HIGHER SIEGEL-WEIL FORMULA FOR UNITARY GROUPS:

THE NON-SINGULAR TERMS

TONY FENG, ZHIWEI YUN, WEI ZHANG

ABSTRACT. We construct special cycles on the moduli stack of hermitian shtukas. We
prove an identity between (1) the r*® central derivative of non-singular Fourier coefficients
of a normalized Siegel-Eisenstein series, and (2) the degree of special cycles of “virtual
dimension 0” on the moduli stack of hermitian shtukas with r legs. This may be viewed
as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional
feature of encompassing all higher derivatives of the Eisenstein series.
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The classical Siegel-Weil formula ([Sie51l [Wei65]) relates the special values of Siegel-
Eisenstein series on the symplectic group (resp. the unitary group) to theta functions,
which are generating series of representation numbers of quadratic (resp. Hermitian) forms
over number fields. In particular, by exploiting the factorization of the non-singular Fourier
coefficients into a product of local terms, one arrives at Siegel’s formula for representation
numbers of global quadratic or Hermitian forms in terms of local representation densities.
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In [Kud97] Kudla began to study an arithmetic version of the Siegel-Weil formula and
he discovered a relation between an “arithmetic theta function” — a generating series of
arithmetic cycles on an integral model of a Shimura curve—and the first central derivative
of a Siegel-Eisenstein series on Sp,. In a series of papers, Kudla and Rapoport developed
this paradigm by defining the non-singular terms of a generating series of special cycles
on suitable integral models of Shimura varieties for SO(n — 1,2) with n < 4 and for all
U(n — 1,1). Of particular relevance to our paper, in [KR11l, [KRI4] Kudla and Rapoport
defined the sought-after special cycles on integral models of unitary Shimura varieties, now
known as Kudla—Rapoport cycles, and conjectured a relationship to the non-singular Fourier
coeflicients of the central derivative of the Siegel-Eisenstein series. Their conjecture has been
recently proved by Li and one of us [[LZ22a]; we also refer to the introduction of [[LZ22a] for
a more detailed account of recent advances in some other related directions (see also [LZ22D)]
for the orthogonal analog). With the Kudla-Rapoport conjecture proved in [LZ22a] and its
archimedean counterpart proved by Liu [Liull] and independently by Garcia and Sankaran
[GS19] as some of the key ingredients, Li and Liu [LL21] [L122] have recently proved an
arithmetic Rallis inner product formula relating the height pairing of the generating series
to the first derivative of L-functions for unitary groups, from which they deduced cases of
Beilinson—Bloch conjecture for certain high rank motives.

In this paper we study a function field analogue of the arithmetic Siegel-Weil formula, for
unitary groups. In particular, we will construct special cycles on the moduli space of her-
mitian shtukas with arbitrary number of legs. Then we formulate and prove the analogue of
the Kudla-Rapoport conjecture for derivatives of arbitrary order at the center of the Siegel—
Eisenstein series, relating the non-singular Fourier coefficients of such higher derivatives to
the degrees of special cycles. We remark that the proofs here follow a completely different
strategy than in [LZ22a].

In the sequel [FYZ21], we will construct the complete generating series of special cycles
(including singular terms) and give evidence for their modularity.

1.1. Statement of main result. To formulate the result, let X be a smooth, proper and
geometrically connected curve over k = Fy of characteristic p # 2, and v: X' — X be
an étale double cover, with the non-trivial automorphism denoted o € Aut(X'/X). Let
F be the function field of X and let F’ be the ring of rational functions on X’ (we allow
X'=X][X). In §6[we recall the definition of the moduli stack Sht;(,,) parametrizing rank
n “Hermitian shtukas” with r legs. Roughly speaking it classifies chains of vector bundles
with Hermitian structures

Fo s Frr e Fo TR, (L.1)

related by elementary modifications. It admits a fibration ShtTU(n) — (X")", and will play
the role of Shimura varieties in the function field context.

1.1.1. Special cycles. Drawing inspiration from the construction of Kudla-Rapoport cycles
on unitary Shimura varieties [KR14], we introduce in §7| certain stacks Zg(a) over Shty,,

indexed by &, a vector bundle of rank m with 1 < m < n on X’, and a Hermitian madﬁ
a: & — o*&Y where €Y := Hom(€,wx/) is the Serre dual of £. They classify Hermitian
shtukas as in together with compatible maps £ — F; such that a is induced from the
Hermitian form on Fg.

N map of vector bundles of the form a: & — o*&V is Hermitian if 0*a" = a.
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If € is a line bundle on X', ZZ(a) is an analogue of Kudla-Rapoport divisors although
they have dimension 7 less than Sht{;(,,). In general, Zz(a) are analogs of special cycles for
function fields.

We will be particularly interested in the case m = n and a: £ — o*£Y is injective
(by this we shall always mean as a map of coherent sheaves). In this case, the “virtual
dimension” of Z%(a) is 0. However, as is already seen in the number field context [KRI14],
the literal dimension of ZZ(a) is often significantly larger; this problem is exacerbated as
r increases. Nevertheless, under the assumption that a: & — ¢*£Y is injective (as a map
of coherent sheaves), we are able to construct an appropriate “virtual fundamental cycle”
[Z£(a)] € Cho(Z2£(a))q. Interestingly, it turns out that there are some new difficulties
present in this construction that do not appear in the Shimura variety setting. For a
injective, it turns out that ZZ(a) is proper over Fy, so that [2(a)] has a well-defined degree
deg[2£(a)] € Q.

1.1.2. The main result. Let E(g, s, ®) be the Siegel-Eisenstein series for the standard split
F'/F-skew-Hermitian space of dimension 2n, with respect to the unramified standard section
®. For a rank n vector bundle £ on X’ as above, E(g, s, ®) admits a Fourier expansion with
respect to £ indexed by Hermitian maps a: € — 0*EY. We let E,(m(€),s, ®) be the a'®
Fourier coefficient multiplied by certain normalization factors, explained precisely in .

In our normalization, s = 0 is the center of the functional equation for E,(m(€), s, ®).
Our main theorem relates the Taylor expansion at this central point to the degrees of special
cycle classes.

Theorem 1.1. Letn > 1 and r > 0. Let £ be a rank n vector bundle on X' and a: &€ —
o*EY be an injective Hermitian map. Then we have

(i)

where d = — deg(€) + ndegwx = —x(X,&).

(@™ Eu(m(e).5.9)) = deg[2E(a), (12)

1.1.3. Initial comments on the proof. We stress that holds for all r, regardless of the
order of vanishing of E,(m(£), s, ®) at s = 0. This is a distinguishing novelty of Theorem
compared to all other works on the Seigel-Weil or arithmetic Siegel-Weil formula. The first
results of this nature, giving motivic interpretations of Taylor coefficients of automorphic
L-functions even “beyond the leading term”, were proved in [YZ17, [YZ19] for PGLy. Our
results here are the first higher derivative formulas to be proved for groups of arbitrary rank.
Our proof shares some common ingredients with these earlier works, but also has a number
of interesting new ones. For example, a key discovery for us was a connection between
the Fourier coeflicients of Siegel-Eisenstein series and certain perverse sheaves arising from
Springer theory. Another key realization was that the special cycles are governed by certain
variants of the Hitchin fibration, whose geometry can also be described in terms of Springer
theory. In particular, the geometry behind Theorem is much more complicated than
that in [YZ17, [YZ19] as soon as n > 2. An overview of the proof will be given in

Another feature of the proof of Theorem [I.1] is that it is completely uniform in r, and
in particular unites the “Siegel-Weil formula” and “arithmetic Siegel-Weil formula” in the
same framework. For this reason, we propose to call a higher Siegel-Weil formula.
This formula will serve as the first step to establish a higher order derivative version of the
aforementioned recent work of Li and Liu [LL21) [LL22] over function fields, which would
give a geometric interpretation of higher derivatives of Langlands L-functions.
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Remark 1.2. When r = 0, the coarse moduli space of Shty;,, is just the discrete set of
points which form the domain of everywhere unramified automorphic forms for U(n). In
that case, Theorem specializes to (the non-singular Fourier coefficients of) the classical
Siegel-Weil formula, which can be found in [Wei65].

One should imagine that when r = 1, Sht’{,(n) — X' is analogous to (the integral model
of) a unitary Shimura variety. Now, under the technical assumptions of the present paper
(namely the everywhere unramifiedness assumptions) this space is always empty, corre-
sponding to the fact that the sign of the functional equation for the Siegel-FEisenstein series
is +1 (so that all odd order derivatives vanish). However, with a mild modification of the
setup, the same methods may be used to prove variants of Theorem in which the sign
of the functional equation is —1. More precisely, in this paper we consider rank n vector
bundles on X’ with a Hermitian pairing valued in the canonical bundle wys = v*wy; if we
replace wx here by a line bundle on X which is not a norm from X’, then the sign of the
functional equation is —1 when n is odd. The precise formulation is in [FYZ21l §9]. We
mention also the work [Weil9] over function fields, which should be thought of as being
similar to the special case of Theorem forr=1and n=1.

When r > 1, no analogue of the spaces Sht}}(n) is presently known in the number field
setting. Consequently, we do not know how to formulate an analogue of the main result for
number fields.

1.1.4. Construction of wvirtual fundamental cycles. For a vector bundle £ of rank m on
X'’ and a Hermitian map a: & — ¢*&Y, the dimension of Zf(a) differs from its “virtual
dimension”, which is r(n — m). The situation gets worse if a is singular (i.e., not injective,
in analogy to the terminology of [KR14]). For example, when a = 0, ZZ(0) contains Shty;,,)
as a substack. It is a nontrivial task to define a cycle class [Z%(a)] in the expected dimension
r(n —m).

Our companion paper [FYZ21] proposes two solutions to this problem, one using classical
intersection theory and the other using derived algebraic geometry. There, we construct
cycle classes [Z%(a)] for all £ of rank < n and possibly singular a: € — o*EY. Moreover, we
assemble them into generating series valued in the Chow groups of Sht’(}(n) and conjecture
it to be automorphic, in analogy to known results over number fields [BHK™20], which fall
under the umbrella of the Kudla program.

In this paper, we use a more elementary method to define the 0-cycle [ZZ(a)] in the case
m = n and a injective. First, we prove that when £ is a line bundle and a: £ — o*LV
is an injective Hermitian map, ZJ(a) has the expected dimension (cf. Proposition
and Remark [7.10). Next, when £ = @1 ,£; is a direct sum of line bundles, the class
[ZE(a)] € Cho(Z%E(a))q can be defined as (the restriction to ZZ(a) of) the intersection
product of Z7. (a;;) for the diagonal entries a;; of a; this is similar to the number field case.
However, compared to the number field case, a new difficulty arises since £ is not necessarily
a direct sum of line bundles. We overcome this difficulty in by introducing the notion
of a good framing for £ to reduce to the case of a sum of line bundles. A nontrivial task is
to verify that the cycle class [2(a)] is independent of the choice of the good framing, which
occupies much of the sections §8-§10]

1.2. Method of proof. To summarize, we prove Theorem [I.1] by constructing two perverse
sheaves that encode the two sides of in the sense of sheaf-function correspondence, and
then identifying these two perverse sheaves using a Hermitian variant of Springer theory,
which labels these perverse sheaves by representations of the appropriate Weyl group. In
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this way, Theorem is eventually unraveled into an elementary identity between repre-
sentations of the Weyl group for type B/C.

On the geometric side, the connection between special cycles and Springer theory comes
via the geometry of a moduli stack that resembles the Hitchin moduli space. On the other
side, the connection between the Fourier coefficients of Siegel-Eisenstein series and Springer
theory goes through local density formulas of Cho-Yamauchi.

Let us briefly explain the connection between the higher Siegel-Weil formula and the
Hitchin moduli stack and Hermitian Springer theory, and defer details to the later para-
graphs. The degree of the special cycle that appear on the right side of is essentially an
intersection number of cycles on Shty;(,,). The ambient space Shty;(,,) can itself be realized
an intersection of a Hecke correspondence with the graph of a Frobenius endomorphism. We
use this to “unfold” all the intersections, and then redo them in a different order, performing
the linear intersections (i.e., those not involving the Frobenius map) first, and leaving the
Frobenius semi-linear intersection till the last step (cf. - ) In this process,
a Hitchin-type moduli stack M, appears naturally as we perform linear intersections (cf.
(10.18))). The degree of the special cycle [Z%(a)] can be expressed as a weighted counting of
k-points on the fiber of a map f; : Mg — Ay (analogue of Hitchin fibration) over the point
(€,a) € Ay(k), where (£, a) are as in the statement of Theorem [1.1

The cokernel @ = coker(a) is a torsion sheaf on X’ with a Hermitian structure in-
herited from a. This motivates the introduction of the moduli stack Hermog(X’/X) that
parametrizes torsion coherent sheaves on X’ of length 2d together with a Hermitian struc-
ture, so that Q is a k-point of Hermay(X'/X) (where 2d = dim; I'(X’, Q)). We show that
the fiber of fq: My — Ag over (€,a) depends only on Q = coker(a), therefore the degree
of [ZZ(a)] depends only on the k-point Q of Hermoq(X'/X).

On the other hand, the Eisenstein series side of can be written as a product of local
terms — representation density functions for Hermitian lattices. These density functions
again only depend on the torsion sheaf Q together with its Hermitian structure, i.e., a
k-point in Hermsoq(X'/X).

Therefore we reduce to proving that two quantities attached to a k-point in Hermoy (X' /X)
are equal. A key realization is that both quantities are of motivic nature: they come
by the sheaf-to-function correspondence from two (graded, virtual) perverse sheaves on
Hermy,i(X’/X). This is where Hermitian Springer theory enters. Classically, starting with
a reductive Lie algebra g, Springer theory outputs a perverse sheaf Spr; on g, defined as
the direct image complex of the Grothendieck-Springer resolution 7y : g — g, together with
an action of the Weyl group W. In our setting, Hermyy(X’/X) will play the role of g.
In we construct a perverse sheaf Spri™ on Hermsyq(X’/X) together with an action
of Wy = (Z/2Z)? x S; analogous to the Springer sheaf. If Hermag(X’/X) is replaced by
Cohy(X), the moduli of torsion coherent sheaves on X of length d, such a Springer sheaf was
constructed by Laumon [Lau87]. The Springer sheaf on Cohy(X) (resp. Hermoq(X'/X))
can be viewed as a global version of the Springer sheaf for gl; (resp. o024). The perverse
sheaves on Hermgq(X'/X) that govern both sides of will be constructed from direct
summands of the Hermitian Springer sheaf Sproe™

Thus, the proof of Theorem is completed in three steps:

(1) Construct a graded perverse sheaf on Hermyy(X'/X)

d
Eis __ Eis
ch - @ ch,i
=0
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whose Frobenius trace at Q is related to the LHS of ([1.2]). More precisely,

d

Ea(m(g), S, (I)) = Z TI'(FI‘Q, (’CdE,iis)Q)q_%s.
=0

(2) Construct a graded perverse sheaf on Hermggy(X'/X)
d

Int __ Int
K =Ly

i=0
whose Frobenius trace at Q is relate to the RHS of (1.2). More precisely,
d

deglZE(a)] = 3 Tr(Fro, (K3)g) - (d — 2i)" (13)
i=0
(3) Prove that
s = (1.4)

as graded perverse sheaves on Hermyg(X'/X).

These three steps correspond to the three parts of the paper. We elaborate on the main
ideas involved in each step.

1.2.1. Step (1). After a standard procedure expressing the nonsingular Fourier coefficients
of Eisenstein series in terms of local density of Hermitian lattices, we use the formula of Cho
and Yamauchi [CY20] for these densities (more precisely, the unitary variant developed in
[LZ22a]). We also need an extension of their formula in the split case (Theorem [2.3). The
formula of Cho and Yamauchi depends only on the Hermitian torsion sheaf Q = coker(a),
which gives the hope that the local density, as a function on the set of Hermitian torsion
sheaves, comes from a sheaf on Hermsyy(X’/X) via Grothendieck’s sheaf-to-function dictio-
nary. We do this by developing an analog of Springer theory over Hermaq(X'/X) (§3}-44).
The key observation here is that the term in the Cho—Yamauchi formula resembles the
Frobenius trace function for a certain linear combination of Springer sheaves for gl; or
Cohg(X), except for some signs. To match the signs exactly we consider an analogous
linear combination of Springer sheaves on Hermsq(X'/X), and we compare the Frobenius
actions on the cohomology of Springer fibers over Cohy(X) and over Hermgy(X'/X), see

§4.5 and §4.6

1.2.2. Step (2). This step consists of three substeps.

e First, we define special cycles for nonsingular a (§ZD When € is a direct sum of
line bundles £;, we define, following Kudla and Rapoport, [Z%(a)] as the intersection
of cycle classes [ZZ- (a;i)], which, despite not being divisors in our setting, always
have the “expected” dimension (more precisely, codimension r in Sht}}(n)). The
definition of [Z%(a)] for general vector bundles & requires choosing a “good framing”
on &, i.e., an injective map from a direct sum of line bundles & = @7 ,L; — &
satisfying certain conditions. In any case, the RHS of is an intersection number
of cycles on Shtf;(,,).

e The well-definedness of [Z£(a)] is proved in the second substep (§8}410), which also
gives a different definition of these cycle classes without any choices. The idea is
similar to the one used in [YZ17], namely by exchanging the order of intersection,
we perform “linear intersections” first to form Hitchin-type moduli stacks (denoted
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M, making sense over any base field), and in the last step we perform a shtuka-type
construction by intersecting with the graph of Frobenius.

e In the last substep (§11]) we use the Lefschetz trace formula to express the degree
of [Zf(a)], formulated using the Hitchin-type moduli stack Mg, as the trace of
Frobenius composed with the r*" power of an endomorphism C on the direct image
complex Rf.Q, of the Hitchin map f : My — Ag. Now, the “Hitchin base” A4 has
a canonical smooth map to Hermgg(X’/X), and it turns out that Rf.Q, together
with its endomorphism C' descends through this map to a perverse sheaf K&m on
Herma,(X'/X) with an endomorphism C. The decomposition of K into graded
pieces IC{IE} is according to the eigenvalues of the C-action, which are of the form

(d — 24). Combining these facts we get (1.3)).

1.2.3. Step (). Both K and K are linear combinations of isotypical summands of
Herm

Spryg' ™ under the action of Wy. The isomorphism (1.4)) then comes from an isomorphism
of two graded virtual representations of Wy, which we verify directly.
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and corrections. TF was supported by NSF Postdoctoral Fellowship DMS-1902927, NSF
Grant DMS-2302520, and the Friends of the Institute for Advanced Study. ZY was partially
supported by the Packard Fellowship, and the Simons Investigator grant. WZ is partially
supported by the NSF grant DMS #1901642 and the Simons Investigator grant.

1.3. Notation. Throughout this paper, k£ = F is a finite field of odd characteristic p. Let

£ = p be a prime. Let vg : k — QZ be a nontrivial character. For a stack ) over k, we write
Fr or Fry for its g-power Frobenius endomorphism. We will use Frob or Frob,, for geometric
Frobenius at an F,-point y.

Let X denote a smooth curve over k. With the exception of §3 and §4 X is assumed to
be projective and geometrically connected. Let wx be the line bundle of 1-forms on X.

Let F = k(X) denote the function field of X. Let |X| be the set of closed points of
X. For v € |X]|, let O, be the completed local ring of X at v with fraction field F, and
residue field k,. Let A = Ap denote the ring of adeles of F', and O = Hve\X| O,. Let
deg(v) = [k, : k], and g, = ¢°8(") = #k,. A uniformizer of O, is typically denoted w,. Let
|- |o : F — g% be the absolute value such that |w,|, = g, 1. Let |- |r : AZ — ¢Z be the
absolute value that is | - |, on F,*.

Let X’ be another smooth curve over k and v : X’ — X be a finite map of degree
2 that is generically étale. We denote by o the non-trivial automorphism of X’ over X.
With the exception of and v is assumed to be étale. We emphasize that the case
X' = X[ X is allowed. Let F’ be the ring of rational functions on X', which is either a
quadratic extension of F' or F' x F. We let k' be the ring of constants in F’. The notations
wxr | X', EL Oy by, Apry | - |y | - |57, g and deg(v') (for v € | X'|) are defined similarly
as their counterparts for X. Additionally, for v € | X|, we use O, to denote the completion
of Ox/ along v~1(v), and define F, to be its total ring of fractions.

For a vector bundle £ on X', let £¥ = Hom(€, wx-) be its Serre dual. For a torsion sheaf
T on X', let TV = Ext! (T, wx).

When X (hence X') is projective, let Bungr,, (resp. Bungrs) be the moduli stack of
rank n vector bundles over X (resp. X’). Let g be the genus of X and ¢’ be the arithmetic
genus of X’. Note that whenever v is étale, we have ¢’ = 2g — 1.
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For an algebraic stack ), Ch())) denotes its rationalized Chow group and D*(Y, Q,) its
bounded derived category of constructible Q,-sheaves.

Part 1. The analytic side
2. FOURIER COEFFICIENTS OF EISENSTEIN SERIES

In this section we will define the Siegel-Eisenstein series featuring into our main theorem,
and explain how to express their non-singular Fourier coefficients in terms of local density
polynomials, which will be geometrized in later sections.

2.1. Siegel-Eisenstein series. For any one-dimensional F-vector space L, let Herm,, (F, L)
be the F-vector space of F’/F-Hermitian forms h : F'"* x F'* — L@p F’ (with respect to the
involution 1 ® o on L ®p F’). For any F-algebra R, Herm, (R, L) := Herm,,(F,L) ®F R is
the set of L ® p R’-valued R'/R-Hermitian forms on R'™, where R’ = RQp F’. When L = F
we write Herm,, (F') = Herm,, (F, F') and Herm, (R) = Herm, (F) ® R for any F-algebra R.

Let W be the standard split F’/F-skew-Hermitian space of dimension 2n. Let H, =
U(W). Write A := Ap for the ring of adeles of F. Let P,(A) = M, (A)N,(A) be the
standard Siegel parabolic subgroup of H, (A), where

M) = {mie) = (§ 1) s GLulhe}.

N = {ne) = (g ) € oy ar) |

Let n: AX/F* — C* be the quadratic character associated to F’/F by class field theory.
Fix x : A%, /F’™* — C* a character such that X|A; = n". We may view x as a character
on M, (A) by x(m(a)) = x(det(a)) and extend it to P,(A) trivially on N, (A). Define the
degenerate principal series to be the unnormalized smooth induction

n (A s+n
L(s.) = gy (5 (c- |- [7777), s e,

For a standard section ®(—, s) € I,,(s, x), define the associated Siegel-FEisenstein series

E(g787®): Z @(’79,8), geHn(A)7
YEP (F)\Hn (F)

which converges for £(s) > 0 and admits meromorphic continuation to s € C. Notice that
E(g, s, ®) depends on the choice of .

Remark 2.1. In this paper, we will choose x to be unramified everywhere. To see that such
X exists, observe that since C* is injective (in the category of abelian groups), it suffices to
check that 1™ is trivial on ker(Pic(X) — Pic(X’)). If X’/X is the trivial double cover or
the double cover corresponding to F2/F,, then then this kernel is trivial so the result is
immediate. Otherwise, the cover is geometrically non-trivial. Since char(k) # 2, the kernel
consists of the 2-torsion line bundle whose class in H' (X, uu2) agrees with n € H' (X, Z/2Z)
under the isomorphism ps = Z/2Z. If n is even then there is nothing to check; if n is odd
then the desired vanishing property amounts (when char(k) # 2) to the alternating property
of the cup product pairing Hl(qu, Z/27) x Hl(qu, Z/27) — Z/2, which follows from the
graded commutativity of the cup product and the fact that the geometric Zs-cohomology
of curves in characteristic # 2 is torsion-free.
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As justified by Remark we may choose x to be everywhere unramified. Then I,,(s, x)

is unramified and we fix ®(—,s) € I,(s,x) as the unique K = H, (O)-invariant section
normalized by

(I)(lgn, S) =1.

Similarly we normalize ®,, € I,(s, xy) for every v € |X| and we then have a factorization
¢ = ®UE‘X| ®7)'

2.2. Fourier expansion. Let wgr be the generic fiber of the canonical bundle of X, and
A,, = A®pwp. The sum of the residues induces a pairing A,,,, X Ar — k induces a pairing

(+,+) : Herm,, (A, wr) x Herm,, (A) — k

given by (T,b) = Res(—Tr(7Tb)). Composing this pairing with the fixed nontrivial addi-
tive character ¢y : k — C* exhibits Herm,,(A,wr) as the Pontryagin dual of Herm,, (A).
Moreover, it exhibits Herm, (F,wr) as the Pontryagin dual of Herm, (F)\ Herm,(A) =
N, (F)\N,(A). The global residue pairing is the sum of local residue pairings (-,-), :
Herm,, (Fy,wr,) x Herm, (F,) — k defined by (T, b), = try,, ;i Res,(— Tr(Tb)).

We have a Fourier expansion

E(g757¢)): Z ET(g7Sa(I))7
TeHerm,, (F,wr)
where
Erlg,s.%) = [ E(n(b)g, 5, ®)6o((T 5)) dn(b),
Ny (F)\Nn (4)

and the Haar measure dn(b) is normalized such that N, (F)\N,(A) has volume 1. For any
a € M, (A) we have
Er(m(a)g, s, ®) = x(det(a)) | det(a)|p "/ Eegra g, 5, ®). (2.1)

Suppose T is nonsingular, meaning that for one (equivalently, any) choice of trivializa-
tion of wp it has non-vanishing determinant, for a factorizable ® = ®ve\ x| ®, we have a
factorization of the Fourier coeflicient into a product (cf. [Kud97, §4])

ET(g787(I)) = |WX|F /2HWT,v<g’U7S7¢’U)7 (22)
where the local (generalized) Whittaker function is defined by

_ 0o 1,
W) = [ @ a0 () ). wo= (5 )
Nn(F'u) n
and has analytic continuation to s € C. Here the local Haar measure d,n(b) is the one

such that the volume of N, (O,) is 1. The factor |u}X|1§nz/2 is the ratio between the global
measure dn and the product of the local measures [[, dyn.
Note that for a € M, (F),

Wr o (m(a), s, ®,) = x(det(@)) "} det(a)| o T * Weg 1a.0 (1, 5, D, (2.3)
We define the regular part of the Eisenstein series to be

E™8(g,s,®) = > Er(g,s®). (2.4)

TcHermp (F,wp)
rank T=n
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2.3. Local densities for Hermitian lattices. The local density for Hermitian lattices in
the non-split case has been studied in [LZ22al §3] following the strategy of Cho—Yamauchi
ICY20]. Here we recall the result of [LZ22a] and extend the results to the split case.

From now on until §2.5] let F' be a non-archimedean local field of characteristic not equal
to 2 (but possibly with residue characteristic 2). Let F’ be either an unramified quadratic
field extension or the split quadratic F-algebra F' = F x F. Denote by O (resp. Op)
the ring of integers in F' (resp. F'). In the split case we have O = Op x Op. Let
n=np p: F* — {1} be the quadratic character attached to F’/F by class field theory.
Let @ be a uniformizer of F', k the residue field, g = #k.

Let L, M be two Hermitian Op--lattices. In the split case, the datum of a Hermitian
Op -lattice L is a pair (L1, Ly) of Op-lattices together with an Op-bilinear pairing

(-,-):L1XL2—>0F

that is perfect after base change to F. We will define LY = (LY, Ly) where LY = {z €
L1 ®op F: (z,Ly) C Op} and similarly for LY.

Let Repy, 1, be the scheme of integral representations of M by L, an Op-scheme such
that for any Op-algebra R,

Repyy r(R) = Herm(L ®o, R, M ®o0, R),

where Herm denotes the set of Hermitian R-module homomorphisms. In the split case, if we
write L and M in terms of pairs (L1, Lo) and (M;, Ms) with their Op-bilinear pairings, then
a Hermitian module homomorphism consists of a pair of R-linear maps ¢; : L; ®o, R —
M; ®0o, R preserving the base change to R of the Op-bilinear pairings.

The local density of integral representations of M by L is defined to be

. #Repy (O /w")
DQH(M, L) = N1~1>r£00 qN~dirr1(Rep1VI7L)F ’

Note that if L, M have Ops-rank n,m respectively and the generic fiber (Repy, ;)r # &,
then n < m and

dim(Repy 1)r = dimU,, —dimU,, ,, = n - (2m — n).
2.4. Cho—Yamauchi formula for local density.

Definition 2.2. For a € Z>( we define a polynomial of degree a

a—1

m(@;T) = [[(1 = (n(=)a)'T) € Z[T).

i=0

Note that m(a; T') depends on F’'/F.
In both the non-split and the split cases, for a finite torsion Op-module T we define

LT) := length of T as an Op-module;
tT) = dimg(T Qo k).

For an Op/-Hermitian lattice L, we define its type

t(L) :=t(L"/L)
where we view the finite torsion Op/-module LY /L as an Op-module.
When F’/F is non-split, for a finite torsion Op/-module T we define

¢(T) := length of T as an Op-module;
t(T) = dimp(T ®o,, k).
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Then we have

UT)=20(T), tT)=2(T). (2.5)
When F’' = F x F is split, for a finite torsion Op/-module 7 we may define ¢'(7) and ¢'(T)
by (2.5). Moreover, for Op/-Hermitian lattices L = (L1, La) and L' = (L}, L}) such that
L C L' (meaning that Ly C L} and Ly C L), we have

(L' /L) = £(L}/Ly) + £(Ly/ Lo)
and

t'(LY/L) = t(Ly /L1) = t(L{ /L2).
In both the split and non-split case, we define
t'(L) =t (LY/L).
We have the following analog of Cho—Yamauchi formula [CY20].

Theorem 2.3. Let j > 0 be an integer. Let (1)7 be the self-dual Hermitian Op -lattice of

rank j with Hermitian form given the identity matriz 1;. Let L be a Hermitian Op-lattice
of rank n.

(1) We have

n

Den((1)"*,(1)") = [[(1 = (n(e)a) ')

i=1 T=(n(w)q)~7
(2) There is a (unique) polynomial Den(T, L) € Z[T], called (normalized) local Siegel
series of L, such that for all j >0,

. Den((1)"*J, L
Den((n(w)q)™, L) = Den(<(1<>2+ja <1>2‘)'

(8) We have
Den(T,L)= Y T*E/m/(L');T). (2.6)
LCL'CLVCLY
Here the sum is over Op-lattices L' (in the F'-Hermitian space spanned by L)
containing L on which the Hermitian form is integral.

Proof. The non-split case is proved in [LZ22al Thm. 3.5.1] and here we indicate the necessary
change in the split case. Now suppose F/ = F x F and hence k' = k x k. Let Ly = Lo, k
and (1);" = (1) ®o, k, which are free k’-modules with the induced k’/k-Hermitian forms.
In particular, (1)} is non-degenerate and the radical of Ly = L ®0,. k has k’-rank equal to
t'(L) = t(L{/L1) = t(Ly /L2). Let Isomyym 1, be the k-scheme of “isometric embeddings”
from Ly to (1)}, i.e., injective k'-linear maps from Lj to (1)7* preserving the Hermitian
forms.
Similar to the orthogonal case [CY20, §3.3], we have

Den((1)™, L) = g~ SmRep(™ e N (1 /L)~ gt Tsom gy 1, (K),
LCL’CL’V

where dim Rep((1)™, L) p = m? — (m — n)? = 2mn — n?.

It remains to show that
n+a—1
2 2 )
#Isom<1>?,7Lk (k) = qm —(m—mn)~ | I | (1 _ qum) (27)

=0
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where a = t/(L) is the k’-rank of the radical of L. Note that up-to-isomorphism, Lj is
determined by its rank and the rank of its radical. Let U,,_q , be a k’/k-Hermitian space of

rank n with radical of rank a. Let V;,, = Uy, 0 be a (non-degenerate) k’/k-Hermitian space
of dimension m > n. Then it is easy to see that U,_q,q >~ Up—_q,0 ® Up,q and
#lsomy, v, _, . (k) = #Isomvy,, v, _, (k) - #Isomy, . vy, (k). (2.8)

By (note that # Isomym 1, (k) = #Isomy,, v, _, ,(k)), it suffices to show in the
two extreme cases: a =0 and a = n.

First we consider the case a = n. Then, to give an isometric embedding from U = Uy ,, =
E™toV = U, o = k'™ is equivalent to give an injective k-linear map ¢ : k™ — k™ and then
an injective k-linear map ¢ : k" — Im(¢)* C k™. Therefore, denoting by Homj (k™, k™)
the set of injective k-linear maps ¢ : k™ — k™, we have

#Isomy,, v, , (k) =# Homy, (K", k™) - # Homy (K", k™™")

n—1 n—1
:qmn H(]' _ qz—m) . q(m—n)n H (1 o qz—m-i-n)
=0 =0
2n—1
—n? i—m
= [ =™,
=0

It remains to consider the case a = 0. Then a similar argument shows

#Isomy,, v, ,(k) =# Homy, (K", k™) - # Homy (", E™™™)

-1
:qmn h(l _ qi—m) . q(m—n)n
=0
5 n—1
:q2mn7n H(l o qum).
=0

This completes the proof.
O

Remark 2.4. By Theorem the polynomial Den(7, L) depends only on the induced
Hermitian form on the torsion module LV /L. Indeed, for a Hermitian torsion moduleﬂ Q
we define Den(7, ()) by the formula

Den(T,Q) = Y. T*@m(t'(Q);T).
QIC(QHVCQ
Then by (2.6), we have Den(T, L) = Den(T, LV /L).

Remark 2.5. In the split case, write L = (L1, Ls) and L' = (L}, L}). Then the formula
reads

Den(T,L)= 3 TUA/EOTEm(Ly /L) T).
LiCcL{CLyYCLY

Remark 2.6. The local Siegel series satisfies a functional equation

Den(T, L) = (n(w)T)" F'/5) . Den G L) .

2By this we mean a torsion Ops-module with an O/ /Op-Hermitian form.
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A proof in the inert case can be found in [Hirl2, Theorem 5.3]. By Theorem, the
constant term of Den(7, L) is 1. It follows that the degree of the polynomial Den(T, L)
is equal to ¢/(LV/L). We will not use this fact in this paper. See Corollary for the
(global) geometric analog.

2.5. Relation with local Whittaker functions. We continue to let F' be a local field.
Define the local L-function

n n

. : 1
L p(s) = EL(Z +2s,n") = 11:[1 T (@)
Lemma 2.7. Let L be a Hermitian O -lattice of rank n. Let T = ((x;,x;))1<i,j<n be the
fundamental matriz of an Op/-basis {x1,...,Tn} of L, an n X n Hermitian matriz over F.

Let 0 be a generator of wo,. so that TO € Herm,,(F,wr). Then
Wre(1,s, @) = $n7p//F(8)71 Den(q*QS, L).
Here ® is the local unramified section normalized by ®(1a,,s) = 1.
Proof. Note that by Theorem
Zy,eryr(3) = Den((1)"2 (1))~

It is known that Wrg(1, s, ®) is a rational function in ¢*. Therefore the formula is equivalent
to

WTQ(lvja (b) = Den(<1>n+2j7 L)

for all integer 7 > 0. In the non-split case this is essentially [KR14, Prop. 10.1] (cf. [LZ22al
§3.3]), which can be easily modified to the split case. We note that Wy is the same as Wy
in loc. cit.. ]

2.6. Fourier coefficients revisited. Now we return to the global situation. We need the
following global L-function to normalize the Eisenstein series

Zn(s) = H L(i + 2s,1").

We now consider the restriction of the regular part E™2(-,s,®) (as a function in g €
H,(A), cf. (2.4)) to the Levi subgroup M,,(A). Since the restriction is left M, (F))-invariant
and right K-invariant, it descends to a function on

M, (F)\M,(A)/M,(0) ~ Buny, (k) ~ Bungr, (k),

via the canonical identifications. From now on we will freely switch between g = m(a) €
M,,(A) and the corresponding element & € Bungy, (k) and we will write

E*®(m(€),s, ®) = E*8(m(a), s, D).
Note that the absolute value on A%, is normalized such that | det(a)|z = ¢2°8(€). By abuse
of notation we also view x as a function on Bungy, (k).

Recall that &Y = Homy ,(€,wx’) denotes the Serre dual of . Consider a rational
Hermitian map a : £ --» 0*€Y (i.e., a is a map defined over the generic point of X', such
that o*a = a). Given a pair (£, a) as above, we shall define the Fourier coefficient

Ea(m(€), s, @)
as follows. For any generic trivialization 7 : & = (F')", the pair (£,7) gives a point
a = al&,7) € My(A)/M,(O) such that £ is glued from (F’)™ and the lattices o, O%, .
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Under 7, the restriction of a at the generic point gives an wpg-valued Hermitian form on
(F")™ which we denote by T' = T'(a, 7). Then we define

Eo(m(€),5,®) := Ep,r)(m(a(&,T)),s,®). (2.9)
If we change 7 to y7 for some v € M,(F) = GL,(F"'), then a(&,y7) = va(€,7) and
T(a,y7) =5 T (a,7)y"t. By (2.1), we have
ET(a,'y‘r) (m(a(ga’}/'r))v S, (I)) = ET(a,T)(m(O‘(‘S?T))v S, Q))

for all v € M, (F). Therefore E,(m(£), s, ®) is well-defined.

Now suppose a : & < ¢*EY is an injective Hermitian map. Let (&,,a) denote the
Hermitian O;-lattice (valued in wo,, :=wx ®oy OF,) induced by a at v € | X|. Choosing a
generator of the free Of,-module wo,, of rank one, we obtain a Hermltlan lattice &, (valued
in Op,) and hence the density polynomlal Den(T &y) defined by (2.6) relative to F)/F,.
We define the density polynomial for (&,,a) as

Den, (T, (&, a)) := Den(T, &,). (2.10)

It is easy to see that the result is independent of the choice of the generator of wo, . We
then define

Den(q~ 2%, (€ H Den, ( , (Evya)),
vE|X|

Note that the degree of Den(q=2¢,(£,a)) (as a polynomial of ¢~*) is
deg(c*€Y) — deg(€) = —2deg(€) + 2ndegwx.
Theorem 2.8. Let £ be a vector bundle over X' of rank n. Then
E"E(m(€),5,®) = Y Ea(m(£),s,) (2.11)
a:Esa*EV
where the sum runs over all injective Hermitian maps a : £ — c*EY. Moreover, we have
Eo(m(),s,®) = x(det(£))g~ de8E =/t deswx & ()1 Den(qg~%*, (€,a)).  (2.12)
Proof. From the definitions it is clear that
E"E(m(€),5,®) = Y Ea(m(£),s )
a:E--ra*EY

where a runs over rational Hermitian maps £ --» ¢*£V that are generically nonsingular.
Now let a : £ --+ 0*EY be such a rational nonsingular Hermitian map. We continue with
the convention defining (2.9)

E,(m(€),s,®) = Er(m(a),s, ®). (2.13)
By (2.2) and (2.3), and noting that the character y is trivial on the norm of A}, we have
Er(m(a), s, ®) = x(det(a))|alz " lox| 72 T Wr,(1,5,@,) (2.14)

ve|X|

If the (wr,-valued) Hermitian form 7T, does not have integral entries, then W, (1,s,®,) =0
(since ® is invariant under N, (O, )). Therefore Ex(m(a), s, ®) is nonzero only when T, is
integral for all v, i.e., a is an everywhere regular Hermitian map £ < ¢*£V. This proves
@11).
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For such a : £ < 0*€Y, by Lemma 2.7 the right side of (2.14) is

12 1
det(«))| det s+n/2 wx| 2" ———  Den(q; %, €&, 2.15
x(det(a))| det(a)| g |wx| vgl D () (a0, ), (2.15)

where, by choosing a generator of wo,, , the Op/-module &, is endowed with the Hermitian
form (valued in Op,) induced by the wx-valued Hermitian form a.

By x(det(a)) = x(det(&)), | det(a)|r = qdeg , and (2.10), we obtain
Den(q~2%,(€,a)) = H Den(q, **, (&y, ay)) H Den(q, %%, &,).

velX]| ve|X|

Combining these facts with (2.13)), (2.14) and (2.15)), we get (2.12]).

3. SPRINGER THEORY FOR TORSION COHERENT SHEAVES

In this section we review the construction of the Springer sheaf on the moduli stack
of torsion coherent sheaves on a curve following Laumon [Lau87]. We also compute the
Frobenius trace function of a particular summand of the Springer sheaf called the Steinberg
sheaf.

In this section let X be any smooth (not necessarily projective or connected) curve over
k=F,. For d € N, let X, be the d'" symmetric power of X.

3.1. Local geometry of Cohy. Let Cohy = Cohgy(X) be the moduli stack of torsion co-
herent sheaves on X of length d. For any k-scheme S, Cohgy(S) is the groupoid of coherent
sheaves on X x S whose pushforward to S is locally free of rank d.

Let s§°! : Cohy — X4 be the support map. Recall that for any k-scheme S, [gl;/ GL4](5)
is the groupoid of (V,T') where V is a vector bundle of rank d on S and T is an endomorphism
of V. When X = A', we have a canonical isomorphism

Cohg(A') = [gl,/ GL4]

given as follows. For @ € Cohy(A')(S), I'(AL, Q) is a locally free rank d Og-module
equipped with an endomorphism given by the affine coordinate ¢ for A!, giving an S-point
of [gl;/ GLg4]; conversely, given an object (V,T) € [gl;/ GLg4] we may view V as an Oglt]-
module Q (viewed as a coherent sheaf on AY) with ¢ acting as 7.

Let U C Xi beopenand f:U — A% be an étale map. Such a pair (U, f) is called an
étale chart for X7 Tt induces a map f§'" : Cohq(U) — Cohg(Az) sending Q to f.Q which is
compatible with the symmetric power fy : Uy — (A%)d under s$°P. Let Dy a1 C (A%)d and
Dqu C Uqg be the discriminant divisors, i.e., they parametrize divisors with multiplicities.
Clearly 4,0 C fd*l(@dﬁy), therefore we may write fdil(gdyAl) = Dqu + NRa,r as Cartier
divisors on Uy.

Lemma 3.1. Let D be an effective divisor of degree d on U. Then D € Ug\Rq 5 if and
only if for all pairs of distinct points x,y in the support of D, f(x) # f(y).

Proof. Let mq : U* — Uy be the quotient map by the symmetric group Sy;. We compute
the divisor ;' (Ra ). Consider U x 51 U. Since U is étale over A%, A(U) cU xa1 U is
k
open and closed, hence we can write U X o1 U = A(U) [[R. For geometric points x,y € U,
k

(z,y) € R if and only if x # y and f(z) = f(y).
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For1 <i<j<d,letp: U? — U x U be the projection to the ith and jth coordinates.
Let

gij = p;jl(U XAl U) = Az‘j Hi)fiij, where Aij = pjjl(A(U)),iR” = p;jl (ER)

By definition, 71';1(’}3,17A1) = Zl<i<j<d ﬁij, ﬂ';l(@dﬂ) = Zl<i<j<d A;; as divisors on U<,
Therefore - -
Rap) = Y Ry (3.1)
1<i<j<d
From this we see, if D = 21 + z2 + - - - + 24, where x; € U(k), then D ¢ Ry ; if and only if
(X1, ,xq) E Ty Y(Rap) £)- By (3.1 . the latter happens if and only if for all 1 < i < j < d,
(@i, xj) € R, Le., either z; = x; or f(x;) # f(x;). O

Let Cohg(U)f C Cohy(U) be the preimage of Us\Ry,r. Then Cohy(U)! is an open
substack of Cohy(X); = Cohg(X7).

The following lemma shows that Cohg(X) is étale locally isomorphic to Cohy(Al) =
[gl4/ GLal.

Lemma 3.2. (1) For any étale chart (U, f) of Xz, the map f$°" : Cohy(U) — Cohg(A')z
is étale when restricted to Cohg(U)7.
(2) The stack Cohy(X )z is covered by the substacks Cohq(U)! for various étale charts

(U7 f) Of XE'

Proof. (1) For any Q € Cohy(U)f(k), the tangent map of f°" at Q is Ext};(Q, Q) —
Ext)y: (f+«Q, [+ Q). By Lemma m different points in the support of @ map to different
points in A', the above map is the direct sum of 7, : Extg, | (Q., Q.) — Exto i )(Qz7 Q.)

over z € supp(Q). Since f is étale at each such z, 7, are isomorphisms, and hence deOh is
étale at Q by the Jacobian criterion.

(2) For every point Q@ € Cohy(X)(k) we will construct an étale chart (U, f) such that
Q € Cohy(U)/ (k). Let Z C X (k) be the support of Q. For z € Z, let O, be the completed
local ring of X at z with a uniformizer w,. The map of sheaves 7 : Ox_ — Brez0, /w2

is surjective. Let ¢ : Z — k be any injective map of sets. Then there exists an open
neighborhood U; of Z and f € O(U;) such that 7(f) = (¢(2) + @,).cz. Viewing f as a
map f:U; — A%, it is then étale at Z, hence étale in an open neighborhood U C Uj of Z,
ie., (U, f) is an étale chart. Since {f(z) = ¢(z)}.cz are distinct points in A%, we see that

ONS Cohd(U)£ by Lemma O

3.2. Springer theory for Cohy. Let a)Tld(X) be the moduli stack classifying a full flag
of torsion sheaves on X

0CQICQC--CQyu=2
where Q; has length j. Let

7$% : Cohy(X) — Cohg(X)
be the forgetful map recording only Q = Q.

Lemma 3.3 (Laumon [Lau87, Theorem 3.3.1]). The stacks é—ov}ld(X) and Cohg(X) are
smooth of dimension zero, and the map 7TCOh is proper and small.
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Proof. It is enough to check the same statements after base change to k. We give a quick
alternative proof using Lemma for an étale chart (U, f) (over k), we have a diagram in
which both squares are Cartesian:

Cohy(X);; =——Cohy(U)! —= Cohg(Al)z

Coh Coh Coh
l”d,x lﬂ'd‘U iﬂ'd,Al
Coh

Cohg(X )z <—Cohy(U) 2= Cohg(AY)

Here Cohy(U)? is the preimage of Cohy(U)? in Cohy(U). Since the horizontal maps are
étale and the Cohy(U)/ cover Cohy(X )z by Lemma the desired properties of ﬁ(gf))? follow

from the same properties of Wﬁiﬂ, which is the Grothendieck alteration 7y, : [gl;/ GL4] —
[gl4/ GLa]. 0

Let X3 C X4 be the open subset of multiplicity-free divisors (i.e., the complement of
D4.x), and let Cohy(X)° (resp. Cohy(X)°) be its preimage under s§°! (resp. under s§°" o
7§°). Then Cohy(X)° — Cohg(X)° is an Sy-torsor.

Corollary 3.4 (Laumon [Lau87, p.320]). The complex
Spr, := Rrg %, Q, € D"(Cohy(X), Q)

is a perverse sheaf on Cohg(X) that is the middle extension from its restriction to Cohg(X)°.
In particular, the natural Sg-action on Spry |con,(x)e extends to the whole Spry.

3.3. Springer fibers. Let Q € Cohy(X)(k) with image D in X,4(k), an effective divisor of
degree d. Let Z = (supp D)(k). Let ¥(Z) be the set of maps y : {1,2,---,d} — Z such
that E‘Ll y(i) = D. Let Bg be the fiber of 7" over Q. Then Bg classifies complete flags
of subsheaves 0 C Q; C Q2 C -+ C Qq—1 C Q. We write H*(—) := H*(—; Q) for f-adic
cohomology (regarded as a graded Qg-vector space). By Corollary H*(Bg) = (Spry)o
carries an action of S,.

For y € ¥£(Z), let Bo(y) be the open and closed subscheme of Bg defined by the condition

supp Q;/Q;—1 = y(i). Then Bg is the disjoint union of Bg(y) for y € X(Z). Hence
H'(Bo) = @ H'(Ba(y)).
yeE(2)
There is an action of Sy on ¥(Z) by precomposing.
Lemma 3.5. The action of w € Sq on H*(Bg) sends H*(Bg(y)) to H*(Bg(y ow™1)), for
ally € £(Z).
Proof. Tt suffices to check the statement for each simple reflection s; switching ¢ and 7 + 1

(1<i<d-1). Let (’351;1;()( ) be the moduli stack classifying chains of torsion coherent
sheaves 0 C Q1 C -+ C Q;-1 C Q;41 C -+ C Qg with Q; missing. Then we have a
factorization

7990 . Coha(X) 25 Cohy(X) ™5 Cohg(X).

— i

The map p; is an étale double cover over the open dense locus Coh; (X) where Q;11/Q;1
which has length 2) is supported at two distinct points. The map p; is small by Lemma
3.30 and Rp;.Q, carries an involution s;, which induces an involution s; on Rm;. Rp;«Q, =
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Spr,. This action coincides with the action of s; over Cohy(X)°, hence coincides with s;
everywhere.

Let BiQ =7, 1(Q). By considering the support of the successive quotients, we have a
decomposition of By by the orbit set X(Z)/(s;). When y € ¥(Z) satisfies y # y o s,
the s;-orbit n = {y,y o s;} gives an open and closed substack Big(n) C Big, such that

p; 1 (BS(m) = Ba(y) 11 Ba(yos:), and Bh(n) C 6:)1112’;. Therefore in this case the action of
s; on H* (,oi_l(lS'iQ (n))) comes from the involution on Bo(y) [ [ Bo(yos;) that interchanges the
two components. Since s; = s;, this proves the statement for s; and y such that y # y o s;.
For y = y o s; the statement is vacuous. This finishes the proof. ([l

Let Q, be the direct summand of Q supported at x € Z. Let d, = dimy; Q,. Then for
any y € ¥(Z), there is a canonical isomorphism over k&

By : Baly) = [] Be. (3.2)

T€EZ

sending (Q;) € Bg(y) to the full flag of Q, given by taking the summands of Q; supported
at x.
The proof above implies the following statement that we record for future reference.

Lemma 3.6. Let y,y’ € X(Z) and let w € Sy be such that yow™! = y'. Assume that w
has minimal length (in terms of the simple reflections s1,--- ,84—1) among such elements
(such w is unique). Then the Springer action w : H*(Bg(y)) — H*(Bo(y')) is induced by
the composition of the canonical isomorphisms By, = 5;,1 0By : Boly) = Bo(y'). In
particular, w sends the fundamental class of Bg(y) to the fundamental class of Bo(y').

Proof. Let w™! = s;, -+ s;, be a reduced word for w™!. Let y; = ys;, s, 1 <5 <

N. Let yo = y, and ' = yy. Since w has minimal length among w’ € Sy such that
yow ™! =y foreach 1 < j < N, yj_1 # y; for otherwise one could delete si; to
shorten w. Since y; = y;_1 0 s;, # yj—1, the proof of Lemma shows that the Springer
action of s;; : H*(Bg(y;-1)) — H"(Bg(y;)) is induced by the canonical isomorphism o; =

;jl o By,_, : Ba(yj—1) = Ba(y;). The action w : H*(Bg(y)) — H*(Ba(y')), being the

composition oy o --- 0oy, is then equal to ﬁ;l o By : Baly) = Ba(y). O

Corollary 3.7. Lety € ¥(Z) and Sy =[], Sa, be the stabilizer of y under Sq. There is

an isomorphism of graded Si-representations

H*(Bg) = Ind§! H*(Bg(y)) = Indg! (@ H*(BQI)> .

zeZ

Here on the right side, each factor Sq, of Sy acts on the tensor factor indexed by x (for
x € Z) via the Springer action in Comllary on (Spry, )o, -

Proof. By Lemma H*(Bg(yow™1)) = wH*(Bg(y)) for w € Sy. In particular, H*(Bg(y))
is stable under Sy, and H*(Bg) = Indgz H*(Bo(y)). By (3.2) and the Kiinneth formula, we
have H*(Bo(y)) = ®zczH" (Bo, ).

It remains to check that the action of S, on H*(Bg(y)) (as the restriction of the Sg-action
on H*(Bg)) is the same as the tensor product of the Springer action of S;, on H*(Bg,).

Since the action of Sy on X(Z) is transitive, it suffices to check this statement for a particular
y € X(2).
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Order points in Z as x1, -+ ,x,. Let yo € X(Z) be the unique increasing function, i.e.
such that if ¢ < j then the index of yo(7) is less than or equal to the index of yo(j). Let
d; = dg,. Let § = (6;)1<i<r be the increasing sequence §; = di +- - -+d;. Let Cohs(X) be the
moduli stack of partial chains of torsion coherent sheaves 0 C Q5, C - C Qs._, C Q5, = Q
such that Qs, has length §;. The map 7750}‘ then factorizes as

Cohg(X) =2 Cohs(X) 22 Cohg(X).

We have a Cartesian diagram

Cohy(X) ——TT;, Coby, (3.3)

lﬂ's ln Tri‘)h

Cohs(X) —=[[;_; Cohg, (X)

where ¢ sends (Qs,) to (Qs,/Qs,_, ). By proper base change we have Rms.Q, = ¢*(Xi_, Spry ),
and the latter carries the Springer action of Sy, X --- x Sg, = Sy, (pulled back along c).
Pushing forward along vs, this induces an action of Sy, on Rus,R7s.Q, = Spr,. This ac-
tion coincides with the restriction of the action of Sy because both actions come from deck
transformations over Cohy(X)°.

Now v; '(Q) contains the point Q € Cohs(X) where supp Qs,/Qs, , = {z;} for 1 <i <
7. This is an isolated point in v; *(Q), and Bg(yo) = 75 ' (QF). Moreover, the isomorphism
is the one given by taking the Cartesian diagram and restricting to Q € Cohs(X).
The above discussion shows that the action of Sy, C S4 on H*(Bo(yo)) C H*(Bg) is the
same as the Springer action of []; Sq, on @;H"(Bg,,) via the isomorphism (3.2). O

3.4. The Steinberg sheaf. Let St; € D”(Cohy(X),Q,) be the direct summand of Spr,
where Sy acts through the sign representation. We will describe its Frobenius trace function
below. The result is well-known but we include a self-contained proof.

We call Q@ € Cohg(X)(k) semisimple if it is a direct sum of skyscraper sheaves at closed
points.

Proposition 3.8. (1) If Q € Cohy(X)(k) is not semisimple, then the stalk of Stq at Q
18 zero.

(2) Let Q = Bye x kP® € Coha(X)(k) be semisimple. Then the stalk of Stq at Q

is 1-dimensional, and the geometric Frobenius Frob acts on the stalk Sty o by the

scalar
(@ [ a2

vesupp Q
where £(Q) € {£1} is the sign of Frobenius permuting the geometric points in the
support of Q counted with multiplicities (as a multi-set of cardinality d).

Proof. Let Q € Cohy(X)(k). Let Z C X (k) be the geometric points in the support of Q
and y € X(Z). By Corollary and Frobenius reciprocity,

Stq,0 = Homg, (sgn, Indgz (®H"(Bg,))) = Homg, (sgn, ®H"(Bg, ))
= Ryez Homg, (sgn,H*(Bo,)) = ®sez Sta, Q. - (3.4)

(1) By the above factorization of Sty o, it suffices to show that if Q, is not semisimple,
then Stq, o, = 0. By Lemmawe may reduce to the case X = A! and Q is concentrated
at z = 0. In this case Spr is the usual Springer sheaf on [gl;/ GL4], and Q corresponds to a
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nilpotent element e € 45 C gl (here .45 is the nilpotent cone in gl;). It is well-known that
Sta |4, =2 do[—d(d —1)] where d is the skyscraper sheaf at 0 € .45. Indeed, by [BMS83 §3.4,
Corollary (b)], for any nonzero nilpotent element e € .43, the sign representation of Sy does
not appear in H*(B,) (B, is the Springer fiber for €). For e = 0, the sign representation of
Sq only appears in the top degree g1 (B.), which is one-dimensional. This implies that
Stq |y = do[—d(d — 1)]. In particular, Sty = 0 for all nilpotent e # 0.

(2) Let Q € Cohy(X)(k) be semisimple. Let |Z] be the set of closed points in the support
of Q. The above discussion shows that Stg, o, = H'P(Bg,) = H%(@==1(F1, ) where Flg,
is the flag variety for GL4,. By , Stq,o is 1-dimensional and is in the top degree
cohomology of H*(Bg). Let

N=dimBg =Y du(d, —1)/2=Y_ deg(v)dy(d, —1)/2

z€Z veE|Z|

(here dy, = dy for any z|v). Let 0 # £ € Sty o C @yeg(z)HQN(BQ(y)). Let Fr : Bg — Bo
be the Frobenius morphism. We need to show that Fr* ¢ = ¢(Q)gV¢.

For y € ¥(Z), let 1, € H*¥(Bg(y)) be the fundamental class of Bg(y). Then Fr sends
Bo(y) onto Bo(Fr(y)) (here Fr(y) means post-composing y with the Frobenius permutation
on Z), and hence Fr* Nrr(y) = any. On the other hand, let w € Sy be the minimal
length element such that Fr(y) = yow™!. By Lemma the Springer action of w satisfies
wny = Ner(y)- Write & = (§y)yes(z) where &, = cyn, for some ¢, € QZ Since w¢ = sgn(w)é,
we see that w&, = sgn(w)&py(y). Since wny = Npy(y), we have ¢, = sgn(w)cpy(y). Therefore

(FI‘* g)y =" (fFr(y)) = CFr(y) Fr* NEr(y) = qNCFr(y)ny = Sgn(w)qNCyny = Sgn(w)qNgy

Note that, for any choice of y and w above, sgn(w) is equal to the sign of the Frobenius
permutation of the multiset {y(i)}1<;<q, which is £(Q). This implies Fr* ¢ = £(Q)¢™V¢ as
desired. ]

4. SPRINGER THEORY FOR HERMITIAN TORSION SHEAVES

In this section we extend the construction in §3|to the case of Hermitian torsion sheaves.
The main output is a perverse sheaf Spros™ on the moduli stack of Hermitian torsion
sheaves with an action of Wy := (Z/2Z)¢ x S;. We will compare the stalks and Frobenius
trace functions of Spri™ with those of Spr,.

As in X is a smooth curve over k (not necessarily projective or connected). Recall
from that v : X’ — X is a finite map of degree 2 that is assumed to be generically étale
(and X' is smooth over k). We develop the Hermitian Springer theory in this generality.
Starting from we will assume v to be étale, which is the case needed for proving the

main theorem. Let o € Gal(X'/X) be the nontrivial involution.

4.1. Local geometry of Hermy. We say that a map of torsion coherent sheaves a: Q —
o*QV is Hermitian if 0*a” = a. Let d € N. Let

Hermy(X'/X), or simply Hermg

be the moduli stack of pairs (Q, h) where Q is a torsion coherent sheaf on X’ of length d,
and h is a Hermitian isomorphism Q = ¢*QVY := a*ml(Q,wX/).

We offer two other ways to think about a Hermitian torsion sheaf (Q, k). For a torsion
sheaf Q on X' of length d, the datum of a Hermitian isomorphism h: Q = ¢*QV is
equivalent to either:
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(1) a symmetric k-bilinear nondegenerate pairing
() VXV =k
on V = I'(X', Q) satisfying (fvi,v2) = (v1,0*(f)ve) for any function f on X’

regular near the support of Q, or
(2) an Ox-sesquilinear nondegenerate pairing

<','> : QX Q—)WF//OJX/

satisfying (vy,vs) = 0*(vg,v1). Here wpr is the constant (and quasi-coherent) sheaf
on X’ whose local sections are the rational 1-forms on X'.
For example, to pass from (2) to (1), form cohomology and apply the trace map H°(Q) — k.
To pass from h to the pairing in (1), observe that Ext'(Q,wx) = Hom(Q,wg /wx+) by the
long exact sequence associated to wxs — wpr — wps /wxs. Therefore, h is equivalent to a
sesquilinear pairing Q x Q — wp/ /wx, which upon taking global sections and applying the
residue map H%(wpr /wx/) — k gives the pairing in (1).
We refer to h, or any of the above equivalent data, as a Hermitian structure on Q.
We have the support map

sierm s Hermy (X' /X)) — (X)})°.

Note that we have an isomorphism (X},)7 = X, sending a o-invariant divisor on X’ to

its descent on X. so we will also allow ourselves to view the support map as sgljrm :

Hermgy(X'/X) — Xg4.
Remark 4.1. When v is étale and d is odd, (X)) = @ hence Hermy(X'/X) = @.

In general, when v is ramified over the points R C X (k), (X})? has a decomposition into
open and closed subschemes according to the parity of the multiplicities of the divisor at
each point = € R.

Let Ai/i — A} be the square map of affine lines.

Lemma 4.2. There is a canonical isomorphism
Hermd(Ai/z/A%) = [od/Od].

Here Og4 denotes the orthogonal group on a d-dimensional nondegenerate quadratic space
over k and oq is its Lie algebra (the stack [04/Oq] is independent of the quadratic form,).

Proof. We give the map Hermd(Ai/Z/Atl) — [04/O4) on S-points. For an S-point (Q, h)
of Hermd(Ai/z/Atl), V =T(AL, Q) is a locally free Og-module of rank d with a nonde-
generate symmetric self-duality (-,-), i.e., an Og-torsor over S. Moreover the action of v/t
on V satisfies (vVtvy,v2) = —(v1, Vitve) since o*v/t = —v/t. Therefore v/t gives a section

of the adjoint bundle of V. It is easy to check this map is an equivalence of groupoids
Hermd(A}/E/A%)(S) 5 [0a/04)(9). (]

An o-equivariant étale chart of Xé is a pair (U, f), where U C X3 is an open subset (with
preimage U’ C X/E) and a regular function f : U’ — Ai/ZE that is an étale map satisfying
o*f = —f. Note that if v is étale, the image of f has to lie in A%E\{O}.

A o-equivariant étale chart (U, f) of X/E induces a map

fé{erm . Hermd(Ul/U) — Hermd(A}/g/A%)E
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maps (here Ry y C U} is defined using the map f: U’ — A{/k’

We have an analog of Lemma [3.2] in the Hermitian setting.

see

by sending O to f.Q. Let Hermy(U’/U)/ be the preimages of (U})7\R7 , under the support
i

Lemma 4.3. (1) Let (U, f) be a o-equivariant étale chart for Xé, Then the map fierm
is étale when restricted to Hermg(U'/U)7.

(2) Assume v is ramified at at most one point (over k). Then the stack Hermq(X'/X )z
is covered by Hermy (U’ /U for various o-equivariant étale charts (U, f) of Xé. In
particular, Hermg(X'/X) is étale locally isomorphic to [04/04].

(3) In general, Hermgy(X'/X) is smooth of dimension 0.

Proof. (1) is similar to that of Lemma 1).

(2) We only need to construct for (Q, h) € Hermy(X'/X)(k), a o-equivariant étale chart
(U, f) such that (Q, h) € Hermy(U'/U)f. Let Z' be its support in X’; since the Hermitian
property of (Q, h) implies that Z’ is stable under o, hence is the preimage of some Z C X (k)
under v. Let £ = (V*Oxé)”:_l, a line bundle over X. Then the map r = (r,),cz : L —
@.ez L. /w? is surjective. Let Zyg C Z be the points over which v is étale (so Z — Z; is empty
or has one point). For each z € Zj, upon choosing 2z’ € Z’ over z, we may identify £, with
0. = k|[[w.]]; changing 2’ to o(z’) changes the identification by a sign. If z € Z — Zj, then
L.~ /@, k[[w.]]. Choose a map c: Zy — %~ such that c(2)? are distinct for z € Z. Let f
be a section of £ over some open neighborhood Uy C X3 of Z such that r.(f) = ¢(z) + w.
for z € Zy under one of the two identifications £, = O, and r.(f) = \/w. mod w, for
2 € Z — Zy. Then f restricts to an étale map U’ = v~ }(U) — Ai/fE for some open
neighborhood U of Z in U;. The definition of £ implies o*(f) = —f. Now {f(eN|< € Z'}
is the union of {c(z), —c(2)|z € Zy} and possibly {0} if Z — Z; is nonempty, which are all
distinct points in Ai/* by construction. We conclude that (Q, h) € Hermy(U'/U)/.

(3) Let R C X3, be the ramification locus of v. The case |R| < 1 is treated in (2), so we
may assume |R| > 2. For z € R, let Y, = X\(R\{z}) and let Y = v~1(Y,). For any func-
tion 0 : R — Z> such that }_ ., 6(z) = d we have a map Qs := [[,cp(Y] 41))7 — (X3)7

by adding divisors. Let 2) s C 2s be the open locus where the divisors indexed by different

x € R are disjoint. It is clear that Qj? — (X])7 is étale and for varying ¢ their images cover
(X))?. To prove the statement it suffices to show that the base change Hermd(X’/X)|@§a

is smooth of dimension 0 for each §. Observe that Hermg(X'/X )|2J§’ is isomorphic to
the restriction of the product ]_[xeRHerm[;(x)(Y /Y. to @?. Since vy, : Y] — Y,

is ramified at one point, by (2) Hermg,)(Y,/Y;) is smooth of dimension 0. Therefore
Hermd(X'/X)\m? =[], cr Hermg ) ( m/Y )|‘-D§7 is smooth of dimension 0. |

Remark 4.4. There is an obvious notion of skew-Hermitian torsion sheaves. Let SkHmg(X'/X)
be the moduli stack of skew-Hermitian torsion sheaves on (X', o) of length d. Then d is even

if SkHmy(X'/X) # @. The skew-Hermitian analog of Lemma [£.3]says that SkHmq(X'/X)

is étale locally isomorphic to [sp,/ Spy], at least when v is étale.

4.2. The Hermitian Springer sheaf. Let ﬁ_e\rad(X’/X) be the moduli stack classifying
(Q,h) € Hermy(X'/X) together with a full flag

0CQIC-CQC--CQu1=0fCQi=09,
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where Q; has length ¢ and Qg4 _; = Qil (the orthogonal of Q; under the Hermitian pairing
QX Q — wpr/wx:). Let

alerm . Hermg(X'/X) — Herma(X'/X)
be the forgetful map. Let Hermy(X'/X)° C Hermg(X'/X) be the preimage of the multiplicity-

free part X/ under the support map sgerm.

We recall the Grothendieck alteration for the full orthogonal group O(V,Q) for some
vector space V of dimension d over k and a nondegenerate quadratic form @ on V. Let
F1(V, Q) be the flag variety that parametrizes full isotropic flags Vo = (V1 C --- C Vg = V)
in V. Note that when d is even, this is different from the flag variety of SO(V, Q) but rather
a double cover of it because there are two choices for Vy/, given the rest of members of a
flag. Let o(V,Q) be the Lie algebra of O(V, Q). Let a(V,Q) be the moduli space of pairs
(A, Vo) € o(V,Q) x FI(V, Q) such that AV; C V; for all i. The Grothendieck alteration for
O(V, Q) is the O(V, Q)-equivariant map o(V, Q) — o(V, Q) forgetting the flag. The quotient
stacks [0(V,Q)/0(V, Q)] and [o(V,Q)/O(V, Q)] are canonical; they are independent of the
quadratic form @ and only depend on d = dim V. Therefore we also write the Grothendieck
alteration as mo, : [04/04] — [04/O04].

Proposition 4.5. (1) If v is ramified at at most one point, then the map T ™ is étale

locally isomorphic to the Grothendieck alteration mo, : [04/O04] — [04/O04].
(2) In general, Hermy(X'/X) is smooth of dimension 0 and w*™ is a small map. In
particular, the complex
ot = Rellig
is the middle extension perverse sheaf of its restriction to Hermg(X'/X)°.

Proof. (1) The proof is similar to that of Corollary[3.4} For a o-equivariant étale chart (U, f)
for X/E we have a diagram with Cartesian squares and étale horizontal maps by Lemma

Hermg(X'/X); =<—Hermy(U'/U)) —= Hermg(A - /A});

l Herm Herm lﬂ—HSU{‘ 1
Ta,x’ /X Ta,ul U a.al /Al
fHerm
Hermgy(X'/X); ~—Hermy(U'/U)f 2~ Hermd(Ai/z/A%)E
Using the isomorphism in Lemma , we identify wHee /a: With the Grothendieck alter-
Ve t
ation mo,. Since Hermy(U’/U)f cover Hermy(X’/X) by Lemma ), W(I}‘}?f}x is étale
locally isomorphic to 71'51’?;;]1;{ /a1 = O,
(2) We use the notation from the proof of Lemma [4.3(3). We may assume |R| > 2.
For each function 0 : R — Zx¢ satisfying > . 0(z) = d, the base change of 7™ along

95 — (X})7 is a disjoint union of the restriction of

H?T(Is{(ijr)m . H Hermé(x) (YQE//YE) — H Herm(;(w) (Ya;/Yaj)

T TER TER
to 2)?. The disjoint union comes from different ways to distribute supp(Q;/Q;—1) among
various factors in the product [, (Y] 5,)7- By (1), 77?(2“)“‘ s Hermg ) (Y, /Y,) — Hermgo) (Y, /Yz)

xr
has smooth 0-dimensional source and is small for each € R, the same holds true for the
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base change of 7™ to 9. Since {Q)7 }5 form an étale covering of (X/)?, the same is true

for Wgcrm. O

4.3. The action of W,;. From now on we assume that v : X’ — X is an étale double cover.
In this case, (X3;)° can be identified with X4 via v=1(D) +» D. Let

Wy = (Z/2Z)* x S,
be the Weyl group for Osy. Then WHerm is a Wy-torsor over Hermaq(X'/X)°.

Corollary 4.6 (of Proposition 1). If v: X' = X is an étale double cover, then there
is a canonical action of Wy on Spr2 7 extending the geometric action on its restriction to
Hermog(X'/X)°.

Definition 4.7. (1) For any representation p of Wy, we define Spri™[p] to be the
perverse sheaf on Hermoq(X'/X):

20 (o] = (p¥ @ Spryg™)™* € DP(Hermyg(X'/X), Q).
(2) We define the Hermitian analog of the Springer sheaf Spr as
HSpr, := (Sprys™)@/?2)" € D (Hermaq(X'/X), Q).

Note that the notation shifts from the subscript 2d to d. By Corollary [£.6] HSpr, carries
a canonical Sg-action.

Spr

Remark 4.8. In the case v is ramified with ramification locus R C X(k), the stack
Hermyq(X'/X); decomposes into the disjoint union of open and closed substacks Hermj,(X'/X);
indexed by € : R — {0,1} where the length of Q, has parity e(x) for all z € R. Then
Sprierm |Hermg, (x'/X); carries a canonical action of Wy where d' = (d — 3, pe(2))/2.

4.4. The Springer fibers over Hermyy. Let (Q,h) € Hermag(X'/X) (k) and consider its
Hermitian Springer fiber
Bgerm = 7_[_Herm —1(Q h)

This is a proper scheme over k. In this subsection we prove the Hermitian analogs of results
in 3

Let Z' = suppQ C X'(k). Let D' = stlerm(Q) € (X},)7(k), which is of the form
D' = v=}(D) for some D € X4(k). Let Z = v(Z’), the support of D. Write D’ =" __,, d.=.

Let Z(Z’) be the set of maps ¢’ : {1,2,--- ,2d} — Z’ satisfying y'(2d+1—i) = o(y/(4)) for
all ¢ and Zz 1Y/ (i) = D'. Identifying Wy with permutations of {1,2,---,2d} commuting
with the involution i — 2d + 1 — i, we get an action of Wy on X(Z') by w : 3 + ¢’ ow™1L.

Similarly let £(Z) be the set of maps y : {1,---,d} — Z such that Zle y(i) = D.
Then the natural map X(Z') — X(Z) (sending y’ to y defined by y(i) = v(y'(i))) is a
(Z/2Z)d—torsor.

For i € ¥(Z'), let Bg®™(y') be the subscheme of Bg®™ consisting of isotropic flags Q.
such that supp(Q;/Q;— 1) = y/(4) for all 1 <7 < 2d. Then we have a decomposition into
open and closed subschemes

Bgerm — H Bgerm(y/).
y'ex(2")
Accordingly we get a decomposition of cohomology
H* BHerm — @ H* BHerm ))

y' eX(Z’)
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Lemma 4.9. The action of w € Wq on H*(Bg*™) sends the direct summand H*(Bg®™ ("))
to the direct summand H*(BE™™ (y o w™1)).

Proof. Tt suffices to check the statement for each simple reflection s;, 7 =1, - ,d. Here, for
1<i<d-1,s = (,i+1)(2d —i,2d +1—1i); for i =d, sq4 = (d,d+1). For 1 <i < d,

— 1
let Herm,, be the moduli stack classifying isotropic flags that only misses the terms Q; and
Qs4—; (for i = d only misses Q4). Then we have a factorization

- o~ i —~i
Toq ot Hermog — Herm,; — Hermo, .

The map p; is an étale double cover over the open dense locus Ee\r_r/n;: where Q;11/Q;-1
(which has length 2) is supported at two distinct points. The map p; is small, and Rp;.Q,
carries an involution 3;, which induces an involution 8; on R, Rpi.Q, = ngjjmﬁe. This
action coincides with the action of s; over Herms,;, hence coincides with s; everywhere.
Let (Q,h) € Hermyq(k), and By = 7; 1(Q, h). We have a decomposition of BY by the
orbit set X(Z')/(s;). When y’ € X(Z') satisfies y' # v’ o s;, the s;-orbit of ' = {y’,y' 0 s;}
gives an open closed substack B, (1)) C Bh, such that pfl(BiQ(n’)) = Bo(y) [ Bo(y o s;),
and B (n') C ﬁe\rr/n;:. Therefore in this case the action of 5; on H*(p; '(BL (7)) comes
from the involution on Bo(y') [[ Bo(y' o s;) that interchanges the two components. Since
S; = s, this proves the statement for s; and 3’ such that 3’ # 3’ o s;. For ¢y = 3 o s; the
statement is vacuous. This finishes the proof. O

Choose Z* C Z' such that Z*[[o(Z*%) = Z'. Then for each € Z there is a unique
xf € Z*¥ above z. For ' € ¥(Z') with image y € ¥(Z), we have an isomorphism

Vziy  BE™(W) S By.a,) W) = [] Be,, (4.1)
T€Z
mapping (Q;)1<i<24 to the (non-strictly increasing) flag (Q; ,:) of Q.
If y',y" € 2(Z"), the composition
Vot = Vgt © gty BET(Y) S BET ()
is independent of the choice of Z*.
Lemma 4.10. Let v/, y" € 2(Z') and let w € Wy be a minimal length element such that

y" =y ow™'. Then the Springer action w : H*(Bg™(y')) — H*(BZ™™(y")) is induced by
the isomorphism ~yys .

Proof. Similar to the proof of Lemma [3.6 (]

4.5. Comparing stalks of HSpr,; and Spr,. In this subsection we abbreviate Hermoq(X'/X)
by Hermsy. Consider the stack Lagr,, classifying pairs (£ C Q) where Q € Hermyy and

L C Q is a Lagrangian subsheaf, i.e., £ has length d and the composition £ — Q LN
oc*QV — o*LV is zero. We have natural maps

Hermog <—2— Lagro, L Cohg(X") —= Cohy(X)

where vq(L£ C Q) = Q and €/)(L C Q) = L. Let ¢4 = v, 0 &) : Lagry; — Cohy(X).
Let (X/)¢ C X/, be the open subscheme parametrizing D € X/, such that DNo(D) = .

_Coh
Sd,x!

Let Lagrgd C Lagr,y, be the preimage of (X/)¢ under the map Lagr,, 24y Cohg(X') 225
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X/ Tt is easy to see that €/, restricts to an isomorphism
Lagrzod >~ Cohg(X")®

whose inverse is given by £ — (L C Q=L & o*LY).
Let vgd and 53 be the restrictions of vog and g4 to Lagrgd. Thus we view Lagrgd =
Cohg(X')® as a correspondence between Hermyy and Cohy(X)

v & 21
Hermyq <—— Lagrs,, —— Cohgy(X)

Note that both Ugd and 53 are surjective. Now both Hermayg and Cohg(X) carry Springer
sheaves HSpr,; and Spr,; with Sj-actions. The following proposition says that they become
isomorphic after pullback to Lagrgd.

Proposition 4.11. There is a canonical Sq-equivariant isomorphism of perverse sheaves
on Lagrgd

v2d *HSpr, =" Spry.
Proof. The map 1™ factors as

—
T Hermay 2% Lagry, —% Hermag .
O
Let /\;> - Hermy, — Lagrgd be the restriction of Aaq to Lagrgd. We have a commutative
diagram

— <

Hermoygy deXd<—Herm2d*d>6;)/hd XN L>66/hd(X) (4.2)
TI'X,
)<>

o Herm, &
2d Coh, Coh
ASy \d T
& &0 (

Hermsyg <2 Lagrgd — 5 Cohy(X")® £~ Cohy (X)

W
Here Cohg(X")® and (/]E)Tld(X’)<> are the preimages of (X/)¢ under the support map. We

have:

e The middle square is Cartesian. This is true even before restricting to the < locus.
e Since £/ is an isomorphism, so is &/
e The rightmost square is Cartesian.

From these properties we get maps
a vy, $*HSpr, — de Sprierm — de R'UQd*R)\Qd*QZ — Uy RU%*R)\%*QE
— RA,Qp el i Q, = ey Spry.

To check a is an isomorphism, it suffices to check on geometric stalks. Let £ € Cohg(X’ )© (k)
with support Z% C X'(k). Let Q = £ @ o*LY € Hermgy(k). The support of Q is
7' = Z'[]o(Z%), with image Z C X (k). We have (£ C Q) € Lagry,(k), with image
v.L € Cohy(X)(k). The stalk of a at (£ C Q) is

ageco) t HI(BE™) P97 5 H (A (£ C Q) % H'(B,..) (4.3)

Recall BG™™ = Ly eszn B3erm(y'). Let $(Z*) C %(Z') be the set of ' such that y' (i) € Z*
for 1 < i < d. Then we have a natural bijection ¥(Z) « X(Z%),y + y*. The fiber
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Ay (L C Q) is the disjoint union [es2) B (y*). Recall the isomorphism 7yz: ¢
Bierm(y#) 5 B, £(y) from (4.I). Using these descriptions we may rewrite (£.3) as

* erm d * erm ~Y * *
H* (BE™) 2287 s & ey HY (BE™™(Y)) 2 @yex () H* (Bo.£(y)) = H* (B, ).

It remains to show that the first map above is an isomorphism. But this follows from the
fact that (Z/2Z)? acts freely on ¥(Z’) with orbit representatives ¥(Z*), and Lemma
This shows that « is an isomorphism.

Finally we show that « is Sg-equivariant. By Proposition ngrm and hence Aoy is
small, R\24.Q, is the middle extension from a dense open substack of Lagr,,. Therefore
the same is true for R)\gd*az. Since « is an isomorphism, both Ugd’* HSpr,; and 53* Spr, are
middle extension perverse sheaves from a dense open substack of Lagrgd. To check that « is
Sg-equivariant it suffices to check it over the dense open substack which is the preimage of
the multiplicity-free locus Xj. Over X, all squares in are Cartesian, and all vertical
maps are Sg-torsors. The Sy-actions on HSpr, |Hermgd and Spry, |Cohd( x)o come from the
vertical Sg-torsors in the diagram, so o is S4-equivariant when restricted over Xj. This
finishes the proof. |

4.6. Comparing Frobenius traces of HSpr; and Spr;. In this subsection we will prove a
relationship between Frobenius trace functions for HSpr,; and for Spr,. Since these sheaves
live on different stacks, to make sense of the comparison we first need to identify the iso-
morphism classes of the k-points of these stacks.

For a groupoid G, let |G| denote its set of isomorphism classes.

Lemma 4.12. There is a canonical bijection of sets
| Hermog (X' /X ) (k)| =2 | Cohg(X) (k)|
respecting the support maps to X4(k).

Proof. Let P(d) be the set of partitions of d € Z>, and P = [],;-,P(d). Let P|x| be the
set of functions A : |X| — P such that \(v) is the zero partition for almost all v € |X].
For A € Px|, let |A| = >, [A(v)|deg(v). Let Pjx|(d) be the subset of those A € Px| with
|A| = d. Let sq: Px|(d) — Xa(k) be the map sending X to the divisor ) |A(v)|v.

By taking the Jordan type of a torsion sheaf at each closed point, we get a canonical bijec-
tion AJ°" : | Cohg(X) (k)| = P|x|(d). The map s§°" : | Cohq(X)(k)| — Xq4(k) corresponds
to sq under this bijection.

We define a map AY™ : |Hermgy(X'/X)(k)| — Px|(d) as follows. For (Q,h) €
Hermyy(X'/X)(k) and v € |X|, let A(v) be the Jordan type of Q, (the summand Q,
supported at v’) for any v’ € |X’| above v. When v is split in X’, the two choices of v’
give the same Jordan type. The support map sh™ : | Hermaq(X'/X) (k)| — Xq(k) is the
composition s4 0 Agerm.

We claim that ANe™ is a bijection. Then ASOh’_l o Alerm .| Hermag(X'/X) (k)| =
| Cohg(X) (k)| is the desired bijection.

To prove the claim, since any torsion coherent sheaf splits as a direct sum over the
finitely many points in its support, it suffices to fix a closed point v € |X| and show that the
set of isomorphism classes | Herm,, | of Hermitian torsion sheaves supported above v maps
bijectively (by the restriction of Agem‘) to P which are supported at v.

If v splits into v’ and v” in |X’|, then any (Q,h) € |Herm, | has the form Q, @ c*Q,
equipped with the canonical Hermitian structure. In this case we see that the isomorphism
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class of (Q,h) is determined by the Jordan type of Q,/, and conversely each Jordan type
arises from some (Q, h).

If v is inert with preimage v' € | X’|, let (Q, h) € | Herm, | be of length d over k,,. Then
V =T(X', Q) is a d-dimensional Hermitian k,-vector space with a self-adjoint nilpotent
endomorphism e given by the action of a uniformizer w € O,. Fix a d-dimensional Her-
mitian space (Vy, h) over k,s (unique up to isomorphism), then the isomorphism classes of
(Q,h) € |Herm, | with length d over k, is in bijection with the adjoint orbits of the uni-
tary group U(Vy, h)(k,) acting on the nilpotent cone N (Vy, h)(k,) of self-adjoint nilpotent
endomorphisms of V;. Being a Galois twisted version of the usual nilpotent orbits under
GLyg, the orbits N'(Vg, h)(ky)/U(Va, h)(k,) are again classified by partitions of d according
the Jordan types of e € N'(Vy, h)(k,) (here we use that the centralizer Cqy,, (e) is connected,
and Lang’s theorem implies H' (k,, Car,(e)) = {1}). Therefore the isomorphism class of
(Q,h) € |Herm, | is determined by the Jordan type of Q, and conversely each Jordan type
arises from a (Q, h). This shows that A¥e™ is a bijection. O

4.6.1. Further notations. Now let (Q,h) € Hermgq(k). We write Q for the base change of
Q over X7, and adapt the notations Z’ C X'(k),Z c X(k),%(Z"),%(Z) from Let |Z'|
and |Z] be the set of closed points contained in Z’ and Z. We have a decomposition

1zl =121 [T121:

into split and inert places. For each closed point v € |Z| we choose a geometric point z), € Z’
above v and denote its image in Z by x,,.
Let Fr: X’ — X’ be the Frobenius morphism. Let Z* be the following subset of Z’

Z8 = {Fi(z),) v e |Z],0 <i<deg(v)}.

When v splits into v’,v” in |X’|, with 2/ v/, then Z* contains all geometric points above
v" and not any above v”. When v is inert with preimage v’ € |X’|, Z* contains half of
the geometric points above v’ which form a chain under the Frobenius, starting with x7.
Therefore Z' = Z*[[o(Z*%). For x € Z let 2* € Z* be the unique element above . This
induces a section %(Z) = X(Z*%) € X(Z') which we denote y — yF.

Let Q" € Cohg(X)(k) be the point corresponding to the isomorphism class of (Q,h)
under the bijection in Lemma @} Then Q% = 1, (Q|z¢). Recall the isomorphism for
each y € ¥(2)

By : Bos(y) = [] Bas -
r€Z
From this and the Kiinneth formula we get an identification

H*(Bo: () = QH (Bo, ).

zeZ

By [HST7, Corollary 2.3(1)], H"(Bgs ) is concentrated in even degrees. Let H"(Bgs (y))™ be
the direct sum of all ®,czH** (Bgs ) (for varying (iy).ez) such that

2 ve|z); bw, 1S even. (4.4)

Similarly, let H*(Bgs (y))~ be the direct sum of all ®@,¢zH** (Bgy ) such that the quantity
in (4.4) is odd. We have

H* (B (y)) = H* (B (y)) " & H* (B (y)) - (4.5)
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Taking direct sum over all y € ¥(Z) we get a decomposition
H*(Bg») = H* (B )t @ H* (Bgs ) ™. (4.6)

Note that this decomposition depends on the choice of a geometric point x, over each inert
v. By Corollary the action of S, C Sz on H*(Bgs(y)) preserves the decomposition
since it is the same as the tensor product of the Springer actions on each factor H* (BQZ ).
Therefore the decomposition is stable under the Sy-action.

Now (Q|z: C Q) gives a geometric point of Lagr , which is not defined over k if | Z|; # &.
Using this geometric point in Laugré> b Proposition

gives an isomorphism o := Q(Q|,;cQ)
on the level of stalks (see (4.3])):

o BB K (B ).

This isomorphism is Sg-equivariant. Both sides now carry geometric Frobenius actions which
we denote by Frobg and Frobgs, which are not necessarily intertwined under a! because
the point (Q|z+ C Q) is not necessarily defined over k. The next result gives the relation
between the two Frobenius actions.

Proposition 4.13. Let 0 be the involution on H*(Bgs) which is 1 on H*(Bgs)™ and —1 on
H*(Bg»)~. Then under the isomorphism a¥, Frobg corresponds to Frobgy of.

Proof. Recall from the proof of Proposition that of is the composition

(BHerm (Z/2Z)d @ H* BHerm EBPYZ“ @ H BQI;

yex(2) yeEXN(2)

Here 74z ,¢ is defined in (4.1)).

Then Fr* on H*(B2*™) maps H* (B2*™ (Fr(y#))) to H*(B2e™™ (y#)). Note that Fr(y*) and
(Fry)* are in general different: if y(i) = Fr~'(x,) for some inert v, then Fr(y*)(i) = o(x)
while (Fry)#(i) = «/,. In other words, the only difference between Fr(y*) and (Fry)* is the
switch of all 2/, and o(z) for all inert v. Therefore there is a unique element 7, € (Z/2Z)?
such that (Fry)* = Fr(y*) o 7,.

Identifying H*(Bgerm)(z/ﬂ)d with ©yexnz)H* (BE™™ (y*)), the geometric Frobenius en-

domorphism Frobg on H*(BHe™)(%/ 22)" s the direct sum of the following compositions

H* (BHer™ ((Fry)f)) 2% H*(BEe™ (Fr(y))) 25 H* (BEe™ (4%))

where the first map is the Springer action of 7, € Wy on (Sererm)
On the other hand, let w, € Wy be the minimal length element such that (Fry)f =

Fr(y*) o w,. Write
7, = Wy, for a unique u, € Staby, ((Fry)*) = Stabg, (Fry) C Sq.

Note that Stabg,(Fy) = [[,c, S1, where I, C {1,2,--- ,d} is the preimage of x under y.
An easy calculation shows that uy = (uy z)zcz Where u, , € Sy, is

M L if v =x,,v€|Z|;,
Yz = .
1, otherwise.

Here wy, € Sy, is the involution that reverses the order of I.
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We use abbreviated notation
H(y') == H"(B&™(y)), for y' € £(Z'),
C(y) ==H"(Bg(y)), fory € £(2).
For each y € ¥(Z), consider the following diagram

H((Fry)f) —> H((Fry)!) ——— H(Fr(y*)) *> H(y?) (4.7)

Yz, (Fry)t Yzt (Fry)t Ver(zt), Fr(yt) Yzt ot
zt Fr(yt)

O(Fy) — > C(Fy) —— = C(Fy) = C(y)

The left square is commutative by the Sj-equivariance of of proved in Proposition
(here u, € Staby,((Fry)*) C S;). The middle upper triangle is commutative by Lemma
4.10] The map 0* is defined to make the lower middle triangle commutative. The right
square is clearly commutative. The composite of the upper row is the restriction of Frg to
H((Fry)*). Let us compute the composite of the lower row.

The map ¢* is the pullback along the automorphism ¢ of Bgs(Fry) that makes the
following diagram commutative

BE™ (Fr(y*))

Yzt Fr(yt
/ Vrr(z¥),Fr(yh)

Bos (Fry) <~ Bg» (Fry)
Under the isomorphism Bry : B (Fry) = [I.cz Boy, ¢ is the product of automorphisms
6, for each Bg,. If z is not of the form z = z, for v € |Z]i, 0 is the identity. If x = x,
for some v € |Z|;, then ch = Q,s and the Hermitian structure on Q gives an isomorphism
v Qoar) & Y,. On the other hand, Frdee®) gives an isomorphism ¢ : Qs = Q, () since

o(x)) = Frdeg(")( »). Combining ¢+ and ¢ we get a perfect symmetric pairing (-, -);, on Qu

itself. Then §, sends a full flag Ro of QZU = Qu to RE under the pairing (-, Var,
By the description of u, and ¢ above, under the isomorphism Sr,, the composition §* ou,

takes the form
®(5; 0 uyx) 1 QY H (Bg;) — Q) H*(Bgs)-
T€EZ reZ

The automorphisms J% o u, , are the identity maps except when x = z,, for some v € |Z|;,
in which case u, , = wy,. Let us compute §;; ocwy, on H*(Bgi) for x = x, and v € | Z|;. For
this we switch to the following notation. Let V = Q. = QZCU, a vector space of dimension
m over k. We have argued that V carries a symmetric self-duality (-,-); the action of a
uniformizer at x, gives a nilpotent element e € Endz(V), which is self-adjoint under (-, -).
Let B be the flag variety of GL(V) and B, be the Springer fiber of e. Then S, acts on
H*(B.). Let wg be the longest element in S,,. Let & : B. = B, be the map sending a flag
Vs to V5. We claim that 6* o wg acts on H*(B,) by (—1)*. Indeed, by [HS77, Corollary
2.3(2)], the restriction map H*(B) — H*(B,) is surjective and is clearly equivariant under
§* 0wy, so it suffices to show that 6* o wy acts by (—1)* on H*(B). Since §* o wy preserves
the cup product on H*(B), it suffices to show it acts by —1 on H?*(B) (which generates
all of H**(B) under the cup product). For 1 < j < m, let &; be the Chern class of the
tautological line bundle on B whose fiber at V, is V;/V;_1. Then H?(B) is spanned by ¢&;
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for 1 < j < m. Now we have w(&;) = &ny1—j since H?(B) is the reflection representation
of Sy, and 6*¢; = —&n41—; by the definition of . Therefore 6* o wo(&;) = —¢; for all
1 < j < m, which proves that 6* o wy acts by —1 on H?*(B), and hence acts by (—1)? on
H*(B) and on H*(B,).

The above argument shows that §* o u, acts by 1 on H*(Bgs (Fry))™ and acts by —1 on
H*(Bg: (Fry))~. Therefore the bottom row of is Frgs of. By the commutativity of
7 Frgs of corresponds under af to the composite of the top row, which is Frg. This
finishes the proof. |

5. GEOMETRIZATION OF LOCAL DENSITIES

The goal of this section is to give a sheaf-theoretic interpretation of the formula of Cho-
Yamauchi on the representation density of Hermitian lattices, see Theorem [5.3] This will
complete the geometrization of the analytic side of our proposed Siegel-Weil formula, at
least for non-singular Fourier coefficients. The technical part of the proof of the theorem is
a Frobenius trace calculation that uses properties of the Hermitian Springer action proved

in 11

5.1. Density function for torsion sheaves. Following Remark for any Hermitian
torsion sheaf (Q,h) € Hermoq(X'/X)(k), we may define the density polynomial Den(T, Q)
using the Cho-Yamauchi formula as follows. Let Q, be the summand of Q supported over
v € | X|, we define
Den(T, Q) := H Den, (T Q,)
ve|X|
where
Den,(T,Q,) =y, T*@m,(t,(Z+/1);T).

0CZCZI+CQ,
Here I+ is the orthogonal of I under the Hermitian form on Q,, so in other words the sum
is over all subsheaves of Q, that are isotropic under h, = h|g,, and we write m,(—) to
emphasize the dependence of m(a;T) on F),/F, (see Definition 2.2). The functions £, (—)
and t (=) are the functions ¢'(—) and t'(—) defined in for F!/F,.

Expanding the product into a summation, we see

Den(T,Q)= Y T E I my(t,(z+/T); T%™). (5.1)
0CZCZI+CQ vE|X]|

Given an injective Hermitian map a: £ < 0*€V, we have a Hermitian structure on the
torsion sheaf coker(a) as follows. Applying o* RHom(—,wx/) to the short exact sequence

050"V Q=0 (5.2)
yields a short exact sequence
0 & 7% 5%V 5 o*Ext (Q,wy) — 0. (5.3)

Since 0*a" = a, we may identify (5.2]) and (5.3 and get an isomorphism hg : Q = 0*QV.
Using this, we may restate Theorem [2.8] as follows.

Theorem 5.1. Let £ be a rank n vector bundle over X' and a : £ — o*EY be an injective
Hermitian map. Then

Eo(m(),5,®) = x(det(€))g~ 4=/ 4n* deswx) o (5)=1 Den(g~2", coker(a)).
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5.2. Density sheaves. We will define a graded perverse sheaf on Hermgy(X’/X) whose
Frobenius trace at Q recovers Den(T, Q). We will suppress X'/ X from the notations.
For 0 < ¢ < d, let Herm; o4 be the stack classifying

{(Z,(Q, h)) € Coh;(X') x Hermag: Z C Q and is isotropic under h}.
We have the following maps

Herm, o4
Hermoy Coh;(X') x Hermy(y_)

Here 71» takes (Z,(Q,h)) to (Q,h), 7; takes it to Z and ?;’ takes it to Z+/Z with the
Hermitian structure induced from h.

Recall the perverse sheaf HSpr, on Hermsg from Definition [£.7(2). It is obtained from
the Springer sheaf on Hermyy by taking (Z/2Z)%invariants, and HSpr,, carries an action

of Sy.
Definition 5.2. We define the following graded virtual perverse sheaves on Hermsg. (In
the notation below, the degree of the formal variable T' encodes the grading.)
(1) Pa(T) = Bj_o(—1)7 (HSpry) 5 Sa=ssen; ML,
(2) K5*(T) = @Lo R R T 1(Q T BB o(T)).
Theorem 5.3. For any Q € Hermyq(k), we have
Den(T, Q) = Tr(Fr, KJ(T) o).

Proof. By the Grothendieck-Lefschetz trace formula, we have

d
Tr(Fr, K5 (T)o) = Y > T4 L Ty (Fr, Baoi (T) 72 /7)-
=0 (Z,Q)€Herm; 24(k)

Comparing with the expansion (5.1)) for Den(T, Q), it suffices to prove, changing notation
d—1itodand I+ /T to Q, that

Te(Fr, Ba(T)o) = [] mu(t,(Q): 7). (5.4)
ve|X|

This will be proved in Proposition [5.7] ]

The rest of the section is devoted to the proof of (5.4). The idea is to relate the Frobenius
trace to a similar Frobenius trace of a graded perverse sheaf on Cohy(X) using results from
§4.6] and then calculate the latter explicitly.

5.3. Comparison of two graded Frobenius modules. For (Q,h) € Hermyq(k), write

d d
&BQ(T) _ md(T)Q _ @(—l)j(HSprd)(QSjXSd7j7sgnj gl)Tj _ @(—1)jH*(Bgerm)(WjXWd’j’@jgl)Tj.

j=0 =0

Here 5gn; is the inflation of the sign representation of S; under W; — S;. We view Po(T)
as a Z-graded virtual Frobenius module, with the Z-grading indicated by the power of T
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Let @ € Cohy(X)(k) be in the isomorphism class that corresponds to (Q,h) under the
bijection in Lemma Define
d d
PBor(T) = @(_1)j(sprd)§i><3d—jvsgnj g1)Tj — @(_l)jH*(BQb)(Sj xSa—j,sgn; K1)
7=0 =0

Define the Frobenius traces

Po(T) :=Tr(Fr,Bo(T)), Pg(T) = Tr(Fr, P o (T)) € Q[T].

The goal is to get a relationship between Pg(T") and Pgs (7). Note that P o»(T) is a special
case of Po(T) when the double cover X’ = X L1 X (and Q is the direct sum of Q° on one
copy of X and Q" on the other). We shall apply Proposition m to express Po(T) in
terms of Pg, (7). For this we need to calculate the decomposition of P (T') given in .

Recall notations Z, Z',%(Z) and £(Z’) from First we show that B, (1') factorizes
according to the support of Q in X. Let |Z| be the set of closed points in Z. For v € |Z],
let QE) denote the direct summand of Q° whose support is over v.

Lemma 5.4. We have a natural isomorphism of graded Fr-modules
Por (1) = K) Pos (1)
veE|Z|

In particular,

Proof. Choose any y € X(Z) and let |y| be the resulting map {1,2,---,d} — |Z]|. Let
S|y = Stabsg, (ly[), then Sy, = [[,¢ 7 S1,, where I, = ly|=(v). Applying Corollaryto
Q’ and to each Q’, gives an isomorphism of (S, Fr)-modules

H'(Bgr) = Indg! | &) H*(Bg;) | - (5.5)
veE|Z|
Here the factor St of S|, acts on H*(Bgs ) by the Springer action.

Write H, = H"(Bg,) as a (Sr,,Fr)-module. Let d, = #I,. By Mackey theory, the
(Sj x Sa—j,sgn; X1)-isotypical part of the right side of is a direct sum over double
cosets (S; X Sq—;)\Sa/S}y, which can be identified with the set of functions i : |Z| — Zxo,
v — 1, < dy, such that Zv iy, = j. The stabilizer of the S; x S4_j-action on the orbit
indexed by ¢ is isomorphic to HvélZ\ Si, X Sa,—i, (where the S; factor lies in S;, Sq,—,
lies in Sq—;, and S;, x Sq4,—;, is naturally a subgroup of S;, = Sg,). The contribution of
the summand indexed by i is

® H1(;Siv X Sdy —iy 580, Ile).
veE|Z|
This implies that

Po (1) = Y ()R (Q mSTe e Y

0| Z|=Z>0,iv<dy vE|Z|
d'u
[ Ly (Siy XSy —iy S8, K1) i
= <Z(‘1)z H r ) = & Po, (D).
v€E|Z| \ip=0 velZ|
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O

Let Q, be the direct summand of Q supported over v. Then Q, and QEJ correspond
under the bijection in Lemma

For any Frobenius module M with integral weights, let Gr M be the pure of weight 4
part of M. This notation applies also to graded Frobenius modules by taking GrZ on each
graded piece.

Proposition 5.5. Let Q € Hermyq(k).

(1) We have
(1) = Q) Bo, (1), Po(T)= [] Po.(T). (5.6)
ve|Z| velZ|
(2) If v €|Z| is split in X', then
Po, (T) = Py (T). (5.7)
(3) If v e|Z| is inert in X', then
PQv (T) = Z<_1)l ’I‘I‘(FL Grg‘z’/deg(v) in’, (T)) (58)

Moreover, Tr(Fr, Gr}” PBo: (T)) =0 if i is not a multiple of 2deg(v).

Proof. We will use the notations from §4.6.1] For eachy € X(Z), the summand H*(Bgs (y)) =
®zezH"(Bgs ) is graded by multidegree i:Z— 7>

H21 BQb ® H21(m)
z€Z

We define H*(Bg ) as the direct sum of H*(Bgs (y)) over all y € £(Z). Then each H*(Bg)
is stable under S4. Accordingly, Po» (1) decomposes into the direct sum of ‘Bzgib (T), which
is by definition @?:0(_1)‘jH2i(BQb)(Sj *Sa—j.5en; WOTI | Let i, be the restriction of i to those
x|v, then under the factorization isomorphism in Lemma we have
= ) B (T (5.9)
veE|Z|
(1) Recall the involution # on H*(Bg») in Proposition Using the above notation,
we see that 6 acts on H2i(BQb) by [L,e 2 i(—l)i(“) (where z,, € Z is a chosen geometric
point over v, as in . Because of 7 the action of 6 on P, (T') factorizes as the
tensor product of the similarly-defined ¢, on each o, (T'). By Proposition Bo(T) is
the Frobenius module obtained by modifying the Frobenius action on B4, (1) by composing

with 6. By Lemma this modified Frobenius structure on B g (T') is the tensor product of
the similarly modified Frobenius modules B, (7'), which in turn are isomorphic to PBo, (1)

by Proposition This implies (5.6).

(2) From the definition we see that if v is split, then 6, is the identity on Pgs (T'). Hence
Po,(T) = Pg, (T) and Pg (T) = Pg; (T).

(3) Since the cohomology of Bg, is pure by [HS77, Corollary 2.3(3)], we see that Gr}V PBo: (T)
is the sum of ‘1321“( ) where i, : {z € Z : zv} = Zx satisfies ), 2i,(x) = i. The action
of Frobenius sends 54321”( ) to ‘BZF (T, where F*i, means precomposing i, with Frobe-

nius. Therefore only constant multl—degrees (i.e., constant functions i,) contribute to the
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Frobenius trace of Bg, (7). This implies Tr(Fr, Gr}Y PBo: (T')) = 0 unless 7 is a multiple of
2 deg(v).
By the discussion above,

Po,(T) = Tr(Frof,, P (1) = Y _ Tr(F rOGW‘BZlQl 20(T)).
i>0

Since v is inert, 6, acts by (—1)% on ‘,]3(2Z 2 2i)(T), hence
Te(Frof,, Py > *(T)) = (~1) Te(Fr, 5> *9(T)).

On the other hand, Tr(Fr, Gry. deg(v) By (1)) is the sum of Tr(Fr, ‘BQ“’( )) with total degree

2 ufo 2iu(z) = 2ideg(v). Since only constant multi-degrees contribute to the trace, we again
conclude

24,2, \2i
Tr(Fr, Gr3) geg(uy By (1)) = Te(Fr, B> 2(T)).
Combining the above identities we get (5.8]). a

5.4. Calculation of Py, (T) and Po(T). Let Q° € Cohy(X)(k) with support Z C X (k).
For each v € |Z| recall t,(Q°) from (2.5) for the local field F,.

Proposition 5.6. For Q° € Cohy(X)(k), we have
Por(T) = [T (1= T*50)(1 — g 950)) (1 — (@)= esto)
v€E|Z]|

Proof. We write Cohg(X) simply as Cohg in the proof. For 0 < j < d, consider the
correspondence

COhj’d
/ \
Cohy Coh; x Cohq—; .

Here Coh; 4 classifies pairs (Q; C Q) of torsion sheaves of length j and d respectively, and
the map r sends (Q; C Q) to (Q;, Q/Q;). We claim that

Spr((iSj X Sq—j,sgn; X1) o~ Rp*RT* (St] XQE) (510)

Indeed, consider the following diagram with Cartesian parallelogram

COhd
Coh; 4 Coh x Cohg_ —j
Cohy Coh; x Cohg—;

Here m; = 7$°h, etc. The composition po w4 = mg = 75°". By the proper base change

J
theorem, we get

Spry = Rp. R4 Q, =2 Rp. Rr*R(mj X Ta4—;)+Q, = Rp. Rr*(Spr; X Spr,_;).
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This isomorphism is S; x S4_;j-equivariant by checking easily over the open substack Cohy.
Taking (S; x S4—j,sgn; M1)-isotypical parts of both sides we get .

By Lemma it remains to compute Pgs (T') for each v. Therefore we may assume
Q"= Q. By and the Grothendieck-Lefschetz trace formula we have

Py, (T) = Z(_l)j Tr(Fr, (Sprd)(QSg‘XSd—ngnj |Z|1))Tj
J
= S (1) Te(Fr, Rp. R (St MQ, ) gy )T
J
- Z (,Udeg(v)j Tr(Fr, (Stdeg(u)j)'R)Tdeg(v)j-
RCQ,
dimy,, (R)=j
By Proposition (Staeg(v);)® is zero unless R = k®7 | in which case the Frobenius trace is
(fl)j(deg(”)’l)qﬁ(j_l)/z. Let Q,[w] be the kernel of the action of a uniformizer w at v. Note
V := @ [w] has dimension ¢ = t,,(Q") over k,. Then we only need to sum over k,-subspaces
R of V. The above sum becomes
¢
D (1Y gl DT IEI Ga(j, V) (k).

Jj=0

Recall that the “g-binomial theorem” says that ¢)/ 1/ Gr(j,V)(k,) is the coefficient of
27 in (1+2)(1+ gu2) ... (1 + ¢ ~'z). Making the change of variables x = —798(*) e get

v

t
Z(_l)jqi(j—l)/2Tdeg(v)j# Cr(j, V) (ky) = (1 — T9e™))(1 — ¢, 798 (1 — ¢i~17des)

Jj=0
as desired. 0

Now we are ready to prove (5.4).
Proposition 5.7. For Q € Hermoy(X'/X)(k) with support Z, we have

t! 1

Q-
Po(T) = [] mu(t,(Q:7%) = [ I - (@w)qn) T%).

vE|X| velZ| 7=0

Proof. By it suffices to treat the case Q is supported over a single place v. Let
Q" € Cohy(X)(k) be the corresponding point. If v is split, we have Po(T) = Pg»(T) by
, and the formula follows from Proposition

If v is inert, let t = #/(Q) = ¢,(Q"). From the form of Py (T') computed in Proposition
5.6, which is valid for any extension of &, the trace of the pure weight pieces of ‘B (T) are
separated by different powers of ¢, i.e., ¢, Tr(Fr, Gr‘é‘{deg(v) PBo» (1)) is the coefficient of g,

in T]/2o(1 — gf 7). By (5.3),

t—1
Po(T) = Z(—l)iTr(Fr,Grngdeg(v) Bo (1)) = H(l _ (_qy)deeg(v))
i 2o

which is what we want because 1(w,) = —1 in this case. O
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Part 2. The geometric side
6. MODULI OF HERMITIAN SHTUKAS

In this section we introduce some of the fundamental geometric objects in our story,
in particular the moduli stacks of unitary (also called Hermitian) shtukas, which play an
analogous role to that of unitary Shimura varieties in the work of Kudla-Rapoport.

6.1. Hermitian bundles. We adopt the notation of and in particular for the remain-
der of the paper enforce the assumption that X is proper, and v: X’ — X is a finite étale
double cover (possibly trivial).

Definition 6.1. A rank n Hermitian (also called unitary) bundle on X x S with respect
to v : X’ — X is a vector bundle F of rank n on X’ x S, equipped with an isomorphism
h: F = 0*FY such that o*hY = h. We refer to h as the Hermitian structure on F.

We denote by Bung(,) the moduli stack of rank n unitary bundles on X, which sends a
test scheme S to the groupoid of rank n unitary bundles on X x S. The notation is justified
by the following remark.

Remark 6.2. There is an equivalence of categories between the groupoid of Hermitian
bundles on X x S, and the groupoid of G-torsors for the group scheme G = U(n) over X
defined as

{g S RGSX//X GLn O'(tg_l) = g}
Indeed, we choose a square root w}f of wx (which exists over k = Fy by [Wei95l, p.291,

Theorem 13]). Then F; := V*w;(/? is equipped with the canonical Hermitian structure
hi + F1 & o*F; = o*F), and (F,, hy) = (F1,h1)®" is a rank n Hermitian bundle on
X whose automorphism group scheme is U(n). To a Hermitian bundle (F,h) on X x S,
Isom v, o ((Fn ¥ Og, hy, KId), (F, h)) (the scheme of unitary isometries) is a right torsor for

U(n) over X x S. Conversely, for a right U(n)-torsor G over X x S, the contracted product
U(n)
><n Fn is a Hermitian bundle on X x S.

6.2. Hecke stacks. We now define some particular Hecke correspondences for Bung ().

Definition 6.3. Let v > 0 be an integer. The Hecke stack Hky(,) has as S-points the
groupoid of the following data:
(1) =7 € X'(S) for i =1,...,r, with graphs denoted by I';y C X’ x S.
(2) A sequence of vector bundles Fo, ..., F, of rank n on X’ x S, each equipped with
Hermitian structure h;: F; — o*F,’.
(3) Isomorphisms f;: Fi_1|x/xs-T, o) = Filxrxs— T =Tyt for 1 <4 <r, com-
patible with the Hermitian Structures with the followmg property there exists a
rank n vector bundle ]—'i_1 /2 and a diagram of vector bundles

b
—1/2
Fi

such that coker(f;”) is locally free of rank 1 over I'y/, and coker(f;”) is locally free
of rank 1 over I';(,7). In particular, f7~ and f;” are invertible upon restriction to
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X'x8—Ty — I's(2;), and the composition

™

R
b fi
Fi1lx/xs-r,, -1,/ Fi_12lxrxs-1,, -1 — Filx/xs-1,, T
k2 k2 k2 k2

a(:zfi) a(m;)

agrees with f;.
Remark 6.4. Condition (3) above is equivalent to asking for the existence of a diagram

Fi-1 Fi

#
]:z'—l/z

such that coker(h;~) is flat of length 1 over I';(,/), and coker(h;”) is flat of length 1 over
I';;. In particular, i~ and h;” are invertible upon restriction to X' x8— Iy = Ty(ar), and
the composition

F i f (hf)_l
i—1|X/xS—FZ(£—FU(1,(i) — fi_1/2|X/xs—rw;—r —_— fi\x’xs—rmé—r

o (@) o ()

agrees with f;.

Definition 6.5 (Terminology for modifications of vector bundles). Given two vector bundles
F and F' on X’ x S, we will refer to an isomorphism between F and F’ on the complement
of a relative Cartier divisor D C X’ x S as a “modification” between F and F’, and denote

such a modification by F --+ F'. Given z,y € X'(S), we say that the modification is
“lower” of length 1 at x and “upper” of length 1 at y if it is as in Definition (3), ie. if

there exists a diagram
./—"b
RS
F F'

such that coker(f<) is flat of length 1 over I'y, and coker(f™) is flat of length 1 over Iy,
and F --» F' agrees with the composition

AR -
Flx'xs-r,-r, —— -Fb|X’><Smeny ~— Flx/x5-T,-T,-
The condition admits a reformulation as in Remark
6.3. Hermitian shtukas. For a vector bundle F on X’x S, we denote by ".F := (Idx+ x Frg)*F.
If 7 has a Hermitian structure h: F = o*F", then 7F is equipped with the Hermitian
structure Th; we may suppress this notation when we speak of the “Hermitian bundle” 7 F.

Definition 6.6. Let » > 0 be an integer. We define Sht{](n) by the Cartesian diagram

| |

BunU(n) (Idig BunU(n) X BunU(n)

A point of Shty;(,,) will be called a “U(n)-shtuka”.
Concretely, the S-points of Sht’{](n) are given by the groupoid of the following data:
(1) @7 € X'(8) fori=1,...,7, with graphs denoted I'y; C X x 5. These are called the
legs of the shtuka.
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(2) A sequence of vector bundles Fy, ..., F, of rank n on X’ x S, each equipped with
a Hermitian structure h;: F; = o*F).

(3) Isomorphisms f;: Fi 1|x/xs-r, — = Filxrxs— RS compatible with the

a(.n
Hermitian structure, which as modifications of the underlylng vector bundles on
X' x S are lower of length 1 at « and upper of length 1 at o(z}).

(4) An isomorphism ¢: F, = 7F; compatible with the Hermitian structure.

Lemma 6.7. The stack Sht,rj(n) 1s empty if and only if v is odd.

Proof. We first treat the case n = 1. Let Nmy/,x : Picy» — Picy be the norm map.
Then Bung ;) = Nm)_(}/x(wx), hence it is a torsor under Prym(X'/X) = ker(Nmx/,x).
Moreover, Shty; ;) fits into a Cartesian square

Shty; ) —— Bungq) i
l lLang 1
(X" ——— Prym(X'/X) Fle™F

with the bottom horizontal map sending D — O(D —o D). If X’ is geometrically connected,
then the stack Prym(X’/X) has two connected components, and by a result of Wirtinger,
explained in [Mum71) §2], the bottom horizontal map lands in the identity component if
and only if r is even. If X' is geometrically disconnected (i.e. it is either X [T X or Xj/),
then we have m(Prym(X'/X);) = Z, the Lang map lands in (therefore surjects onto, by
Lang’s Theorem) the identity component, and the bottom horizontal map hits the identity
component if and only if r is even. This shows that, in all cases, Sht’{](l) is empty if and
only if r is odd.

For general n, taking determinant of a hermitian shtuka gives a map Sht{;(,,) — Sht(q).
From this we see that if r is odd, then Sht}}(n) is empty for any n since Shtg(l) is empty.

On the other hand if r is even, then Sht,rj(l) is non-empty. If n > 1, from an S point of
Shty;(1y, we can produce an S-point of Shty;(,,y by formation of direct sum with (the base
change to X x S of) a unitary bundle of rank n — 1 on X (e.g. we can take (Fp—1,hn—1)
from Remark . ]

6.4. Geometric properties.
Lemma 6.8. The stack Buny,) is smooth and equidimensional.

Proof. The standard tangent complex argument, cf. [HeilQ, Prop. 1]. O

Lemma 6.9. (1) The projection map (pry,pr,) : Hky(,y — (X')" x Bung () recording {z;}
and (Fp, hy) is smooth of relative dimension r(n — 1).

(2) Shtyy(,,y is a Deligne-Mumford stack locally of finite type. The map Shty;(,y — (X')"
is smooth, separated, equidimensional of relative dimension r(n — 1).
Proof. The statements about Sht’l}(n) being locally finite type and separated are well-known
properties of moduli of G-shtukas for general G [Var(04, Proposition 2.16 and Theorem 2.20]E|

Part (2) follows from (1) by [Lafl8, Lemma 2.13].
So it suffices to check (1). As a self-correspondence of Buny ), Hky(, is the r-fold

composition of Hkllj(n). This allows us to reduce to the case » = 1. In this case, the map

3See also [YZ17), paragraph after Theorem 5.4] for a sketch of the separatedness in a similar situation,
which readily adapts here.
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(pry,pry) : HklU(n) — X' x Bunyy) exhibits HklU(n) as a P" !-bundle whose fiber over
(2, F1,h1) classifies hyperplanes in Fj ,(,/). Indeed, a hyperplane in Fi (. determines
a lower modification at o(z’), and the upper modification at z’ is then determined from
the lower modification by the Hermitian structure. This shows that (pry,pr;) is smooth,
separated and equidimensional of relative dimension (n — 1) in the case r = 1, and the
general case follows.

O

7. SPECIAL CYCLES: BASIC PROPERTIES

In this section we define special cycles over the moduli stacks of hermitian shtukas, and
construct corresponding cycle classes. The latter task is rather subtle, as the cycles are in
most cases of a highly “derived” nature, with their “virtual dimension” differing significantly
from their actual dimension.

7.1. Special cycles.

Definition 7.1. Let £ be a rank m vector bundle on X’.
We define the stack Z¢ whose S-points are the groupoid of the following data:
e A U(n)-shtuka with ({z7,..., 2.}, {Fo,.. ., For s {f1, .-+, fr ) ) € Shtyr ) (9)-
e Maps of coherent sheaves t;: £ X Og — F; on X’ x S such that the isomorphism
p: Fr =2 7 Fy intertwines ¢, with "tg, and the maps ¢;,_1,t; are intertwined by the
modification f;: F;_1 --+ F; foreachi =1,...,r, i.e. the diagram below commutes.

EROg —— EROg —— ... —— ER Oy — T(E K Og)
J{to J{tl J{ J{tr J{Tto
Fo ""f9~~> Fi "fﬁ"% "7&779 Fr ———— TF

In the sequel, when writing such diagrams we will usually just omit the “XOg” factor from
the notation.

We will call the ZZ (or their connected components) special cycles of corank m (with r
legs).

There is an evident map Zz — Sht?](n) projecting to the data in the first bullet point.
When rank & = 1, the Z are function field analogues (with multiple legs) of the Kudla-
Rapoport diwvisors introduced in [KR11) [KR14].

7.2. Indexing via Hermitian maps.

Definition 7.2. Let A2 (k) be the k-vector space of Hermitian mapsﬂ a: &€ — o*&Y such
that o(a)" = a. Let Ag(k) C A2 (k) be the subset where the map a: €& — 0*£V is injective
(as a map of coherent sheaves).

Let ({z}}, {F:}, {fi}, ¢, {ti}) € ZE£(S). By the compatibilities between the ¢; in the
definition of Zg, the compositions

EROg L& F 1 o FY T8 vV RO (7.1)

agree for each 4, and ([7.1)) for i = r also agrees with the Frobenius twist of (7.1]) for ¢ = 0.

Hence (7.1) for every i gives the same map £ XK Og — £ X Og, which moreover must come

4We will later in introduce a space A over Bungy, for which Ag“(lc) is the k-rational points of
the fiber over £ € Bungy,/ (k), justifying the notation.
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by pullback from A2!(k). This defines a map 25 — A2 (k). For a € A2!(k), we denote by
ZL(a) the fiber of Z; over a. We have

z= ] 2@

ac A2 (k)

Definition 7.3. For a € Ag(k), let D, be the effective divisor on X such that v=1(D,) is
the divisor of the Hermitian map det(a) : det(€) — o* det(€)V.

Definition 7.4. For any a € A2!(k), we define:

o ZZ(a)° C Zf(a) to be the open substack classifying ({«}}, {€ LN Fi}) with the
additional condition that all ¢; are injective when restricted to X~ for any geometric
point s of the test scheme S.
o Zi(a)* C Zf(a) to be the open substack classifying ({«}}, {€ LN Fi}) with the
additional condition that all ¢; are non-zero when restricted to X% for any geometric
point s of the test scheme S.
Note that if rank(€) = 1, then the inclusion Z%(a)° < ZZ(a)* is an isomorphism, and both
include isomorphically into Z(a) unless a = 0.

7.3. Finiteness properties. We next establish that the projection map Zg(a) — Shty;(,
is finite, which will eventually allow us to construct cycle classes on Shtz}(n) associated to

Zz(a).

Proposition 7.5. Let £ be any vector bundle of rank m on X' and let a € A¥ (k). Then
the projection maps Zg(a) — Shtyy(,,) and Zg(a)* — Shtyy,y are both finite.

Proof. Note that ZZ(a) has a closed substack where the map t: £ — F is 0, which projects
isomorphically to Sht}}(n). The complement of this closed substack is Zz(a)*, so it suffices
to show the finiteness of Zz(a)* — Shty(,,). We will show that it is proper and quasi-finite.
First we establish the properness. It suffices to show this locally on the target so we pick
a Harder-Narasimhan polygon P for Bung(,) and consider the truncation BunU( Define

Sht’{]’(gnl)) to be the open substack of Shtf;(,,) obtained as the pullback of BunU(n) — Buny ()
via the tautological projection pr : Sht}}(n) — Bung,) recording Fo, and Zg’gp(a) —
Z%(a) the analogous pullback.

We can then pick a sufficiently anti-ample vector bundle &£ of rank m on X’ and an

injection ¢: & < & so that the stack Hom(€', —)S¥ parametrizing {(F € Bunga),t €
Hom(&', F))} forms a vector bundle over Bun%{;), with respect to the obvious projection
map. Let ' := (6*1¥)oaow: & — &Y. Then we have a closed embedding Z5=" (a) <

Zglgp(a’) cut out by the condition that the map t: & — F factors through ¢, which fits
into a commutative diagram

zp=P(a) —— 2P ()

~

r,<P
Shtp;s!.

It suffices to show the open substack Z.; <P( ")* defined by the condition that to # 0

fiberwise over the test scheme is proper over ShtU’(—l)j We can factorize this map as the
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composition of two maps in the diagram below:

ZQ,SP a')* SN P(Hom(& <P Sh‘cz(gnl)D
U(n)
\ J/Prg
S,

where j is determined by the map Zg’,gp(a')* — P(Hom(&’, —)=F) sending
(]:0 - .- F = Tfo, (ti)z—o) — (.Fo,t()l g — J—"o)

The map pr, is a projective bundle by design, so in order to establish that pr, oj is proper
it suffices to show that j is finite. Indeed, since data of all the ¢; is determined by tg, the

analogous map Z5,="(a/)* — Hom(&', —)<F X Bun<P Shtr’(—L is a closed embedding. The
U(n)

requirement tg = "tp in the definition of ZZ, therefore implies that the map j is a k*-torsor
onto its image, which is a closed substack of P(Hom(&’, —)<F). This completes the proof
of properness.

It remains to show that Zz(a) — Shty(,) is quasi-finite. Since the map is already
established to be proper, it suffices by [Sta20l Tag 01TC] to check that the fibers over
field-valued points are finite. Let

{zihi<i<r (Fos ho) ==+ (Fiyha) ==+ .o (Fry hy) = (TFo, Tho)) € Shtyy(, (k)

be such a point valued in a field «. Its fiber in Z(a)(k) consists of {t;: & = F;}o<i<, fitting
into commutative diagrams

Ex Ex & —— &,
bk b
Fo ----- yFL —— - y Fro1 —— " F

such that o*ty o h; ot; = a € A2(k) for each i =0,...,7. We want to show that there are
finitely many possibilities for such t; € H*(X’, &Y ® .7:)

K™Y K

The situation can be abstracted to the following semi-linear algebra problem.

Lemma 7.6. Suppose that k is any field over k, and we have finite-dimensional k-vector
spaces Vi, Vo C V with an injective Fr-semi-linear map 7: Vi — V5.

Then the set {x € Vi: 7(x) =2z €V} is ﬁm’te,
We assume Lemma [7.0] for the moment and use it to conclude the proof of Proposition

We apply it to the situation above with V; := Homx (€x, Fo), V2 := Homx: ("€, " Fo),
which are both viewed as subspaces of

s
V := Homx: 5"’]:0(2(36;’ +o(z})))
j=1
by the obvious inclusion. The map Vi — V5 is the twist by 7. Then Lemma @ shows that
there are finitely many possibilities for g since 7(tg) = to. The other ¢; are determined by ¢
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(if they exist) because the ¢; as well as the modifications F; --+» F;11 are all isomorphisms
over an open subset of X/. ]

Proof of Lemma[7.6. By replacing x with an algebraic closure, it suffices to consider the case
when & is algebraically closed. Let us call a subspace V] C V; “r-fixed” if 7(V{) =V{ C V.
Since a sum of 7-fixed subspaces is evidently 7-fixed, there is a well-defined largest 7-fixed
subspace V;° C V;i. It is a sub k-vector space of Vj, hence necessarily finite-dimensional.
Since 7 : V1 — V4 is injective, the restriction of 7 to V° is a Fr-semi-linear bijection. The set
{x € Vi: 7(x) =z € V} is evidently contained in (V;°)7, which is an k-form of V;* (because
k is algebraically closed) and therefore finite-dimensional over k. (]

7.4. Variation with £. Let £, & be two vector bundles (with possibly distinct ranks) on
X" and s: &' — & be a map of coherent sheaves. Given a: & — o*&Y in A¥(k), let
a = (0"sV)oaos: & — o*(£)V be the corresponding element in A2 (k). Therefore,
composing with s defines a map

zs 1 ZE(a) = Z§/(d)) (7.2)
sending
E—— ... —-—--3 IAES y & ——=7¢&
| e l |
Fo ----- R y Fr —— "Fo Fo ----- Yoo -mm- » Fr —— "Fo

The following lemma follows directly from definitions.

Lemma 7.7. If £ = & & &, and a; € A%lll(k) for i = 1,2, then there is a canonical
isomorphism

Zg, (a1) Xsney,, Ze,(az) = 11 Zg(a)

aq *
a=
* as
where the union runs over all Hermitian maps a : € — o*&Y whose restriction to & is a;

(fori=1,2). The map from the right side to the left is given by (z,,, z,,), where v; : & — €
is the inclusion.

Lemma 7.8. Under the notations of the beginning of this subsection,
(1) If s : & — & is generically surjective, then zs : ZL(a) — ZE(a’) is a closed
embedding.
(2) Suppose that s is generically an isomorphism (in particular & and £’ have the same
rank). Let Dy C X' be the divisor of det(s). Then the restriction of zs over

(X\w(Ds))"
Zg(a)l(x\v(pyyyr C Ze(a)lx\w(p.))r
is open and closed. Here we write ZE(a )|(X\,,(D » for the preimage of (X\v(Ds))"

under the leg map Zg(a) — ShtU (n) = X' ”_> Xr.

Proof. (1) Let g = '/ ker(s) = &, equipped with the induced Hermitian map @' g
o* (?)V. Then s* factors as Z%(a) = Z% (@) C 2% (a’), the latter being evidently a closed
embedding. Therefore it suffices to show 27 is a closed embedding. We thus reduce to the
case s is generically an isomorphism.
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Let D be an effective divisor on X’ such that £(—D) — & % £. Let F"™V be the
universal Hermitian bundle over X’ x Bungy,), and FRV its restriction to D x Bungy(y,)-
Let Vp = pry, Hom(pri £(—D)|p, FY), where pry, pry are the projections of D x Bung )
to the two factors. Then Vp is a vector bundle of rank equal to nrank(£)deg(D) over
Bung(,,). Let Vi p be the pullback of Vp over ZZ,(a’) via the map pr; : Z¢,(a") — Bunyy,).
Then V; p has a section v; whose value at ({2}, {F;},{t; : & — F;}) € Zg/(a’) is the
restriction of ¢; to £(—D)|p — Fi|p. Then t; extends to £ if and only if v; vanishes at
the point ({«;}, {F;}, {t;}). This identifies Z¢(a) as the common zero locus of the sections
(vi)o<i<r—1 of the vector bundles V; p over ZZ (a’), hence closed in Z, (a’).

(2) By (1), it remains to show the openness of z; when restricted to (X\v(Ds))". Let U’ =
X"\ supp(Ds + o Ds). Let Shty;(,y p, be the moduli stack of Hermitian shtukas ({z}},{Fi})
of rank n with legs in U'", and trivializations of F;|p, (as a vector bundle over D, of rank n)
compatible with the shtuka structures. Then A : Shty;(,,) p, — Shty(, o is a GL,(Op, )-
torsor. Let ZZ(a)p, and Z% (a’)p, be the base changes of Z%(a) and Z7% (a’) along A.
Since Z%,(a')p, — ZL/(a')|y is finite étale surjective, it suffices to show that the inclusion
Zi(a)p, — ZE(a’)p, is open. Using the trivializations of F;|p,, we get an evaluation map

DSVO%:L)

where the target is a discrete set. Then Z%(a)p, is the preimage of the image of

evp, : Z¢&(a')p, — Homp, (&’

5., 08" % Homp, (€], 05

under evp,. Indeed, a map & — F; extends to & — F; if and only if &'|p, — Filp,
vanishes on ker(£’|p, — &|p,) (this can be checked locally using elementary divisors).
Since the target of evp, is discrete, ZZ(a)p, C Z%/(a’)p, is open and closed. O

Homp, (&

7.5. Corank 1 special cycles. A special role is played by the case m = 1, i.e. where £

is a line bundle on X’, because it is only in this case that we can appropriately control the

dimension of the cycles Z;. We will write £ := £ to emphasize that it is a line bundle.
Note that in this case a € A, (k) if and only if a # 0.

Proposition 7.9. We have dim Z}(a)° < r(n —1).

This is established later, in Proposition [9.1] (for a # 0) and Proposition [9.5] (for a = 0),
as a consequence of a more refined study of the geometry of Z7(a)°.

Remark 7.10. One can show that when a # 0, in fact Z7(a)° is LCI of pure dimension
r(n—1). This will appear in a future paper; it relies on some ideas from [FYZ21]. This fact
will not be used in the present paper, but it may be psychologically helpful.

Definition 7.11. For a € A%'(k), we define [2}(a)°] € Ch,(,—1)(Z7(a)°) to be the cycle
class of the union of the irreducible components of Z}(a)° with dimension r(n—1), throwing
away the irreducible components of dimension < r(n—1). (According to Remark [7.10} there
are no such components to be thrown away at least when a # 0, but we neither prove nor
use this in the present paper.)

7.6. Corank n special cycles. In this paper we are mainly concerned with the case where
the rank of £ is m = n. The following proposition contains basic geometric information
about Z%(a).

Lemma 7.12. Let £ be a vector bundle on X' of rank n, and a € Ag(k). Then the map
Z%(a) — X' recording the legs has image in (suppv—'(D,))".
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Proof. Let ({z},{F;},{t:}) be a geometric point of ZZ(a). For each 1 < i < r, the Her-
mitian map a factorizes as £ < .7-";’_1/2 — Fi—1 <> o*&Y, we see that x} (the support of

—7:1'—1/—7:?,1/2) is in the support of 0*€Y /a(€), i.e., x € suppr=1(D,). O

Proposition 7.13. Let £ be a vector bundle on X' of rank n, and a € Ag(k). Then ZL(a)
is a proper scheme over k that depends only on the torsion sheaf Q = coker(a) = o*EV/E
together with the Hermitian structure @ on Q induced from a (see for the notion of
Hermitian structure on a torsion sheaf).

The proof involves a few ideas not yet introduced, and will be given later in

The next goal is to equip the proper scheme Z%(a) with a 0-cycle class in its Chow group.
The “virtual dimension” of ZZ(a) is at most zero, for if £ is a direct sum of line bundles
L1&® &Ly, then ZZ(a) is contained in the intersection of Zr, (ay) for 1 < i < r, each
having codimension at least r in Sht}"](n) by Proposition (which can be shown to be an
equality, cf. Remark . However the actual dimension of ZZ(a) can be strictly positive.
Our task is to find the correct virtual fundamental class of Zz(a).

7.7. Intersection theory on stacks. Recall the discussion of intersection theory on Deligne-
Mumford stacks from [YZ17, Appendix A]. Let Y be a smooth, separated, locally finite type
Deligne-Mumford stack over k of pure dimension d. Let Y7,---,Y, be Deligne-Mumford
stacks with maps f; : Y; — Y. Then there is an intersection product

(=) v (=) v v(=): Chy (Y1)xChy, (Y2)x- - -xChy,, (Yn) = Chiyyooqiy —an—1) (Y1 Xy Xy Ya).

For (; € Ch.(Y;), the intersection product ¢y -y - - -y (, is defined as the Gysin pullback of
the external product ¢4 X -+ X, € Ch, (Y7 x---xY,,) along the diagonal map A : Y — Y™,
which is a regular embedding of codimension d(n — 1).

7.8. Intersection problem: the case of a direct sum of line bundles. We now for-
mulate the cycle classes which enter into our intersection problem. We first consider the
case & a direct sum of m line bundles on X’,

EZL1B...BL,,.
Let a € Ag(k). We write a as an m x m-matrix with entries a;; € Hom(L;,0*LY).
Let

Z7 (amm)°.

( n ) m

r o._ =r o
ZL1,-~,L‘,m(a/117 ce ,amm) = Zﬁ1 (au) XSht{J(n <+ XShtT,

)
In Definition we defined a fundamental class [Z}(a)°] € Chy(,,—1)(Z}(a)°). Applying
the intersection product construction in for Y = Shtg(n) (the hypotheses apply by
Lemma (2)), we obtain a class

[ZZI (all)o] *Shty, . 'Sht{,(n) [sz (amm)o] € Chr(n—m) (ZZI, Lom (alh o ’amm)o). (73)

Let A% (a11,  , @mm) (k) be the finite set of Hermitian maps a : & — 0*&Y (not assumed
to be injective) such that its restriction to £; is a;; for i = 1,--- ;m. By Lemma there
is a map

"

Zp (Gmm) — Ag“(au, C L Umm) (R)

such that the fiber over a € Ag(k) identifies with ZZ(a). Since a is injective, the image of
Z¢(a) = 27 (ai;) lies in Z7 (a;;)°. In particular,

Zg (a’) C Zzl,... Lom (a117 T 7amm)o

Zzl (@11) Xsher

oo X ™
5y Sht

U(n)
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is open and closed. Restricting (7.3]) to Zz(a) gives a cycle class
Coyo i (@) 1= ([321 (@11)°) -smeyy ) - sy, (22, (amm)O]) |z2(a) € Chy(n-m)(Z¢(a)).

Remark 7.14. Our notation suggests that (. . . (a) (as a cycle class on Z¢(a)) depends,
at least a priori, on the decomposition of £ into a direct sum of line bundles Ly, -, Ly,.
However, we will show later in Theorem that, at least when m = n, it only depends on
€, and is equal to the cycle class [ZZ(a)] that we will define for general rank n bundle €.

7.9. Intersection problem: m = n and & arbitrary. To define a 0-cycle [ZZ(a)] for
general rank n vector bundle £ on X', we need to make some auxiliary choice first; eventually
we will show that the definition is independent of the choice.

Definition 7.15. Let £ be a rank n vector bundle over X’ and a € Ag (k). A good framing
of (£,a) is an n-tuple (s; : £; = £)1<i<n of Ox--linear maps from line bundles £; € Pic(X")
satisfying:
(1) The map s = Ps; : &' := @ L; — & is injective.
(2) Let Dy be the divisor of the nonzero map det(s) : @ ,L; — detE. Then v(D;)
(image in X) is disjoint from D, (see Definition [7.3)).

Lemma 7.16. For any rank n bundle £ on X' and a € Ag(k), there exists a good framing
for (€,a) in the sense of Definition ,

Proof. For notational convenience we give the argument for X’ connected; the case X’ =
X ][] X can be proved with obvious changes.

We strengthen condition (2) on s : @ ,L£; — & slightly by asking v(Dy) to avoid a
prescribed divisor Dy on X, instead of D,. We prove the existence of s satisfying this
stronger condition by induction on n.

The base case n = 1 is trivial: take £; = &.

For the inductive step, start by picking any saturated line bundle £; < €. Then &, _1 :=
E/Ly is a vector bundle of rank n — 1. By induction hypothesis we may pick 5: @ L, —
&En—1 satisfying the conditions of Definition[7.15|and such that v(Ds) avoids the given divisor
Dy. Let Do, -+, D, be effective divisors on X’ such that

(1) v(D2),--- ,v(D,) are disjoint from v(Dy), and

(2) deg L, — D; +2¢' —2 < deg Ly fori=2,--- ,n.
Let £; = L)(—D;). By the inequality above we see that Ext'(L;,£1) = 0, so the map
5i:L; = &1 =&/Ly liftstoamap s;: L; > E,i=2,---,n.

Now we have an injection s : @}, L; — &£ whose divisor D, satisfies Dy = Ds+ Dy +
-+ 4 Dy. Since v(D3),- -+ ,v(Dy),v(Ds) are disjoint from Dgy by construction, the same is
true for v(Dy). O

Corollary 7.17. If s : & = @ L; — & is a good framing, then the map (7.2)) realizes
Ze(a) as an open and closed subscheme of Zg/(a').

Proof. Closedness is proved in Lemma 1). Only the openness requires an argument. By
the definition of a good framing, v(Dy) is disjoint from D,, and therefore disjoint from all
legs of all points of Z%(a) by Lemma Let U' = X'\ supp(Ds + 0Dy), then ZZ(a) =
Z%(a)|ur. By Lemma [7.8(2), the inclusion

Zg(a) = Zg(a)lyr = Ze(d')|urm

is open, hence the inclusion ZZ(a) — ZZ,(a’) is open. O
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Definition-Proposition 7.18. Let £ be a vector bundle of rank n over X' and a € Ag(k).
Let s : @ L; — & be a good framing of (€,a). Let

[2e(a)] == CZ, .. £, (a')]zz(a) € Cho(Zg(a)).

Here we are using Corollary to make sense of the restriction, as it implies that Z%(a)
is a union of connected components of Z%,(a’). Then the cycle class [Z%(a)] thus defined is
independent of the good framing s : &' = @& L; — E.

The independence of good framing will be proved in Theorem [10.1] after some preparation
in The idea is to construct another 0-cycle class on ZZ(a) without making auxiliary
choices (which is done by introducing Hitchin shtukas), and show that the two constructions
agree.

By Proposition Z%(a) is proper over k, therefore the degree of the 0-cycle of [Z%(a)] €
Cho(Z%(a)) is a well-defined number in Q. The main problem we are concerned with in this
Part is to determine deg[Z%(a)] € Q.

8. HITCHIN-TYPE MODULI SPACES

In this section we introduce certain “Hitchin-type moduli stacks” which will help to
analyze the special cycles. In particular, we will be able to use these to give an alternative
construction of the cycle classes associated to special divisors, that is manifestly independent
of auxiliary choices.

8.1. Hitchin stacks. Until we fix an arbitrary positive integer m.

Definition 8.1. The Hitchin stack M®!(m,n) (sometimes denoted M?! when m,n are
understood) has S-points the groupoid consisting of the following data.

e £ arank m vector bundle on X’ x S.

e F arank n vector bundle on X’ x S, equipped with a Hermitian map h: F = o*FV.

e A map of underlying coherent sheaves t: &€ — F over X' x S.
We define M(m,n) C M*! (sometimes denoted M when m,n are understood) to be the
open substack where the map ¢ base changes to an injective map on XZ for each geometric
point 5 — S.

Let us emphasize that both £ and (F,h) are varying in this definition. We will usually
suppress the dependence on m,n from the notation.

8.2. Hitchin base.

Definition 8.2. We define the following two versions of the Hitchin base.

(1) A*(m) (sometimes denoted A when m is understood) to be the stack whose
S-points is the groupoid of the following data:
e £ a rank m vector bundle on X’ x S;
e a: & — 0*EY is a map of coherent sheaves on X’ X S such that o(a¥) = a.
(2) We define A C A*! to be the open substack where a: & — 0*€V is injective after
base change to X~ for every geometric point § — S.

Definition 8.3. For integers 1 < m < n, we define the Hitchin fibration for M =

M3 (m,n) to be the map f: M — A% sending (€, (F,h),t) to the composition

o*tV

t h
a:ESF S o FY 25 oY,



48 TONY FENG, ZHIWEI YUN, WEI ZHANG

Remark 8.4. In general the Hitchin fibration does not send M(m,n) to A(m) even when
m < n. However, in the special case m = n, the Hitchin map does send M(n,n) to A(n)
because when ¢ : £ — F is generically injective, it is generically an isomorphism for rank
reasons, hence the induced Hermitian map a on £ is generically non-degenerate.

8.3. Hitchin shtukas. We now discuss a notion of shtukas for Hitchin stacks. Throughout,
M = M(m,n).

Definition 8.5 (Hecke stacks for Hitchin spaces). For r > 0, we define Hk'\jan to be the
stack whose S-points are given by the groupoid of the following data:

(1) ({zihi<icr {(Fi, hi) Yo<i<r) € Hkpp) (S).

(2) A vector bundle £ of rank m on X’ x S.

(3) Maps t;: &€ — F; fitting into the commutative diagram

& £ . &
o I Iz
Fo -—--- > F1 - Yoo —m-—- > Fr

We define the open substack Hk),, C Hk\san by the condition that ¢y base changes to an
injective map along every geometric point § — S (equivalently, every ¢; has this property).
Let pr; : Hk)yy — M (vesp. pril': Hk'yn — M?!) be the map recording (€, F;, hi,t;), for
0<¢<r.

Definition 8.6 (Shtukas for Hitchin stacks). For r > 0, we define Sht'y . as the fibered
product
Shtj\/lall e ij\/tall
l(PrSH7PTﬁH)
Mall (Id,Fr) MAl ¢ Aqall

and the open substack Sht'y, C Sht,.n as the fibered product

Sht'y, — HKy,

l l(pro,prr) (8.1)

(Id,Fr)

M —= MxM

Explicitly, the stack Sht, .n parametrizes diagrams of the form below, with notation as in

Definition

& & E——7"¢
lto ltl ltT thO (8.2)
Fo ----- > Fp ----- R y Fr —— "Fo

and Sht’,, is the open substack where ¢y base changes to an injective map along every
geometric point § — S (equivalently, the same property holds for every ¢;).

In particular, &€ = 7€ is a shtuka with no legs, exhibiting £ as arising from a rank m
vector bundle on X', i.e. coming from Bungy, (k). Note that in (8.2)), £ is not fixed, so the
automorphisms of £ are present in the functor of points of Sht'yan. Therefore, if we define

Ze =25/ (Aut(E)(K)],
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then Sht'y .1 decomposes as a disjoint union of special cycles

ShtrMa,ll — H fg
E£eBungy, (k)

This decomposition can be refined. The compositions f o pr;: Hkan — A2 all coincide,
and they induce a map

ShtTMall — .Aall(k).
Here A*'(k) is the groupoid of pairs {£,€ % 0*EV}. Let us write Aut(a) := Aut(§
o*&Y) C Aut(£). Then each £ % 0*EY defines a map a : Spec k — B Aut(a)(k) — A (k),
the latter map being an open-closed inclusion, and we have a Cartesian square

Zg(a) E— Shtj\,lan
l lf
Spec k —2— A (k)

In particular, ZZ(a) is a finite étale cover of an open-closed substack of Shty jan isomorphic
to [Zz(a)/ Aut(a)(k)]. Similarly, restricting to the injective locus (see Definition [7.4]) we
have a Cartesian square

25(a)° — Shth,

l | (8:3)

Spec k —*— A(k)

If m =n and a € A(k), then we have 2% (a)° = Z%(a) and we can replace A*!(k) by A(k)
in the above diagram (see Remark .

8.4. From vector bundles to torsion sheaves. For the rest of the section, we concentrate
on the case m = n. In this case, we will relate M = M (n,n) to the moduli stack of Hermitian
torsion sheaves introduced in We introduce the following abbreviated notations.

Definition 8.7. Let d € Z>.
(1) Let Mg = M(n,n)q be the open-closed substack of M = M(n,n) consisting of
(€5 F) where d = W%g(a = —x(X",&).
(2) Let Ay = A(n)q be the open-closed substack of A = A(n) consisting of (£, a) where
d = deg £Y —deg(€) — (X' E
SEESTES = —x (X, 6).

By Remark the Hitchin map for M = M?!(n, n) restricts to a map
fd : Md — .Ad.

When d is understood, we abbreviate f for f;.

Recall that Hermgy = Hermgq(X'/X) is the moduli stack of length 2d torsion coherent
sheaves Q on X' equipped with a Hermitian structure hg: Q@ — 0*QV, where Qv :=
MI(Q,wX/) such that O'*h\é = hg. Alternatively we may think of hg as the datum of a
perfect pairing

h,Q ) R0 o Q — wX/7F//uJX/
where wx- g is the constant Zariski sheaf of rational differential form on X’. The Hermitian
condition is equivalent to hi(u,v) = 0*hiy (v, u) for local sections u,v of Q.

In §4.5| we have also introduced the moduli stack Lagr,,; = Lagr,,;(X’/X) classifying

(Q, hg, L) where (Q,hg) € Hermyy and £ C Q is a Lagrangian subsheaf.
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There is a canonical map g : A4 — Herms, sending (£, a) to the torsion sheaf Q@ = o*€V /€
together with the Hermitian structure hg defined in

We have a map ga : My — Lagry, sending (€ 5N F) € My to the torsion Hermitian
sheaf (Q = 0*EY /€, hg) constructed above together with the Lagrangian £ = F/E&.

Lemma 8.8. The maps defined above fit into a Cartesian diagram

Mg~ Lagry,

y o (8.4)

Ay —2— Hermay

Proof. Given a : £ — o*&V that is injective, the datum of a subsheaf £ C ¢*£V /€ is the
same as a coherent sheaf F such that £ C F C 0*€V. It is easy to see that £ is Lagrangian

if and only if F is self-dual under the Hermitian map a. |
Corollary 8.9. The Hitchin fibration fg: Mg — Aq is proper.
Proof. Apply Lemma [8.8| and the fact that vog is proper. O

Lemma 8.10. The map vaq: Lagry; — Hermy, is small.
Proof. The map 7i™ from factors as

Herm . Tyame . A2d vad
oy ¢ Hermgy —= Lagr,; — Hermog .

Since Agq is surjective and Wé{derm is small by Proposition we get the desired statement.
|

8.4.1. Proof of Proposition . Let Lagr(Q) be the moduli space of Lagrangian subsheaves
of Q. Let Hky,,, (o) be its Hecke version, classifying points {;}1<i<, of X’ and chains of
Lagrangian subsheaves of Q

where the dashed arrow f; are modifications at «} U o (), similar to those in Definition
There is a natural map Z¢(a) — Hk{,,,(g) sending a point ({2}, {t; : € — Fi}) of Z¢(a) to
the collection of (necessarily Lagrangian) subsheaves F; = coker(t;) C Q = o*£Y/E. This
map fits into a Cartesian diagram

Zg ((l) - Hkiagr(Q)

l (1d,Fr) i

Lagr(Q) —— Lagr(Q) x Lagr(Q)

Now both Lagr(Q) and Hk{agr(Q) are proper schemes over k, hence the same is true for
ZL(a). The diagram also makes it clear that Z%(a) only depends on (Q,a).

8.5. Smoothness.
Lemma 8.11. The map
ﬂd . Md — COhd(XI) X BunU(n)

sending (€ 4 F, h) to (coker(t), (F,h)) is smooth of relative dimension dn. In particular,
My is smooth of pure dimension dn +n?(g —1).
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Proof. Consider the stack M/, classifying (7, F, h, s) where T € Cohy(X’), (F,h) € Buny
and an Ox-linear map s : F — 7. Let 3 : M) — Cohgq(X') x Buny,) be the nat-

ural map. Due to the vanishing of Ext!(F,7T), Bl exhibits M/, as a vector bundle over
Cohg(X') x Bung () of rank dn = dim Homx- (F, 7). Now My is the open substack of M
where s is surjective. Therefore (4 is also smooth of relative dimension dn. ]

Proposition 8.12. The map g: Ag — Hermay is smooth.

Proof. We have a map sgsgr: Lagr,, — X/ sending (Q, hg, £) to the divisor of £. Recall
also the map ste™ : Hermog — X4 sending (Q, hg) to the descent of the divisor of Q to X.
Recall in we introduced the open subset

(X)) ={D'c X':D'no(D") =2} C X}

Let Lagrgd C Lagryy and Mff C M, be the preimages of (X)® under the maps slgsgr and
S54° © ga-

We claim that both squares in the diagram

MG —— Lagr$, —— (X,)¢

e ] |

Ay —2— Hermoy ——— X4

are Cartesian. The left square is Cartesian by definition. Now we show that the right
square is Cartesian. Let (Q,hg) € Hermay, D' € (X/,)° lying over D = sfem™m(Q ho).
Since D' N o(D’) = @, there is a unique Lagrangian subsheaf £ C Q supported on the
support of D', namely £ = Q|supp p- This gives the unique point (Q,hg,L) € Lagrgd
mapping to (Q, hg) € Hermyy and D' € (X)),

Note that the map (X </1)<> — Xy is faithfully flat: it is clearly surjective, and the map
vg: X él — Xy is a finite morphism between smooth schemes, hence flat. We will show that
Mg — Lagr;> is smooth. By fppf descent it then follows that A4y — Hermy is also smooth.

Recall from that €/, : Lagry; — Cohg(X'’) (recording only L) restricts to an iso-
morphism Lagr$, = Cohg(X')¢ := Coha(X')[(x1yo- Therefore it suffices to show that the

composition /\/lél> RN Lagrzod 29, Cohg(X')® is smooth. This follows from the smoothness
of My — Cohg(X’) proved in Lemma O

Corollary 8.13. The Hitchin fibration f: Mg — A4 is small. The complex Rf.Q, is a
shifted perverse sheaf that is the middle extension from any dense open substack of Aq.

Proof. By the smoothness of g in Proposition and the Cartesian diagram in Lemma 8.8
the smallness of f follows from that of vyg4 : Lagry; — Hermsg, which is proved in Lemma
3. 108 0

8.6. Cycle class from Hitchin shtukas. In this subsection we take m = n, so M =
M(n,n) and A = A(n). Now consider the Hitchin shtukas for My C M. Let N = dim M.
By Corollary dim Ay = N. The Cartesian diagram restricts to a Cartesian
diagram

Sht'y,, — Hkly4, (8.5)

| oren

\L (Id,Fr)
./\/ld e ./\/ld X ./\/ld
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We would like to define a O-cycle class on Sht'y,  as the Gysin pullback of a cycle on Hk'y,
along the Frobenius graph of Mg. Although the virtual dimension of Hk'y,, is the same
as dim My, its actual dimension may be larger. For this reason we have to define in a
roundabout way a virtual fundamental cycle on Hk'y, of the virtual dimension by relating
it to Hk}wd, which we show is smooth below.

Lemma 8.14. The stack Hk}wd is smooth and equidimensional of the same dimension as

Ma.

Proof. Let (z/,Fy --» F1) € Hk%](n). Let F* := flb/Q = Fp N F; as in Definition The
generically compatible Hermitian structures on Fy and F; equip this intersection with a
Hermitian structure h° : F” < o*(F?)Y whose cokernel has length 1 at 2’ and at o(z').
We call such a bundle almost Hermitian with defect at the ordered pair of conjugate points
(z',0(x")). Conversely, given (F°,h°) almost Hermitian with defect at (2,0 (z')), one can
uniquely recover Fy (resp. Fi) as the upper modification of F” at 2’/ (resp. o(2’)) inside
o (F)V.

Let Bun?](n) be the moduli stack parametrizing (2/ € X', F°,h°) where (F°,h") is an
almost Hermitian bundle with defect at (2, o(z’)). The discussion in the previous paragraph
shows that there is an isomorphism Hkllj(n) 5 Bun';](n) over X’. Let M’ be the moduli
stack of (z/,& % F?,h?) where (F?,h’) is almost Hermitian with defect at (2/,0(2')), € is
a vector bundle on X’ of rank n and x(X’,€) = —d, and ¢ is injective. Then we have an
isomorphism Hk}\,( L= ./\/lz.

We have a natural map

By M — Cohg_1(X') x Bunlb(n)

sending (2, & 5N F’,h?) to (coker(t),(z’, F°,h”)). The same argument as Lemma
shows that (3’ exhibits M’ as an open substack in a vector bundle of rank n(d — 1
over Cohg_1(X’) x Bun%(n). Now dim Cohy_1(X’) = 0 and dim Bun';](n) = dim Hkllj(n)
dim Bung(,,) +n by Lemma(l). Therefore Hk}wd = M’ is of pure dimension dim Bung () +dn,
which is the same as dim My by Lemma [8.11] O

~—

Definition 8.15. For any stack S over k we define a morphism
oy . ST 5 522

by the formula (I)g(g(% e 557") = (507 517 gla 527527 e 557‘—17 57‘7 §T7 Fr(&))) When r is fixed in
the context, we simply write ®g.

We rewrite Shty, as the fiber product

Sht’yq,, (Hk(,)" x Mg (8.6)

\L i(pro’prl)TXA
"

(Md)r—i-l ﬁ> (Md)2r+2 — (Md)Zr % (Md)2

Here the vertical map (pry, pr;)” sends (hy,--- , hy) € (Hk}\/[d)r to (pro(h1),pri(hi), -+ ,pro(hry),pri(hy)) €
(Mg)?", while A is the diagonal map.

Definition 8.16. We define a 0-cycle classes [Sht)y, ] € Cho(Sht'y,,) as the image of the
fundamental class of (Hk}wd)’" X M, (which is smooth of the same dimension as (Mg)" !
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by Lemma [8.14) under the refined Gysin map along ®aq, : (Mg)"1 — (My)?"+2 (which
is defined since Mg is smooth and equidimensional by Lemma see [Kre99, Theorem
2.1.12(xi)])

Skt ] 1= (@) '[(HKh,,)" x M] € Cho(Shtly,).

9. SPECIAL CYCLES OF CORANK ONE

In this section we prove geometric properties of the special cycles ZZ(a) when m =
rank £ = 1 (where the number field analogues are called “Kudla-Rapoport divisors”). In
particular, we show that for a # 0, ZZ(a) are local complete intersections of dimension r
less than Sht{](n). When a = 0, we show that ZZ(a)* has dimension at most dim Sht’{](n) —r.
These geometric properties are proved by studying stratifications introduced and analyzed

in and

9.1. Stratification of the special cycle when m = 1. In this section we fix a line
bundle £ on X and a € Ag(k), i.e., a: L — o*LY is nonzero Hermitian. We now define a
stratification of Z := ZJ.(a); and estimate the dimension of each stratum.

When n = 1, we have dimZ = 0. Indeed, Lemma implies that there is a 0-
dimensional closed subscheme D C (X')" such that the morphism Z — Shty; ;) takes values
in the preimage of D under the leg map Shty;;) — (X')". This preimage is 0-dimensional
by Lemma (2). As Z — Shty(yy is finite (by Proposition with 0-dimensional image,
we conclude that dim Z = 0.

Therefore in the rest of this subsection we will assume n > 2.

For each (£ 25 Fi)o<i<r € Z(k) with legs (2})1<i<r € X'(K)", let D; (0 < i < 1) be the
divisor on Xé such that t; : £(D;) < F; is saturated. For each 1 < i < r, we have one of
the four cases:

(0) D; = D;_s;

(+) Di=Di_1 +o(7);

(=) Di=Dj1— 372;

(i) l)z = Di—l — J}; + O'(J?i)

. ¢
Since the composition £ 25 F; LN a* FY 2 6LV is equal to a, we see that D; + o(D;)

is a subdivisor of the divisor of a. Therefore v(D;) < D, as divisors on X (k).

9.1.1. Indexing set for strata. Consider the set © of sequences of effective divisors (D;)o<i<r
on X7 satisfying

e y(D;) <D, forall 0 <i<r.

e For each 1 < i <, the pair (D;_1, D;) falls into one of the cases (0), (+), (=), ()

above for some z} € X'(k).
L] DT = 7—.D().

It is clear that ® is a finite set. This will be the index set for our stratification of Z.
9.1.2. Definition of strata. Fix Dy = (D;)o<i<r € ®. Let Iy := {1 < i < r|D; = D;_1}.
Similarly we define I, I_ and I1 as the set of those ¢ such that (D;_1, D;) falls into case
(+), (=) and (%) respectively. Let Z[D,] be the substack of Z;- classifying
r t]
({2i} € X" {Fi} € Hkiy () {L(Di) = Fito<izr)
such that every t; is saturated. Let

w[D,] : Z[Dy] = (Xp)0
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be the map recording those x for i € Iy. Note that for i € I, UI_ U Iy, z is determined
by De,.

Proposition 9.1. Let n > 2.
(1) The substacks Z[Ds] for De € ® give a partition of Z.
(2) Each geometric fiber of w[De] has dimension < (n—1)|Iy| + (n — 2)|Iy].
(8) We have dim Z[Ds] < r(n — 1). The equality can only be achieved when Iy =

{1,2,--+ ,r}, i.e., all D; are equal to the same divisor of X', which is then necessarily
defined over k. []

Proof. (1) Each geometric point of z € Z defines a (unique) point D, € © by taking the
zero divisor of ¢;, and then z € Z[D,] by definition.
(2) Let H[D,] be the substack of the fiber of (Hk'y, )z over (£, a) € Aq4(k) classifying data

({=l}, L Ly Fi) such that t; extends to a map t. . L(D;) — F; which is saturated. Note
that for ¢ € I, UI_ U Iy, 2} is determined by D,. Let M[D;] be the substack of the fiber
of M(1,n); over (£,a) € A(1,n)(k) classifying maps ¢ : L — F that extend to a saturated
map t' : £L(D;) — F. Then we have a Cartesian diagram of stacks over k

Z[D.] H[D.] (9.1)
l i(pmpr)
M[Do] S M[Dy] x MID, ).

Note since D, = "Dy, the Frobenius morphism sends M[Dy] to M[D,].
Let

[D,] : H[Dy] = M[D,] x X
be the projection p, and the map recording x/ for i € I°.

Claim 9.2. The map I[D,] is smooth and representable of relative dimension (n—1)|I|+
(n = 2)|lol-

Assuming the claim, we finish the proof of (2). Indeed, we may apply Lemma below
to the Cartesian diagram to conclude, except that M[Dy] is generally not a scheme.
To remedy, we may restrict to a finite type open substack M[Dy]<F € M|[Dy] by bounding
Harder-Narasimhan polygon of (F, k), and impose level structures on the Hermitian bundle
(F,h) at a closed point = € |X| to arrive at a scheme M|[Do]<F which is a torsor over
M([Dy)=F by an algebraic group H. Truncating and imposing the same level structures to
H[D,] gives a scheme H[D,]<F (with legs away from z) such that H[D,|<F/H = H[D,])=<F.
Let Z[D4]=F be defined by a Cartesian diagram similar to (9.1)), with #H[D,] replaced by
H[D,]<F and M[D;] replaced by M[D;]<F for i = 0,7. We apply Lemma [9.3] to conclude

that the fibers of Z[De|<F — X’EI0 have dimension < (n — 1)|I+]| + (n — 2)|ly|. Now
Z[DJSF/H (k) 5 Z[DJ)<P and for varying P and z, Z[D4]<F cover Z[D,], hence the
same dimension estimate holds for Z[D,].

It remains to prove the claim.

For r > j > 0, let H>; be the moduli stack defined similarly to H[D,] but classifying
saturated maps {t; : L(D;) = Fi}j<i<r (lying over a) only for ¢ in the indicated range. We

5In this case, Z[De] can be identified with the open substack éZ(DO)(a’) C ZZ(D(J)(a’) (where a’ is the
map £(Dg) = ¢*£(Dg)" induced from a) defined by requiring all the maps t} : £(Dg) — F; be saturated.
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can factorize TI[D,] as
I[D,] : H[Da] = Hzo ~5 Hzg ~2 - —5 sy = MID,] x X720,

The desired smoothness and relative dimension claims would follow from the following four
statements:

(HO) If ¢ € I, then II; exhibits H>;_1 as an open substack in a P"~?-bundle over H>;.
(H+) If i € I, then II; exhibits {>;_1 as an open substack in a Pl bundle over H>;.
(H—) Ifi € I_, then II; is an isomorphism.

(H+) If i € Iy, then II; is an open immersion.

We next establish each of these statements.
Proof of (H0). When i € Iy, D;—1 = D;. We write the modification F;_1 --» F; as

Fio 2o P, S5 (9.2)

Here both arrows have cokernel of length one supported at the labelled points. Such mod-
ifications of F; are parametrized by a hyperplane H in the fiber ]-'i|g(m/i )- The requirement
that ¢; : £(D;) — F; should land in F? | /2 is equivalent to the (closed) condition that H
should contain the line given by the image of £(D;)|,(27). This cuts out a P"~2 in the space
of hyperplanes H C Fi|o(,;). The further requirement that ¢;_1 : £(D;) — J’-"ib_l/2 — Fi1
be saturated is an open condition.

This argument globalizes in the evident way, exhibiting that II; as an open substack in a
P"~2-bundle. This applies similarly for the analogous arguments below for the other cases.

Proof of (H+). When i € I, we have D,_1 = D; — o(z}). We write the modification
of F; as in (9.2)). This time the choice of the F; « }—;—1/2 is the open subset of those
hyperplanes H € P(F;|y(.)) that do not contain the image of £(D;)|y(27). The requirement
that £(D;—1) = L(D; —o(z})) — ﬂ’_l/z — Fi—1 be saturated at z; imposes a further open
condition.

Proof of (H—). When i € I_, we have D;_; = D; + x;,. We write the modification as

o(x}) @
Fion &5 FE oy Fi (9.3)

where both arrows have cokernel of length one supported at the labelled points. Now

t; : L(D;) — F; is required to extend to L£(D; + z) — ]:f—l/? This determines the

upper modification F; — ]—"iu_1 /2 uniquely, which in turn determines the lower modification

}-571/2 — Fi—1 as well. We get amap ¢, : £L(D;—1) = L(D;+x}) — ]-'2{1/2. We claim that
t,_, automatically lands in F;_;. Indeed, the claim is equivalent to saying that under the
pairing between F;|,; and Fi[,(./), the images of ¢;(z}) and t;(o(z})) pair to zero. The latter
statement is equivalent to saying that the induced Hermitian map a} : £(D;) — o*(£(D;))V
vanishes at ;. But we know that the divisor of a} is v*D,—D;—o(D;). Since D;_1 = D;+1}
satisfies v(D;_1) < D, by assumption, we see that v*D, — D; — o(D;) > z + o(z}), hence
a} is guaranteed to vanish at z; and o(x}). This shows that there is a unique lifting of any
point of H>; to Hx>;—1, hence II; is an isomorphism.

Proof of (Hx). When i € I, we have D; +x; = D;_1+o0(x}). We write the modification
as in (9.3). As in the case (H—), the requirement that ¢; : £(D;) — F; should extend to

L(D; + z}) — ]:,f_l /2 determines the modification. Then we automatically get a map
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ti—1: L(Dj—1) = L(D; + ) — o(x})) — Fi_1; the requirement that ¢;_; be saturated is an
open condition. Therefore II; is an open immersion in this case.

(3) By (2) we have
dim Z[D,] < (n = 1)Ly | + (n = 2)| o[ + [Io| = (n = )([[+ U Lo]) < r(n —1).

Equality holds only if I_ and Iy are empty. However, by degree reasons we have |I| = |I_]|,
so in the equality case we must have I, = & as well. We conclude that equality can only be
achieved if Iy = {1,2,---,7}; in other words, all D; must be the same. In particular, since
D, =7 Dy, this forces Dy to be defined over k. O

The Lemma below, a slight variant of [Lafl8 Lemma 2.13], was used above.

Lemma 9.3 (Variant of [Lafl8, Lemma 2.13]). Let W, Z, T be schemes of finite type over
k. Let ZM be the Frobenius twist of Z (i.e., the pullback of Z under the gq-Frobenius
Spec k — Spec k). Let h= (hi,hp): W — ZU) x T be smooth of relative dimension d, and
ho: W — Z be an arbitrary map. Define V as the fibered product

Vv—m—mW

l J{(ho,hl)
7z W 7z

Then each fiber of the composition map V. — W My T has dimension <d.

Proof. Restricting W over a point ¢t € T(k), we reduce to the case T itself is the point
Spec k. We may assume Z = Spec R where R = k[v1,...,7]/I. Let RV = k @
R = k[¢,...,&]/IM be the base change of R under Fr,, where ¢ = 1 ® x; . Since
hy : W — ZW is smooth of relative dimension d, by Zariski localizing we may assume W =

K€L, o &L Ymaal /TD 1, ), with (82 )71 having rank m (r; cklér, ... &y,

Oy; _
Under hg : W — Z, the cogrdinates x; of Z pullback to functions f; on W, 1 <i <. We
lift f; to polynomials f; € k[&1, ..., &, Y1,y Ymtd)]-
By definition, V' has the form

E[fla"wfl?yla" S Ymy Ym+1 --~7ym+d]
(I(l)(g)vglv‘"7glarl7"'aTm)

where g; = & — f{. In particular, V is a closed subscheme of

V = Spec

U := Spec (E[£17--~7£lay17---aym?ym-l-l "'vym-i-d]/(gl’"'aglvrlv"wrm))'

The Jacobian matrix for the defining equations of U has the form

1 m m-+d
Jg; 0g; 0g;
9, - Ovi |, 9% | 0| (Idl 0 0>
‘ . mtd ~ \ % invertible %)
or; or; or; m
O&; Oy Oy
) =1 Yi =1 Yi i=m+1

which evidently has rank ! + m. Hence U is smooth of dimension d. Since V — U,
dimV <d. O

) ym+d])'
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9.2. The case m =1 and a = 0. We keep the notations from In this subsection we
extend the discussion in to the case ¢ = 0. Fix a line bundle £ € Pic(X’). Recall from
Definition [7.4] that Z7.(0)° is the moduli stack classifying hermitian shtukas ({z}}, {F:})

together with compatible maps {£ LN Fi}) with ¢; injective (fiberwise over the test scheme
S) and the image of ¢; being isotropic. In this subsection, let

Z = Z;(0)z.
If n =1 then Z7(0)° = @. We always assume n > 2 below.

9.2.1. Indexing set for strata. Let Iy U Iy U I_ be a partition of {1,2,--- ,r} such that
|I+| = [I-|. We denote this partition simply by I,. For any N € Z>¢, define ®(N; I,) to
be the moduli space of sequences of effective divisors (D;)o<i<, on X/E such that

(1) deg(Do) < N.

(2) For 7 =0,4+ or —, and i € I, the pair (D;_1, D;) belongs to the corresponding Case

(?) listed in the beginning of (for some zj € X; in the case 7 = + or —).

(3) D, =7Dy.

We have a map recording the points x} for i € I, U I_:

(mpsm-) s D(N: L) = (XD x (XD)I-.

Lemma 9.4. The map 7y : O(N;1I,) — (Xé)l+ is quasi-finite.

Proof. For a fixed geometric point (x});cr, € (X%)I+ (k), its fiber in ®(N;1,) consists of
(Do, {}}ier_) such that deg Dy < N and
Do+ Y o(x})="Do+ Y _ ai. (9.4)
iely iel_

Let v € |X’| be a closed point that intersects supp Dy. If deg(v) > N, then Dy cannot
contain all geometric points over v and hence there exists a geometric point y|v such that
y € supp " Dg but y ¢ supp Dy. By 7 y = o(x}) for some i € I;. Therefore points in Dy
are either over closed points of degree < N, or in the Galois orbit of o(x7}) for some ¢ € I.
This leaves finitely many possibilities for Dy, hence for {z}};cr_ as well. O

9.2.2. Definition of strata. For a partition I = (Iy,I+,1_) of {1,2,--- ,r}, define Z[N; I,]
to be the stack classifying

({Di}o<i<r ({2t h<icr {Fito<i<r) € Hky (), {£ 2 Fi}osi<r)
such that {D;} € D(N;I,) with image {x}};cs, under m (? = +,—), and ¢; extends to a
saturated embedding £(D;) < F;. We have a map
TIN; L] : Z[N; L] — (X;5)" x D(N; L,).
The following is the analog of Proposition when a = 0.

Proposition 9.5. Let n > 2.
(1) For varying N € Zx and partitions Is of {1,2,---,r} such that |I.| = |I_|, the
substacks Z[N; 1] give a partition of Z.
(2) The fibers of the map ©[N; 1] have dimension < (n — 1)|1|+ (n — 2)|Iy|.
(8) We have dim Z[N;1,] < r(n —1). Moreover, when n > 3, the equality can only be
achieved when Iy = {1,2,--- ,r}, i.e., all D; are equal to the same diwisor of X'
defined over k.
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Proof. (1) is similar to Proposition 1), except we have to argue that the strata are only
non-empty for [I;| = |I_|, and that Case (£) cannot appear for points in Z = Z7(0)°. The
first statement follows from the assumption that D, = ™ Dy has the same degree as Dy. For
the second statement, suppose Case (%) happens for the modification

.7:1‘_1 — fib_l/Q — .7:1‘,

and let I C F;_1, be the hyperplane that is the image of fz.b_l/Q. Then H+ C Fi-1,0(z)
is the line along which the upper modification .7-'2.[1 2 Fi is performed. Let £,/ (resp.
l4(27)) be the image of £(D;—1) — Fi—1 at ; (vesp. at o(z})). Since the image of £(D;_1) is
isotropic (because a = 0), (47, €, (21)) = 0 under the pairing between F; 1 - and F; 1 o(z/)-
The condition D; + z; = D;—1 + o(x}) happens only if £,, ¢ H and {5 = H*. This
contradicts the fact that (ﬁzé,ﬁg(z;)) =0.

(2) is proved in the same way as Proposition 2).

(3) Applying (2) and Lemma [9.4] we get

dim Z[N;I,] = (n—1D|I4|+ (n—2)|Io| + [Io] + dimD(N; I,)
< (=D + (n = Dllo| + [L+| = (n — 1) o] + n|L4].

Since n > 2, we have n < 2(n — 1), therefore the above is < (n —1)(|Io| +2|14|) = r(n —1).
When n > 3, we have strict inequalities n < 2(n — 1), so equality can only be achieved when
I, , hence I_, are all empty. O

10. COMPARISON OF TWO CYCLE CLASSES

The goal in this section is to show the following theorem.
Theorem 10.1. Let £ € Bungy (k) and a € Ag(k). Let s : &' = @} L; — & be a good
framing of (€,a) in the sense of Definition[7.15, Let a’ : &' — o*(E')Y be the Hermitian
map induced from a. Then we have an equality in the Chow group
(v, (@) 22(0) = [Shti(n,m]| 2z (a) € Cho(Z(a)). (10.1)
Here the restriction on the RHS is via (8.3), noting that Z;(a)° = Zg(a), and the class

[Sht)y((n,n)] is as in Definition |S.16
In particular, the cycle class [ZZ(a)] as in Deﬁnition—Proposz'tion is well-defined (i.e.,
independent of the choice of a good framing).

Below we consider the case where X’ is geometrically connected. At the end of this
d

section (§10.5)) we comment on how to modify the argument in the case X' = X [[ X or
X' = Xy, where k' /k is the quadratic extension.

10.1. First reductions. For a vector bundle £ on X’ let pmin(€) € Q be the smallest slope
that appears in the Harder-Narasimhan filtration of £. For £ of rank n and a € Ag(k), a
good framing s : @ L; — & for (£,a) is called very good if it satisfies the additional
condition
(3) tmin(€) > max{deg £; +2¢' — 1}1<i<n.
Most of the work in this section will be devoted to proving the slightly weaker statement
below.

Theorem 10.2. Suppose X' is connected. Then the identity (10.1) holds if s : & =
" L = & is a very good framing of (£,a).

Lemma 10.3. Theorem [10.4 implies Theorem [10.1}
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Proof. Choose effective divisors D; on X’ (1 < ¢ < n) such that v(Dy + --- + D,,) is
multiplicity-free and disjoint from v=1(D,). Let £, = L;(—D;). When the D;’s have
sufficiently large degree, the resulting map

sl L el L —E
is a very good framing. Let a” be the induced Hermitian map ®L, — o*(®L])V. By
Theorem [10.2] we have
42/1’... L (a//)|Z§(a) = [Shtj\/((n,n)HZg(a)‘
Therefore, to prove (|10.1)) it suffices to show
Ly, (@) 2z(a) € Cho(Z¢(a)).

Let U’ be the complement of U ; supp(D; + 0D;) in X’. By construction, U’ contains
v~ H(D,), therefore Zz(a)|y = Z¢(a) by Lemmal|7.12 Let §; = [2} (a};)°]|lur € Chyn—1)(Z7, (af;)°|orr).
Similarly define ¢! using (L., al). Then it suffices to show the equality

(€L Cro Cn)lzpa) = (GG ()l zz(a) € Cho(Z(a)), (10.2)

where the intersection products are taken over Shty(,) [y Applying Lemma to each
injection L} < L;, we see that Z} (a};)|y — 2}, (aj;)|y is open and closed. Therefore
Zp (ai;)° v = 27, (al;)°|ur is open. This shows that the fundamental class ¢; is the open
restriction of ¢/ to ézi(agi)o\[]m The equality then follows. O

z5(a) = C2p ey, (@)

10.2. Auxiliary moduli spaces. Let d = (d;)1<i<n € Z%, and e € Zxo. Write d = > d;.
Recall that M, C M(n,n) is the open-closed substack where x(X’,&) = —e. Let My be
the moduli stack classifying ({£;}1<i<n, (F, 1), {t; : £L; = F}1<i<n) where
e [, is a line bunde on X’ with x (X', £;) = —d; for 1 <i < n;
e (F,h) € Buny(y,) satisfying

fmin (F) > max{—d; + 3¢ — 2}1<i<n. (10.3)

e Foreach 1 <i<mn,t,: L; — F is an injective map (fiberwise over the test scheme).

We define Hk, , , to be the moduli stack classifying

({Lihi<i<n, {2 h<icr {(Fjy hy) Yo<j<r) € Hkpony, {ti; + Lo — Fj})

where £; are the same as in Mg, each F; satisfies the analogue of (10.3) with F replaced
by F;, and fiberwise injective maps tgj : L; — F; are compatible with the isomorphisms
between F;_; and F; away from .

Lemma 10.4. The stacks My and Hk}vld are smooth stacks of pure dimension dn — (n? —

2n)(g —1).
—di+g'—

Proof. We first prove the statement for M. Consider the map 4 : Mg — [[;—, Picy’ b Bung ()
sending ({£;}, (F,h), {t:}) to ({£i}, (F,h)). For (F,h) € Buny, and L; € Pic)_(c,l"’—s_g/_l7
the condition pimin(F) > max{—d; +3¢ —2}1<i<n = max{deg £; +2¢' — 1}1<;<, guarantees
that Ext'(L;, F) = Hom(F, £; ® wx)¥ = 0. Noting that deg F = n(g’ — 1), the Riemann-
Roch formula implies that 7,4 exhibits M, as an open substack of a vector bundle of rank
dimHom(®L;, F) = —n>_,deg L; = dn — n?*(g’ — 1) over the base. In particular, My is
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smooth and equidimensional. Since dim Pi(:)_(”,l"’Jrg/_1 = ¢’ — 1 and dim Bung,) = n*(g — 1),

we conclude that
dim Mg = dn —n*(g' = 1) + (g’ = 1) + n*(g — 1) = dn — (n* — 2n)(g - 1).

The argument for Hk}\,t , is similar. The natural map

Hih,, — [] Picx? ™ " x Hk
i=1
exhibits Hk}\/[d as an open substack of a vector bundle of rank dim Hom(®L;, Fo N Fy) =
dn —n (using that deg(Fo N F1) =n(g’ — 1) — 1) over the base. Here we need the stronger
inequality fimin(Fo) > max{—d; +3¢’ —2} to guarantee fimin (FoNF1) > max{—d;+ 3¢ —2}.
In particular, Hk}wd is smooth and equidimensional, and

dim Hkj, = dn —n —n?(¢' — 1) + n(g' — 1) + dim Hkgy(,,)
=dn—n—2n%(g—1)+2n(g—1) +n+n?(g—1) = dim My,
as desired. ]

Let Mg . be the moduli stack of ({£;}i<i<n, &, F, h,s,t) where

L; € Picx: satisfies x(X',£;) = —d; fori =1,--- ,n;

& € Bungy satisfies x(X',&) = —e;

(f, h) S BunU(n);

t: & — F is an injective map;

s: @ L; — & is a very good framing for (£,a), where a = 0*tY o hot is the
induced Hermitian map on &.

Note that being a very good framing requires —d; < pmin(€) — (3¢’ — 2) for all i, which
imposes an open condition on £. We view My, as a correspondence

Mg
Mg M. .
tos

Here w; records @}, L; — F and ws records £ L F

We denote the Hitchin bases for Mg, M. and Mgy . by A4, Ae and Ay . respectively. Here
Aqg parametrizes ({Li}1<i<n, @’ = (a};)) (Where aj; : L; — o*L}) such that o' : ©L; —
o*(®L;)Y is an injective Hermitian map. The base A, classifies (£,a) with a an injective
Hermitian map. The base Ag . is the moduli stack of ({£;}1<i<n, &, s,a) where (£,a) € A,
$: @ L; — & is a very good framing of (€,a) and £; € Picxs with x(X', £;) = —d;. We

view Ag. as a correspondence
Ad,e
y K
Ay A, .

(10.4)

(10.5)
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We have Hitchin maps

fa:  Mag— Ag,
f€ : M€ _> ‘/467
fg,e : Md,e — .Ad’e.

These maps together give a map of correspondences to . Note fg4 is not neces-
sarily proper because we have imposed an open condition on the minimal slope of F.

Similarly we define the Hecke version Hk)y(, = of Mg ¢ as the moduli stack of ({z}}1<i<r, {€ —
Fito<i<r) € Hkly together with a very good framing s : ®L; — & for (€,a) with
X(X', £;) = —d;. Again we view Hk'y,  as a correspondence

Ky, |
y K
HKl,, HKY, .

Lemma 10.5. The maps wy,u; and hy are étale.

Proof. We first prove that u; is étale. Let (X4_. X XE)Q be the open subscheme of divisors
(D1,D3) € Xg4_e x X, such that D, is multiplicity-free and disjoint from Dy; let (X, x
X.)¥ be the preimage of (X4 . x X.)¥ in X/ _.xXc.. We have amap o : X, x X. — Xg
sending (D}, D3) to v(Dy) + Dy. Let a¥ be the restriction of a to (X , x X.)¥. By
factorizing a¥ as the composition

Q Vd—e xId
S

(X)_, x X.) (Xage x X.)¥ 24, X,

we see that o is étale. From the definition we have a map
3= (U1, ey de) s Age = Aa xx, (X0, x Xe)°.

where j,__ : Ag. — X/ sends ({£;},®L; = £,a) to Div(s) (the divisor of det(s)) and
Je : Age — X sends it to D, (see Definition [7.3]). The map Ay — X4 used in the fiber
product records the divisor Dy of the Hermitian map o’ on ©L£;. We claim that j is an
open immersion. Indeed, given ({£;},a’) € Ay and (Dy, Ds) € (X}, x X.)¥ such that
v(Dy) + Dy = D, by the disjointness of D}, o(D}) and v=1(D,), there is one and only
one coherent sheaf & such that ®L; C £ C o*(®L;)Y, £/ & L; is supported on D}, and
o*(®L;)V /€ is supported away from D}. This would give a very good framing of £ if the
open condition pmin(€) > max{—d; + 3¢’ — 2}1<i<y, is satisfied. This shows that j is an
open immersion. Since a¥ is étale, we conclude that Ag e is étale over Agy.

To show w; is étale, we observe that My, = Mg x 4, Ag,e. Since u; is étale, so is w;.

Finally, ij\,td& is the open substack of Hky,, xAiAd;where the legs avoid Div(s). Since
uy is étale, so is hq. B O

10.3. Auxiliary Hitchin shtukas. We define Sht)y,, and Sht)y, = as the fiber product
Sht'y,, — Hkly, Sht'y,, . — Hk}, . (10.6)

i J/ (prg.pr;.) l J/ (prg.pr;.)
(Id,Fr) (I1d,Fr)
Mé e Mé X Mg Mge —_— Méye X Mg,e
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The maps w; and h; induce maps

Sht}y, . (10.7)

N
Shtlyy, Sty

The stack Sht)y,, decomposes into a disjoint union of open-closed substacks indexed by

(L}, 0L > £, a) € Ay (k)

Shtlyy, . = 11 Z5(a).
(BL;i—E,a)EAg,c(K)

Correspondingly, the diagram ((10.7]) decomposes into the disjoint union indexed by Ag (k)
of diagrams of the form

Zg(a)

N

Zh, (@) Z¢(a)

Here Z%, (a/)¥ C 2L, (a') (where a’ is the Hermitian map on @L; induced from a) is
cut by the open condition fimin(F;) > max{—d; + 3¢’ — 2} for all 0 < j < r. From this
description and Corollary [T.17], we see that:

Lemma 10.6. The map uy (resp. us), when restricted to each connected component of
Shty\/lg,e: is an isomorphism onto a connected component of Sht;/lQ (resp. Sht)y, ).

10.4. Zero cycles on auxiliary Hitchin shtukas. Similar to the definition of [Shty, ]
given in we define 0-cycles supported on Shtly, = and Shty,, as follows.
We rewrite Sht)y,, as the fiber product

Sht'y,, — (HkM)r x My
\L i(pro,prl)TXA
<I)Mi

(Mg)™ ! ——— (Mg)?>+?

Here ® p1, = @), and the vertical maps are defined as in Definition By the smoothness
of Hk}, , and M, proved in Lemma and the dimension calculation there, we define

[Shtly, ] := Py, [(Hkly,)" x Mgl € Cho(Sht'yy,)-
Similarly, using the Cartesian diagram
Sht'y,,  — (Hkk@e)’“ X M (10.8)

i (prg,pry)" XA

Py

4a,e

(Md,e)r+1 =t (Md,e)ZrJrZ
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and the smoothness and dimension calculations of Hkl), .. and Mg (which follow from

Lemma and Lemma [10.4]), we define
[Shthy, ] == P,  [(Hki, )" X Ma.c] € Cho(Shtiyy, ).

Lemma 10.7. We have ui[Sht),] = [Sht)y, ] € Cho(Sht),, ).
Proof. This is because the maps w; and h; are both étale by Lemma [10.5 (]
Lemma 10.8. We have u3[Sht)y | = [Sht'y,, | € Cho(Sht)y,, ).

Proof. The diagram ([10.8)) is obtained from (for Mg replaced by M, ) by base changing
termwise along the map of the following two Cartesian diagrams induced by us : Age — Ae:

Age(k) —— (AQ,E)T—H Ae(k) ——— (AE)T+1
S T
(Ag,e)r'H &;‘ (Ag,e)QH_Q (_Ae)r—i-l &) (Ae)2r+2

Note that us : A4 — Ae is smooth since it exhibits A4 . as an open substack of a vector
bundle over A, (using the condition pmin(€) > max{—d; + 3¢’ — 2}). We conclude by
applying Proposition [I0.9] below. O

10.4.1. Compatibility of cycle classes under Hitchin base change. To state the next result,
we need some notations. Suppose we are given:
e stacks S, M and H that are locally of finite type over k£ and can be stratified into
locally closed substacks that are global quotient stacks;
e the stack M is smooth of pure dimension N with a map f: M — S
e amap h: H— S xar g2 M?" (the fiber product uses the r-fold product of the
diagonal A" : S™ — §?7).
Define h: H — M?" as h followed by the second projection. Form the Cartesian square

ShtHHHXM

s

Mr+1 CDM; M2r+2

Let u : S’ — S be a smooth representable morphism of pure relative dimension D. Let
M = M xgS', H = H xg- S with natural maps W H — 87T X ar grzr M. Let
h': H — M'®" be the resulting map. Let up; : M’ — M and uy : H — H be the natural
maps. Form the Cartesian square

Sht); — H' x M’ (10.9)
l lh’ x A
M/r+1 P M/2r+2

Since 5™ X g, g2r+2 are1 S"T = S(k), Shty decomposes as

ShtH: H ShtH(S).

seS(k)
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Similarly Sht’; decomposes into the disjoint union of Sht’y(s’) indexed by s’ € S’(k). Then
the natural map ugyy : Sht}l — Shty lifts to an isomorphism

Shtyy = Shtg x g S’ (k) =[] Shta(u(s).
s'€S' (k)
Proposition 10.9. Let { € Ch,(H) and [M] be the fundamental class of M. Then we have
udne @ (¢ X [M]) = @ypur (¢ x [M]) € Chuyn(Shty).
Proof. Consider first the diagram where all squares are Cartesian

ShtH ><57~S/T — = H' xM — S/TJrl

l’v luHXuN] luT‘Fl

Shty ——— H x M —— S7+1

l |ea

M1 Pm > M2r+2

Here the top vertical arrows are smooth and representable. By the compatibility of Gysin
map with flat pullback [Kre99, Theorem 2.1.12(ix)], we have

v @Y (¢ x [M]) = @y ufy (¢ x [M]) € Chy_yn(ri1)p (Shtpr X gr+1.57H). (10.10)
Here we recall that D is the relative dimension of u. We have
Shtg x g1 8" = ] Shta(s) x (5™ (10.11)
seS(k)

where S’ = u~!(s), which is a smooth scheme over k. Factorize ugp; as the composition
Sht; —— Shty x gr(5'") —%— Shty .

From (10.11]) we see that i is a regular embedding of codimension (r+ 1)D. Now v and ugh
are both smooth. Applying [Kre99, Theorem 2.1.12(ix)] we have uf, (=) = i'v* as maps
Ch,(Shtz) — Ch,(Sht’;). Therefore

udy @ (¢ x [M]) = i'v* @Y (¢ x [M]) € Chy_,.n(Shtly). (10.12)
On the other hand, consider the following diagram where all squares are Cartesian

Shtiq —Z> Sht g xsr+1S’”1 —>H' x M

| | s

. Dy ’ ) )
M/7+1 _— Mr+1 X(bsofr+l752r+2 S/2T+2 —_— M’27+2

2r42
i \LUM+
M1 Pum M?2r+2

Here @, is the base change of &g/ and ®, is the base change of ®,;. The outer square of
the top rows give (10.9). By the transitivity of Gysin maps, we have

®hpupr (€ x [M]) = @3 @yup (¢ x [M]).
Since w37t is smooth representable, we have ®4u%; (¢ x [M]) = ®',u% (¢ x [M]). Hence

®hpup (¢ x [M]) = @@} uf (¢ x [M]).
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Since both ®; and i are regular embeddings of the same codimension, we have ®} (—) = i'(—)
as maps Ch, (Shty X gr+18 ") — Ch,_(,11)p(Shty), by [Kre99, Theorem 2.1.12(xi)] and
[Ful98, Theorem 6.2(c)]. Therefore

Dy (¢ x [M]) = i'®hyujr(¢ x [M]) € Chy .y (Shty). (10.13)

Combining (10.10)), (10.12) and (10.13)) we conclude

Uy, Py (CX[M]) = i'v* @y ((x[M]) = i@y ufy (X [M]) = ®yypur (Cx[M]) € Chy_py (Shtly).

O

Lemma 10.10. Let ({£;}i<i<n, @) € Ag(k) and & := @ | L;. Then we have an equality
[Shtv, )27, 0y = €Ly o 2 (a') € Cho(Zg(a")).

For the definition of C; .. r. (a’) see .

Proof. We will apply the Octahedron Lemma [YZ17, Theorem A.10] to a diagram of moduli
stacks in our setting. Since the Octahedron Lemma requires certain stacks in question to be
Deligne-Mumford, we need to rigidify our moduli stacks to satisfy these requirements. This
is a minor technical issue which we encourage the reader to ignore: it is simply because the
Octahedron Lemma in [YZ17] is not stated and proved in the most general form.

Let v € |X'|. Let P, be the moduli space (a scheme!) of line bundles on X’ together with
a trivialization of their fibers over v. Let G, = Resﬁ“ G,,. Then P, — Picx- is a G,-torsor.

Now for each moduli stacks My, Aq and Hk';, ~that involve an n-tuple of line bundles

{£}, we write Mg, Ay and Hk , to mean their rigidified versions where £; € Picx/ is

replaced by L; € P,. Note that we do not impose any compatibility condition between the
rigidifcation on £; and the rest of the structures classified by these moduli stacks. Define
Sht’;wd using the dotted version of the left one of the Cartesian diagrams in (10.6)).

Note that ./\-/li7 A@ and H.k;'/ld are now schemes, and they are Gj-torsors over their un-
dotted counterparts. The dotted version of Lemma remains valid if we add n deg(v) =
dim G to the dimensions. Also, Sht'y, =~ Sht)y(, X a,(k)Ad(k). Since Ag(k) — Aqg(k) is sur-
jective, to prove the Lemma, it suffices to prove its dotted version: for any ({£;},a’) € Aq(k),
writing £ := @], L;, then there is an open and closed embedding Zg, (a’) = Sht'y, (using

the rigifications L; of L;); then we shall prove

[Sht'y, 2z, ) = Gy, 2, (') € Cho(ZE(a))). (10.14)

Fori=1,---,n, let Ny, be the open substack of M(1,n) consisting of points (£ < F,h)
where (X', £) = —d; and ppmin(F) > —d; + 3¢’ — 2. Similarly define ijl\/di and Shtj\/di;
these are open substacks of Hk}\/l(lm) and Sht)y(, ,,) respectively.

Let J\./'di,ijlvdi be the rigidified versions of Ay, and Hk}\[di where £ € Picy/ is replaced

by £ € P,. Let w; : Ndi — Buny(,) and w; : Hk/l\-[dv — Hk%](n) be the forgetful maps.
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We shall apply the Octahedron Lemma [YZ17, Theorem A.10] to the following diagram:

(@7 xwi

. A n r r v
(Hk{y ()" % Bung () —== [Ti—; (Hkgr())" X Bung(n)) <— h?:l((Hk/l\ydi) x Na,)

l(prmpﬁ)rXA J{H((prmprl)rXA) ll_[((prmprl)TXA)
2r42 A n 2742 [Tw; " noN2r+2
BunU(:) [Tizy BunU(-:L) [T, Ndi *
TQBUHU(n) TH CBuny () TH ‘b,r\'/di
i1 A Won e et I
B‘mUan) [limy BunUJEn) || Ndf
(10.15)
The fiber products of the three columns are
r A r r
ShtU(n) —— H;L:l ShtU(n) < H;L:I ShtNdl (1016)

where

sy, = ][ ze o I II 2@ |- (10.17)
Li€P,(k), aj, €Ac, (k)
X(X',Li)=—d;
Let My be the moduli stack of ({£;},®" L LN F,h) defined similarly as Mgy but
without the condition that #' be injective, only that ¢} = t|, be injective. Then My < My
is open. Similarly define Hklﬁd and ShtTﬂd. Note that ﬂi is exactly the fiber product of

BunU(n) *A> H?:l BunU(n) <1_[i H?:l ./\[gl1 (10.18)

Similar remarks apply to Hklﬂd. Therefore the fiber products of the three rows of (|10.15|)

are

(Hkl@)r x My (10.19)

J{(provprl)TXA

——2r+2

My

T éﬂi

—r+1
My

The common fiber product of (10.16]) and (10.19)) is Shtrmd, which decomposes as a disjoint

union over the groupoid B(k) of (£;, a};)1<i<n where L; Ein(k) with x(X', £;) = —d; and
al; : L; — o*L) injective Hermitian. For a point (£;,al;)1<;<n of B(k), we have

13
r . _ v I 1 Yo
Shtmi |(ci,a;i)19§n =27, (@l an,)°,

where Sh‘crﬁi |(£~i7a;i)19§n means the pullback of Sh‘crﬂi to Spec k along the corresponding
Spec k — B(k).

We check that the assumptions for applying the Octahedron Lemma are satisfied (the
numbering below refers to that in [YZ17, Theorem A.10]).
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(1) All members in the diagram are smooth and equidimensional. This is clear
for Buny(,,) and Hkllj(n). The same argument as in Lemma proves that Ndi
and ijl\fd, are smooth of pure dimension d;n + (n? — 2n + 2)(g — 1) + deg(v).

(2) We checklthat, in forming the fiber products of the middle and bottom rows and
the left and middle columns, the intersections are proper intersections with smooth
equidimensional outcomes with the expected dimension. Here we use Lemma
and [6.9] to argue for the left and middle columns. For the rows, the same argument
as in Lemma proves that My and Hklﬂd are smooth of the same dimension as

My, which is dn — (n? — 2n)(g — 1) + ndeg(v). This is the virtual dimension for
M, as the fiber product of (10.18)), since

Zdim./\/'di —(n — 1) dimBungy,) = Z (din+ (n® —2n+2)(g — 1) + deg(v)) — n*(n —1)(g — 1)
i=1 i=1
=dn — (n*> — 2n)(g — 1) + ndeg(v).

(3) We check the fiber products of the top row and right column of satisfy the
conditions for [YZ17, A.2.10]. The fiber product of the top row is also a proper
intersection: this follows from the same calculation as for the middle and bottom
rows. The fiber product of the right column is also a proper intersection: this
uses the decomposition and the calculation of the dimension of ZJ (0)* in
Proposition [9.5 and the dimension of Z} (a};)* in Proposition

The only issue is that (Hklmd )" may not be a Deligne-Mumford stack, which was
part of the requirement of [YZE?, A.2.10]. However, we argue that this is not really
an issue. The proof of the Octahedron Lemma allows the following flexibility: since
eventually we only care about the O-cycles restricted to Sht;}(d7 in the middle steps
of forming the fiber products, we may restrict to open substacks as long as the final
fiber product contains Shter and only need check the relevant requirements there.

Now in (10.19) we may restrict to the open substack (Hk}\-/ti)’"“1 C (Hklﬂi)”‘l7
which is a scheme.
(4) The same remark as above shows that it suffices to check that the fiber squares

obtained from (10.16) and (10.19), after replacing M, by /\./li7 each satisfy the
condition [YZ17, A.2.8]. Therefore it suffices to check

e Sht), admits a finite flat presentation in the sense of [YZ17, Definition A.1].
This is true because Shtj\}[d is a scheme.

e The diagonal map A : Shty(,,) < [[;, Shty(, is a regular local immersion.
This is true because Shty;(,,) is a smooth Deligne-Mumford stack.

e The map @, : M;‘H — M;TH is a regular local immersion. This is true be-

cause Md is a smooth equidimensional scheme by the dotted version of Lemma

104

The conclusion of the (variant of) Octahedron Lemma says that the following two elements
in Cho(Sht )

n n

@IﬂiAinb(n))r[H(Hk}wi)r X Ndi] and A!Sht;'](n)(H q)Ndi)![H(Hk/l\‘/di)r X Ndi]

i=1 i=1
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become the same when restricted to ShtTMd. Further restricting to ZZ, (a’) we get the desired

identity (10.14)). |

Proof of Theorem[10.2 Restricting the equality in Lemma [10.10] to Z%(a), which is open
and closed in Z, (a’) by Corollary we get

vz (@) 25 (0) = [Shtivg,] 2z (0)- (10.20)

For fixed (&L, — &,a) € Age(k), ZZ(a) can be viewed as a finite étale cover of an open-
closed substack in Shtly,, Shty,, A and Sht), by Lemmam By Lemma and Lemma
[[0.8 we have N -

[Sht)v, ) 2z(a) = [Shti, Jlzz(a) = [Shtiv,]lzz(a)-
Combining this with ((10.20)) proves the theorem. O

10.5. Proof of Theorem for X’ = X][X or X, . Here k'/k is the quadratic
extension.

In the case X’ = X [[ X, we have Buny(,) = Bungr,. We shall identify a Hermitian
bundle 7 on X’ with a pair of vector bundles (F;,F2) equipped with an isomorphism
Fa = FY, each living on one copy of X. A vector bundle £ on X’ of rank n corresponds to
two rank n vector bundles (£, &), each living on one copy of X. Now Ag(k) is the set of
injective maps a : & — &. A good framing s : @, L; < & for (€,a) now consists of line
bundles £; = (£;1,L;2) (1 < i < n) satisfying the same conditions in Definition it is
called very good if it satisfies the additional conditions

(31) Hmin(&1) > max{deg £;1 + 29 — 1}1<i<n, and
(32) ,Umin(gg) > max{deg Ei,2 + 2g — 1}1§i§n-

The same argument of Lemma shows that it suffices to prove the analogue of Theorem
[107] i.e., prove Theorem [I0.1] for very good framings.

In both the X' = X [[ X and X’ = X case, we need to modify the definitions of Mg
and Mg, as follows. In the definition of Mg., we use the notion of very good framing
just defined over geometric fibers of X — S (which are of the form Xz[[X5). In the
definition of My, we change the inequality (10.3) to two inequalities over the geometric
fibers of X5 — S

anin (F1) > max{deg Li 1 + 29 — L}1<i<n,
,UJmin(fQ) > max{deg Ci,Q + 29 — 1}1§i§n-

The same inequalities should be imposed in the definition of Ny, that appear in the proof of
Lemma [10.10} With these changes, the argument for proving Theorem [10.2| goes through.

11. LOCAL INTERSECTION NUMBER AND TRACE FORMULA

11.1. Local nature of the intersection problem. Recall from Proposition that
Z%(a) only depends on the Hermitian torsion sheaf Q = coker(a). In this subsection we
show that the O-cycle class [2Z(a)] also only depends on Q.

Recall the stacks Hermgg = Hermoq(X'/X) and Lagr,,; from §4] We have a self-correspondence
HK{ g, of Lagry, over Hermsq: it classifies (Q,h,{L;}o<i<r) where (Q,h) € Hermag,
L; C Q are Lagrangian subsheaves such that £;/(£; N £;_1) has length one for 1 < i < r.
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Define the local version Shty,,, —of Sht), by the Cartesian diagram

l l(proyprr)
(Id,Fr)

F
Lagry; — Lagr,,; x Lagry,

(11.1)

We have a decomposition into open-closed substacks

Shtf gr,, = I 2z
(Q,h)EHermog (k)

Lemma 11.1. The stack Hkiagrw is smooth of dimension zero.

Proof. We may identify Hkiager with the moduli stack of (0 C £" C £ C Q,h) where
(L C Q,h) € Lagry, and £/L" has length one. Under the local chart for Hermog described
in Lemma Hkiag]r2d becomes [p/P], where P C Ogq = O(V) is the parabolic subalgebra
stabilizing a pair of subspaces L' C L with L Lagrangian and dim L' = d — 1. This local
description implies that Hkiagrzd is smooth of dimension zero. ]

Rewriting Sht{,,, =~ as the fibered product (cf. Definition 8.15)

Shtf gy, — (Hkp e, )" X Lagra, (11.2)
l l(pro,prl)TXA
PLagr
(Lagryg)" ! —2= (Lagry,) >+

we define a O-cycle class
[Shtf‘agrzd} = (I)!Lagrzti[(Hkiade)r X Langd] € ChO(Sht£agr2d)'
Restricting to Z5 we get
[25] := [Sht{ g, ]|z € Cho(2g).

Recall the maps gy : Mg — Lagr,y, and g : Ay — Hermg, defined in We also have
amap guk : Hkly,, — Hk,,, ~sending ({z;}, {€ RN Fi}) to (Q = coker(a), hg, {coker(t;)})
(a is the induced Hermitian map on &). The maps guk, gm and g exhibit the diagram (8.5])
as the pullback of the diagram ([11.1)) via the base change g : A; — Herms,. In particular

we have a natural map
gsht - ShtZ/ld — Sht£agr2d .

For fixed (£, a) € Aq(k) with image Q = coker(a) € Hermag(k), gsnt restricts to an isomor-
phism to the open-closed subschemes

gSht|Zg(a) : Zé(a) :> Z7Q (113)
Proposition 11.2. We have an equality
[Sht)vg,] = 95ne[ShtLagy,,] € Cho(Sht)yy,). (11.4)

Proof. Apply Proposition to the diagram (11.2)), the fundamental class { = [(Hkiagrzd)r X
Lagr,,] and the base change map v = g : Ag — Hermyq. By Proposition g is smooth.
We then have

(I)EA/ldg;Ik[(Hkiagrzd)r X Lager] = gghtq)!Lager[(Hkiade)T X Langd] € ChO(Shter)
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Since gpy is smooth, gﬁk[(Hkiang)T x Lagryy] = [(Hk),)" x Hk) ]. The above equality
then becomes (11.4)). O
Combined with Theorem we get a local description of the cycle class [Z%(a)]:

Corollary 11.3. For any (€,a) € Aq(k) with image Q = coker(a) € Hermoq(k), [ZZ(a)] is
the same as [Z5] under the isomorphism (11.3). In particular,

deg[Z¢(a)] = deg[Zg)].
11.2. Sheaves on Hermsy,. To describe the direct image complex Rf.Q, on Ay, by the
Cartesian diagram (8.4)), we first need to understand R(vo4).Q, on Herms,.

Lemma 11.4. The perverse sheaf R(v24)«Q, on Hermyy is canonically isomorphic to
(Sprier™)Sa (see Proposition m(,?)) Here the Sy-action on Spris™ is the restriction of
the Springer Wa-action.

Proof. We have a Cartesian diagram

Hermsyg s (sz)Tld(X’)

Coh
l)\gd \Lﬂ-xl'd
’

Lagrq, — % Cohy (X"

where €/, sends (Q, hg, L) to L and € sends (Q1 C--- C Qg C---C Q,h)to (Q1 C--- C
Q4). By proper base change
RX24:Qq = € Spry x -

In particular, RA24. Q, carries an action of Sy. Moreover, the induced Sg-action on Spra
R(v24)+RX24+Q, is the restriction of the Springer Wy-action to Sy: this can be easﬂy
checked over Herms,, and then the statement holds over Hermgd since SerC’rm is the mid-
dle extension from its restriction to Herm3, by Proposition 2 . Since (RA24.Q,)% =
£l (Sprg x)%* = Q,, we conclude that (Sprag™)* = R(U2d)*(R)\2d*Qe)Sd = R(v24)-Qy,
as desired. ]

Herm ~

It is an elementary exercise to see that Indg‘;'i 1 decomposes into irreducible representa-
tions

d
mdy* 1 =P ps (11.5)

(Z/2Z)d><1(S %S 1)()(1' X 1), and Xi : (Z/2Z)d X (Sz X Sd—i) — {:tl} is the
character that is nontrivial on the first i factors of (Z/2Z)?, trivial on the rest and trivial
on S; X Sq_;. The decomposition also shows up in [YZ17] §8.1.1].

Recall the notation Sprh™[p] from Definition

where p; = Ind";

Corollary 11.5. There is a canonical decomposition

U2d *Ql @Sererm i (116)

Proof. By Lemma and Frobenius reciprocity, we have
R(v24).Q, = Homyy, (Ind‘évd 1 Sererm) = Sprag™ [Ind‘é‘;“ 1].
The desired decomposition then follows from . O
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Definition 11.6. Define the graded perverse sheaf on Hermyg(X'/X)
d .
K (T) := €D Spry ™ o T".
i=0

The fundamental class of the self-correspondence Hkiagrm of Lagr,, is viewed as a coho-
mological correspondence of the constant sheaf on Lagr,,; with itself. It induces an endo-
morphism (see notation from [YZ17, A.4.1])

(vad)i [HK g, | R(02)+Qp = R(v24)+ Q.

Proposition 11.7. The action of (Ugd)![Hkiagr2d] on R(v24)«Q, preserves the decomposi-
tion (I1.6), and it acts on Spras™|p;] by multiplication by (d — 2i).

Proof. By Proposition 2), Sprow™[p;] is the middle extension from its restriction to
Herms3,, it suffices to prove the same statement on Herms,;. Let I/, C X/, X’ be the universal
divisor {(D € X),y € X'): y € D}. The maps pr(D,y) = D and ¢(D,y) = D —y+o(y)
define the incidence correspondence as in [YZ17, proof of Proposition 8.3],

1
y \ (11.7)
X X

Now over Herms;, the map Herms; — X3 is smooth, and Hkiagrw is the pullback of (11.7]).
We therefore reduce to checking the statement for the action of [I)j] on the direct image
sheaf of v : X, = X4, which is done in the proof of [YZI7, Proposition 8.3]. O

11.3. Lefschetz trace formula. We shall give a slight generalization of the Lefschetz
trace formula [YZ17, Proposition A.12] expressing the intersection number of a cycle with
the graph of Frobenius as a trace. Instead of the graph of Frobenius, we need to intersect
along ®; : M1 — M?"+2, Consider the following situation:

e Let S be an algebraic stack locally of finite type over k = F,. Assume S can be
stratified by locally closed substacks that are global quotients.

e Let M be a smooth equidimensional stack over £ = F, of dimension N with a proper
representable map f: M — S.

e For 1 <i<r,let (prf,prt): C; = M xg M be a self-correspondence of M over S.
Assume pr}, is proper and representable.

Form the Cartesian diagram

Shte — ([T, Ci) x M (11.8)

i i(Préﬁpr’i)lsiy

M+ Pm > M2r+2

Then Shte decomposes as

Shte = H Shtc(s)

seS(k)
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where Shtc(s) is the fibered product of Shtc — S(k) against s € S(k). For s € S(k), we
write Sht¢ |5 for the fibered product

Shtc |9 e Shtc

! |

Spec k —>— S(k)
Then Shte |s — Shte(s) is a torsor for Aut(s), and in particular a finite étale cover.
Suppose we are given cycle classes
Ci c ChN(Ci), 1< <r.

The cycle class cl(¢;) € HEN(Ci, Q,(—N)) is viewed as a cohomological correspondence
between the constant sheaf on M and itself. Therefore it induces an endomorphism of
Rf1Q, which we denote by fi cl({;).

Proposition 11.8. For each s € S(k) we have

deg((®hy(C1 % -+ x G % [M]))|shee ) = Tr(ficl(Cr) o+ o frel(Gr) o Fry, (RAQy)s)-

Proof. We first prove the formula when S is a scheme of finite type. In this case M, C;
are also schemes of finite type over k. Let C = C7 X X --- Xy C, be the composition
correspondence, with maps pr; : C — M for 0 < ¢ < r. Consider the diagram where all
squares are Cartesian

Shte C (ITi=, Ci) x M

J/ l(prow ,PT,.,pr,.) iH(pré»pri)XA

Mr+1 q)l; Mr+2 P2 5 M2r+2

Pro \L l (pry 7pr7‘+l)

— M x M
(Id,Fr]\/[)

Here
(1)1(507 e 757“71767‘) = (503 e 7§T7F‘r1\/f(£0))7
(I)Q(EOv e 767'7£7'+1) = (§Oa§1a§17 T a§7'a§7'a§7‘+1)'

We have @y = @5 0 ®y. Let ¢ = ®4(¢; x (o X -+ x (- x [M]) € Chy(CO).
On the one hand, by the transitivity of the Gysin maps,

@y (G x oo x G x [M]) = @3(C) = (Id, Frar) (). (11.9)
Applying the Lefschetz trace formula [YZ17, Proposition A.12], we get
deg((1d, Frar)' (Q)lsmte |.) = Tr(ficl(¢) o Fr, (RiQy)s)- (11.10)

One the other hand, by a diagram chase, we see that cl(¢) is the composition of the cohomo-
logical correspondences cl(¢;) (1 < i < ), hence ficl(¢) € End(RfiQy) is the composition
of ficl(¢1) o ficl(Cz) o--- o ficl(¢,). Combining this fact with (11.9) and (11.10) we get the
desired formula.

Now consider the general case where S is a stack locally of finite type over k£ and we aim
to prove the formula for s € S(k). We claim that there exists a scheme S’ of finite type over
k and a smooth map u : S" — S such that u(S’(k)) contains s. Indeed, pick any smooth
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map uy : S; — S with S7 a scheme of finite type over k, such that s is contained in the
image of u. Let s; € S1(Fym) be a point that maps to s. Let (S1/5)™ be the m-fold fibered
product of S; over S, based changed to k. We equip (S1/5)™ with the Fr-descent datum
given by (21, -, 2m) — (Fr(zm), Fr(z1), - ,Fr(zm,—1)). This gives a descent of (S1/5)™
to a scheme S’ over k equipped with a map u : S’ — S which is still smooth since u; is.
Now s; gives rise to a k-point s’ = (s1,Fr(sy),--- ,Fr"™ (s1)) € §’(k) such that u(s’) = s.

Let M' = M xg S', C! = C; xg S and let uc, : C; — C; be the projection. Define
Shty using the analog of the diagram with M and C; replaced by M’ and C}. Then
Shte, = Shte xS’ (k). For s’ € S’(k) such that u(s’) = s, we get an isomorphism
Shte | = Shte |s. Let ¢ = ug;, (. Now we apply Proposition to the diagram
along the base change map u : S’ — S to get

g Phy (G X - X G X [M]) 2 @Y, (¢) x -+ x ¢ x [M]) € Chy(Shtl).
Restricting to Sht¢ | 2 Shte |5 and taking degrees we get

deg(®h (G x -+ X G X [M])snee 1,) = deg(®hyr (G x -+ x ¢ x [M])|smer, 1, ). (11.11)
On the other hand, letting f’ : M’ — S’, by smooth base change we have
Tr(ficl(G) oo fiel(G) o Frs, (RIQy)s) = Tr(fi cl(Gr) o -+ o fi cl((]) o Fryr, (RfIQy)s)-
(11.12)
Since the right sides of (11.11)) and (11.12)) are equal by the scheme case that is already

proven, the left sides of (11.11)) and (11.12]) are also equal, proving the proposition in general.
O

Recall the graded perverse sheaf K" (T') on Hermy, from Definition m

Corollary 11.9. Let (Q,hg) € Hermaq(k). We have
d
Tr([HkLage,,]” © Fr, (R(v24).Qp)@) = ) (d — 23)" Tr(Fr, Spryg ™ [pilo)

=0
_o(ay
(logq)™ \ ds

(q% Te(Fr, £ (a*)0)) -
Proof. The first equality is an application of Proposition to the case S = Hermyy, M =
Lagry,, C; = Hkiagrzd and ¢; = [Hkiagrm]. The second equality follows from Proposition
[T The third one is a direct calculation. O

Combining Corollary with Corollary we get:
Corollary 11.10. Let (€,a) € Aq(k) with image (Q, ho) € Hermog(k). Then we have
1 d\"
deg[Z5(a)] = ——— [ —
ed260) = o ()

11.4. Symmetry. This subsection is not used in the proof of the main theorem. The graded
perverse sheaf IC&“t (T) has a palindromic symmetry that we spell out. First, the étale double
covering v : X’ — X gives a local system 7x/,x on X with monodromy in £1. It induces a

deg[Z5]

s=0

(a™ Te(Fr, K3 (¢7*)0)) -

s=0

local system 74 on Xy with monodromy in +1: its stalk at a divisor 1 + -+ - + x4 € X4(k)
is @1 (nx//x)a,- Let

Herm ,_ _Herm %
loa = S2d  Md»
where s{e™™ : Hermog — X4 is the support map. This is a rank-one local system on Hermog

with monodromy in +1.
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Lemma 11.11. We have a canonical isomorphism of perverse sheaves on Hermag:

Herm ~ , Herm

Sprag " [pa) = ngq -

Proof. By Proposition 2), Sprier™[py] is the middle extension of its restriction to the
open dense substack Herms; (preimage of X3). The same is true for ny because it is a local
system and Herma, is smooth. Therefore it suffices to check their equality over Herms;, over
which both are obtained by pushing out the Wy-torsor (X’¢)° — X5 along the character
Xd : Wy — {:l:l} O

Lemma 11.12. There is an isomorphism of graded perverse sheaves on Hermog
TUPT ) = ™ @ K (D).

Proof. The equality amounts to

STy [pa—i) = nhs™ ® Spryg ™ [p;].

Both sides are middle extensions from Herms, by Proposition ), over which they cor-
respond to representations pg_; and x4 ® p; of Wy. By definition,
Xa ® pi = xa @ Indy?, (xi ®1).

Inserting Xq|w, xw,_, = Xi X x4—i to the right side above gives
Indyy?, v, (xalwixw,_, ® (i ®1)) 2 Indy? . (1R xa—i) = pa—s.
|

Lemma 11.13. If(Q, ho) € Hermag(k) is the image of some (€,a) € Aq(k), then Tr(Fr, nilerm| o) =
1.

Proof. Tt X'/ X is split, then n;{jrm is trivial, and there is nothing to prove. Below we assume
X'/X is nonsplit. The local system 73 on X4 is pulled back from a local system 7pi. on
Picx via the Abel-Jacobi map AlJ, : X4 — Picﬁ( C Picx. The Frobenius trace function of
1pic is the idele class character

nep s FX\AR /O = Picx (k) — {£1}
trivial on the image of Nmy/,x : Picx/(k) — Picx (k). Denote by dety(Q) the image of

Q under Hermyy; — Xy Aday Picg(. We have n;{jrm\g = Npicldetx (@) @ Fr-modules. Now
(9, hg) comes from (£, a), which implies

detX(Q) = NmX//X(detE)fl ®w§"

By [Wei95, p.291, Theorem 13], wx is a square in Picx (k), hence np p(w%") = 1. Since

nrr(Nmyo x(det £)) = 1, we see that np//p(detx(Q)) = 1, hence Tr(Fr,ni™|g) =
1. ([l

Corollary 11.14. Let (£,a) € Aq(k) with image (Q,hg) € Hermay(k). Then s —
q% Tr(Fr, K (¢=2%)g) ds an even function in s. In particular, its odd order derivatives
at s = 0 vanish.

By Corollary [11.10] this implies deg[Z%(a)] = O for r odd. However, we know from
Lemma [6.7| that Sht;(,,) = @ when r is odd, which implies Zg(a) = @.
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Part 3. The comparison
12. MATCHING OF SHEAVES
12.1. Recap. Let

Eo(m(&), s, ®) = E,(m(E), s, <I>)~X(det(5))_1qdcg(5)(s_7)+ dcg(“")uﬁfn(s) = Den(q™%%, (€, a))
(12.1)
where the notation is as in Theorem being a renormalization of the a'" Fourier coefficient
of Eq(m(€),s, ).
We emphasize that, in keeping with X is proper and v: X’ — X is a finite étale
double cover (possibly trivial).

Theorem 12.1. Keep the notations above. Let (€,a) € Aq(k). Then we have

1 d\" ~
degizi(o] = o (51 ) |, (1 Batmie).o.m). (122
In the previous parts, we have found sheaves on A; which correspond to the two sides of
, in the sense of the function-sheaf dictionary. Let us summarize the situation.
On the analytic side, we proved a formula expressing the non-singular Fourier coefficient
of the Siegel-Eisenstein series in terms of the Frobenius trace of a graded virtual perverse
sheaf K5*(T) on Hermyq(X'/X).

Theorem 12.2 (Combination of Theorems 2.8|and [5.3). Let (£,a) € Aq(k). Then we have
E.(m(€), s, ®) = Tr(Fr, KF5(¢2%) o). (12.3)

s=0

On the geometric side, in Corollary [I1.10} we found a formula expressing the degree of the
special 0-cycle in terms of r*" derivative of the Frobenius trace of another graded perverse
sheaf KIM(T') on Hermaq(X'/X), repeated below:

deg[Z;(a)] = @ (js)r

12.2. Proof of the main theorem. Comparing (12.3) and (12.4), we see that in order
to prove Theorem [12.1} it remains to match the graded sheaves KI*(T') and K5S(T) on
Hermayy(X'/X).

(T Kl () 0)) (124

Proposition 12.3. We have K**(T) = K5(T) as graded perverse sheaves on Hermaq(X'/X).

Proof. Both sides can be ertten as Sererm[ ] for some graded virtual representation p of

W,. By definition (Definition [11.6)), the sheaf K(T') corresponds to

prcipe (T Z Indyy?, gy, (O R1)T

We calculate the (a priori virtual) representatlon of Wy Wthh corresponds under Springer
theory to the KFs(T ) from Definition The operation Rfl 1R f 7 corresponds under

1%% —d y
Springer theory to Indjp xs, and Pa_i (T ) corresponds to ijo( 1)/ Indwjxwd_i_j (sgn; X1)77
(cf. Definition |4.7} E 7| for HSprd). Hence K5(T") corresponds to

U

—1

ZInde s, (=1) Indyy Ly, (sgn; R ;) BT

<.
I
<)
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After re-indexing, we have
d i
i 1 AW, — i
prcess (T) = Z (1) Indg? o, xw, (1 Xsgn; K1)T".
i=0 j=0
The desired statement then follows from the Lemma below (whose notation has been re-
indexed) by comparing each coefficient. O

Lemma 12.4. We have the identity of virtual representations of Wy:
d

Xa =Y (~1)/ Indg} .y (1K5gm;).
§=0

Proof. We will prove this by comparing traces of an arbitrary element g € W,. For g € Wy,

Tr(g,Indg? |y (1% 520;)) = > sen, (g"). (12.5)
weWq/(Sa—; xWj)
w*lgwesd,j xW;
Here, when w™lgw € Sq—; x W, we write w™'gw = (¢',g") for ¢ € S4—; and ¢"" € W;.
Identify Wy with the group of permutations of {£1,...,+d} that commute with the
involution ¢ exchanging j <+ —j for all 1 < j < d. The subgroup S4—; x W; is the stabilizer
of {1,2,--- ,d — j}. Therefore the coset space Wy/(S4—; x W) is in natural bijection with
subsets J C {£1,...,%d} such that |[J| = d—j and J N (—J) = &. Let J; be the set
of J C {£1,...,£d} such that |J| =d—j, JN(=J) = @ and gJ = J. Let ¢/ be the
permutation of g on {£1,...,+d}\(J U (—J)). Combining this with (12.F]), we obtain
d
D (=1 Tr(g,Indg? o, (1 x5g0,)) = Y (—=1)* VIsgn(g)).
j=0 JET,
For any g € Wy, the cycle decomposition of g can be grouped into a decomposition
g =9g1...9r (unique up to reordering) where g; is one of the two forms:
e (positive bicycle) g; is a product of two disjoint cycles ¢;o(¢;) (in particular, no two
elements appearing in ¢; are negatives of each other).
e (negative cycle) g; is a single cycle invariant under the involution o.
Let C;' be the set of cycles of g that are part of a positive bicycle (i.e., C;‘ contains both
¢; and o(¢;) for each positive bicycle g;). For any € W, we denote by z C {£1,--- , £d}
the set of elements that are not fixed by z. For a cycle ¢ we let |¢| be its length. From this
description we see that J € J, if and only if J is a union of ¢ for a subset of cycles c € C;‘.
In other words, consider the set J, of subsets I C C; such that I is disjoint from o(I).
Then we have a bijection J, = Jg sending I € Ty to J := Ucere.
For I € J,, let g} be the product of g; such that g; contains a cycle in common with I;
let g7 be the product of the remaining g;’s. The above discussion allows us to rewrite
d

; __ > lel___
D (1) Te(g, Indg? (1 x580,)) = Y (=1)7<%5 “sgn(g}).
j=0 I€T,
This sum factorizes as a product over the g; with individual factors as follows:

e For a positive bicycle g; = ¢;o(c¢;), the local factor is the sum of three contributions,
corresponding to whether ¢; € I, o(¢;) € I or neither ¢; nor o(c;) is in I. The first
two cases each contribute 1. The last case leads to a contribution of (—1)!%/sgn(¢;) =
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—1. The total contribution of the factor corresponding to a positive bicycle g; is
therefore 1+ 1+ (—1) = 1.
e TFor each negative cycle g;, since it always appears in g7, its contribution is (—1)!9:1/25gm(g;).
Let g; be the image of g; in Sy, which is a cycle of length |g;|/2. Then (—1)9:/25gw(g;) =
(—1)19lsgn(g,) = —1. Therefore the contribution of the factor corresponding to a
negative cycle g; is —1.
Summarizing, we have found

d

D (=1 Tr(g,Indg? |y (1 x 580;)) = II 1] II v]. (26

j=0 gi positive gi negative
On the other hand, we have
1, g; 1s positive;
xd(gi) = . .
—1, g; is negative.

Indeed, if g; = ¢;0(c;) is positive, then we have xq(c;) = xa(o(c;)) = 1 because both
¢; and o(¢;) can be conjugated into Sy. If g; is negative, then up to conjugacy we may

assume g; is the cyclic permutation (1,2,--- ,m,—1,--- ,—m) for some 1 < m < d. Then
gi=(1,-1)(1,2,--- ;m)(—1,-2,--- , —m), from which we see xq(g;) = —1.

We conclude that the right side of (12.6) is [] x4(g:) = xa(g). This completes the proof.

([l

12.3. The split case X’ = X [[ X. We make our result more explicit in the split case
X' =X]IX.

On the analytic side in the group H,, = GLg, r and P, is the standard parabolic
corresponding to the partition (n,n), with Levi M,, ~ GL,, r X GL,, r. We then have the
degenerate principal series

H, (A s+n/2 —s—n/2
Iu(s) = a7 (- 57 x |- [, sec

Let £ = (&1, &) € Bunyy, (k) ~ Bungy,, (k) X Bungy,, (k), and let a : & — &Y be an injective
map of Ox-modules. Then by the Siegel-Eisenstein series has a well-defined ' Fourier
coefficient E,(m(E), s, ®) at (€1,&2). By Theorem [2.8 and [5.1| we have

Ea(m(E), s, (I)) — q—(deg(Sl)+deg(£2))(s—n/2)—%nz degwxé/ﬂn(s)—l Den(q—Qs’ 55//51)’
where .Z,(s) = [, Cr(i + 2s) and, for a torsion Ox-module Q, the density polynomial is
given by

Den(T,Q)= 3,  Timesram 8B I multe(To/T); T0).
0CZ:1CZ2CQ veE|X]|
Here see (2.2)) for m,(¢,;7T). The normalized Fourier coefficient (12.1)) is
Eq(m(€),s, ®) = Den(q2°, &Y /&).
Next we come to the geometric side. We have a natural partition
xhyr= I x-
pe{£1}r

The moduli of hermitian shtukas Sht;,,) defined in §6|is then partitioned into

pe{E£1}r
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and there is a natural isomorphism

Sht7; ) = Sht¢y,

n) —

Here we recall that Sht’éLn is the moduli of shtukas for GL,,, cf. [YZ17], whose S-points are
given by the groupoid of the following data:

(1) ;€ X(S) fori=1,...,r.

(2) Fo,...,Fn € BunGLn (S)

(3) An elementary modification f;: F;_; --+ F; at the graph of x;, which is of upper of

length 1 if g; = 41 and of lower of length 1 if pu;, = —1.
(4) An isomorphism ¢: F,. =7 F.

In particular, Sht{;, ~is empty unless > i, p; = 0.
For the special cycle ZZ (cf. Definition associated to £ = (&1, ;) above, we have a

partition
ze= [ =z
pe{£1}r
where an object in Z¢(S) is an object as above in Shtgy, (S) together with maps

(1) (2)
EROs L B i ey KOs, i=1,...,r, (12.7)

such that the diagram commutes

& XOg E RO =——= ... == &E KOs —— 7(& K Og)
ltg” }g” J ltﬁ,l) lftg”
Fo ----- LCRR, N GRNNIE L S S A
ltff) ltf) J{ ltﬁz) rtff’

£y ROy —— EY KOs —— . —— &Y ROy — (£y B Og)

Let a: & — &Y be amap of Ox-modules. Then Z£(a) is the open-closed subscheme of Zf
such that the common composition ((12.7)) is equal to a X Ide,.

For an injective a : & — &, our §7|shows that Zf (a) is proper over Spec k and defines
a class [Z(a)] € Cho(Z2£(a)) for each € {£1}". Then our main Theorem asserts

> izt - o (1)

e (log q)"

where d = —(x(X, &) + x(X,&)). We remark that deg[Zf(a)] is not independent of
p € {£1}", even if we restrict our attention to those p with >\, p; = 0.

o (quﬁa(m(é’), s, <I>)) ,
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