FACTORIZATION ALGEBRAS AND CHIRAL ALGEBRAS (OCT 29, 2020)

TALK BY DENNIS GAITSGORY, NOTES BY TONY FENG

CONTENTS

1. Review of factorization algebras

Let X be a curve. Jacob defined *factorization algebras* as: a collection of quasicoherent sheaves $A^{(n)}$ on X^n , equipped with isomorphisms upon restricting to the diagonal or to the disjoint locus, e.g.

- $\Delta^*(\mathcal{A}^{(2)}) \xrightarrow{\sim} \mathcal{A}^{(1)}$ and
- $j^*(\mathcal{A}^{(2)}) \xrightarrow{\sim} \mathcal{A}^{(1)} \boxtimes \mathcal{A}^{(1)}|_{X \times X \Delta}.$

To give more examples, on X^3 the data of a factorization algebra includes isomorphisms

- (1) $\Delta_{x_1=x_2}^*(\mathcal{A}^{(3)}) \xrightarrow{\sim} \mathcal{A}^{(2)},$
- (2) $\Delta_{x_1=x_3}^*(\mathcal{A}^{(3)}) \xrightarrow{\sim} \mathcal{A}^{(2)}$
- (3) $\Delta_{x_2=x_3}^*(\mathcal{A}^{(3)}) \xrightarrow{\sim} \mathcal{A}^{(2)}$
- (4) $\Delta_{x_1=x_2=x_3}(\mathcal{A}^{(3)}) \xrightarrow{\sim} \mathcal{A}^{(1)}$.
- (5) $j^*_{x_1\neq x_2,x_3}(\mathcal{A}^{(3)}) \xrightarrow{\sim} \mathcal{A} \boxtimes \mathcal{A}^{(2)}|_{x_1\neq x_2,x_3}$
- (6) $j^*(\mathcal{A}^{(3)}) \xrightarrow{\sim} \mathcal{A} \boxtimes \mathcal{A} \boxtimes \mathcal{A}|_{X^3 \Delta}.$

There are also compatibilities on these isomorphisms when the loci intersect, e.g. (2) and (5).

If $\mathcal{A}^{(n)}$ are in the abelian category of quasi-coherent sheaves, then everything is recovered from the data over X^2 .

1.1. Unital factorization algebras. Jacob also introduced the notion of a unital structure on a factorization algebra. That is a system of maps $\mathcal{O}_{X^n} \to \mathcal{A}^{(n)}$ compatible with the identifications above. He also explained that the unital structure equips all the $\mathcal{A}^{(n)}$ with a connection, making them into left D -modules on X^n .

For $f: Y_1 \to Y_2$ we have a commutative diagram

$$
\begin{array}{ccc}\n\text{Dmod}^{l}(Y_{1}) & \leftarrow & \text{Dmod}^{l}(Y_{2}) \\
\downarrow & & \downarrow \\
\text{QCoh}(Y_{1}) & \leftarrow & \text{QCoh}(Y_{2})\n\end{array}
$$

Example 1.1. Let $A \in \text{CommAlg}(\text{Dmod}^{l}(X))$. Then we can associate a factorization algebra Fact(\mathcal{A}) such that $\mathcal{A}^{(1)} = \mathcal{A}$.

Suppose you have a closed embedding $f: Y_1 \hookrightarrow Y_2$. There is f^{\dagger} : $\text{Dmod}^{l}(Y_2) \to \text{Dmod}^{l}(Y_1)$.

There is also $f_* = f_!$: $\text{Dmod}(Y_1) \to \text{Dmod}(Y_2)$, normalized to be t-exact. Unfortunately, with these normalizations the functors are not adjoint. Rather, f^{\dagger} is right adjoint to $f_* = f_!,$ up to shift. (So f^{\dagger} agrees with f' up to a shift.)

Example 1.2. For an open/closed decomposition, the Cousin sequence is

 $f_!f^{\dagger}(M)[-\text{codim}] \to M \to j_*j^*M$

Consider this applied to $\mathcal{M} = \mathcal{A}^{(2)}$ on X^2 . Then the Cousin complex is

$$
\Delta_!\Delta^{\dagger}[-1]\mathcal{A}^{(2)} \to \mathcal{A}^{(2)} \to j_*j^*(\mathcal{A}^{(2)}).
$$

So unwinding the normalizations and identifications gives a distinguished triangle

$$
\mathcal{A}^{(2)} \to j_*j^*(\mathcal{A} \boxtimes \mathcal{A}) \to \Delta_!\mathcal{A}^{(1)}.
$$

So $\mathcal{A}^{(2)} = \ker(j_*j^*(\mathcal{A} \boxtimes \mathcal{A}) \to \Delta_i \mathcal{A}^{(1)}).$

1.2. Left vs right D-modules. The category of left D-modules is a bit inconvenient, so we'll want to switch to right D-modules. This is given by tensoring with the dualizing sheaf.

A better way to think about this is that there is one category of D-modules, but it has two forgetful functors to quasicoherent sheaves, called obly^{*l*} and obly^{*r*}.

$$
\text{Dmod}(X)
$$
\n
$$
\text{QCoh}(X) \xrightarrow{-\otimes \Omega_X} \text{QCoh}(X)
$$

The right normalization is better for functoriality. Given $f: Y_1 \rightarrow Y_2$, the diagram commutes

$$
\begin{array}{ccc}\n\text{Dmod}(Y_1) & \leftarrow & \text{Dmod}(Y_2) \\
\downarrow_{\text{oblv}^r} & \downarrow_{\text{oblv}^r} \\
\text{QCoh}(Y_1) & \leftarrow & \text{QCoh}(Y_2)\n\end{array}
$$

For a factorization algebra $\mathcal{A}^{(n)}$, we denote $\mathcal{A}_{\text{Fact}}^{(n)} \in \text{Dmod}^{r}(X^{(n)})$ the corresponding right D-modules. So now the factorization axioms read

$$
j^*(\mathcal{A}_{\text{Fact}}^{(2)}) \xrightarrow{\sim} \mathcal{A}_{\text{Fact}}^{(1)} \boxtimes \mathcal{A}_{\text{Fact}}^{(1)}|_{X^2 - \Delta}
$$

and

Also

$$
\Delta^!(\mathcal{A}^{(2)}_{\text{Fact}})\cong \mathcal{A}^{(1)}_{\text{Fact}}.
$$

 $\mathcal{A}_{\text{Fact}}^{(2)} = \text{ker} \left(j_*j^*(\mathcal{A}_{\text{Fact}}^{(1)} \boxtimes \mathcal{A}_{\text{Fact}}^{(1)}) \rightarrow \Delta_!\mathcal{A}_{\text{Fact}}^{(1)}[1] \right).$

2. Chiral algebras

2.1. Chiral algebras from factorization algebras. We will now define the chiral algebra associated to the factorization algebra $\mathcal{A}^{(n)}$: it is the collection $\mathcal{A}_{ch}^{(n)} := \mathcal{A}_{Fact}^{(1)}[-n]$, so in particular $\mathcal{A}_{ch}^{(1)} = \mathcal{A}_{Fact}^{(1)}[-1]$. Hence in this normalization

$$
\mathcal{A}_{\mathrm{ch}}^{(2)}=\ker\left(j_*j^*(\mathcal{A}_{\mathrm{ch}}^{(1)}\boxtimes\mathcal{A}_{\mathrm{ch}}^{(1)})\to\Delta_!\mathcal{A}_{\mathrm{ch}}^{(1)}\right).
$$

The point is that this can be normalized to lie in the heart of the t-structure.

The map

$$
j_*j^*(\mathcal{A}_{\text{ch}}^{(1)} \boxtimes \mathcal{A}_{\text{ch}}^{(1)}) \to \Delta_!\mathcal{A}_{\text{ch}}^{(1)}
$$
(2.1)

is almost like a thing with a binary operation, so that's reminiscent of what an algebra is. Let's call [\(2.1\)](#page-2-1) the "chiral bracket".

Proposition 2.1. The chiral bracket satisfies the conditions of a Lie bracket.

Why is it skew-symmetric? Because the shift by 1 affects the sign rule. (Symmetry under S_2 goes to skew-symmetric under S_2 after shifting.)

Now for the "Jacobi identity", we'll write three ways to go from $j_*j^*({\cal A}_{ch}^{(1)}\boxtimes{\cal A}_{ch}^{(1)}\boxtimes{\cal A}_{ch}^{(1)})$ to $\Delta_! (\mathcal{A}_{ch}^{(1)})$ $\Delta_! (\mathcal{A}_{ch}^{(1)})$ $\Delta_! (\mathcal{A}_{ch}^{(1)})$ on X^3 . First we can map via chiral bracket \boxtimes Id to $\Delta_{(1=2)\neq 3!}(j_*j^*(\mathcal{A}_{ch}^{(1)} \boxtimes \mathcal{A}_{ch}^{(1)}))^1$. Then we map via chiral bracket again to $\Delta_!(\mathcal{A}_{ch}^{(1)})$.

So we have

$$
\mathcal{A}^{(3)} \to j_*j^*(\mathcal{A}^{(3)}) \to \Delta_{1=2!}j_*(j^*\Delta_{12}^!(\mathcal{A}^{(3)})) \oplus \ldots \to \Delta_{123!}\Delta_{123}^!(\mathcal{A}^{(3)})
$$

This is acyclic because it is just the Cousin complex. The fact that the composition

 $j_*j^*(\mathcal{A}^{(3)}) \rightarrow \Delta_{1=2!} j_*(\mathcal{A} \boxtimes \mathcal{A}) \oplus \ldots \rightarrow \Delta_!(\mathcal{A})$

is 0 is just the fact that Cousin complex is a complex, and is the Jacobi identity in this context.

(This is related to the fact that there is a functor from \mathbb{E}_2 algebras to Lie algebras, by shifting.)

Definition 2.2. A *chiral algebra* is a right D-module A_{ch} on X equipped with a bracket

$$
j_*j^*({\cal A}_{\rm ch}\boxtimes{\cal A}_{\rm ch})\to \Delta_!{\cal A}_{\rm ch}
$$

satisfying the Lie axioms.

A unit in a chiral algebra $\mathcal A$ is a map

$$
u\colon\Omega_X\to\mathcal{A}_\mathrm{ch}
$$

such that the diagram below commutes:

$$
j_*j^*(\Omega_X \boxtimes A) \xrightarrow{\text{can}} \Delta_!\mathcal{A}_{\text{ch}}
$$

\n
$$
\downarrow_u \boxtimes \text{Id}
$$

\n
$$
j_*j^*(\mathcal{A}_{\text{ch}} \boxtimes \mathcal{A}_{\text{ch}}) \longrightarrow \Delta_!\mathcal{A}_{\text{ch}}
$$

 1 Explanation of intermediate steps: we have a map $j_*j^*({\cal A}_{ch}^{(1)} \boxtimes {\cal A}_{ch}^{(1)} \boxtimes {\cal A}_{ch}^{(1)}) \rightarrow$ $(j_{1,2\neq 3})_*((j_{1\neq 2})_*(j_{1\neq 2})^*\mathcal{A}_{ch}^{(1)} \boxtimes \mathcal{A}_{ch}^{(1)}) \boxtimes \mathcal{A}_{ch}^{(1)}$. Via chiral bracket on the first two factors, this maps to $(j_{1,2}\neq 3)$ ∗($\Delta_{1=2}$! $A_{ch} \boxtimes \mathcal{A}_{ch}$). Then using the chiral bracket again goes to $\Delta_{1=2=3}$! \mathcal{A}_{ch} . So I'm not sure we actually pass through the intermediate step above.

Here Ω_X is the line bundle of 1-forms on X, which is the shift of the dualizing sheaf, viewed right as a right D-module. Explanation of "can": note that the Cousin sequence for $\Omega_X \boxtimes \mathcal{A}_{\rm ch}$ is

$$
\Omega_X \boxtimes \mathcal{A}_{\mathrm{ch}} \to j_*j^*(\Omega_X \boxtimes \mathcal{A}_{\mathrm{ch}}) \to \Delta_!\mathcal{A}_{\mathrm{ch}}
$$

The rightmost map is "can".

Theorem 2.3. The functor from unital factorization algebras to unital chiral algebras is an equivalence.

Proof. Let's explain the inverse. We can recover

$$
\mathcal{A}_{\mathrm{ch}}^{(2)}:=\ker(j_*j^*(\mathcal{A}_{\mathrm{ch}}\boxtimes\mathcal{A}_{\mathrm{ch}})\twoheadrightarrow\Delta_!\mathcal{A}_{\mathrm{ch}}).
$$

Remark: the unit implies the right term is surjection. This also exhibits $j^*{\cal A}_{ch}^{(2)}$ $\rm_{ch}^{(2)} \xrightarrow{\sim} \mathcal{A}_{ch} \boxtimes \mathcal{A}_{ch}$ and $\Delta^!(\mathcal{A}_{ch}^{(2)}) = \mathcal{A}_{ch}^{(1)}[-1]$.

To recover $\mathcal{A}^{(3)}$, we set

$$
\mathcal{A}_{\mathrm{ch}}^{(3)} := H^0(j_*(\mathcal{A}_{\mathrm{ch}} \boxtimes \mathcal{A}_{\mathrm{ch}} \boxtimes \mathcal{A}_{\mathrm{ch}}) \to \Delta_{1=2!} j_*(\mathcal{A}_{\mathrm{ch}} \boxtimes \mathcal{A}_{\mathrm{ch}}) \oplus \ldots \to \Delta_{123!}(\mathcal{A}_{\mathrm{ch}})).
$$

Remark 2.4. This explains why the factorization algebra was determined by the data on X^2 , satisfying the conditions on X^3 . The data on X^2 gives the chiral bracket, and the data on $X³$ showed that it satisfies the Lie axioms.

Remark 2.5. The theorem stated only applies to unital chiral algebras. There are certainly other kinds of chiral algebras; for example, you can take the chiral bracket $j_*j^*({\cal A}_{ch} \boxtimes {\cal A}_{ch}) \to$ $\Delta_i \mathcal{A}_{ch}$ to just be 0. However, it works without the unit if we consider derived objects. So the unit is something that allows you to stay in the heart of the t-structure.

2.2. Commutative chiral algebras. Let $\mathcal{A}^l \in \text{CommAlg}(\text{Dmod}^l(X))$. We then turn it into a right D-module in the same as before: $\mathcal{A}_{ch} = (\mathcal{A}^l \otimes \text{dualizing})[-1] = \mathcal{A}^l \otimes \Omega_X$. We will then construct a chiral bracket on it.

$$
j_*j^*({\cal A}_{\rm ch}\boxtimes{\cal A}_{\rm ch})\dashrightarrow \Delta_!{\cal A}_{\rm ch}.
$$

We have an exact triangle

$$
\Delta_!({\cal A}_{\rm ch}\overset{!}{\boxtimes}{\cal A}_{\rm ch})[-1]\rightarrow {\cal A}_{\rm ch}\boxtimes{\cal A}_{\rm ch}\rightarrow j_*j^*({\cal A}_{\rm ch}\boxtimes{\cal A}_{\rm ch})
$$

This gives

$$
j_*j^*({\cal A}_{\rm ch}\boxtimes{\cal A}_{\rm ch})\to \Delta_!({\cal A}_{\rm ch}\stackrel{!}{\boxtimes}{\cal A}_{\rm ch})\xrightarrow{\rm mult} \Delta_!({\cal A}_{\rm ch}).
$$

We then define $\mathcal{A}_{ch}^{(2)} = \ker(j_*j^*(\mathcal{A}_{ch} \boxtimes \mathcal{A}_{ch}) \to \Delta_!(\mathcal{A}_{ch})).$

Definition 2.6. A chiral algebra is said to be *commutative* if the composition

$$
\mathcal{A}_{\mathrm{ch}} \boxtimes \mathcal{A}_{\mathrm{ch}} \to j_*j^*(\mathcal{A}_{\mathrm{ch}} \boxtimes \mathcal{A}_{\mathrm{ch}}) \to \Delta_!(\mathcal{A}_{\mathrm{ch}})
$$

is zero. (The composite map is called the "Lie-∗" bracket, so in other words a chiral algebra is commutative iff the Lie-∗ bracket vanishes.)

Proposition 2.7. The above construction is an equivalence between $\text{ComAlg}(\text{Dmod}^l(X))$ and commutative chiral algebras.

Warning 2.8. In a higher categorical situation, commutativity becomes a *structure* – one needs to specify nullhomotopies.

3. Examples

3.1. The Beilinson-Drinfeld Grassmannian. Recall our first example of factorization algebra: for the Beilinson-Drinfeld $\pi: \mathbf{Gr}_{X^n} \to X^n$ and \mathcal{L}_{X^n} a line bundle with factorization structure, we have $\mathcal{A}^{(n)} := \pi_!(\mathcal{L}_{X^n}) \in \text{QCoh}(X^n)$.

For an ind-scheme $\mathcal{Y} = \lim_{i \to \infty} Y_i$, the cohomology is a pro-object $\Gamma(\mathcal{Y}; \mathcal{L}) = \lim_{i \to \infty} \Gamma(Y_i, \mathcal{L}).$ It's better to use cosections to get an ind-object, $\Gamma(\mathcal{Y};\mathcal{L})^{\vee} = \varinjlim \Gamma(Y_i,\mathcal{L})^{\vee}$.

We can rewrite this succintly: $\Gamma(Y_i, \mathcal{L})^{\vee} = \Gamma(Y_i, \mathcal{L}^{-1} \otimes \omega_{Y_i})$. We have that $\omega_{\mathcal{Y}} \cong \varinjlim \omega_{Y_i}$. So $\Gamma_c(\mathcal{Y}, \mathcal{L})^{\vee} = \Gamma(\mathcal{Y}, \mathcal{L}^{-1} \otimes \omega_{\mathcal{Y}}).$

Remark 3.1. Jacob assumed that \mathcal{L} was ample, so we get sections and no higher cohomology. The point is if Y_i are smooth, the dualizing is a shift of the canonical bundle. But for an ind-scheme, ω lives in cohomological degree $-\infty$.

The Gr_{G,X^n} comes with a section (trivial bundle with tautological trivialization). Consider the formal completion $\text{Gr}_{G,X^n}^{\wedge}$ along this section. We can then restrict \mathcal{L}^{-1} to the formal completion. Define $\mathcal{A}^{(n)} = \pi_!^{\wedge}(\mathcal{L}^{-1})$ to be the direct image of \mathcal{L}^{-1} on $\text{Gr}^{\wedge}_{G,X^n}$ to X^n .

3.2. Lie-∗ algebras.

Definition 3.2. A *Lie-* $*$ *algebra* is a *D*-module *L* on *X* equipped with

 $L \boxtimes L \rightarrow \Delta_! L$

satisfying the Lie axioms.

There is a forgetful functor from chiral algebras to Lie-* algebras, as given a chiral bracket $j_*j^*(A \boxtimes A) \to \Delta_!A$ we can just inflate via $A \boxtimes A \to j_*j^*(A \boxtimes A)$ to get a Lie-* bracket. This is analogous to the forgetful functor from \mathbb{E}_2 algebras to shifted Lie algebras.

Key observation: the above functor admits a left adjoint $L \mapsto U_{\text{ch}}(L)$, called the "chiral" universal envelope". That gives many important examples of chiral algebras. This fact also has a topological analog.

Example 3.3. Let \mathfrak{g} be a finite-dimensional Lie algebra, and consider $L := \mathfrak{g} \otimes D_X$ as a right D-module. We have to write down

$$
(\mathfrak{g} \boxtimes D_X) \boxtimes (\mathfrak{g} \boxtimes D_X) \to \Delta_!(\mathfrak{g} \boxtimes D_X)
$$

In other words we have to give a map

$$
\mathfrak{g} \otimes \mathfrak{g} \to \Gamma(X \times X, \Delta_! (\mathfrak{g} \boxtimes D_X)).
$$

There is a map $\Gamma(X, \mathfrak{g} \otimes D_X) \to \Gamma(X \times X, \Delta_1(\mathfrak{g} \boxtimes D_X)).$ We then compose this with $\mathfrak{g} \otimes \mathfrak{g} \xrightarrow{[\cdot,\cdot]} \mathfrak{g} \to \Gamma(X,\mathfrak{g} \otimes D_X).$

Example 3.4. We consider $T_X \otimes_{\mathcal{O}_X} D_X$. We try repeating the same construction, but the problem is that the Lie bracket on T_X is not \mathcal{O}_X -linear.

Given two quasicoherent sheaves M_1, M_2 on X we can talk about differential operators $M_1 \to M_2$; these are the same as \mathcal{O}_X -linear maps $M_1 \to M_2 \otimes_{\mathcal{O}_X} D_X$.

We have $\Delta_!(M \otimes_{\mathcal{O}_X} D_X) = \Delta_*(M) \otimes_{\mathcal{O}_{X \times X}} \mathcal{D}_{X \times X}$. So we want to define

$$
(T_X \otimes_{\mathcal{O}_X} D_X) \boxtimes (T_X \otimes_{\mathcal{O}_X} D_X) \to \Delta_!(T_X \otimes_{\mathcal{O}_X} D_X) \xrightarrow{\sim} \Delta_*(T_1) \otimes_{\mathcal{O}_{X \times X}} D_{X \times X}.
$$

Such a latter map $T_X \boxtimes T_X \to \Delta_*(T_X) \otimes_{\mathcal{O}_{X \times X}} D_{X \times X}$ is the same as a differential operator, which we can take to be the Lie bracket $T_X \boxtimes T_X \to \Delta_*(T_X)$.

Lemma 3.5. $U_{\text{ch}}(\mathfrak{g} \otimes D_X) = \pi_!^{\wedge} \mathcal{O}$ where $\pi_!^{\wedge}$: $\text{Gr}_{X^n}^{\wedge} \to X^n$.

Remark 3.6. For this construction $\boldsymbol{\alpha}$ can be any Lie algebra (not necessarily reductive).

4. Modules for chiral algebras

Let \mathcal{A}_{ch} be a chiral algebra.

Definition 4.1. A *chiral* \mathcal{A}_{ch} -module on X is a D-modules M on X equipped a map^{[2](#page-0-1)}

 $j_*j^*({\cal A}_{\rm ch}\boxtimes M)\to \Delta_!M$

plus a Jacobi identity (Lie algebra acting on a module) for the three maps

$$
j_*j^*({\cal A}_{\rm ch}\boxtimes{\cal A}_{\rm ch}\boxtimes M)\to\Delta_!M.
$$

We say that M is *unital* if the diagram below commutes:

$$
j_*j^*(\Omega_X \boxtimes M) \longrightarrow \Delta_!M
$$

\n
$$
\downarrow \qquad \qquad \downarrow M
$$

\n
$$
j_*j^*(\mathcal{A}_{\text{ch}} \boxtimes M) \longrightarrow \Delta_!M
$$

Example 4.2. A_{ch} is a chiral module over itself.

Remark 4.3. An important class of examples comes from chiral A-modules supported at $x \in X$.

Example 4.4. If $M \in \mathcal{A}$ -Mod^{ch} (X) , then $i_{x}i_{x}^{!}(M)[1]$ is a chiral \mathcal{A} -module at a point x. So "fibers of chiral modules are chiral modules."

Example 4.5. How do A_{ch} -modules look like for A_{ch} commutative?

Let $A^l \in \text{CommAlg}(\text{Dmod}^l(X))$. Then $i_x^*(A) \in \text{CommAlg}(\text{Vect})$. We claim that there is a functor from $i_x^*(A^l)$ -modules to chiral \mathcal{A}_{ch} -modules.

"Chiral modules supported at $x \in X$ only care about the chiral algebra away from x." To see an example of what this means we can modify A^l at a point. Let $\phi: (\mathcal{A}')^l \hookrightarrow \mathcal{A}^l$ be an isomorphism away from x. Then we also get a functor from $i_x^*((A')^l)$ -modules to chiral \mathcal{A}_{ch} -modules.

Lemma 4.6. Any chiral A_{ch} -module is a union of ones of the above form.

Example 4.7. If $\mathcal A$ is the (commutative) chiral algebra of functions on jets into a space, then functions on loops are chiral modules.

5. Lie-∗ modules

Definition 5.1. Let L be a Lie- $*$ algebra on X. A Lie- $*$ module over L is a D-module M on X with a map $L \boxtimes M \to \Delta_!M$ satisfying a Jacobi identity. We denote the category of such as $L-\text{Mod}^{\text{Lie }-*}(X)$.

A *chiral* L-module is a D-module M on X with a map $j_*j^*(L \boxtimes M) \to \Delta_!M$ satisfying a Jacobi identity for the three maps

$$
j_*j^*(L \boxtimes L \boxtimes M) \to \Delta_!M
$$

given by $j_*j^*(L \boxtimes L \boxtimes M) \to \Delta_{x_1=x_2!}(j_*j^*(L \boxtimes M)) \to \Delta_!(M)$ and its variations obtained by permuting ${1, 2, 3}$. We denote the category of such by $L - \text{Mod}^{ch}(X)$.

There is an obvious functor $L-\text{Mod}^{\text{Lie }-*}(X) \leftarrow L-\text{Mod}^{\text{ch}}(X)$, given by pre-composing with $L \to j_*j^*L$. This functor has a left adjoint.

Given a chiral module, we can form the de Rham cohomology $\Gamma_{\text{dR}}(D_x, M)$. This is a topological vector space, since D_x is an ind-scheme.

²Another approach: it is a split square-zero extension $\mathcal{A}_{ch} \oplus \epsilon M$.

Example 5.2. Suppose $M = M_0 \otimes_{\mathcal{O}_X} \mathcal{D}_X$ for M_0 a quasicoherent sheaf. Then $\Gamma_{\text{dR}}(D_x, M)$ $\Gamma(D_x, M_0)$. In particular, if $M = \mathcal{D}_X$ then $\Gamma_{\text{dR}}(D_x, M) = \hat{\mathcal{O}}_x$.

We can also take $\Gamma_{\text{dR}}(D_x^{\circ}, M)$. This is also a topological vector space.

Example 5.3. We have $\Gamma_{\text{dR}}(D_x, M_0 \otimes D_x) = \Gamma(D_x^{\circ}, M_0)$. For $M = \mathcal{D}_X$, we have $\Gamma_{\text{dR}}(D_x, M) = \widehat{K}_x.$

Remark 5.4. If L is a Lie-* algebra, then $\Gamma_{\text{dR}}(D_x, L)$ and $\Gamma_{\text{dR}}(D_x^{\circ}, L)$ are topological Lie algebras.

Lemma 5.5. Let $L - \text{Mod}_x^{\text{Lie}-*}$ be the category of Lie- $*$ modules over L which are supported at $x \in X$. Then $L-\text{Mod}_x^{\text{Lie}-*}$ is equivalent to the category of discrete modules for $\Gamma_{\rm dR}(D_x, L)$ and $L-\text{Mod}_x^{\rm ch}$ is equivalent to the category of discrete modules for $\Gamma_{\rm dR}(D_x^{\circ}, L)$.

Example 5.6. For $L = \mathfrak{g} \otimes \mathcal{D}_x$, we have

$$
\Gamma_{\mathrm{dR}}(D_x,L)=\mathfrak{g}\otimes \hat{\mathcal{O}}_x=\mathfrak{g}[[t]],
$$

and

$$
\Gamma_{\mathrm{dR}}(D_x^{\circ},L)=\mathfrak{g}\otimes\widehat{K}_x=\mathfrak{g}((t)).
$$

Then $(\mathfrak{g} \otimes \mathcal{D}_x)$ – Mod^{Lie–*} is equivalent to the category of discrete $\mathfrak{g}[[t]]$ -modules, and $\mathfrak{g} \otimes \mathcal{D}_x$ – Mod^{ch} is equivalent to the category of discrete $\mathfrak{g}((t))$ – Mod.

Example 5.7. There is an equivalence between $T_x \otimes \mathcal{D}_X - \text{Mod}_x^{\text{Lie } -*}$ and modules over Span(L_{−1}, L₀, L₁ . . .)-modules, where $L_{-1} = \partial_t$, L₀ = t ∂_t , L₁ = t² ∂_t , etc.

On the other hand, chiral modules over $T_x \otimes \mathcal{D}_X$ are modules over span of L_i for all $i \in \mathbb{Z}$. The cokernel of $\Gamma_{\text{dR}}(D_x, L) \hookrightarrow \Gamma_{\text{dR}}(D_x^{\circ}, L)$ is $i_x^!(L)[1]$. The map $\Gamma_{\text{dR}}(D_x, L) \hookrightarrow \Gamma_{\text{dR}}(D_x^{\circ}, L)$ describes restriction and induction functors.

(We are working our ways up to the description of the chiral universal envelope.)

Let L be a Lie-∗ algebra and $U_{\text{ch}}(L)$ its universal envelope. We have a map as Lie algebras $L \to U_{\rm ch}(L)$.

Proposition 5.8. The restriction functor $U_{ch} L-\text{Mod}^{ch}(X) \to L-\text{Mod}^{ch}(X)$ is an equivalence.

Suppose A is a chiral algebra. Write $A_x = i_x^{\dagger}(\mathcal{A})[1]$. We can think of A_x as a chiral module for A at x. We want to describe it what it looks like for $U_{\text{ch}}(L)_x$, as a module for $\Gamma_{\text{dR}}(D_x^{\circ}, L)$. The unit gives a map $\mathbf{C} \to U_{\text{ch}}(L)_x$, and the axioms (namely, that the unit is killed by Lie- $*$ bracket) show that it is annihilated by $\Gamma_{\text{dR}}(D_x, L)$.

So we get a map

$$
\mathrm{Ind}_{\Gamma_{\mathrm{dR}}(D_x, L)}^{\Gamma_{\mathrm{dR}}(D_x^{\circ}, L)}(\mathbf{C}) \to U_{\mathrm{ch}}(L)_x. \tag{5.1}
$$

The LHS is a "vacuum representation".

Theorem 5.9. This map (5.1) is an isomorphism.

Remark 5.10. Jacob asks: given a chiral algebra A on a punctured curve $X - x$, what is the relation between extending A to X and putting a module at the puncture? Answer: given an extension, the fiber $(\mathcal{A}_x) \in \mathcal{A}_{X-x}$ – Mod^{ch} has the universal property:

 $\text{Hom}_{\mathcal{A}_{X-x}-\text{Mod}_x^{\text{ch}}}((\mathcal{A}_x),M)=\{m\in M: \text{ annihilated by the Lie-* bracket}\}.$

6. Factorization modules

We have a correspondence between A_{Fact} and A_{ch} .

Definition 6.1. A *factorization module* over a factorization algebra A_{Fact} is a sequence of D-modules (because we're over a curve) $M = M^{(0,1)} \in \mathrm{Dmod}(\mathrm{pt} \times X), M^{(1,1)} \in \mathrm{Dmod}(X \times$ X , $M^{2,1} \in \text{Dmod}(X^2 \times X)$, ... with isomorphisms

$$
\Delta^!(M^{(1,1)}) \xrightarrow{\sim} M^{0,1}
$$

$$
j^! M^{(1,1)} \xrightarrow{\sim} \mathcal{A}_{\text{Fact}}^{(1)} \boxtimes M^{(0,1)}.
$$

plus identifications $M^{(2,1)}|_{x_1\neq x_3,x_2\neq x_3} = A^{(2)} \boxtimes M^{(0,1)}$ and $M^{(2,1)}|_{x_2=x_3} = M^{(1,1)}$, etc. (Think of the last coordinate as being the module coordinate, and the rest being algebra coordinates.)

So we have an exact triangle

$$
M^{(1,1)}[\text{shift}?] \rightarrow j_*j^*(\mathcal{A}_{\text{Fact}} \boxtimes M) \rightarrow \Delta_!M
$$

The equivalence between A_{Fact} and A_{ch} intertwines an equivalence between factorization modules and chiral modules.

We can define $\mathcal{A}_{\text{Fact}} - \text{Mod}^{\text{Fact}}(X^2)$ as a sequence $M^{(0,2)}, M^{(1,2)}, M^{(2,2)}$ on $X^2, X \times X^2$, $X^2 \times X^2$, etc. with isomorphisms

$$
M^{(1,2)}|_{x_1 \neq x_2, x_1 \neq x_3} = \mathcal{A}_{\text{Fact}} \boxtimes M^{(0,2)}.
$$

and

$$
M^{(1,2)}|_{x_1=x_2} = M^{(0,2)}.
$$

etc.

There is a lot of structure on the category of factorization modules.

- We have $\Delta_! : \mathcal{A} \text{Mod}(X) \to \mathcal{A} \text{Mod}(X^2)$.
- We also have $\mathcal{A}-Mod(X) \otimes \mathcal{A}-Mod(X) \to \mathcal{A}-Mod(X^2)$ taking M_1, M_2 to $j_*j^*(M_1 \boxtimes$ M_2).
- For $M \in \mathcal{A}$ -Mod (X^n) and $\mathcal{F} \in \mathrm{Dmod}(X^n)$, we have $\mathcal{F} \overset{!}{\otimes} M \in \mathcal{A}$ -Mod (X^n) .
- We also have maps $j_*j^*(M_1 \boxtimes M_2) \to \Delta_1 M_3$ in $\mathcal{A}-\text{Mod}(X^2)$. This is mimicking the formalism of nearby cycles. We want to define $M_1 \otimes M_2 = \Psi(j^*(M_1 \boxtimes M_2))$. But we don't know that this is co-representable. And the associativity seems to fail, $(M_1\otimes M_2)\otimes M_3\neq M_1\otimes (M_2\otimes M_3).$

Instead of trying to force a monoidal category, it's better to consider the union of $A_{\text{Fact}} Mod^{Fact}(Xⁿ)$ as a *factorization category*.

7. Chiral universal envelope

We will now say more about the chiral universal envelope of a Lie-∗ algebra L. Recall that a Lie- $*$ module is a D-module M with a map $L \boxtimes M \to \Delta_!(M)$, satisfying axioms. A chiral module is an M with a map $j_*j^*(L \boxtimes M) \to \Delta_!(M)$, satisfying Lie axioms. There is an obvious functor from chiral modules to Lie-∗ modules, it has a left adjoint.

7.1. Fiberwise description. We said restriction induces $L-\text{Mod}^{\text{ch}} \stackrel{\sim}{\leftarrow} U_{\text{ch}}L-\text{Mod}^{\text{ch}}$. We said L−Mod_x is equivalent to discrete modules for $\Gamma_{\text{dR}}(D_x, L)$. This gives a description of $L-\text{Mod}_x^{\text{Lie}\,-*} \to L-\text{Mod}_x^{\text{ch}}$, as induction functor $M \mapsto \text{Ind}_{\Gamma_{\text{dR}}(D_x,\,L)}^{\Gamma_{\text{dR}}(D_x^{\circ},L)}$ $\frac{\Gamma_{\text{dR}}(D_x, L)}{\Gamma_{\text{dR}}(D_x, L)}(M).$

We have an exact sequence

$$
0 \to \Gamma_{\mathrm{dR}}(D_x, L) \to \Gamma_{\mathrm{dR}}(D_x^{\circ}, L) \to i_x^!(L)[1] \to 0
$$

for i_x : pt $\rightarrow X$. Hence $\text{Ind}_{\text{Lap}(D_x,L)}^{\text{Lap}(D_x,L)}$ $\Gamma_{\text{dR}}(D_x, L)(M)$ has a PBW filtration with associated graded $M \otimes \text{Sym}(i_x^!(L)[1]).$

The unit $\mathbf{C} \to U_{\text{ch}}(L)$ induces by adjunction a map

$$
\mathrm{Ind}_{\Gamma_{\mathrm{dR}}(D_x, L)}^{\Gamma_{\mathrm{dR}}(D_x^{\circ}, L)}(\mathbf{C}) \to U_{\mathrm{ch}}(L)_x,\tag{7.1}
$$

and it turns out to be an isomorphism. This gives:

Theorem 7.1. $U_{\text{ch}}(L)$ has a PBW filtration with associated graded Sym¹(L[1])[-1] as commutative chiral algebras.

7.2. Construction of the chiral universal envelope as a factorization algebra. Now we give a construction of $U_{ch}(L)$. It is local on the curve, so we may assume X is affine. It will be easier to construct the incarnation as a factorization algebra $U_{ch}(L)_{\text{Fact}}^{(1)} \in \text{Dmod}(X)$.

We consider $p_1, p_2 \colon X \times X \to X$. Let $j \colon X \times X - \Delta \hookrightarrow X$ be the inclusion of the complement of the diagonal. We consider $p_{1*}(p_2^!(L)) = \omega_X \otimes \Gamma_{dR}(X,L)$. So the Lie-* algebra on L gives this a structure of Lie algebra in the category $\mathrm{Dmod}(X)$. Let's call it L_X .

We can also consider $p_{1*}(j_*j^*p_2^!(L)) \in \text{LieAlg}(\text{Dmod}(X))$, which we call L_X° . What does it look like? By base change the fiber over $x \in X$ is $i_x^!(L_X^{\circ}) = \Gamma_{dR}(X - x, L)$. We have $U_{\text{ch}}(L)_{\text{Fact}}^{(1)} = \text{Ind}_{L_X}^{L_X^{\circ}}(\omega_X).$

Why is this compatible with [\(7.1\)](#page-8-0)? We have a fiber square

$$
\Gamma_{\mathrm{dR}}(X, L) \longrightarrow \Gamma_{\mathrm{dR}}(X - x, L)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\Gamma_{\mathrm{dR}}(D_x, L) \longrightarrow \Gamma_{\mathrm{dR}}(D_x^{\circ}, L)
$$

This implies that induction along the top is compatible with induction along the bottom.

We also need to specify $U_{\text{ch}}(L)_{\text{Fact}}^{(n)} \in \text{Dmod}(X^n)$. We consider a similar setup with $p_1: X^n \times X \to X^n$ and $p_2: X^n \times X \to X$, and j be the complement of the incidence divisor. We define $L_{X^n} = p_{1*}p_2^!(L)$ and $L_{X^n}^{\circ} = p_{1*}j_*j^*p_2^!(L)$. These lie in LieAlg(Dmod(X^n)), and we set $U_{\text{ch}}(L)_{\text{Fact}}^{(n)} := \text{Ind}_{L_{X^n}}^{L_{X^n}^{\diamond}}(\omega_{X^n}).$

The PBW filtration in Theorem [7.1](#page-8-1) comes from the exact triangle $0 \to L_X \to L_X^{\circ} \to$ $L \to 0$ in $\mathrm{Dmod}(X)$.

7.3. Local definition. If you like dislike the choice of global curve X involved in the above construction, we will give a curve-free definition.

We can define a formal scheme $D_{X^n}^{\wedge} = (X^n \times X)_{H}^{\wedge}$. We also have the "spec version" D_{X^n} . Finally, we can define $D_{X^n}^{\circ} = D_{X^n} - H$. We can replace the global situation with the one in the diagram below.

We can define $\widehat L_{X^n}$ and $\widehat L_{X^n}^{\circ}$ by the analogous formulas, and then $U_{\text{ch}}(L)_{\text{Fact}}^{(n)} = \text{Ind}_{\widehat L_{X^n}}^{\widehat L_{X^n}^{\circ}}$ $\frac{L_{X^n}}{L_{X^n}}(\omega_{X^n}).$

Example 7.2. We have

$$
\begin{array}{ccc}\nGr_{X^n} & \longleftarrow & Gr_{X^n}^{\wedge} \\
\downarrow^{\pi} & & \widehat{\pi} \\
X^n & & & \n\end{array}
$$

We claim that

$$
\widehat{\pi}_! (\omega_{\mathrm{Gr}^{\wedge}_{X^n}}) \cong U_{\mathrm{ch}}(\mathfrak{g} \otimes \mathcal{D}_X)^{(n)}_{\mathrm{Fact}}.\tag{7.2}
$$

We have that $\widehat{L}_{X^n}^{\circ}$ acts on $\operatorname{Gr}_{X^n}^{\wedge}$ with $L_{X^n}^{\wedge}$ preserving the unit section. We have a map $\omega_{X^n} \to \hat{\pi}_{\perp}^{\wedge}(\omega_{\text{Gr}_{X^n}^{\wedge}})$ as modules for $\hat{L}_{X^n}^{\circ}$. The image of ω_{X^n} is annihilated by \hat{L}_{X^n} . So that gives by adjunction

$$
\operatorname{Ind}_{\widehat{L}_{X^n}}^{\widehat{L}_{X^n}^{\circ}}(\omega_{X^n}) \xrightarrow{\sim} \widehat{\pi}_! (\omega_{\mathrm{Gr}_{X^n}^{\wedge}}).
$$

The fact that it is an isomorphism follows from PBW: for $y \hookrightarrow Y$, the associated graded on $\omega_{Y_{y}}$ is Sym $(T_{y}Y)$. Concretely in this example, on the fiber over a point of X we are saying $\text{Ind}_{\mathfrak{gl}[t]}^{\mathfrak{g}((t))}(C)$ is the dualizing sheaf on $\text{Gr}_{X^n}^{\wedge}$. Take the associated graded, it looks like Sym of the "tangent space" to Gr_G .

8. Central charge

Give a central extension

$$
0 \to \mathbf{C}\zeta \to \mathfrak{g}' \to \mathfrak{g} \to 0.
$$

We consider $U(\mathfrak{g})' := U(\mathfrak{g}') \otimes_{\mathbf{C}[\mathbf{C}\zeta]} \mathbf{C}$, where $\mathbf{C}\zeta$ is the center. In other words, it is $U(\mathfrak{g}')/T =$ 1". So we have $gr(U(g)') = Sym(g)$. There is an equivalence $U(g)'$ – Mod with g'-modules on which $1 \in \mathbb{C}$ acts as the identity.

There is an analogous construction for Lie algebras. Suppose we have

$$
0 \to \Omega_X \to L' \to L \to 0.
$$

We can then form $U_{\text{ch}}(L')/$ " $\Omega_X = \Omega_X$ " =: $U_{\text{ch}}(L)'$. We have $gr(U_{\text{ch}}(L)') = Sym¹(L[1])[-1]$.

Note that $U_{ch}(L)' - Mod^{ch}(X)$ can be described as chiral modules for L' on which Ω_X acts in the canonical way, i.e. the restriction of the action map to $j_*j^*(\Omega_X \boxtimes M) \to \Delta_!M$ is the canonical map.

Example 8.1. Let $L = \mathfrak{g} \otimes \mathcal{D}_X$. We pick an invariant form $\kappa : \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{C}$. We have an extension

$$
0 \to \Omega_X \to L'_{\mathfrak{g}} \to \mathfrak{g} \otimes \mathcal{D}_X \to 0.
$$

As a D-module it's split, $L'_{\mathfrak{g}} = \mathfrak{g} \otimes \mathcal{D}_X \oplus \omega_X$. To specify the Lie-* algebra structure, we just have to specify the map

$$
(\mathfrak{g}\otimes\mathcal{D}_X)\boxtimes(\mathfrak{g}\otimes\mathcal{D}_X)\to\Delta_!\Omega_X \text{ on } X^2.
$$

This is equivalent to specifying $\mathfrak{g} \otimes \mathfrak{g} \to \Gamma(X \times X, \Delta_! \Omega_X)$. It will factor through $\kappa: \mathfrak{g} \otimes$ $\mathfrak{g} \to \mathbb{C}$, so it is specified by specifying an element of $\Gamma(X \times X, \Delta_!\Omega_X)$. Recall $\Delta_!\Omega_X$ is $j_*j^*(\Omega_X \boxtimes \Omega_X)/\Omega_X \boxtimes \Omega_X$ as a quasicoherent sheaf. We consider the short exact sequence for the diagonal

$$
0\to \Omega_X \to \frac{\Omega_X\boxtimes \Omega_X(2\Delta_X)}{\Omega_X\boxtimes \Omega_X}\to \mathcal{O}_X\to 0.
$$

There is a canonical element which projects to $1 \in X$ and whose residues along the diagonal are 0. In coordinates it is $\frac{dx_1 \wedge dx_2}{(x_1 - x_2)^2}$.

Example 8.2. We can try the same for the Virasoro algebra, but the extension

$$
0 \to \Omega_X \to \text{Vir} \to \Gamma_X \otimes_{\mathcal{O}_X} \mathcal{D}_X \to 0
$$

is not split as modules, canonically or on a global curve.