Betti realization with étale realization after completing at a
prime p. As usual, the point is that the étale realization of objects base changed from Spec (Q)
inherits an action of the group Aut(C) of all field automorphisms of the complex numbers.

The main construction happens in §A.4, where a certain Γ-object Z in simplicial schemes
quasi-projective over Spec (Q) is constructed. We prove that the Γ-space resulting from base
changing Z from Q to C and taking Betti realization gives a model for KSp(Z), the symplectic
K-theory spectrum studied in this paper. This eventually boils down to the Betti realization of
Ag(C)an being a model for BSp2g(Z) “in the orbifold sense”, which, in turn, is deduced from
uniformization of principally polarized abelian varieties over C and the contractibility of Siegel
upper half-space Hg, as we discuss in§A.3. The result is a model for the p-completion of the
spectrum KSp(Z) on which Aut(C) acts by spectrum maps, as we conclude in §A.5.

A.1. Gamma spaces and deloopings of algebraic K-theory spaces. We summarize a
convenient formalism for constructing infinite loop structures on certain spaces, and to promote
certain maps to infinite loop maps, introduced by G. Segal ([Seg74]) and further developed by
Bousfield–Friedlander ([BF78]) and others.

Definition A.1. Let Γop denote a skeleton of the category whose objects are finite pointed sets
and whose morphisms are pointed maps. Let sSets∗ denote the category of pointed simplicial
sets. A Γ-space is a functor X : Γop → sSets∗ sending the terminal object {∗} to a terminal
simplicial set (one-point set in each simplicial degree). A morphism of Γ-spaces is a natural
transformation of such functors.

There is then a functor

B∞ : Γ-spaces→ connective spectra. (A.1)

Under extra assumptions on the Γ-space X, there is also a way to recognize Ω∞B∞X in terms
of X(S0), the value of the functor X on the pointed set S0 := {0,∞} with basepoint ∞.

The “infinite delooping” functor B∞ is easy to define. Following [BF78], we first extend
X : Γop → sSets∗ to a functor X : sSets∗ → sSets∗ which preserves filtered colimits and
geometric realization. Such an extension is unique up to unique isomorphism, and automatically
preserves pointed weak equivalences. There are canonical maps X(Sn)→ ΩX(Sn+1) and hence

|X(Sn)| → Ω|X(Sn+1)|, (A.2)

where S1 denotes the simplicial circle, and Sn = (S1)∧n the simplicial n-sphere. See e.g. [BF78,
Section 4] for more details. These maps let us functorially associate a spectrum to each Γ-space
X, and the spectra arising this way are automatically connective.

Definition A.2. The coproduct of two pointed sets S and T is denoted S∨T and traditionally
called the wedge sum. ∨ gives a symmetric monoidal structure on Γop, and any object is
isomorphic to a finite wedge sum S0 ∨ · · · ∨ S0.
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The Γ-space X is special if for any two objects S, T the canonical map

X(S ∨ T )→ X(S)×X(T ),

is a weak equivalence.

When X is a special Γ-space, the pointed simplicial set X(S0) may be thought of as the
underlying space of X. The fold map S0 ∨ S0 → S0 induces a diagram

X(S0)×X(S0)
'←− X(S0 ∨ S0)→ X(S0), (A.3)

which makes |X(S0)| into an H-space, which is unital, associative, and commutative up to
homotopy. In particular the pointed set π0(|X(S0)|) inherits the structure of a commutative
monoid. As shown by Segal, the maps (A.2) are weak equivalences for n ≥ 1 when X is special,
so in that case B∞X is equivalent to an Ω-spectrum with 0th space Ω|X(S1)| and nth space
|X(Sn)| for n ≥ 1. We then have a map of H-spaces

|X(S0)| → Ω|X(S1)| '−→ Ω∞B∞X (A.4)

which is a “group completion”, in the sense that it induces an isomorphism

H∗(X(S0))[π0(X(S0))−1]
∼−→ H∗(Ω|X(S1)|),

whose domain is H∗(X(S0)), made into graded-commutative ring using (A.3), and localized
at the multiplicative subset π0(X(S0)). A similar localization holds with (local) coefficients in
any Z[π2(X(S1))]-module.

Many spectra may be constructed this way. We list some examples relevant for this paper.

Example A.3. For any pointed simplicial set M , consider the Γ-space

S 7→ S ∧ (M+),

where M+ denotes M with a disjoint basepoint added. The corresponding spectrum is then
the (unbased) suspension spectrum Σ∞+ M mentioned earlier.

There is a natural map of spectra

Σ∞+ |X(S0)| → B∞X, (A.5)

natural in the Γ-space X, constructed as follows. For any finite pointed set S and any s ∈ S
we have a map S0 → {s, ∗} sending the non-basepoint to s. If X is a Γ-space we may apply X
to the composition S0 → {s, ∗} ⊂ S to get a map {s} ×X(S0)→ X(S) for each s ∈ S. These
assemble to a canonical map from S ×X(S0) which factors as

S ∧X(S0)+ → X(S).

This map is natural in S ∈ Γop, i.e., defines a map of Γ-spaces and hence gives rise to a map
of spectra. On homotopy groups it induces a map from the stable homotopy groups of |X(S0)|
to the homotopy groups of B∞X.

Example A.4 (Constructing the algebraic K-theory spectrum). Following Segal, let us explain
how to use Γ-space machinery to construct algebraic K-theory spectra K(R) for a ring R. The
idea is to construct a special Γ-space whose value on S0 is equivalent to |P(R)|, the classifying
space of the groupoid of finitely generated projective R-modules. Its value on {∗, 1, . . . , n}
should be a classifying space for a groupoid of finitely generated projective modules equipped
with a splitting into n many direct summands.

Let S ∈ Γop and let RS denote the ring of all functions f : S → R under pointwise ring
operations. The diagonal R → RS makes any RS-module into an R-module. Let us for
s ∈ S write es ∈ RS for the idempotent with es(s) = 1 and es(S \ {s}) = {0}. Then for
projective RS-module M has submodules esM ⊂ M and the canonical map ⊕s∈SMS → M
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is an isomorphism. Hence each Ms is a projective R-module (for the diagonal R-structure).
Let us write e = 1 − e∗ =

∑
s∈S\{∗} es ∈ RS so that eM =

∑
s∈S\{∗} esM , and let PS(R)

be the category whose objects are pairs (n, φ) with n ∈ N and φ : RS → Mn(R) an R-
algebra homomorphism, and whose morphisms (n, φ) → (n′, φ′) are RS-linear isomorphisms

φ(e)Rn → φ′(e)Rn
′
. The forgetful functor

PS0(R)→ P(R)

(n, φ) 7→ φ(e)Rn

is then an equivalence of categories, since any finitely generated projective module is isomorphic
to a retract of Rn for some n. Moreover the association

S 7→ PS(R)

extends to a functor from Γop to groupoids: a morphism f : S → T is sent to the functor
PS(R)→ PT (R) which on objects sends (n, φ)→ (n, φ ◦ (f∗)), where f∗ : RT → RS is precom-
posing with f . We emphasize that composition of morphisms in Γop is carried to composition of
functors on the nose (not just up to preferred isomorphism). That is, S 7→ PS(R) is a functor
to the 1-category of small groupoids.

For S = {∗, 1, . . . , n} the restriction functors induce an equivalence of groupoids

PS(R)→
n∏
i=1

P{∗,i}(R) '
(
P(R)

)n
.

It follows that S 7→ N(PS(R)) is a special Γ-space and the corresponding spectrum is a model for
K(R). The map (A.4) is a model for the canonical group-completion map |P(R)| → Ω∞K(R)
mentioned in Subsection 2.3.

Example A.5 (Constructing the symplectic K-theory spectrum). Finally, let us discuss the
spectrum KSp(Z), where we are looking for a Γ-space with X(S0) ' N(SP(Z)). The idea is
similar to S 7→ PS(Z). Recall that the objects of PS(Z) are ZS-modules M whose underlying
Z-module is equal to Zn for some n ∈ N. Let objects of SPS(Z) be pairs of an object
M ∈ PS(Z) and a symplectic form b : M ×M → Z for which the action of ZS is by symmetric
endomorphisms, i.e. b(rm1,m2) = b(m1, rm2) for r ∈ ZS .

This defines a functor from Γop to the 1-category of small groupoids, as before. We obtain
a Γ-space S 7→ N(SPS(Z)), whose associated spectrum is KSp(Z) and infinite loop space is a
model for Z×BSp∞(Z)+.

A.2. Homotopy types of complex varieties. Let us review various “realization functors”
assigning a complex scheme X → Spec (C). We shall mostly assume that X is a variety, which
we define as follows.

Definition A.6. Let VarC denote the category of schemes over Spec (C) which are coproducts
of quasi-projective schemes.

The realization functors we need may be summarized in a diagram of simplicial sets

X(C) = Singan
0 (X) Singan(X) Étp(X), (A.6)

where the dashed arrow indicates a zig-zag of the form

Singan(X)
'←− · · · → Étp(X).

As we shall explain in more detail below, the “Betti realization” has n-simplices Singan
n (X) the

set of maps ∆n → X(C) which are continuous in the analytic topology on X(C). Therefore
the homotopy type of Singan(X) encodes the weak homotopy type of the space X(C) equipped
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with its analytic topology. Less interestingly, X(C) = Singan
0 (X) is the set of complex points

regarded as a constant simplicial set, encoding the homotopy type of X(C) in the discrete

topology. Finally, the “p-completed étale realization” Étp(X) is a model for the étale homotopy
type of X, introduced by Artin and Mazur [AM69], or rather its p-completion.

We obtain similar realization functors when X ∈ sVarC is a simplicial complex variety, i.e. a
functor ∆op → VarC. We will make use of the following properties of these realization functors.

(i) Singan
0 (X) and Étp(X) are functorial with respect to commutative diagrams

X X ′

Spec (C) Spec (C),

f

σ

(A.7)

in which σ is any automorphism of C, and the composition (A.6) is a natural transfor-
mation of such functors.

(ii) Singan(X) is functorial with respect to diagrams of the form (A.7) where σ ∈ Aut(C) is a
continuous field automorphism (that is, σ is either the identity or complex conjugation),
and all arrows in (A.6) are natural transformation of such functors.

(iii) The map Singan(X)→ Étp(X) induces an isomorphism in mod p homology, at least when
H1(Singan(X); Fp) = 0.

(iv) If Xg,C → Spec (C) is the simplicial variety arising from an atlas U → Ag,C, then
Singan(Xg) ' BSp2g(Z). Moreover, under this equivalence the maps Ag × Ag′ → Ag+g′
defined by taking product of principally polarized abelian varieties correspond to the
symmetric monoidal structure on SP(Z) given by orthogonal direct sum.

It is essentially well known that realization functors with these properties exist. In particular,
the isomorphism between mod p cohomology of Singan(X) and Étp(X) is a combination of
Artin’s comparison theorem relating étale cohomology with finite constant coefficients to Cech
cohomology with finite constant coefficients, and the isomorphism between Cech cohomology
and singular cohomology. We shall use two aspects which are perhaps slightly less standard, so
we outline the constructions in subsection A.2 below. Firstly, the étale homotopy type usually
outputs a pro-object, but it is convenient for us to have a genuine simplicial set. Secondly,
as stated in (i), we shall make usage of the fact that X(C) = Singan

0 (X) is more functorial
than the entire Singan(X). This last property is used only for the verification of commutativity
of (6.2).

The reader willing to accept on faith (or knowledge) that realization functors with these
properties exist may skip ahead to A.4 to see how to complete the proof of Proposition 6.2.

A.2.1. Betti realization. A complex scheme X → Spec (C) is quasi-projective if it is isomorphic
(as a scheme over Spec (C)) to an intersection of a Zariski open and a Zariski closed subset of
PN

C for some N . The resulting embedding X → PN
C induces an injection of complex points

X(C) ↪→ PN
C(C) = CPN ,

and the set of complex points X(C) inherits the analytic topology as a subspace of CPN , itself
the quotient topology from the Euclidean topology on CN+1 \ {0}. We shall write X(C)an for
this topological space, which is Hausdorff and locally compact, and also locally contractible (as
follows from Hironaka’s theorem that it is triangulable [Hir75]).

For any compact Hausdorff space ∆ we have have a C-algebra C∆ of functions ∆→ C that
are continuous in the Euclidean topology. There is a canonical function

e∆ : ∆ ↪→ Spec (C∆)(C),
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sending a point of ∆ to the point corresponding to the evaluation homomorphism C∆ → C.

Lemma A.7. For any scheme X over C, and any compact Hausdorff space ∆, the map

maps Spec (C∆)→ X of schemes over Spec (C)

maps ∆→ X(C) continuous in the analytic topology

induced by precomposition with e∆ is a bijection.

Proof. We describe the inverse. Take f : ∆ → X(C) and choose an affine cover Ui of X, and
take Vi = f−1(Ui); choose a partition of unity 1 =

∑
gi on ∆ where supp(gi) ⊂ Vi. The

gi generate the unit ideal of C∆, i.e. the spectrum of C∆ is the union of the open affines
corresponding to rings C∆[g−1

i ]. We obtain

regular functions on Ui → continuous functions on Vi → C∆[g−1
i ].

where the last map sends a continuous function h on Vi to (hgi) · g−1
i , where we extend by zero

off Vi to make hgi a function on ∆. Dually we obtain

Spec C∆[g−1
i ] −→ Ui,

These morphisms glue to the desired map Spec C∆ → X. �

In particular, the simplicial set Sing(X(C)an) may be written in terms of the functor X :
C-algebras→ Sets as

Singn(X(C)) = X(C∆n

) = MapsC-schemes(Spec (C∆n

), X).

where ∆n is as usual the (topological) n-simplex. Motivated by this observation, we make the
following more general definition.

Definition A.8. Let X be a simplicial complex variety, or more generally any functor from
C-algebras to simplicial sets. The analytic homotopy type (or “Betti realization”) of X is the
simplicial set Singan(X) defined by

Singan
n (X) = X(C∆n

)n.

In other words, Singan(X) is the diagonal of the simplicial set ([n], [m]) 7→ Singn(Xm(C)an).

A.2.2. Etale homotopy type and p-adic comparison. The theory of étale homotopy type assigns
a pro-simplicial set14 Ét(X) functorially to any (locally Noetherian) scheme X, where

H∗(Ét(X), A) ' H∗ét(X,A) (A.8)

for finite abelian groups A. We will outline how to modify this construction so as to assign an
actual simplicial set Étp(X) to such a scheme, maintaining the validity of (A.8) for p-torsion
A. We shall also make the zig-zag of (A.6).

Let sSets(p) be the category of p-finite simplicial sets: those simplicial sets X where π0(X)
is a finite set, and πi(X,x) is a finite p-group for all x ∈ X0 and all i > 0, which is trivial for

sufficiently large i. We define Étp as the composition of three functors: the étale homotopy
type, p-completion, and homotopy limit, each of which we review in turn:

sVarC
Ét−→ pro-sSets

pro-p completion−−−−−−−−−−→ pro-sSets(p) holim−−−→ sSets, (A.9)

14The original approach of Artin and Mazur [AM69] assigns to X a pro-object in the homotopy category of
simplicial sets, which was rigidified in later approaches [Fri82] to output a pro-object in simplicial sets.
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As the first functor

sVarC
Ét−→ pro-sSets (A.10)

we shall take Friedlander’s rigid étale homotopy type [Fri82]. To each hypercover U• → X of
a locally Noetherian schemes X one gets a simplicial set [n] 7→ π0(Un), where π0(Un) denotes
the set of connected components of Un (denoted just π(Un) in [Fri82]). If X• is a simplicial
object in locally Noetherian scheme, we may similarly consider bisimplicial object U•,• forming
a hypercover Us,• → Xs for each s: to this situation we associate the diagonal simplicial set
[n] 7→ π0(Un,n). Friedlander then defines the étale homotopy type of X• as a functor

HRR(X•)
op → sSets

(U•,• → X) 7→ ([n] 7→ π0(Un,n)),

where HRR(X•) is a suitable category of rigid hypercovers. These are actually hypercov-
ers equipped with extra data, making HRR(X•) into a filtered category. The details of how
HRR(X•) is defined shall not matter for our applications. Let us emphasize however, that this
construction outputs an inverse system of simplicial sets functorially in X, which is slightly
stronger than outputting a pro-object15.

The p-profinite completion was introduced in [Mor96], see also [Isa05]. It associates to an
inverse system Y : j 7→ Yj in the category of simplicial sets another inverse system Y ∧p in the
category of p-finite simplicial sets, and a map

Y → Y ∧p

inducing an isomorphism in “continuous” mod p cohomology, defined asH∗(Y ; Fp) = colimj H
∗(Yj ; Fp).

There is again an explicit construction which outputs an inverse system of p-finite simplicial
sets, for instance one can for each j consider all quotients Yj → Z which are finite sets in
each simplicial degree, then take a Postnikov truncation of a stage in the totalization of the
Bousfield–Kan cosimplicial resolution of Y . The pro-object Y ∧p is obtained by letting these
stages vary over the natural numbers, Z vary over finite quotients of Yj , and j vary over the
indexing category of Y .

Combining these two constructions assigns to any X ∈ sVarC an (Ét(X))∧p which is an
inverse system of p-finite simplicial sets, together with a canonical isomorphism

H∗et(X; Fp) ∼= colimH∗(Ét(X)∧p ; Fp),

where the left hand side is étale cohomology of X with coefficients in the constant sheaf X, and
the right hand side is the colimit of cohomology of the levels in the inverse system (Ét(X))∧p .

The last step is to replace the inverse system by its homotopy limit, which is a more subtle
thing to do. For any inverse system j 7→ Yj of simplicial sets, there is a canonical map

colim
j

H∗(Yj ; Fp)→ H∗(holim
j

Y ; Fp),

but there is no formal reason for this map to be an isomorphism, and in general it may well
not be. It is known to be an isomorphism however, when the domain is finite-dimensional in
each cohomological degree and vanishes in degree 1. A recent reference for this statement in
the form used here is [Lur11, Proposition 3.3.8 and Theorem 3.4.2], but the insight that such
pro-objects may sometimes be replaced with their homotopy limits without too much loss of
information goes back to Sullivan’s “MIT notes”, see for instance [Sul05, Theorem 3.9] for a
profinite version.

15The point of this sentence is that the last step in (A.9), taking homotopy limit, is not strictly functorial
in pro-objects, only “functorial up to weak equivalence”. This objection is dismissed by upgrading to preferred
inverse systems.
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We therefore define

Étp(X) := holim(Ét(X)∧p ),

and have a canonical map

H∗et(X; Fp)→ H∗(Étp(X); Fp)

which is an isomorphism when the domain is finite-dimensional in each degree and vanishes in
degree 1.

Remark A.9. Presumably the explicit construction given here could be replaced with any of
the recent constructions leading to a pro-space in the∞-categorical sense, e.g. [BS16], [Hoy18],
[Car15], or [BGH18, Section 12]. In particular, some readers may prefer an approach based on
the notion of the “shape of an ∞-topos”, assigning a pro-space to any ∞-topos and hence to
any site in the usual sense. When X is a scheme, Friedlander’s explicit construction would then
be replaced by the shape of the étale site of X, and the comparison maps constructed below
should come from morphisms of sites X(C)disc → X(C)an → Xet, where X(C)disc denotes the
site corresponding to the set X(C) in the discrete topology.

A.2.3. Comparison map. When X ∈ sVarC, the Artin comparison gives a canonical isomor-
phism between H∗et(X; Fp) and the Cech cohomology of X(C)an, the complex points in the
analytic topology. Since complex varieties are paracompact and locally contractible in the ana-
lytic topology (since they are triangulable), Cech cohomology with constant coefficients is also
isomorphic to singular cohomology. In total we obtain an isomorphism

H∗(Singan(X); Fp) ∼= H∗et(X; Fp).

Above we explained how étale cohomology is calculated by the space Étp(X) in good cases, we

now finally explain how to define a comparison map Singan → Étp(X), or at least a zig-zag.

Let U•,• be a levelwise hypercover as after (A.10). The scheme Spec (C∆n

) is connected, so
that all maps to Us,t land in the same connected component. Therefore we obtain well defined
maps Singan

n (Us,t)→ π0(Us,t) which are invariant under simplicial operations in the n-direction,
and hence induce continuous maps

|Singan(Us,t)| → π0(Us,t)

for all s, t. Moreover Uan
s,• → Xan

s is a topological hypercover, which implies that |Uan
s,•| → Xan

s

is a weak equivalence. Therefore the natural map

Singan(Us,•)→ Singan(Xs)

is a weak equivalence of simplicial sets for all s, where in the domain we implicitly pass to
diagonal simplicial set. Combining all this, and taking geometric realization in the s-direction,
we obtain a zig-zag of maps of simplicial sets

Singan(X•)
'←− Singan(U•,•)→

(
[n] 7→ π0(Un,n)

)
,

natural in the hypercover U•,• → X•. Composing with the canonical map to the p-completion
and taking homotopy limit over hypercovers of X, we obtain the desired zig-zag as

Singan(X)
'←−
(

holim
U∈HRR(X)

Singan(U)

)
−→ Étp(X).

Together with the canonical map Singan
0 (X)→ Singan(X), this finishes the construction of the

diagram (A.6) of realization functors.
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A.3. Betti realization of Ag,C. Let us finally establish the last desideratum, item (iv), as-
serting that the Betti realization of the simplicial variety arising from an atlas U → Ag,C is a
model for BSp2g(Z).

Example A.10. Let U, V ∈ VarC and let f : U → V be a smooth surjection. Then U(C)an

and V (C)an are smooth manifolds and fan : U(C)an → V (C)an is a surjective submersion in
the differential geometric sense. Then we can form an object U• ∈ sVarC by letting Un be
the n-fold fiber product of U over V . Taking analytic space commutes with fiber products, so
(U•(C))an → V (C)an is also the simplicial object arising from iterated fiber products of the
surjective submersion U(C)an → V (C)an. It follows that

|U•(C)an| → V (C)an

has contractible point fibers, and standard arguments show that it is a Serre fibration. Hence

Singan(U•)→ Singan(V )

is a weak equivalence, too.

Example A.11. Let Xg be the simplicial variety arising from an atlas U → Ag, or even just
a smooth surjective map, i.e. Xg([n]) is the (n + 1)-fold iterated fiber product of U over Ag.
If U ′ → Ag is another smooth surjection, then they may be compared using the bisimplicial
variety ([n], [m]) 7→ Xg([n])×Ag X ′g([m]). By Example A.10, the projection

Singan(Xg ×Ag X ′g([m]))→ Singan(X ′g([m]))

is a weak equivalence, and hence the same holds after taking geometric realization in the m-
direction. We deduce

Singan(Xg)
'←− Singan(X ′′g )

'−→ Singan(X ′g),

where X ′′g is the simplicial variety obtained by iterated fiber products of Ug ×Ag U ′g → Ag.
Then Singan(Xg) is a model for BSp2g(Z). Indeed, we may use the quasiprojective variety

Ag(N) (the Γg(N) := ker(Sp2g(Z) → Sp2g(Z/N))-cover of Ag, which parametrizes a trivial-
ization of the N -torsion) as atlas for N ≥ 4. The simplicial variety arising from the atlas
Ag(N) → Ag is isomorphic to the Borel construction of Sp2g(Z/N) acting on Ag(N). The
action of Sp2g(Z/N) on the space (Ag(N))an ∼= Hg/Γg(N) is the canonical one arising from the
extension of the action of Γg(N) < Sp2g(Z), so we get

Singan(Xg) = Singan(Ag(N)//Sp2g(Z/N)) = Singan(Ag(N))//Sp2g(Z/N)

= (Sing(Hg)/Γg(N))//Sp2g(Z/N).

Here “//” denotes the Borel construction (homotopy orbits): explicitly, when group G acts on a
X, we write X//G for the usual simplicial object with n-simplices Gn ×X. At the last step we
used the fact that, since the quotient Hg → Ag(N) is a covering map, there is an isomorphism
of simplicial sets Singan(Ag(N)) ∼= (Sing(Hg))/Γg(N).

We may then finally use that Hg is contractible, replace it by a point and the quotient by
Γg(N) by the homotopy quotient:

(Sing(Hg)/Γg(N))//Sp2g(Z/n)
'←− (ESp2g(Z)× Sing(Hg))//Sp2g(Z)

'−→ BSp2g(Z).

Example A.12. For later use, restricting the above discussion to zero-simplices yields an
equivalence of groupoids

Singan
0 (Xg)

'−→ N(Ag(C)), (A.11)

where the domain is the simplicial set obtained by taking C points levelwise in the simplicial
variety Xg, and the codomain denotes the nerve of the groupoid whose objects are rank g prin-
cipally polarized abelian varieties (A,L) over Spec (C) and whose morphisms are isomorphisms
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of such. By uniformization, we also have an equivalence

Hδg//Sp2g(Z)
'−→ N(Ag(C)),

where Hδg denotes the Siegel upper half space in the discrete topology. The equivalence is
induced by the usual construction, sending a symmetric matrix Ω with positive imaginary part
to the abelian variety Cg/(Zg + ΩZg) in the usual principal polarization.

To summarize, the diagram (A.6) for X = Xg becomes a model for the evident maps

Hδg//Sp2g(Z)→ Hg//Sp2g(Z)→
(
Hg//Sp2g(Z)

)∧
p
,

where the first map is induced by the identity map of Siegel upper half space, from the discrete
to the Euclidean topology. The composition is our Aut(C)-equivariant model for

|N(Ag(C))| → (BSp2g(Z))∧p .

As explained above, we may useAg to exhibitBSp2g(Z) as the Betti realization of a simplicial
variety defined over Q, and hence construct an Aut(C)-action on its p-completion (at least for
g ≥ 3 where Sp2g(Z) is perfect). It remains to see that this structure is compatible with
the structure which constructs the spectrum KSp(Z) out of the BSp2g(Z), i.e. the Γ-space
structure.

A.4. A Gamma-object in simplicial varieties. In this section we use the moduli stacks Ag
to define a functor from Γop to simplicial complex varieties, such that the composition

Z : Γop → sVarC
Singan

−−−−→ sSets

is naturally homotopy equivalent to T 7→ |SPT (Z)|. We first discuss how to construct a functor
T 7→ A(T ) ' (

∐
g≥0Ag)T\{∗} from Γop to groupoids, modeled on how we defined T 7→ SPT (Z).

To avoid excessive notation, let us agree that for a scheme S we denote objects of Ag(S)
like (A,L), where A is an abelian scheme over S and L is a principal polarization. On the set
level, A is an abbreviation for a scheme A and maps of schemes π : A→ S and e : S → A, with
the property that they make A into a rank g abelian scheme over S with identity section e.
Similarly, L is an abbreviation for a line bundle L on A×SA, rigidified by non-zero section i of L
over A×S{e} ↪→ A×SA and i′ over {e}×SA ↪→ A×SA agreeing with i over (e, e) : S → A×SA,
with the property that (L, i, i′) is symmetric under swapping the two factors of A, the restriction
∆∗L along the diagonal ∆ : A → A ×S A is ample, and the morphism A → A∨ induced by L
is an isomorphism. We shall say “(A,L) is a principally polarized abelian variety over S” to
mean that we are given all this data for some g ≥ 0.

For each finite pointed set T we let A(T ) denote the category whose objects are (A,L, φ)
where (A,L) is a principally polarized abelian variety over S, which is a scheme over Spec (Q),
and φ : ZT → End(A) is a ring homomorphism, with the property that the image of φ is
symmetric with respect to the Rosati involution defined by φ. In particular, L restricts to a
principal polarization on the abelian subvarieties At ⊂ A, defined as At = Ker(1− φ(et)) ⊂ A
for all t ∈ T . For e =

∑
t∈T\{∗} et we similarly have Ker(1 − φ(e)) ⊂ A, which we shall

denote eA. Addition in the group structure on A defines an isomorphism of abelian varieties
⊕t 6=∗At → eA. We now define morphisms in A(T ) to be isomorphisms of abelian schemes
eA→ eA′ restricting to isomorphisms between the At for all t ∈ T and preserving polarizations.
Forgetting everything but S makes this category A(T ) fibered in groupoids over the category
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of schemes over Spec (Q), and the forgetful map

A(T )→
∏

t∈T\{∗}

( ∞∐
g=0

Ag
)

(A,L, φ) 7→
(
(At,L|At×At)

)
t∈T\{∗}

(A.12)

defines an equivalence of stacks over Spec (Q). Moreover, the association T 7→ A(T ) defines
a functor from Γop to (the 1-category of) such fibered categories: functoriality is again by
precomposing the map ZT → End(A).

To turn A(T ) into a simplicial scheme we rigidify the objects. To be specific, let us take
U(T ) to be a scheme classifying the functor which sends (S → Spec (Q)) to the set of tuples

(A,L, φ, j), where (A,A, φ) ∈ A(T ) as above, and j : A ↪→ PN−1
S is an embedding such that

O(1) restricts to 3∆∗(L) on A. This functor is represented by a locally closed subscheme of a
finite product of Hilbert schemes, and hence is quasi-projective over Spec (Q), as in [MFK94b,
Chapter 6]. Finally, we extract a simplicial scheme Z(T ) from the map U(T ) → A(T ) by
taking iterated fiber products. Then nth space classifies (n+ 1)-tuples (A0, . . . , An) of abelian

schemes over S, each equipped principal polarizations Li and with embeddings ji : Ai ⊂ PNi−1
S

as above and ring homomorphisms φi : ZT → End(Ai), defining principally polarized abelian
subvarieties eAi = Ker(1− φi(e)) ⊂ Ai, as well as isomorphisms of abelian varieties

eA0

∼=−→ eA1

∼=−→ . . .
∼=−→ eAn

preserving polarizations (but no compatibility imposed on projective embeddings).

Proposition A.13. There is a zig-zag of weak equivalences of simplicial sets

Singan(Spec (C)×Spec (Q) Z(T ))
'←− . . . '−→ N•(SPT (Z))

natural in T ∈ Γop.
In particular, Singan(Spec (C)×Spec (Q) Z(S0)) '

∐
g NSp2g(Z).

Proof sketch. We have explained a smooth surjection U(T ) → A(T )
'−→ (

∐
g Ag)T\{∗}, which

up to equivalence may be rewritten as a coproduct of smooth surjections into stacks of the
form Ag1 × · · · × Agm . After base changing to Spec (C) all simplicial varieties arising are
quasi-projective over Spec (C). The weak equivalence now follows by an argument similar to
Example A.11, which can also be used to produce an explicit zig-zag. Since all constructions
are strictly functorial in T ∈ Γop, so is the resulting T 7→ Z(T ). �

Taking complex points (in the discrete topology) of Ag gives the groupoid Ag(C) whose
objects are (A,L), principally polarized abelian varieties over Spec (C), and whose morphisms
are isomorphisms of such. In this groupoid all automorphism groups are finite, but it has
continuum many isomorphism classes of objects for g > 0. Hence |Ag(C)| is a disjoint union of
continuum many K(π, 1)’s for finite groups. The equivalence (A.12) for T = S0 implies a weak
equivalence of simplicial sets

Map(Spec (C), Z(S0))
'−→
∐
g≥0

N(Ag(C)) (A.13)

as in Example A.12. This, and the Aut(C)-equivariant map to Étp(Z(S0)), will eventually lead
to commutativity of the diagram (6.2).
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A.5. Galois action on symplectic K-theory. We finally construct the promised action of
the group Aut(C) on the spectrum KSp(Z; Zp). For simplicity we first assume p > 3, which
has the convenient effect that H1

et(Ag; Fp) = H1(BSp2g(Z); Fp) = 0 for all g. (For p = 3 this
fails for g = 1 and for p = 2 it fails for g = 1 and g = 2. A mild variation of the argument
applies also in those two cases; see below.)

First, recall that we described a composite functor

Γop Z−→ sVarQ
−⊗QC−−−−→ sVarC,

whose composition with Singan is equivalent to the Γ-space delooping KSp(Z). We get a zig-zag
of maps between Γ-spaces

Singan(Z)
'←− . . . comparison−−−−−−−→ Étp(Z)

which has the property that evaluated on any object S ∈ Γ it induces an isomorphism in mod
p cohomology. In addition to vanishing H1(−; Fp), this requires that H∗(BSp2g(Z); Fp) is
finite-dimensional in each degree, which is well known.

Now choose a simplicial set modeling a Moore space M(Z/pk, 2) for all k, and choose maps
M(Z/pk+1, 2) → M(Z/pk, 2) corresponding to reduction modulo pk. Then we get an induced
functor

Γop M(Z/pk,2)∧Z−−−−−−−−−→ sVarQ
−⊗QC−−−−→ sVarC,

giving rise to two Γ-spaces by applying Singan or Étp, and a zig-zag

B∞(M(Z/pk, 2) ∧ Singan(Z ⊗Q C))
'←− . . . comparison−−−−−−−→ B∞(M(Z/pk, 2) ∧ Étp(Z ⊗Q C)).

where B∞ is as in (A.1). Since any mod p homology isomorphism becomes a weak equivalence
after smashing with M(Z/pk, 2), and since the comparison map comes from a map of Γ-spaces
which is a mod p homology equivalence when evaluated on any S ∈ Γop as long as p > 3, we
have produced a weak equivalence of spectra

M(Z/pk, 2)∧KSp(Z) ' B∞(M(Z/pk, 2)∧Singan(Z⊗QC)))
'←− . . . '−→ B∞(M(Z/pk, 2)∧Étp(Z⊗QC))).

Desuspending twice and taking homotopy inverse limit over k, we get

KSp(Z; Zp) ' holim
k

(S/pk) ∧KSp(Z) ' holim
k

M(Z/pk) ∧B∞(Étp(Z ⊗Q C))).

But by functoriality of the delooping machine, the group Aut(C) manifestly acts by spectrum

maps on B∞(Étp(Z ⊗Q C)). Hence this equivalence can be viewed as a homotopy action on
the p-completed symplectic K-theory spectrum, and in particular it constructs an action on
homotopy groups

KSpn(Z; Z/pk) ∼= πn((S/pk) ∧B∞(Étp(Z ⊗Q C))))

KSpn(Z; Zp) ∼= lim←−
k

πn((S/pk) ∧B∞(Étp(Z ⊗Q C)))).

Remark A.14. For p ≤ 3 a mild variant of the argument works. The only problem with those
small primes was that Ag has non-trivial mod p cohomology for small g, which prevents us from

controlling the mod p cohomology of the inverse limit involved in forming Étp. But smashing
with M(Z/pk, 2) makes any simplicial set be simply connected, so if we do that operation before

taking Étp there is nothing special about the small primes. As a side-effect, this version of the
argument will not make use of the calculation H1(BSp2g(Z)).

We finally discuss the compatibility of actions mentioned in Proposition 6.2. Namely, as an
instance of the spectrum map (A.5) we have

Σ∞(M(Z/pk, 2) ∧ Etp(Z(S0)⊗Q C)))→ B∞(M(Z/pk, 2) ∧ Etp(Z ⊗Q C))),
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extracted functorially from the Γ-space T 7→ M(Z/pk, 2) ∧ Etp(Z(T )⊗Q C)), and hence equi-
variant for the Aut(C)-action. By the argument of Example A.12 above, the map of simplicial
sets

Singan
0 (Z(S0)⊗Q C))→ Etp(Z(S0)⊗Q C))

is also equivariant. Hence we get an equivariant map of spectra

Σ∞(M(Z/pk, 2) ∧ Singan
0 (Z(S0)⊗Q C)))→ B∞(M(Z/pk, 2) ∧ Etp(Z ⊗Q C))).

Shifting degrees by 2 and taking homotopy groups we get a homomorphism

πsn(Singan
0 (Z(S0)⊗Q C)); Z/pk)→ KSpn(Z/Z/pk),

which is equivariant for the action constructed above. Now finally, the equivalence (A.13)
is also Aut(C)-equivariant for the evident action on Ag(C), i.e. the one changing reference
maps π : A → Spec (C) of abelian schemes over Spec (C). Restricting attention to the path
component corresponding to abelian varieties of rank g, we have shown that the homomorphism

πsn(|Ag(C)|; Z/pk)→ KSpn(Z/Z/pk),

induced from mapping N(Ag(C)) ' Hδg//Sp2g(Z)→ BSp2g(Z), is equivariant for Aut(C). This
is the commutativity of the diagram (6.2).
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