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1. Review of factorization algebras

Let X be a curve. Jacob defined factorization algebras as: a collection of quasicoherent
sheaves A(n) on Xn, equipped with isomorphisms upon restricting to the diagonal or to the
disjoint locus, e.g.

• ∆∗(A(2))
∼−→ A(1) and

• j∗(A(2))
∼−→ A(1) �A(1)|X×X−∆.

To give more examples, on X3 the data of a factorization algebra includes isomorphisms
(1) ∆∗x1=x2

(A(3))
∼−→ A(2),

(2) ∆∗x1=x3
(A(3))

∼−→ A(2)

(3) ∆∗x2=x3
(A(3))

∼−→ A(2)

(4) ∆x1=x2=x3
(A(3))

∼−→ A(1).
(5) j∗x1 6=x2,x3

(A(3))
∼−→ A�A(2)|x1 6=x2,x3

(6) j∗(A(3))
∼−→ A�A�A|X3−∆.

There are also compatibilities on these isomorphisms when the loci intersect, e.g. (2) and
(5).

If A(n) are in the abelian category of quasi-coherent sheaves, then everything is recovered
from the data over X2.

1.1. Unital factorization algebras. Jacob also introduced the notion of a unital structure
on a factorization algebra. That is a system of maps OXn → A(n) compatible with the
identifications above. He also explained that the unital structure equips all the A(n) with a
connection, making them into left D-modules on Xn.

1
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For f : Y1 → Y2 we have a commutative diagram

Dmodl(Y1) Dmodl(Y2)

QCoh(Y1) QCoh(Y2)

f†

f∗

Example 1.1. Let A ∈ CommAlg(Dmodl(X)). Then we can associate a factorization
algebra Fact(A) such that A(1) = A.

Suppose you have a closed embedding f : Y1 ↪→ Y2. There is f† : Dmodl(Y2)→ Dmodl(Y1).
There is also f∗ = f! : Dmod(Y1)→ Dmod(Y2), normalized to be t-exact. Unfortunately,

with these normalizations the functors are not adjoint. Rather, f† is right adjoint to f∗ = f!,
up to shift. (So f† agrees with f ! up to a shift.)

Example 1.2. For an open/closed decomposition, the Cousin sequence is

f!f
†(M)[−codim]→M → j∗j

∗M

Consider this applied toM = A(2) on X2. Then the Cousin complex is

∆!∆
†[−1]A(2) → A(2) → j∗j

∗(A(2)).

So unwinding the normalizations and identifications gives a distinguished triangle

A(2) → j∗j
∗(A�A)→ ∆!A(1).

So A(2) = ker(j∗j
∗(A�A)→ ∆!A(1)).

1.2. Left vs right D-modules. The category of left D-modules is a bit inconvenient, so
we’ll want to switch to right D-modules. This is given by tensoring with the dualizing sheaf.

A better way to think about this is that there is one category of D-modules, but it has
two forgetful functors to quasicoherent sheaves, called oblvl and oblvr.

Dmod(X)

QCoh(X) QCoh(X)

oblvl oblvr

−⊗ΩX

The right normalization is better for functoriality. Given f : Y1 → Y2, the diagram
commutes

Dmod(Y1) Dmod(Y2)

QCoh(Y1) QCoh(Y2)

oblvr

f !

oblvr

f !

For a factorization algebra A(n), we denote A(n)
Fact ∈ Dmodr(X(n)) the corresponding right

D-modules. So now the factorization axioms read

j∗(A(2)
Fact)

∼−→ A(1)
Fact �A

(1)
Fact|X2−∆

and
∆!(A(2)

Fact)
∼= A(1)

Fact.

Also
A(2)

Fact = ker
(
j∗j
∗(A(1)

Fact �A
(1)
Fact)→ ∆!A(1)

Fact[1]
)
.
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2. Chiral algebras

2.1. Chiral algebras from factorization algebras. We will now define the chiral algebra
associated to the factorization algebra A(n): it is the collection A(n)

ch := A(1)
Fact[−n], so in

particular A(1)
ch = A(1)

Fact[−1]. Hence in this normalization

A(2)
ch = ker

(
j∗j
∗(A(1)

ch �A
(1)
ch )→ ∆!A(1)

ch

)
.

The point is that this can be normalized to lie in the heart of the t-structure.
The map

j∗j
∗(A(1)

ch �A
(1)
ch )→ ∆!A(1)

ch (2.1)
is almost like a thing with a binary operation, so that’s reminiscent of what an algebra is.
Let’s call (2.1) the “chiral bracket”.

Proposition 2.1. The chiral bracket satisfies the conditions of a Lie bracket.

Why is it skew-symmetric? Because the shift by 1 affects the sign rule. (Symmetry under
S2 goes to skew-symmetric under S2 after shifting.)

Now for the “Jacobi identity”, we’ll write three ways to go from j∗j
∗(A(1)

ch �A
(1)
ch �A

(1)
ch ) to

∆!(A(1)
ch ) on X3. First we can map via chiral bracket � Id to ∆(1=2)6=3!(j∗j

∗(A(1)
ch �A

(1)
ch ))1.

Then we map via chiral bracket again to ∆!(A(1)
ch ).

So we have

A(3) → j∗j
∗(A(3))→ ∆1=2!j∗(j

∗∆!
12(A(3)))⊕ . . .→ ∆123!∆

!
123(A(3))

This is acyclic because it is just the Cousin complex. The fact that the composition

j∗j
∗(A(3))→ ∆1=2!j∗(A�A)⊕ . . .→ ∆!(A)

is 0 is just the fact that Cousin complex is a complex, and is the Jacobi identity in this
context.

(This is related to the fact that there is a functor from E2 algebras to Lie algebras, by
shifting.)

Definition 2.2. A chiral algebra is a right D-module Ach on X equipped with a bracket

j∗j
∗(Ach �Ach)→ ∆!Ach

satisfying the Lie axioms.
A unit in a chiral algebra A is a map

u : ΩX → Ach

such that the diagram below commutes:

j∗j
∗(ΩX �A) ∆!Ach

j∗j
∗(Ach �Ach) ∆!Ach

u�Id

can

Id

1Explanation of intermediate steps: we have a map j∗j∗(A(1)
ch � A(1)

ch � A(1)
ch ) →

(j1,2 6=3)∗((j1 6=2)∗(j1 6=2)∗A(1)
ch � A

(1)
ch ) � A(1)

ch ). Via chiral bracket on the first two factors, this maps
to (j1,2 6=3)∗(∆1=2!Ach � Ach). Then using the chiral bracket again goes to ∆1=2=3!Ach. So I’m not sure
we actually pass through the intermediate step above.
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Here ΩX is the line bundle of 1-forms on X, which is the shift of the dualizing sheaf, viewed
right as a right D-module. Explanation of “can”: note that the Cousin sequence for ΩX�Ach

is
ΩX �Ach → j∗j

∗(ΩX �Ach)→ ∆!Ach

The rightmost map is “can”.

Theorem 2.3. The functor from unital factorization algebras to unital chiral algebras is an
equivalence.

Proof. Let’s explain the inverse. We can recover

A(2)
ch := ker (j∗j

∗(Ach �Ach)� ∆!Ach).

Remark: the unit implies the right term is surjection. This also exhibits j∗A(2)
ch

∼−→ Ach�Ach

and ∆!(A(2)
ch ) = A(1)

ch [−1].
To recover A(3), we set

A(3)
ch := H0 (j∗(Ach �Ach �Ach)→ ∆1=2!j∗(Ach �Ach)⊕ . . .→ ∆123!(Ach)) .

�

Remark 2.4. This explains why the factorization algebra was determined by the data on
X2, satisfying the conditions on X3. The data on X2 gives the chiral bracket, and the data
on X3 showed that it satisfies the Lie axioms.

Remark 2.5. The theorem stated only applies to unital chiral algebras. There are certainly
other kinds of chiral algebras; for example, you can take the chiral bracket j∗j∗(Ach�Ach)→
∆!Ach to just be 0. However, it works without the unit if we consider derived objects. So
the unit is something that allows you to stay in the heart of the t-structure.

2.2. Commutative chiral algebras. Let Al ∈ CommAlg(Dmodl(X)). We then turn it
into a right D-module in the same as before: Ach = (Al ⊗ dualizing)[−1] = Al ⊗ ΩX . We
will then construct a chiral bracket on it.

j∗j
∗(Ach �Ach) 99K ∆!Ach.

We have an exact triangle

∆!(Ach

!

� Ach)[−1]→ Ach �Ach → j∗j
∗(Ach �Ach)

This gives

j∗j
∗(Ach �Ach)→ ∆!(Ach

!
� Ach)

mult−−−→ ∆!(Ach).

We then define A(2)
ch = ker(j∗j

∗(Ach �Ach)→ ∆!(Ach)).

Definition 2.6. A chiral algebra is said to be commutative if the composition

Ach �Ach → j∗j
∗(Ach �Ach)→ ∆!(Ach)

is zero. (The composite map is called the “Lie-∗” bracket, so in other words a chiral algebra
is commutative iff the Lie-∗ bracket vanishes.)

Proposition 2.7. The above construction is an equivalence between ComAlg(Dmodl(X))
and commutative chiral algebras.

Warning 2.8. In a higher categorical situation, commutativity becomes a structure – one
needs to specify nullhomotopies.



FACTORIZATION ALGEBRAS AND CHIRAL ALGEBRAS (OCT 29, 2020) 5

3. Examples

3.1. The Beilinson-Drinfeld Grassmannian. Recall our first example of factorization
algebra: for the Beilinson-Drinfeld π : GrXn → Xn and LXn a line bundle with factorization
structure, we have A(n) := π!(LXn) ∈ QCoh(Xn).

For an ind-scheme Y = lim−→Yi, the cohomology is a pro-object Γ(Y;L) = lim←−Γ(Yi,L).
It’s better to use cosections to get an ind-object, Γ(Y;L)∨ = lim−→Γ(Yi,L)∨.

We can rewrite this succintly: Γ(Yi,L)∨ = Γ(Yi,L−1⊗ωYi
). We have that ωY ∼= lim−→ωYi

.
So Γc(Y,L)∨ = Γ(Y,L−1 ⊗ ωY).

Remark 3.1. Jacob assumed that L was ample, so we get sections and no higher cohomol-
ogy. The point is if Yi are smooth, the dualizing is a shift of the canonical bundle. But for
an ind-scheme, ω lives in cohomological degree −∞.

The GrG,Xn comes with a section (trivial bundle with tautological trivialization). Con-
sider the formal completion Gr∧G,Xn along this section. We can then restrict L−1 to the
formal completion. Define A(n) = π∧! (L−1) to be the direct image of L−1 on Gr∧G,Xn to Xn.

3.2. Lie-∗ algebras.
Definition 3.2. A Lie-∗ algebra is a D-module L on X equipped with

L� L→ ∆!L

satisfying the Lie axioms.

There is a forgetful functor from chiral algebras to Lie-* algebras, as given a chiral bracket
j∗j
∗(A � A) → ∆!A we can just inflate via A � A → j∗j

∗(A � A) to get a Lie-* bracket.
This is analogous to the forgetful functor from E2 algebras to shifted Lie algebras.

Key observation: the above functor admits a left adjoint L 7→ Uch(L), called the “chiral
universal envelope”. That gives many important examples of chiral algebras. This fact also
has a topological analog.

Example 3.3. Let g be a finite-dimensional Lie algebra, and consider L := g ⊗ DX as a
right D-module. We have to write down

(g�DX)� (g�DX)→ ∆!(g�DX)

In other words we have to give a map

g⊗ g→ Γ(X ×X,∆!(g�DX)).

There is a map Γ(X, g ⊗ DX) → Γ(X × X,∆!(g � DX)). We then compose this with

g⊗ g
[·,·]−−→ g→ Γ(X, g⊗DX).

Example 3.4. We consider TX ⊗OX
DX . We try repeating the same construction, but the

problem is that the Lie bracket on TX is not OX -linear.
Given two quasicoherent sheaves M1,M2 on X we can talk about differential operators

M1 →M2; these are the same as OX -linear maps M1 →M2 ⊗OX
DX .

We have ∆!(M ⊗OX
DX) = ∆∗(M)⊗OX×X

DX×X . So we want to define

(TX ⊗OX
DX)� (TX ⊗OX

DX)→ ∆!(TX ⊗OX
DX)

∼−→ ∆∗(T1)⊗OX×X
DX×X .

Such a latter map TX �TX → ∆∗(TX)⊗OX×X
DX×X is the same as a differential operator,

which we can take to be the Lie bracket TX � TX → ∆∗(TX).

Lemma 3.5. Uch(g⊗DX) = π∧! O where π∧! : Gr∧Xn → Xn.

Remark 3.6. For this construction g can be any Lie algebra (not necessarily reductive).



6 TALK BY DENNIS GAITSGORY, NOTES BY TONY FENG

4. Modules for chiral algebras

Let Ach be a chiral algebra.

Definition 4.1. A chiral Ach-module on X is a D-modules M on X equipped a map2

j∗j
∗(Ach �M)→ ∆!M

plus a Jacobi identity (Lie algebra acting on a module) for the three maps

j∗j
∗(Ach �Ach �M)→ ∆!M.

We say that M is unital if the diagram below commutes:

j∗j
∗(ΩX �M) ∆!M

j∗j
∗(Ach �M) ∆!M

Id

Example 4.2. Ach is a chiral module over itself.

Remark 4.3. An important class of examples comes from chiral A-modules supported at
x ∈ X.

Example 4.4. If M ∈ A−Modch(X), then ix!i
!
x(M)[1] is a chiral A-module at a point x.

So “fibers of chiral modules are chiral modules.”

Example 4.5. How do Ach-modules look like for Ach commutative?
Let Al ∈ CommAlg(Dmodl(X)). Then i∗x(A) ∈ CommAlg(Vect). We claim that there is

a functor from i∗x(Al)-modules to chiral Ach-modules.
“Chiral modules supported at x ∈ X only care about the chiral algebra away from x.”

To see an example of what this means we can modify Al at a point. Let φ : (A′)l ↪→ Al be
an isomorphism away from x. Then we also get a functor from i∗x((A′)l)-modules to chiral
Ach-modules.

Lemma 4.6. Any chiral Ach-module is a union of ones of the above form.

Example 4.7. If A is the (commutative) chiral algebra of functions on jets into a space,
then functions on loops are chiral modules.

5. Lie-∗ modules

Definition 5.1. Let L be a Lie-* algebra on X. A Lie-∗ module over L is a D-module M
on X with a map L �M → ∆!M satisfying a Jacobi identity. We denote the category of
such as L−ModLie−∗(X).

A chiral L-module is a D-module M on X with a map j∗j∗(L �M) → ∆!M satisfying
a Jacobi identity for the three maps

j∗j
∗(L� L�M)→ ∆!M

given by j∗j∗(L � L �M) → ∆x1=x2!(j∗j
∗(L �M)) → ∆!(M) and its variations obtained

by permuting {1, 2, 3}. We denote the category of such by L−Modch(X).

There is an obvious functor L−ModLie−∗(X)← L−Modch(X), given by pre-composing
with L→ j∗j

∗L. This functor has a left adjoint.
Given a chiral module, we can form the de Rham cohomology ΓdR(Dx,M). This is a

topological vector space, since Dx is an ind-scheme.

2Another approach: it is a split square-zero extension Ach ⊕ εM .
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Example 5.2. SupposeM = M0⊗OX
DX forM0 a quasicoherent sheaf. Then ΓdR(Dx,M) =

Γ(Dx,M0). In particular, if M = DX then ΓdR(Dx,M) = Ôx.

We can also take ΓdR(D◦x,M). This is also a topological vector space.

Example 5.3. We have ΓdR(Dx,M0 ⊗ DX) = Γ(D◦x,M0). For M = DX , we have
ΓdR(Dx,M) = K̂x.

Remark 5.4. If L is a Lie-∗ algebra, then ΓdR(Dx, L) and ΓdR(D◦x, L) are topological Lie
algebras.

Lemma 5.5. Let L − ModLie−∗
x be the category of Lie-∗ modules over L which are sup-

ported at x ∈ X. Then L −ModLie−∗
x is equivalent to the category of discrete modules for

ΓdR(Dx, L) and L−Modch
x is equivalent to the category of discrete modules for ΓdR(D◦x, L).

Example 5.6. For L = g⊗Dx, we have

ΓdR(Dx, L) = g⊗ Ôx = g[[t]],

and
ΓdR(D◦x, L) = g⊗ K̂x = g((t)).

Then (g ⊗ Dx) − ModLie−∗
x is equivalent to the category of discrete g[[t]]-modules, and

g⊗Dx −Modch
x is equivalent to the category of discrete g((t))−Mod.

Example 5.7. There is an equivalence between Tx ⊗ DX −ModLie−∗
x and modules over

Span(L−1, L0, L1 . . .)-modules, where L−1 = ∂t, L0 = t∂t, L1 = t2∂t, etc.
On the other hand, chiral modules over Tx⊗DX are modules over span of Li for all i ∈ Z.
The cokernel of ΓdR(Dx, L) ↪→ ΓdR(D◦x, L) is i!x(L)[1]. The map ΓdR(Dx, L) ↪→ ΓdR(D◦x, L)

describes restriction and induction functors.

(We are working our ways up to the description of the chiral universal envelope.)
Let L be a Lie-∗ algebra and Uch(L) its universal envelope. We have a map as Lie algebras

L→ Uch(L).

Proposition 5.8. The restriction functor UchL−Modch(X)→ L−Modch(X) is an equiva-
lence.

Suppose A is a chiral algebra. Write Ax = i!x(A)[1]. We can think of Ax as a chiral
module for A at x. We want to describe it what it looks like for Uch(L)x, as a module for
ΓdR(D◦x, L). The unit gives a map C→ Uch(L)x, and the axioms (namely, that the unit is
killed by Lie-∗ bracket) show that it is annihilated by ΓdR(Dx, L).

So we get a map

Ind
ΓdR(D◦x,L)

ΓdR(Dx,L)(C)→ Uch(L)x. (5.1)

The LHS is a “vacuum representation”.

Theorem 5.9. This map (5.1) is an isomorphism.

Remark 5.10. Jacob asks: given a chiral algebra A on a punctured curve X − x, what
is the relation between extending A to X and putting a module at the puncture? Answer:
given an extension, the fiber (Ax) ∈ AX−x −Modch

x has the universal property:

HomAX−x−Modch
x

((Ax),M) = {m ∈M : annihilated by the Lie-∗ bracket}.
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6. Factorization modules

We have a correspondence between AFact and Ach.

Definition 6.1. A factorization module over a factorization algebra AFact is a sequence of
D-modules (because we’re over a curve) M = M (0,1) ∈ Dmod(pt×X), M (1,1) ∈ Dmod(X×
X), M2,1 ∈ Dmod(X2 ×X), ... with isomorphisms

∆!(M (1,1))
∼−→M0,1

j!M (1,1) ∼−→ A(1)
Fact �M

(0,1).

plus identifications M (2,1)|x1 6=x3,x2 6=x3 = A(2) � M (0,1) and M (2,1)|x2=x3 = M (1,1), etc.
(Think of the last coordinate as being the module coordinate, and the rest being algebra
coordinates.)

So we have an exact triangle

M (1,1)[shift?]→ j∗j
∗(AFact �M)→ ∆!M

The equivalence between AFact and Ach intertwines an equivalence between factorization
modules and chiral modules.

We can define AFact−ModFact(X2) as a sequence M (0,2),M (1,2),M (2,2) on X2, X ×X2,
X2 ×X2, etc. with isomorphisms

M (1,2)|x1 6=x2,x1 6=x3
= AFact �M

(0,2).

and

M (1,2)|x1=x2
= M (0,2).

etc.
There is a lot of structure on the category of factorization modules.

• We have ∆! : A−Mod(X)→ A−Mod(X2).
• We also haveA−Mod(X)⊗A−Mod(X)→ A−Mod(X2) takingM1,M2 to j∗j∗(M1�
M2).

• For M ∈ A−Mod(Xn) and F ∈ Dmod(Xn), we have F
!
⊗M ∈ A−Mod(Xn).

• We also have maps j∗j∗(M1�M2)→ ∆!M3 in A−Mod(X2). This is mimicking the
formalism of nearby cycles. We want to define M1⊗̇M2 = Ψ(j∗(M1 �M2)). But
we don’t know that this is co-representable. And the associativity seems to fail,
(M1⊗̇M2)⊗̇M3 6= M1⊗̇(M2⊗̇M3).

Instead of trying to force a monoidal category, it’s better to consider the union of AFact −
ModFact(Xn) as a factorization category.

7. Chiral universal envelope

We will now say more about the chiral universal envelope of a Lie-∗ algebra L. Recall
that a Lie-∗ module is a D-module M with a map L�M → ∆!(M), satisfying axioms. A
chiral module is an M with a map j∗j∗(L�M)→ ∆!(M), satisfying Lie axioms. There is
an obvious functor from chiral modules to Lie-∗ modules, it has a left adjoint.
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7.1. Fiberwise description. We said restriction induces L−Modch ∼←− UchL−Modch. We
said L−Modx is equivalent to discrete modules for ΓdR(Dx, L). This gives a description of
L−ModLie−∗

x → L−Modch
x , as induction functor M 7→ Ind

ΓdR(D◦x,L)

ΓdR(Dx,L)(M).
We have an exact sequence

0→ ΓdR(Dx, L)→ ΓdR(D◦x, L)→ i!x(L)[1]→ 0

for ix : pt → X. Hence Ind
ΓdR(D◦x,L)

ΓdR(Dx,L)(M) has a PBW filtration with associated graded
M ⊗ Sym(i!x(L)[1]).

The unit C→ Uch(L) induces by adjunction a map

Ind
ΓdR(D◦x,L)

ΓdR(Dx,L)(C)→ Uch(L)x, (7.1)

and it turns out to be an isomorphism. This gives:

Theorem 7.1. Uch(L) has a PBW filtration with associated graded Sym!(L[1])[−1] as com-
mutative chiral algebras.

7.2. Construction of the chiral universal envelope as a factorization algebra. Now
we give a construction of Uch(L). It is local on the curve, so we may assume X is affine. It
will be easier to construct the incarnation as a factorization algebra Uch(L)

(1)
Fact ∈ Dmod(X).

We consider p1, p2 : X × X → X. Let j : X × X − ∆ ↪→ X be the inclusion of the
complement of the diagonal. We consider p1∗(p

!
2(L)) = ωX ⊗ ΓdR(X,L). So the Lie-*

algebra on L gives this a structure of Lie algebra in the category Dmod(X). Let’s call it
LX .

We can also consider p1∗(j∗j
∗p!

2(L)) ∈ LieAlg(Dmod(X)), which we call L◦X . What does
it look like? By base change the fiber over x ∈ X is i!x(L◦X) = ΓdR(X − x, L). We have
Uch(L)

(1)
Fact = Ind

L◦X
LX

(ωX).
Why is this compatible with (7.1)? We have a fiber square

ΓdR(X,L) ΓdR(X − x, L)

ΓdR(Dx, L) ΓdR(D◦x, L)

This implies that induction along the top is compatible with induction along the bottom.
We also need to specify Uch(L)

(n)
Fact ∈ Dmod(Xn). We consider a similar setup with

p1 : Xn×X → Xn and p2 : Xn×X → X, and j be the complement of the incidence divisor.
We define LXn = p1∗p

!
2(L) and L◦Xn = p1∗j∗j

∗p!
2(L). These lie in LieAlg(Dmod(Xn)), and

we set Uch(L)
(n)
Fact := Ind

L◦Xn

LXn
(ωXn).

The PBW filtration in Theorem 7.1 comes from the exact triangle 0 → LX → L◦X →
L→ 0 in Dmod(X).

7.3. Local definition. If you like dislike the choice of global curve X involved in the above
construction, we will give a curve-free definition.

We can define a formal scheme D∧Xn = (Xn×X)∧H . We also have the “spec version” DXn .
Finally, we can define D◦Xn = DXn −H. We can replace the global situation with the one



10 TALK BY DENNIS GAITSGORY, NOTES BY TONY FENG

in the diagram below.
D◦Xn

DXn X

Xn

j

p̂2

p̂1

We can define L̂Xn and L̂◦Xn by the analogous formulas, and then Uch(L)
(n)
Fact = Ind

L̂◦Xn

L̂Xn
(ωXn).

Example 7.2. We have
GrXn Gr∧Xn

Xn

π
π̂

We claim that
π̂!(ωGr∧

Xn
) ∼= Uch(g⊗DX)

(n)
Fact. (7.2)

We have that L̂◦Xn acts on Gr∧Xn , with L∧Xn preserving the unit section. We have a map
ωXn → π̂∧! (ωGr∧

Xn
) as modules for L̂◦Xn . The image of ωXn is annihilated by L̂Xn . So that

gives by adjunction
Ind

L̂◦Xn

L̂Xn
(ωXn)

∼−→ π̂!(ωGr∧
Xn

).

The fact that it is an isomorphism follows from PBW: for y ↪→ Y , the associated graded on
ωY ∧y is Sym(TyY ). Concretely in this example, on the fiber over a point of X we are saying

Ind
g((t))
g[[t]] (C) is the dualizing sheaf on Gr∧Xn . Take the associated graded, it looks like Sym

of the “tangent space” to GrG.

8. Central charge

Give a central extension
0→ Cζ → g′ → g→ 0.

We consider U(g)′ := U(g′)⊗C[Cζ]C, whereCζ is the center. In other words, it is U(g′)/“1 =
1”. So we have gr(U(g)′) = Sym(g). There is an equivalence U(g)′ −Mod with g′-modules
on which 1 ∈ C acts as the identity.

There is an analogous construction for Lie algebras. Suppose we have

0→ ΩX → L′ → L→ 0.

We can then form Uch(L′)/“ΩX = ΩX” =: Uch(L)′. We have gr(Uch(L)′) = Sym!(L[1])[−1].
Note that Uch(L)′ −Modch(X) can be described as chiral modules for L′ on which ΩX

acts in the canonical way, i.e. the restriction of the action map to j∗j∗(ΩX �M) → ∆!M
is the canonical map.

Example 8.1. Let L = g ⊗ DX . We pick an invariant form κ : : g ⊗ g → C. We have an
extension

0→ ΩX → L′g → g⊗DX → 0.

As a D-module it’s split, L′g = g⊗DX ⊕ωX . To specify the Lie-* algebra structure, we just
have to specify the map

(g⊗DX)� (g⊗DX)→ ∆!ΩX on X2.
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This is equivalent to specifying g ⊗ g → Γ(X × X,∆!ΩX). It will factor through κ : g ⊗
g → C, so it is specified by specifying an element of Γ(X × X,∆!ΩX). Recall ∆!ΩX is
j∗j
∗(ΩX � ΩX)/ΩX � ΩX as a quasicoherent sheaf. We consider the short exact sequence

for the diagonal

0→ ΩX →
ΩX � ΩX(2∆X)

ΩX � ΩX
→ OX → 0.

There is a canonical element which projects to 1 ∈X and whose residues along the diagonal
are 0. In coordinates it is dx1∧dx2

(x1−x2)2 .

Example 8.2. We can try the same for the Virasoro algebra, but the extension

0→ ΩX → Vir→ ΓX ⊗OX
DX → 0

is not split as modules, canonically or on a global curve.
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