MIRROR SYMMETRY AND THE BREUIL-MEZARD CONJECTURE

TONY FENG AND BAO LE HUNG

ABsTrRACT. The Breuil-Mézard Conjecture predicts the existence of hypothetical “Breuil-Mézard cycles” in
the moduli space of mod p Galois representations of Gal(aq /Qq) that should govern congruences between
mod p automorphic forms. For generic parameters, we propose a construction of Breuil-Mézard cycles in ar-
bitrary rank, and verify that they satisfy the Breuil-Mézard Conjecture for all sufficiently generic tame types
and small Hodge-Tate weights. Our method is purely local and group-theoretic, and completely distinct from
previous approaches to the Breuil-Mézard Conjecture. In particular, we leverage new connections between
the Breuil-Mézard Conjecture and phenomena occurring in homological mirror symmetry and geometric
representation theory.
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1. INTRODUCTION

This paper introduces a new approach to the Breuil-Mézard Conjecture, in its refined form due to Emerton-
Gee [EG23|. Before formulating this conjecture and stating our main results, we recall some context. Since
much of the paper operates in realms outside number theory, the introduction will be aimed at a somewhat
broader audience than usual.
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1.1. Motivation: Serre’s Conjectures. The phenomenon of congruences between modular forms un-
derpins many facets of modern algebraic number theory. It is therefore natural to try to classify the
possible congruences between modular forms. The mod p reductions of modular forms are organized by
representation-theoretic parameters called Serre weights, which are irreducible representations of GL2(F))
over F,,. The weight part of Serre’s Conjecture [Ser87] addresses the question of when two mod p eigen-
forms with different Serre weights can be congruent to each other. It was proved in the early 1990s as the
culmination of work by many authors; see the introduction of [GLS15| for references.

There is a much more general notion of complex-valued automorphic form on a reductive group G over
a number field, wherein modular forms constitute the special case G = GLg (over Q), to which one would
like to generalize Serre’s Conjecture. It is subtler to formulate the notion of mod p automorphic form for
general reductive groups, but one option is to proceed as follows. By the Eichler-Shimura relation, mod p
modular forms can be interpreted as classes in the cohomology of modular curves, with coefficients in the
local systems induced by Serre weights. More generally, let G be a reductive group over a number field, with
good reduction at a prime p. Then the irreducible representations of G(F,) are the Serre weights of G (at
p). Each Serre weight o induces a mod p local system on the locally symmetric space associated to G, and it
is natural to regard the Hecke eigensystems in the cohomology of this local system as the analogue of mod
p eigenforms on G with weight . One can then ask to classify the possible congruences between different
weights. This problem has come to also be called the “weight part of Serre’s conjectures”, and beyond GLy
it becomes much more complicated. At present, the only proposed answer that applies in general (even
conjecturally) is itself contingent upon another conjecture, that we will describe next.

1.2. The Breuil-Mézard Conjecture. For simplicity we specialize our discussion in this Introduction to
G = GL,, /Q,. We regard G = GL,, as a reductive group over Z,.

1.2.1. The Emerton-Gee stack. Emerton-Gee have constructed in [EG23] a formal algebraic stack XF¢
over Spf Z,, which is roughly meant to be a moduli stack of n-dimensional p-adic Galois representation of
Gal(Qp /Qp). In particular, the reduced substack XE§ is an algebraic stack over F,, equidimensional of
dimension n(n — 1)/2, and Emerton-Gee have constructed a bijection between its irreducible components

and the set of Serre weights of GG. For a Serre weight o, the corresponding irreducible component is denoted
C, C XEG.

1.2.2. Potentially crystalline substacks. Let A € X*(T)™ be a dominant weight and 7 be an inertial parameter
for G, which is an n-dimensional representation of the inertia group of Q, that extends to Weil(ép /Qp)-
Then Emerton-Gee have constructed a formal p-adic substack XM < XFG whose Qp points correspond to
Galois representations with potentially crystalline Hodge-Tate weights A and Weil-Deligne inertial parameter
7 (the point is that these are the local conditions that one expects to see on the local Galois representations
associated to algebraic automorphic forms with infinitesimal character A — pE| and “level” 7, by p-adic Hodge

theory). When X is regular, the relative dimension of X7/ Spf Z, is also n(n —1)/2.

1.2.3. The Breuil-Mézard Conjecture. To each inertial parameter 7, the inertial Local Langlands correspon-
dence associates an inertial type o(7), which is a smooth finite-dimensional representation of G(Z,) over a
finite extension of Q,,. Fix an algebraic closure k of F,. For a finite-dimensional representation R of G(Z,)
over a finite extension of Q,, we let [R] € Ko(Rep,(G(Z,))) be the class of its reduction modulo p; note that
since the kernel of G(Z,) — G(F,) is pro-p, we may regard [R] € Ko(Rep,(G(F,))) = Ko(Rep,(G(Z,))).
Let W(A) € Repq, (G(Z;)) be the Weyl module of highest weight \.

Conjecture 1.2.1 (Geometric Breuil-Mézard Conjecture). There is a map
Z: Ko(Repy(G(Fy))) — ChtOP(XrEg;)
such that for every A € X*(T)T and every inertial parameter T, we have
Z[WN) @ o(7)] = [2H77] € Chiop (XES), (1.2.1)
where [Xli‘:p’T] is the cycle class of Xé‘:p’T.
1For a semisimple simply connected G we would take p to be the usual half sum of the positive roots. For a reductive group

G with simply connected derived subgroup, we may take any extension of the p for its derived group. For G = GL,, we prefer
the choice p = (n — 1,n — 2,...,0) for reasons of convention.
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To connect Conjecture with more typical formulations of the (refined geometric) Breuil-Mézard
Conjecture, we note that the group Ko(Rep,(G(F)))) is free abelian on the set {c} of Serre weights of G.
Therefore, giving a map Ko(Repy,(G(F)))) — Chop(XES) amounts to specifying cycles Z(o) € Chyop(XES)
for each Serre weight o, such that if

W) an A, 7)[o] € Ko(Rep,(G(F,)))

then
Xt Zno (A, 7)Z(0) € Chyop(XES). (1.2.2)

This is the formulation of the Breull—Mezard Conjecture as it appears in [EG23| §8.2.2]; we note that it
goes significantly beyond the original conjectures of Breuil-Mézard from [BMO02]. The hypothetical cycles
Z(o0) in Conjecture are called Breuil-Mézard cycles; they are not the same in general as the irreducible
components C,. Note that there are approximately p™ Breuil-Mézard cycles while there are infinitely many
possibilities each for A and 7; therefore, the conjecture can be thought of as positing the existence of a
solution to a massively overdetermined system of equations.

1.2.4. The weight part of Serre’s Conjecture in higher rank. Returning to the thread of Serre’s Conjectures,
Gee-Kisin [GK14] suggested using the Breuil-Mézard Conjecture to formulate the generalization of the weight
part of Serre’s Conjecture to general G. We will summarize this formulation as it is described in [GHS18|
§6]. Suppose that the Breuil-Mézard cycles Z(o) are given. Let 7: Gal(Q/Q) — GL,,(F,) be an irreducible
Galois representation. Let {o}7 be the set of all Serre weights for which T|Ga1 Q,/Qn) lies on the Breuil-

Mézard cycle Z,. Then one expects that {o}# is the set of Serre weights in whzch the Hecke eigensystem
associated to T occurs at some level which is good at p. See [GHSI§| and [EG23, §8] for a more detailed
discussion.

The picture just described is obviously meaningless without a definition of the Breuil-Mézard cycles Z(o),
which would seem to require proving Conjecture but in fact it is meaningful to construct candidate
Breuil-Mézard cycles without proving the full conjecture. The point is that the cycles Z(o) are already
uniquely determined by a finite number of equations of the form , so one can know that a candidate
construction of Z(o) is “correct” as long as it satisfies a sufficiently large subset of such equations. The
candidate cycles can then be fed into the previous paragraph to give an unconditional formulation of the
weight part of Serre’s Conjecture for GL,,.

1.3. Main results. The main results of this paper will follow along the lines just described. We will con-
struct candidate Breuil-Mézard cycles Z (o) for “sufficiently generic” o, and verify that they satisfy conditions
(1.2.1)) whenever A is “small” enough and 7 is a “sufficiently generic” tame type. To make this more precise,
we need to recall a bit of (modular) representation theory.

1.3.1. Modular representation theory. For T C GL,, the standard maximal torus, the irreducible algebraic
representations of GL, over k are in bijection with the dominant weights X*(7T)", with A\ € X*(T)*
corresponding to the highest weight representation L(\) of G.
e The p-restricted weights X;(T) C X*(T) consist of A such that 0 < (\,a") < p for all simple
roots «. The simple representations (i.e., Serre weights) of GL,,(F,) over k are in bijection with
X3 (T) modulo an equivalence relation on central characters that we suppress, with A € X7(T)
corresponding to F(/\) = L(N)|cL, (F,)
e For (w, ) € W x X*(T) there is an explicitly constructed tame type 7 = 7(w, i1). This process gives
a bijectlon between tame inertial types and equivalence classes of (w, ). When 7 = 7(w, ), the
corresponding o (7) can be taken to be a certain Deligne-Lusztig representation R(w, ) of GL,,( P)El

(The same discussion applies to any split reductive group over F, whose derived subgroup is sunply con-
nected.)

The affine hyperplanes defined by the condition (—,aV) € pZ divide X*(T') into alcoves, and genericity
will be measured by the “distance” to the walls of these alcoves. More precisely, we say that A € X*(7T) is
m-generic (in the lowest alcove) if m < |[(\,a¥)| < p — m for any root «. Note that m-generic A only exist

2Here we blurred the distinction between GLy, and its dual group, and ignore subtleties of degenerate cases where R(w, u)
is not an irreducible representation.
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if p > 2m. We say that 7 is m-generic if o(7) = R(w, u) where p is m-generic. We say that o = F()\) is
m-generic if A+ p is m-generic. For A € X*(T), we define hy to be the maximum of (A, a") among all roots
a.

1.3.2. Main theorem. We can now state our main theorem. We have in mind that p is large relative to n;
for example, we must have p > 2n for the results to be non-vacuous.

Theorem 1.3.1. (1) There exists a collection of cycles 224 (o) € Chyop (XES) such that for each A € X*(T)
and each tame inertial type T which is 2h,-generic, 1s satisfied.
(2) If Conjecture is true, then the “true” Z(o) agrees with the Z¥C (o) from (1) if o is 6h,-generic.
(3) If o is 3h,-generic, then the multiplicities ne o in the decomposition

Z5%0) = “ngrCor

admit a natural microlocal interpretation in terms of Rep(gr,,)-
Statement (3) is left vague here, but will be made precise in §12.2]

Remark 1.3.2 (Optimality of the constants). The constant 2hyy, from part (1) is almost optimal with
our method. In fact, invoking stronger Galois theoretic ingredients from [LH| would improve it to hy + 2h,,
which is a natural barrier for the governing modular representation theory to behave in a stable way.

The constant 6k, from part (2) is not optimal; the argument sacrifices optimality for simplicity by using
“trivial bounds” where possible. We expect that the argument for (2) can probably be optimized to 3h, with
some more effort.

Remark 1.3.3 (Generalization to other groups). We expect our arguments to easily generalize to split
reductive groups over an unramified extension of Q,,, whose derived subgroup is simply connected. In fact,
the entirety of this paper is already written in that generality, except for a “homological model theorem”
from [LH| (a simplified version sufficient for this paper is proven in Appendix which is invoked in
Once this result is available for more general groups, our arguments may be applied verbatim.

1.3.3. Brief remarks on the proof. The proof of Theorem [I.3.1]does not follow any existing approaches to the
Breuil-Mézard Conjecture, which are either based on p-adic Local Langlands or automorphy lifting (hence
have limited generality in the group aspect). Instead our argument is more geometric, and hearkens to the
analogy between Q,, and a 2-manifold, which suggests in turn an analogy between the Emerton-Gee stack and
the space of local systems on a 2-manifold. The latter object has a natural symplectic structure, and under
this analogy the potentially crystalline loci correspond to Lagrangian subspaces. Kontsevich’s philosophy of
homological mirror symmetry posits (roughly) that Lagrangian subspaces of a symplectic manifold can be
assembled into a Fukaya category which should then admit a mirror description in terms of coherent sheaves
on a mirror variety. In particular, it predicts that Lagrangians can be indexed by mirror data of a “dual”
nature, which bears a loose similarity to the Breuil-Mézard Conjecture.

In reality, the Emerton-Gee stack does not literally have a symplectic structure. However, the above
metaphor can be substantiated by using p-adic Hodge theory to “approximate” the potentially crystalline
substacks by explicit algebraic varieties (certain affine Springer fibers), which really do comprise a Lagrangian
skeleton of a certain symplectic space of Higgs bundles. Then constructions of Bezrukavnikov-Boixeda
Alvarez—McBreen—Yun [BBAMY23| provide the necessary “mirror symmetry” input to prescribe Lagrangians
using coherent sheaves on a mirror variety A. Finally, to connect this to the Breuil-Mézard Conjecture, we
“approximate” the representation theory of G(F,) by representations of gg,, which we then transform into
coherent sheaves on A using the modular localization theory of Bezrukavnikov-Mirkovie-Rumynin [BMROS].
More details are given in below.

1.4. Comparison to other results. We compare Theorem to other results on the Breuil-Mézard
Conjecture.

1.4.1. The case n = 2. For GLy /Q,, our understanding is that Conjecture has now been proven in
full, thanks mostly to work of Kisin [Kis09] and Pagkunas [Pas15|, which left out cases that were completed
Hu-Tang, Sander, and Tung. We refer to [EG23| §8.5] for references and more detailed descriptions. The
proof is based on the p-adic Local Langlands correspondence for GLy /Q,, which has resisted generalization
to other groups despite much effort.
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For GLs over a finite extension K/Q, and A = (0,0), the Breuil-Mézard Conjecture is proved by Gee-Kisin
[GK14] (at the level of deformation rings) and Caraiani-Emerton-Gee-Savitt [CEGS22| (in the geometric
form). The proof is based on patching arguments, and therefore is limited to groups whose automorphic
theory is sufficiently well-understood, which aside from special low rank examples just leaves GL,,.

We digress to comment on the difference between the nature of the problem for GLy versus higher rank
groups. In the case of GLy (and only in this case) the Serre weights all lift to Weyl modules in characteristic 0.
Therefore in this case (only), Conjecture already includes in its formulation the definition of Z(F(\)):
it must be [XY*"V|g ]. Furthermore, Z(o) turns out to be relatively simple: it is simply the irreducible
component C, for all o which are not Steinberg.

1.4.2. The case n > 2. By contrast, the higher rank cases of the Breuil-Mézard Conjecture have a very
different texture. We quote from [EG23| §8.7]:

“We expect the situation for GLg4, d > 2, to be considerably more complicated than that
for GLs. Experience to date suggests that the weight part of Serre’s conjecture in high
dimension is consistently more complicated than is anticipated, and so it seems unwise to
engage in much speculation.”

For example, it is expected that Z(o) can reducible even for very generic o [LHLM23bl Remark 1.5.11]. In
fact, it follows from our construction that the Z(o) can be interpreted as the characteristic cycles of simples
in a representation-theoretic category, and then experience in geometric representation theory suggests that
their decompositions with respect to the C, are rather subtle in higher dimension, no matter how generic o
is.

The only general result towards the Breuil-Mézard Conjecture in arbitrary rank, prior to the present paper,
was the work of [LHLM23b|, which applies to G = GL,, and unramified K/Q,. Given a finite set A = {\}
of dominant weights, they produce candidate Breuil-Mézard cycles Z(o) which satisfy whenever 7 is
very generic. Here, “very generic” depends only on A and n, and is of the nature that some parameters avoid
some proper (possibly non-linear) subvarieties in an affine space (in particular, this is rather more stringent
than familiar notions of genericity in representation theory, which are of the nature that some parameter
avoids some union of hyperplanes). Worse, unlike in Theorem it seems hard to quantify this condition
effectively, so that one cannot say how large p needs to be for the statement to be non-vacuous.

Remark 1.4.1. A back-of-the-envelope estimate indicates that when G = GL,, [LHLM23b| verifies O(p™)

of the equations (|1.2.2]) where the implicit constant is not effective, while Theorem verifies O(p*") of
the equations (|1.2.2) where the implicit constant is effective.

The approach of [LHLM23b]| is based on the patching method as in [GK14], and it thus has the added
benefit of yielding global consequences such as cases of automorphy and the weight part of Serre’s conjecture.
On the other hand, this means that it seems unlikely to generalize to exceptional groups (for example). By
contrast, our method is purely local and bypasses the need for any automorphic information. The purely
group-theoretic nature means it is very likely to generalize to exceptional groups (for example).

1.5. Discussion of proof and overview of paper. We will now summarize our approach to Theorem
and how it is distributed over the various sections of the paper.

1.5.1. Inspirations. Our work has several inspirations, especially the work of Breuil-Hellmann-Schraen, whose
[BHS19, Theorem 1.9] might be regarded as a locally analytic analogue of the Breuil-Mézard Conjecture.
In their case, the locally analytic Breuil-Mézard cycles are imported via local model diagrams from the
characteristic cycles of D-modules that are connected to representation theory through Beilinson-Bernstein
localization. Separately, Emerton had remarked to the authors that the geometry of X7 resembled that of
a Lagrangian in a symplectic manifold. This led us to try to construct our Breuil-Mézard cycles by importing
characteristic cycles from somewhere, although our importing process ends up being more difficult than in
[BHS19], and the construction of the characteristic cycles is also much more involved.

1.5.2. Construction of Breuil-Mézard cycles. We will divide this discussion into two parts: the first is the
construction of the Breuil-Mézard cycles Z¥%(o), and the second is the verification that they satisfy the

Breuil-Mézard relations (|1.2.2)).
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For the first part, we want to construct (top-dimensional) cycles in XF/};T C XPEPG from representations.

To begin, we construct algebraic models for XI?"T that we call Yffl, where  is cooked up from A and 7 by
a recipe that we omit for now. As the name suggests, these models can be deformed in a parameter ¢, and
the fiber at nyzo is an object called an affine Springer fiber, which has significance in geometry represen-
tation theory. There is a “microlocal support” map from a K-group of graded Lie algebra representations
Ko(Repy(Ug°,T)) towards the Chow group of top-dimensional cycles Chyop(Y5™"), which we will explain
further below. The Breuil-Mézard cycles are the images of simple representations in Rep, (g®, T) under this
sequence of transformations, summarized in the following diagram.

Representation _ Part 2 Affine Part 1 Part 3 Emerton-Gee
—_— <
theory Springer fiber Models padic stack
microlocal Hodge (151)

theory

u rt eform T
Ko(Repo(Ug®, T)) 2% Chiop (YE=0) 2 Chyop, (Y1) =% Chyop (A7)

We will now explain these steps in more detail, starting from the right side.

1.5.3. Models via p-adic Hodge theory. Kisin [Kis08| developed an approach to understanding the moduli
of (potentially semistable) Galg,-representations using the p-adic Hodge theory of [Kis06], which interprets
Galois representations in terms of more manageable linear algebraic data called Breuil-Kisin modules. The
passage from the models to the Emerton-Gee stack in builds on Kisin’s ideas, as further developed
in [LHLM23b]. The space Y?Y:l is the special fiber of an explicit algebraic Z,-scheme X§:1 obtained by
truncating the p-adic expansions of some equations in a moduli space of Breuil-Kisin modules. It is not clear
a priori that this truncation provides a “good” approximation to X»7. A key point is that our strategy asks
for relatively little about the quality of this approximation.

For comparison, we note that the strategy of [LHLM23b| requires a smooth local model for X*™ which
is moreover unibranch, and this is the source of their stringent (and hard to compute) genericity conditions.
Our arguments need much less, which is part of why we are able to relax the genericity hypotheses. Indeed,
all we need is that Xizl is a “homological model™ (part of) its top homology accurately models the top

homology of Xlﬁ‘g, the critical feature being that XF)“;T agrees with the limit cycle of some natural locus

in the generic fiber of X;f:l. This fact is a consequence of the techniques in [LH], which is a substantial
improvement of the theory in [LHLM23b]| that overcomes the genericity barriers in the latter. In the situation
relevant to this paper, the rather elaborate setup in [LH| can be simplified substantially, and in Appendix
we explain a proof of this simpler “homological model theorem”; thus this paper does not rely on [LH].

1.5.4. Deformation to affine Springer fibers. The Z,-scheme X,‘j:l can be deformed to a family X7 over
Z,[¢]. The fiber over ¢ = 0 is a mixed characteristic degeneration of affine Springer fibers, whose generic
fiber we denote X,EY:O and whose special fiber we denote YfY:O. We remark that just as affine Springer fibers
are local analogues of Hitchin spaces (moduli of Higgs bundles), the family X~ is a local analogue of moduli
of “A-connections” (with € playing the role of A; we reserve the notation A for other purposes).

The entirety of Part 1 is devoted to analyzing the family X along with the behavior of Chyop (A7) under
degeneration in e. In §3] we define these families, construct the affine Springer action on them, and tabulate
their top-dimensional irreducible components at specific €. In 4] we give a coarse-grained analysis of the
specialization of irreducible components of A= from generic € to £ = 0 or € = 1, which is needed to carry
out the deformation of cycles from € = 0 to ¢ = 1 in (1.5.1). This is enough for Theorem [I.3.1}(1) and (2),
but for control over the finer properties of the Breuil-Mézard cycles (such as their effectivity and Theorem
3)) we need a more refined analysis of the specialization maps, which we undertake in

1.5.5. Microlocal support. The “microlocal support” map from ([1.5.1)) is itself the composition of two steps,
which are studied in Part 2.

Representation E Coherent @ . n%
theory realization homological Springer fiber (1 5 2)
mirror e

symmetry

R o~
Ko(Rep, (Ug®, T)) orslansion, Ko(Cohg(N)) Chiop (Y5™)

The first step, explained in 7] transforms graded Lie algebra representations to coherent sheaves on the
Springer resolution N for G, with support conditions determined by central characters, via the localization
functor of Bezrukavnikov-Mirkovic-Rumynin [BMROS, BM13]. It should be thought of as the characteristic
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p version of Beilinson-Bernstein localization, enhanced by observations related to p-curvature that allow to
describe D-modules on X by coherent sheaves on the Frobenius twist of 7% X.

The second step, explained in §8 transforms coherent sheaves into top-dimensional cycles on the affine
Springer fiber nyzo, using work of Bezrukavnikov—Boixeda Alvarez—McBreen—Yun [BBAMY23|. The key
point here is that Yizo has a natural realization as a Lagrangian inside a symplectic space M, of G-
Higgs bundles (in fact Yizo is homeomorphic to a Hitchin fiber in completely integrable Hitchin system for

M), and the passage from coherent sheaves on N to Lagrangians in M., should be thought of as some
incarnation of homological mirror symmetry. It is implemented by an instance of the geometric Langlands
correspondence, relating coherent sheaves to constructible sheaves on a certain moduli space of G-bundles,
which after forming singular support gives the “microlocal support” map alluded to above. We highlight that
it is ultimately mirror symmetry which provides the passage from G to its dual group G in our story.

1.5.6. Breuil-Mézard cycles. We consider the Lie algebra g = (LieG), in characteristic p. The cate-
gory Rep,(Ug®, T) is the category of finitely generated X*(T)-graded g-representations with trivial Harish-
Chandra central character and nilpotent p-central character. It has well-known similarities to Rep, (G(F,)),
under which the Serre weights o of G correspond to certain irreducible representations L(c) in Rep,(Ug®, T).
We define ZE¢(o) to be the image of [L(c)] under (L.5.1). The details are somewhat elaborate, and are
explained in

1.5.7. Verification of the Breuil-Mézard relations. We next turn to discuss the proof that the Breuil-Mézard
cycles ZEG (o) satisfy the equations , which is the content of (building on and Appendix. The
equations concern the relation between Rep,(G(F,)) and the Emerton-Gee stack for G. By backtracking
through , we can formulate equivalent equations relating Rep,(Ug®, T') to the geometry of YEY:O, which
we ultimately prove by an analysis of the microlocal support map.

We first focus on the case A = 0, corresponding to minimal regular Hodge-Tate weights. Recall that Xf/zo
denotes the generic fiber of the scheme Xizo — Spec Zy,. It has an irreducible component Xizo(p), whose
fundamental class we specialize to characteristic p, obtaining a cycle sp,, ,o[X5="(p)] on the affine Springer
fiber YfY:O. This turns out to be the output of transferring [XPQ;T] to the model Yffl and then deforming
frome=1toe=0.

On the other hand, Jantzen’s generic decomposition formula shows that the “similarity” between Rep, (G(F)))
and Rep,(Ug°, T'), which we used to make the correspondence of irreducible representations o <+ L(o), takes
the inertial type o(7) to the baby Verma module 7 (pp)-

Emerton-Gee stack [XRT] > sp,_,0[X570(p)] Affine Springer fiber
Repy (G(Fy)) [o(7)] «——— [Z1(pp)] Rep(Ug’, T)

From these considerations we reduce (1.2.1)) in the special case A = 0 to the statement that

the microlocal support of [21 (pp)] is sppﬁo[Xffo(p)]. (1.5.3)

We then prove this jointly with Roman Bezrukavnikov and Pablo Boixeda Alvarez in Appendix [A} it is
highly non-obvious from the definition of the microlocal support map. Indeed, a major difficulty in the
Breuil-Mézard Conjecture is that the geometry of a cycle obtained by degeneration (i.e., flat limit) is difficult
to understand; the special fiber lef;j is itself defined indirectly as a flat limit of an irreducible (and reduced)
space X&’Z. From this perspective (|1.5.3)) appears at first glance to be as difficult as (1.2.1). We will explain

however that there is now key new traction provided by the presence of many symmetries on Chygyp, (YEYZO).

1.5.8. Equivariant localization. A key structure of Y§=1 and Yf{=07 which is not present on the Emerton-Gee
stack, is the existence of an action by a maximal torus T C G that makes them equivariantly forma
Then equivariant localization allows to compute their homology in terms of T-fixed points. This provides
an alternative “basis” of homology in which it is easy to compute the effect of degeneration, because the
degeneration of T-fixed points has a simple geometry. Thus, although we cannot compute sp,, _)O[XEY:O (p)] in

3For Y,‘Ef1 we need to restrict to certain bounded open subschemes to guarantee equivariant formality.
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the geometrically natural basis of irreducible components, we are able to compute it in terms of equivariant
localization.

1.5.9. Two extended affine Weyl actions. It then remains to compute the left side of (1.5.3) in terms of
equivariant localization. Because of the indirect way in which microlocal support is defined, we do not know
how to do this directly. Instead, we leverage more symmetries on Y?Y:O, which will enable us to recognize the

microlocal support of [21 (pp)] by its symmetries.
More precisely, Chyop, (YfY:O) has two commuting actions of the extended affine Weyl group W for G: the

centralizer-monodromy action which we denote (W, -) comes from the symmetries of the space Yffo, and the

affine Springer action (W, e) which is subtler and does not come from an action on the space. The microlocal

support map is equivariant for these actions, where on Rep,(Ug", T') the action of (W,-) comes from change

of grading, and the action of (W, e) comes from wall-crossing functors. It turns out that the baby Verma has
a very special “eigenproperty” with respect to these two actions, which allows us to characterize its microlocal
support without first computing it (amusingly, this a posteriori gives simple formulas for the equivariant
localization of microlocal supports of the baby Vermas).

1.5.10. Variation in Hodge-Tate weights. We have just sketched the proof of (|1.2.2]) for the special case
A = 0. The extension to more general A involves an interesting new geometric observation. Using equivariant
localization, we are able to express the cycle class [Xli‘;] as a linear combination of cycle classes of the form

[X{f;j,] for certain 7/, after transporting them to the model via the homological model theorem. Intriguingly,
after equivariant localization the relation is just a geometric incarnation of Weyl’s character formula. This
effectively reduces to the case A = 0, which we already handled. .

The linear combination from the preceding paragraph involves the action on (WW,-) on the homology of
the local model, which is “invisible to the naked eye” in the sense that it does not come from an action
on the underlying space — we can only “see” it through equivariant localization. Such a reduction does not
seem to have been anticipated in previous approaches to the Breuil-Mézard Conjecture, perhaps because of
the subtlety of the symmetries required to express it. We note a similarity to the main result of [Bar23],
which proves an upper bound in an analogous (conjectural) equality where 7 is trivial. In fact, one of the
main results in that work, [Bar23, Theorem 1.1|, concerning cycle relations between special fibers of certain
linear algebra moduli spaces, has a more conceptual interpretation in terms of equivariant localization.
When combined with the appropriate homological model theorem, the inequality of cycles in [Bar23] can be
promoted to actual equalities, verifying the Breuil-Mezard equations in this setting. We will return to this
in future work.

1.6. Complements. In §I2 we prove some complementary properties of the Breuil-Mézard cycles.

(1) We verify the uniqueness aspect in Theorem |1.3.1(2). En route to this, we describe a combinato-
rial algorithm to compute the decomposition of Breuil-Mézard cycles into irreducible components,
using the equivariant cohomology of affine Springer fibers. This will be used for future empirical
investigation of the geometric structure of Breuil-Mézard cycles.

(2) We match the geometric decomposition of Z¥% () into irreducible components (with multiplicity)
with that of certain characteristic cycles (i.e., singular supports) of constructible sheaves, which is the
content, of Theorem 3)‘ This relates the geometry of Breuil-Mézard cycles with important and
independently studied problems in geometric representation theory. It also reveals new patterns to
their structure, because all the characteristic cycles are related by a combination of the monodromy-
centralizer and affine Springer actions. The (W, -)-action comes from a geometric action, so it
partitions the Breuil-Mézard cycles into orbits that have the same physical decomposition. The
subtler (W, e)-action changes the geometry, but in a way that one may hope to calculate using affine
Springer theory.

(3) We show that ZFC(o) is effective at least for sufficiently large p, quantified by a bound that is
explicitly computable from G.

An intriguing feature of (3) is that it uses the theory of the quantum group at a p™ root of unity. In fact, the

representation theory of quantum groups is already used at a few technical points in the proof of Theorem
[[:337] For instance, it plays an important role in describing the support of limit cycles from the generic
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fibers of the models, which on the Galois theory side is equivalent to the fact that X?;T has the expected
underlying topological space (i.e., the “topological Breuil-Mezard Conjecture”).
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2. NOTATION AND GENERALITIES

2.1. Notation on p-adic fields. For ¢ = p/, we denote by Z, the unramified extension of Z, with residue
field F, and field of fractions Q.

2.2. Reductive groups. We denote by G a split reductive group over Z,. Lie algebras of groups will be
denoted with the corresponding lower-case fraktur letters (and will often be considered over F, as indicated
in the text).

We denote by G the Langlands dual group of G, regarded again as a split reductive group over Z, It
is equipped with a canonical split maximal torus 7' C G, the dual torus to the “abstract Cartan” A of G.
Starting in §7 we also choose a split maximal torus 7' C G.

Furthermore, (G, T) is equipped with a canonical pinning once we choose a direction of “positivity”. Since
different normalizations are found in the literature on this point, we will spell this out in excruciating detail.
The reader may wish to ignore this on a first pass.

2.2.1. Conventions on positivity. Given any Borel B = T - N < G with unipotent radical N and Cartan
subgroup T, we obtain an isomorphism 7' = B/N — A. Qur convention is that the roots of A on b are
negative; this perhaps a less standard convention but it is consistent with the references [Jan03l [BMROG,
BMRO8, BM13] that we will invoke.

Remark 2.2.1. Let B be the flag variety of G. Recall that G-equivariant lines bundles on B are identified
with characters of A, according to the following construction. If £ is a G-equivariant line bundle on B, then
any Borel subgroup B < G corresponds to a point [B] € B, and acts on the fiber £|p by a character,
which is inflated from a character of A. For A € X*(A), we denote by O()\) the corresponding G-equivariant
line bundle on B. Our convention on positivity is determined by the property that dominant weights of A
correspond to semi-ample line bundles on B under this construction.

This choice equips G with a canonical Borel subgroup B containing 7', such that the roots of { on b are
negative. We denote by @ be the roots of 7' on §, and by &+ C & the subset of positive roots, i.e., the roots
of T on §/b. We write A for the simple positive roots. This induces a notion of standard parabolic, and for
a coweight \ € X*(T) we write Py for the corresponding standard parabolic subgroup of G.

If G is semi-simple, then we denote by p the half sum of its positive coroots. (Later we will want to also
view p as the half sum of positive roots for G, which explains this notation.) If G is reductive, then we
denote by p any lift of p from Guq to G; this is ambiguous up to center, which will not affect the validity of
our statements. For G = GL,,, it is customary in the literature to choose the specific lift p = (n—1,..., 1)H

4t is usually called 7 in the literature but we reserve this notation for generic points.
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Example 2.2.2. If G = GL,,, then B is the Borel subgroup of lower triangular matrices in G = GL,,. This
is the opposite Borel to the one chosen in [LHLM23b]; however, because we work with left cosets instead of
right cosets in the affine flag variety of G, the upshot is that the combinatorial formulas here (e.g., for affine
Weyl groups) will be consistent with the formulas in [LHLM23b].

Starting in we will have chosen a split maximal torus 7 C G and an isomorphism X*(T') 2 X, (T).
Then our choice of B induces a choice of Borel B D T. We let ® be the roots of T on g and take the positive
roots ®T C ® to be the roots of T on g/b, so the roots ®~ = —®* of T on b are negative. We let A C &+
be the simple positive roots.

2.3. Root systems.

2.3.1. Weyl groups. Let W be the finite Weyl group of (G, T) We let wy € W be the longest element.

Let QV C X.(T) be coroot lattice inside the coweight lattice of G. We let W = X, (T) X W be the
extended affine Weyl group (for G) and Wog = QV x W be the affine Weyl group. For A € X, (T), we write
t* for the corresponding element in w.

For (a, k) € ® x Z, the corresponding root hyperplane is

Hyp={)€ X.(T)r: (\,a) =k}

We abbreviate H,, := H, 0. The hyperplanes H,, j divide X, (T)R into alcoves, which are acted upon simply
transitivel}i by Wa.g. Let Ag be the dominant base alcove anchored at 0. This ChOigE deter/@ines the Bruhat
order on W, and a set of simple reflections for the Coxeter group Wag. Given w € W, let W< be the set of
elements < w in the Bruhat order. For discussions related to modular representation theory (in characteristic
p), we will also need Cy = —p + pAg, the dominant p-shifted base p-aclove.

We denote by W+ the set of dominant elements, i.e., those w such that w(Ap) is dominant. For w € W,
we denote by Wqom the unique element in Ww N W. Tt is the minimal representative of Ww.

At times we will have chosen a split maximal torus 7' C G and an identification of T" with A, i.e., an
identification of T with the Langlands dual torus of 7. This entails an identification X, (T) = X*(T'), and
we will sometimes use this to interpret subsets of one side as subsets of the other. For example, this identifies
the coroots ®V C X, (T) with the roots ® C X*(T), hence the coroot lattice Q¥ C X,(T) with the root
lattice Q@ C X*(T'). It also gives the alternate presentation WX *(T) x W of the extended affine Weyl
group. .

Let © be the stabilizer of the Ay for the action of W. We have

Q2 X,(T)/QY =W /Wag.
For A € X.(T), we define
Adm(\) ={w € W:w < t*Y for some w € Wh.
Following the notation of [LHLM23b) §2.1.1], for o € ® we define the mth a-strip
Hmm D) = (e X (T)r: m < (z,a) <m+1}.

We say that an alcove A C X*(T)r is regular if it does not lie in any strips (for any «,m) containing the
base alcove. We say w € W is regular if w(Ag) is regular. We define W™ to be the subset of regular
clements in W. We define Adm™®8(\) := Adm()\) N W™z,

The fundamental boz is the intersection of all a-strips passing through Ay where « is a simple root. It is a
fundamental domain for the action of Q¥ modulo central translations, and we denote by Wl C W the subset
sending Ag to the fundamental box. Elements of Wl can be enumerated as follows: for each w € W, there
is a unique (up to central translations) element w = t*»w such that w(Ap) is the unique translate of w(Ayp)
contained in the fundamental box. One can choose p, = >, -1,.¢Wa, the sum of fundamental coweights
for simple roots a such that w=!(a) < 0.



MIRROR SYMMETRY AND THE BREUIL-MEZARD CONJECTURE 11

2.3.2. Actions. For w € W and A € X, (T), we write @A or @ - \ for the natural action of @ on \. We write
weA:=wA+p)—p
for the dot action.
Letting w = wt”, we write w -, A := wtP” X for the natural action dilated by p on the lattice part, and
w o, A := wtP” o )\ for the dot action dilated by p on the lattice part.

2.3.3. Heights of weights. For A € X, (T) =2 X*(T), we define its height

hy := max [(\, o).

This can be generalized for w € W: we define hg to be the maximum over a € ® of the number of « root
hyperplanes H,  separating Ay and wA,.

If G is simple and simply connected, then the Cozeter number of G is h, + 1. In general, let h be the
maximum of the Coxeter numbers of simple factors of G,4. We assume throughout that p > h.

2.3.4. Genericity. Let m € N.
e We say that A € X,.(T) is m-generic if |(\,a") + pk| > m for all @ € ®F and k € Z. (This
terminology is consistent with [LHLM23bl Definition 2.1.10].)
Given a commutative ring R, we say that an element v € X*(T) ®z R is m-generic if (y,a") +
i+pke R* forall k€ Z and all i € {0,£1,...,£m}. Taking R = F,,, note that A is m-generic (in

the sense of the preceding paragraph) if and only if A® 1 € X (T') ®z F), is m-generic.
e For m > 0 and w = wt¥ € W, we say that w is m-small if h, < m.

Example 2.3.1. (1) We are interested in the examples Ry = F[[t]] or Ry = Z,[e]((t + p)). In these
cases X,.(T) @z Ry = U(F,)[[t] or X.(T) ®z Ry = {(Z,)[e]((t + p)), and ~ is an element used to
construct a “deformation of an affine Springer fiber” or a “local model for a stack of potentially

crystalline local Galois representations”, respectively.
(2) If w e Adm()) then w(0) lies in the convex hull of WA, hence hg < hy.

2.4. Specialization for Chow groups. Throughout this paper, we denote Ch(&X’) := Ch(X)q for the
rational Chow group of an algebraic scheme or stack X'. We will never consider integral structures on Chow
groups.

Let S be a regular scheme, i: Z < S a closed regular embedding of codimension d, and j: U — S its
open complement. Assume that Z is regular and the normal bundle to ¢ has trivial top Chern class.

Let f: X — S be a finitely presented map of schemes. Write Xz for the base change of X to Z, and
Xy for the base change of X to U. Recall the relative Chow group [Ful98, Chapter 20.1] Ch,(Xy /U), etc.
Under the assumption, [Ful98, Chapter 20.3| constructs a specialization map

p: Chy,(Xy/U) = Chy(Xz/2)

as follows. There is a refined Gysin map 4': Ch,,(Xy/U) — Ch,,(Xz/Z), and the Chern class assump-
tion implies that i* factors over the restriction map Ch,, (X /S) — Ch,,(Xy/U), which is surjective. This
factorization is by definition sp, as depicted in the diagram below.

Ch(X/S) ——» Chyn(Xy/U)

|
\ | sp
it <+

Chyn(Xz/2)

2.4.1. Specialization over a DVR. Suppose S is the spectrum of a discrete valuation ring, with generic point
n € S and special point s € S. Then sp can be described as follows: for the cycle class [W,] € Ch,, (X)) of
some W, C X, let W C X be the Zariski closure of W,,. Then W is flat over S, and

sp((Wy]) = [Wi] € Chy, (X5).
This description shows the following effectivity of the specialization map.

Lemma 2.4.1. Suppose S is the spectrum of a DVR, with generic point n € S and special point s € S. If
a € Chy, (X)) is represented by an effective cycle, then sp(a) € Chy,(Xs) is also represented by an effective
cycle.



12 TONY FENG AND BAO LE HUNG

2.4.2. [Iterated specialization. Suppose S is regular scheme, and fi, fo € O(S) are such that:
e For each m € {1,2}, the closed subscheme Z,, = V(f,) is regular, realizing i,,: Z,, < S as a
regular embedding of codimension 1. B
e The closed subscheme Z := V(f1, f2) is regular, realizing i,,: Z < Z,, as a regular embedding of
codimension 1.

Note that our assumption implies that for each m = 1,2 the normal bundle of i,, is trivial and the normal
bundle of Z — Z,, is also trivial.

Example 2.4.2. Let k be a field. A prototypical example is S = k[t1, t2] or k[[tl,tg]] with f; = ¢,.
We will be interested in a mixed-characteristic variant: S = Spec Zy[¢] or S = Spec Z,[e](.) with f; =
'z f2 =E&.

Now let f: X — S be a finitely presented map. Under the assumptions above, we have specialization
maps

Ch(x [flfz]/S[ -1) Baoy Ch(le[ﬁ/Zl[f—g})

J/ﬁprHO J/ﬁpf2~>0 (24.1)

SPr o0

Ch(Xz,[+]/Zs[4]) ——— Ch(Xz/Z2)

Lemma 2.4.3. Diagram (2.4.1)) commutes.

Proof. Consider the diagram
Ch(X/S) — Ch(X[]/S[3]) — Ch(X[F5]/S[55))

\ e

h(Xz,/Z1) —— Ch(Xz [£]/Z:1[5]) (2.4.2)

Ch(Xz/2)

By definition of the specialization maps, the two triangles in the right column commute. By base change
compatibility for the refined Gysin pullback 4}, the top left parallelogram commutes. Hence the whole
diagram commutes. The right-then-down path in is the right column of . The commutativity
of says that it can be computed by picking any lift in Ch,(X/S) and applying E!l o i}, which equals
i' by the compositional property of the refined Gysin pullback.

Now note that i': Ch(X/S) — Ch(Xz/Z) does not depend on the factorization of the embedding i: Z <
S. A symmetric argument shows that it computes the down-then-left path in in the same sense,
hence verifying the commutativity of . O

2.5. Borel-Moore homology. Our convention is that all pullback/pushforward operations on ¢-adic sheaves
are derived, so we write 7, := Ry, etc.

2.5.1. Borel-Moore homology. Let k be a field and w: X — Spec k be a finite type scheme. Suppose there is
a square-root of the cyclotomic character Gal, — Z,; choose one to define the half Tate-twist (1/2). (This
is the case if k is an algebraic extension of Q,, or F,,, possibly after enlarging Z,, which covers all the cases
we will consider.) Then we define the mth (¢-adic) Borel-Moore homology group to be

HpM(X) o= H™™(X;Dx (~m/2))

where Dy = W!Qg’SPEC i is the dualizing sheaf on X. (We will only ever consider the case where m is even,
so we will never invoke the choice of square root of cyclotomic character.)
We also define the geometric Borel-Moore homology groups to be

HEM(X) := HE2M(X7).

m
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We emphasize the difference in font used to distinguish the geometric and absolute Borel-Moore homology.

Note that the Tate twists do not affect the underlying group of HEM(X). Pullback defines a map HEM(X) —

HEM(X). We will mostly be interested in geometric Borel-Moore homology; the absolute Borel-Moore

homology groups are only used as intermediate steps to make constructions with the geometric groups.
Given a proper map f: X — Y over k, the adjunction f,Dx = fiDx — Dy induces a map

for HPM(X) = HPM(Y).
For an ind-scheme X = h_ngl X;, we define
HpM(X) = lim HPM(XG)

with the transition maps induced by the closed embeddings X; — X; as above. Similarly we define
BN () = I Y (),

2.5.2. Relative Borel-Moore homology. Given a map 7: X — S, the relative Borel-Moore homology of X/S
is
HpM(X/S) == H ™ (X5 7' Qes(—m/2)).
When S = Spec k, this recovers the previously defined (absolute) Borel-Moore homology groups.
2.5.3. The cycle class map. For any scheme X — Spec k, there is a cycle class map
Ch(X) — HEM(X).

For a cycle Z in a space X, we write [Z] € Chqim z(X) for its Chow class or [Z] € HFY (X)) for the f-adic
realization of [Z] in the geometric Borel-Moore homology of X, depending on context to make it clear which
version we refer to.

2.6. Specialization for Borel-Moore homology. Let the setup be as in §.4 Then there is a specializa-
tion map (for example, apply [DJK21l §4.5.6] with coefficients being Q)

sp: HPM(Ay /U) — HEM(X,/Z).
2.6.1. Functoriality. Specialization maps are functorial with respect to the following types of morphisms.
e Let f: X = ) be proper. Then there are pushforward maps
for HPM Xy /U) = HPM Yy /U)
for HPM(X7/Z) — HPM(V2/Z)

that fit into a commutative diagram

HM(Xy /U) —— HPM(Xz/Z)
I I
HM Yy /U) —— HM(Vz/Z)

e Suppose f: X — ) promotes to a quasi-smooth map of derived schemesﬂ of virtual dimension d(f).
Then there are pullback maps

fre H2M Yo /U) — Hﬂgd(f)(XU/U)
e HPMY,/Z) — Hfgd(f)(XZ/Z)
that fit into a commutative diagram

HE5 05 (Xu /U) —— H2Yy)(Xz2/Z)

ff f’I

HEM(Yy /U) —2— HPM(V7/2)

5See [FH] for a primer on these notions, with references.
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2.6.2. Geometric specialization for DVRs. Suppose S is a discrete valuation ring, with generic point n € S
and special point s € S. Let f: X — S be of finite presentation. Then there is a specialization map for the
geometric Borel-Moore homology groups,

sp: HBM () — HEM ().

It is obtained by taking the colimit of the specialization maps over finite extensions S’/S (cf. [Ful98, Example
20.3.5)).

2.6.3. Dimensions. We set d := dim B to be the dimension of the flag variety of G. At various points we
write Chyep OF HBM for the group of top-degree classes (in Chow groups or geometric Borel-Moore homology

top
groups), which usually (but not always) means Chy,, = Chy and HE%[ = HEM.

Part 1. Degeneration of local models
3. DEFORMATIONS OF AFFINE SPRINGER FIBERS

In this section, we define deformations of geometric objects called “affine Springer fibers”. Let us give
a roadmap to these constructions and their significance. We construct a family XS over the 2-dimensional
base Spec Z,[¢], depending on G and a parameter v € §(Z,)[e]((t + p)). To give a feel for the family
XS — Spec Zg[e], we describe its fiber over various special loci in the base.
e Over the locus (¢ = 1), X5 is a Zg-scheme closely related to the local models of potentially crystalline
substacks in the Emerton-Gee stack for G. More precisely, it is (for appropriate choices of v) a “naive
local model” of [LHLM23b), §3].
e Over the locus (¢ = 0), A% is a mixed-characteristic degeneration of affine Springer fibers, whose
geometry will be seen to be closely connected to representation theory.
The Breuil-Mézard Conjecture will be related to the locus (¢ = 1), but we have better traction on the locus
(e = 0), thanks to geometric representation theory. The family X7 interpolates between these, and will allow
us to transfer information from one to the other.
The construction of XZ occupies and From - we construct an affine Springer action on
its relative Borel-Moore homology over the locus p = 0. Finally in §3.6 and §3.7] we analyze the irreducible
components in the fibers of XS over points of interest.

3.1. Families of affine flag varieties. Let G be a split reductive group over Z,, and G its Langlands
dual group also regarded as a split reductive group over Z,. Recalling that we have fixed a Borel subgroup
B C G, we let G be the Bruhat-Tits group scheme over Alzq obtained by dilatation of the Chevalley group

scheme G/Alzq along Bz, C Gz, in the fiber at the origin of Az, cf. [LHLM23D, §3.1].

Remark 3.1.1 (Comparison to conventions of [LHLM23b]). When comparing to [LHLM23b], our B will be
the opposite Borel to the one of loc. cit.. This comes from our convention to view the affine Grassmanian as
a left coset space rather than a right coset space. For example, when G = GL,, our formulas will be based
on the choice of B as the lower-triangular Borel subgroup.

Let LG be the functor on Z,-algebras R sending R — G(R((t+p))) and L*G be the functor on Z,-algebras
R sending R+ G(R[[t + p]]). Let Grg be the fppf quotient LG/L*G. It is an ind-scheme over Z, with the
following properties:
e The generic fiber Grg Xspec z, Spec Qg is isomorphic to Gré’Qq, the affine Grassmannian for G’Qq.
e The special fiber Grg ®spec z, Spec F; is isomorphic to Flé,Fq, the affine flag variety for G, .
We therefore think of Grg as a mixed-characteristic degeneration from the affine Grassmannian to the affine
flag variety.

3.2. Deformed affine Springer fibers. Let v € (Z,)[e]((t + p)) C §(Z,)[e]((t + p)). We will write
0 € 9(Z4)((t)) for the evaluation of vy at € = 0.
Let Ay = Specle]. Let A be the sub-(ind-)scheme of Grg xz, Ay defined as
dg=*

X’i = {g S Grg XZququ Adgfl(’}/) — €t279 S LleL+G} 5
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where the symbol %g =: dlog(g!) is understood as in [FZI0|, and is explained in [Fre07, §1.2.4]. (A

small calculation is required to see that the defining equation is invariant for the right action of LG, cf.
[ILHLM23b, Lemma 3.3.1].) We note that

dt

g = —dlog(g™") = dlog(g) =g~ ' —
and occasionally we will use the latter form of the expression, for comparison to formulas in [LHLM23b].

Remark 3.2.1. The definition of X’ makes sense when ~ lies more generally in §(Z,)[¢]((t +p)), but we do
not need this generality and its complicates the notion of translation by the “stabilizer of 7", so we restrict
our attention to y of the stated sort.

Remark 3.2.2. More generally, there are versions of X5 with defining equation
dg~1 5
Adg—l(’y) — tTWg € Lie L+g

as soon as r > 2; the versions with r» > 2 will not be needed in this paper.

For r > 2, we introduce the notation

dg—!

dt

Ad;’fl () == Ady-1(y) —et” g.
We are primarily interested in 7 = 2, in which case we abbreviate Ad® := Ad®?. A straightforward calculation
shows that

AL () = AdST(AdST (7)) (3.2.1)

9192

3.2.1. Specializations. We introduce some notation for fibers of the family XS — Spec Z, over specific loci.

e For a fixed ¢g € Alzq we denote by XS=°° the fiber of X over .

e We denote by X5 := X“ﬂAaq the fiber of X5 over Spec Q. For &g € A}Qq we denote by X570 the
fiber of X5 over €.

e We denote by Y7, := X§|A%q the fiber of XS over Spec F,. For ¢y € A%q we denote by Y57 the

fiber of Y over e.

Example 3.2.3 (The specialization ¢ = 0). Consider g9 = 0 € A}Qq. Then X~ is the (spherical) affine
Springer fiber associated to vy (over Q). In turn, YfYZO is the Iwahori affine Springer fiber associated to g
(over F). These notions of affine Springer fibers were originally introduced by Kazhdan-Lusztig in [KL8§].
Hence we may regard X as a two-parameter deformation of affine Springer fibers, over the two-dimensional
base Alzq.

3.3. Translation action. For v € #(Z,)[e]((t + p)), we write 7; € #(Z,)((t + p)) for the coefficient of &
in 7. The centralizer of vy contains L7, and evidently acts on Xe=0 = X570 and Y570 = V=0 by (left)
translation.

At the level of underlying reduced schemes we have LT = T x X, (T). The action of LT on homology of
X==% or Y0 therefore factors through an action of X, (7'), which we also refer to as the translation action.

There is no translation action on deformed affine Springer fibers; instead translation elements take one
deformed affine Springer fiber to another. Namely, a quick computation shows that for v € £(Z,)[e]((t + p))
and h € LT, left multiplication by h takes X<, isomorphically to XS, where

dh=!

v = hTtyh —et? h. (3.3.1)

Remark 3.3.1. The reason why we consider v having a dependence on ¢ is to have a class of objects
preserved by translations by LT
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3.4. The Grothendieck alteration. We recall some facts from Springer theory; a reference is [YunlT7,
§1.2.2]. For a split reductive group H over a field, the Grothendieck alteration is the projection map 7 : E — b,
where ) parametrizes pairs of u € h and a Borel subgroup By C H such that u € Lie By. The map 7 is
small, so 7,Q 05 is an intermediate extension supported on all of h. On the other hand, over the strongly
regular semlslmple locus of h, 7 is a torsor for the Weyl group Wy of H. These two facts together equip
T Q 0B with a canonical action of Wyg. Noting that b is smooth, so the dualizing sheaf ]D)~ is isomorphic to
a shift and twist of Q 05 We equivalently get a Wiy-action on ID)E.

Definition 3.4.1. We say that a commutative diagram of schemes (or stacks)

A—— B
|
C —— D

is Cartesian up to nilpotents if the induced map on the underlying reduced subschemes from A to the fibered
product B xp C'is an isomorphism.

Suppose we have a diagram
S L>

s s

——

s 1 h
which is Cartesian up to nilpotents. Then by proper base change, the Wg-action on W*DE induces a Wy-
action on
fl’/T*]D)E = WS*FDB = 71'5*]]])5.
In particular, after passing to cohomology we obtain a W-action on HfM(g) Actions constructed by this

mechanism will generally referred to as “Springer actions”.
Let us record the compatibility of Springer actions in a general situation. Given a commutative diagram

§——T—25})
l l &
[ AN

in which all squares are Cartesian up to nilpotents, the Wy-action on W*DE induces also a Wy-action on
7Dz and 7,Dg, hence on HEM(T T) and HBM(S).

Lemma 3.4.2. (1) If f is proper, then the map HEM(S) ELN HBM(T) is equivariant for the W -action.
(2) If f can be promoted to a quasi-smooth map of derived schemes with virtual dimension d(f)ﬁ then

the map HBM(T) EAN H*%d(f)(g) is equivariant for the Wy -action, where d(f) is the virtual dimension of

f, i.e., the Euler characteristic of the cotangent complex of f.

Proof. (1) By base change, the map in question is obtained by taking global sections on T of the map

fuf'gmDy = ff'g'm Dy <5 'y,

and the Wpx-action is induced by the Sprmger Wg-action on W*DE. Naturality of the counit ff' — Id
implies that the map is compatible with the Wg-action.
(2) By base change, the map in question is obtained by taking global sections on T of the composite map

gmD; = f g m Dy L g p gDy (—d ()

where (i) := [24](2i) is a shift and Tate twist, and the natural transformation [f]: f* — f'(—d(f)) is induced
by the relative fundamental class of f, as explained in [FYZ], §3.4]. Naturality of [f] and the unit Id — f, f*
imply that the map is compatible with the Wir-action. O

SFor example, this is the case if f is LCI.
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3.5. Affine Springer action. Let I C L+GFq be the Iwahori subgroup corresponding to the fixed Borel
subgroup B C G’Fq.

There is an “affine Springer action” of W,g on HEM (Y5=0) and on HEM (Y5="). For the affine Springer
fibers, the action was constructed by Lusztig [Lus96] and Sage [Sag97] for Wg C W. An exposition of the

construction for W,g can be found in [Yunl7, §2.6.3]. For the deformed affine Springer fibers at ¢ = 1, an
action of W,g on H?M(Yizl) was constructed by Frenkel-Zhu [FZ10] §6], by imitating Lusztig’s construction.

Remark 3.5.1 (Extended affine Springer action). For & = 0, the W,g-action on H?(Y£=") was extended
to an action of W by Yun in [Yunl4, Theorem 2.5], which we also call the “affine Springer action”.

We now construct an affine Springer action of Wag on the relative Borel-Moore homology (cf. §2.5) of Y,
over Al by a slight generalization of [FZ10]. Our construction specializes to Lusztig’s construction when
€ =0, and Frenkel-Zhu’s when € = 1. It works uniformly for any r > 2.

Recall that we defined

dg

A" (7)== gyg "t —et"—

d () =979 o

For each parahoric subgroup I ¢ P C Lépq, there is a corresponding affine Springer fiber

Y5 = {9 € LGr,: Ad;"\(y) € LieP}/P.

g

That Y§ y is well-defined — i.e., the condition Ady"(v) € Lie P is preserved by right multiplication by P (for

r>2) - follows from [FZ10, Lemma 11].

Let P be the pro-unipotent radical of P. Let L be the Levi quotient of P and [ := Lie Lp. Then there
is an evaluation map sending gP* € Yp ., to the reduction of Ad®" (g7 ')y € LieP in LieP/Lie P* = 5,
which is well-defined up to the adjoint action of L, and thus defines a map

ev: Yg o — [lp/Lp]. (3.5.1)
The following result is a variant of [FZ10, Proposition 12|.

Lemma 3.5.2. There is a natural (in P) Cartesian square

Y5 —— [lp/Lp]
b lﬂ (3.5.2)
Yg , — /L]
where 7 is the Grothendieck alteration.
Proof. Let gP € Y5 , and set
v = Ad]" (y) € Lie P.
The fiber 7! (g) consists of gaI such that € P and (using (3.2.1)))
AdQ) 1 (7) = AdY (7)€ LieL.

But

d -1
AdC" (7)) = Ady-1 (7)) —et” (Zt )x
and the second term belongs to Lie P* C LieI by [FZ10}, Proposition 11]. Thus the condition on x reduces
to Ad,-1(v') € Liel, which in turn can be checked modulo Lie P¥. Since ev(gP) is exactly the class of 4" in
[l5/Lp], the result follows.
|

As explained in Lemma induces an action of the Weyl group Wy associated to P on H?M(ny)
Then just as in the case of affine Springer fibers [Lus96, §5.5], these actions glue to an action of Wog on
HBM (Y5). It will actually be more convenient for us to normalize the action as a right action, using the
antipode map on Wog.
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Remark 3.5.3 (Compatibility with translation action). It is immediate from the definitions that the re-
sulting W-action commutes with the translation action on HEM (Y,EYZO).

Let us summarize the upshot of this construction.

Proposition 3.5.4 (Affine Springer action). For any S — Spec F[e], letting Y£|s denote the base change
of Y5, to S, there is a right action of Wag on HEM(Y?Y|S/S), with the following properties.

(1) If s is a geometric point over € = 0, then it is the usual affine Springer action of Lusztig.

(2) If s is a geometric point over € =1, then it is the action of Frenkel-Zhu [FZ10).

(3) It commutes with specialization in €.

Proof. The first two points are clear from the construction. The third follows from the construction of the
specialization map, Lemma [3.4.2] and the construction of the W,g-action. O

3.6. Parametrization of top-dimensional irreducible components: generic fiber. Here we study
certain top-dimensional irreducible components of X£, for v = (¢ + p)s where s € t is regular.

For a dominant coweight A € X,.(T)F, let S°(\) C Grg q, be the corresponding (open) Schubert cell and
S(A) its closure.

For A € X,(T), let X2(A) be the Zariski closure of X5 N S°(X). For any gp € Al, we also define X5=0(X)
as the Zariski closure of X570 N S°(A).

Warning 3.6.1. It is evident that X57°°()) is a closed subscheme of the fiber at €y of XZ()), which we
denote X5 (A)[e,, but it is not clear (at least to the authors) whether this closed embedding is an isomorphism.

Lemma 3.6.2. Assume vo = (t + p)s with s € t reqular. Then there is an open subscheme V C A(l;zq
containing 0 and an open subscheme U C S°(p) such that

o (UxV)NXE = A x V where we recall that d = dim(G/B), and

e X2(p) \U x V has fiberwise dimension less than d over V.

In particular, if X\ < p then X5=°(X) has dimension strictly less than d, and XS=°(p) is irreducible of
dimension d.

Proof. We explain how this essentially follows from the computations in the proof of [LHLM23bl, Proposition
3.3.4], in particular how to convert notations in loc.cit. to our situation.
We have a standard affine open cover of S°(\) by translates of Iwahori orbits,

{Uu(A) == w™ TNt +p) hwew

Here I()) is the affine space of dimension (\,2p") given by a root group decomposition (after fixing any
ordering of the roots)

(Aa)—1
I()\) g H H UO@Z‘,
acd =0

where U, ; C LG is the affine root group corresponding to the affine root (a,i) € ® x Z. (In the notation of
the proof of [LIILM23b, Proposition 3.3.4], I(\) is the transpose of (v — ¢t)~*Ny, noting that v, ¢, Diag(a)
in loc.cit. correspond to t,—p, s in our situation.)

Choosing coordinates x4, for the affine root groups appearing in I()) identifies (U, (A) x Al) N X< with
the subspace of I()) cut out by the equations

(€i = (Adw(s), @))Za,i = p(i + Dexaits = O(Xp ;)

for 0 < i < (A, &) — 1. Here the right-hand side is an expression in the zg ; with 0 < 8 < a. Over the locus
V C Al where i — (Ad,(s), @) is invertible, these equations cut out an affine subspace of dimension equal to
dim(G/Py), with coordinates in the Tq (ra)—1- In particular, we see that X2 (A)[y has fiberwise dimension
< d for \ < p.

Now, for each simple root o > 0 of G, the coordinate Tq,0 is fiberwise over V' non-vanishing on X% N
(Uw(p) x V) since (p,a) = 1, hence the intersection of X5 N (Uy(p) x V) and X N (Us,,w(p) x V) is fiberwise
open dense in either space. It follows that X5 N (Uy(p) x V) is fiberwise open dense in X5 N (S°(p) x V),
hence the complement has fiberwise dimension less than d.
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Remark 3.6.3. (1) For X\ # p regular, Xizo()\) is never irreducible, which is in stark contrast to the
behavior of the deformed affine Springer fiber (see Lemma below).

(2) By [Ngol0, Corollary 3.10.2], Xi:o is equidimensional, and the translation action by LTQQ is transi-
tive on the set of irreducible components. In fact, one can check that Xizo NS°(p) is a fundamental
domain for the LTQq—action on the regular locus of XEY:O, and that the regular locus consists of
exactly the (LT/L*T)q, = X.(T) translates of Xc=9N 5°(p). This shows that for regular A # p,
X#=0(}) is a (reducible) union of translates of X*=%(p).

O

Lemma 3.6.4. Let X?ﬁo be the fiber of X5, over G, C Al For )\ € X*(T)"’, the Bialynicki-Birula map
induces an isomorphism S°(A\) N X570 = G/Py X G q, as a family over Gy,.q, = Spec Qq[e*].

Proof. This is a consequence of the computation in the proof of Lemma [3.6.2] Since ep is invertible under
the hypotheses, in the charts defined in the proof of Lemma [3.6.2] we can solve all the 2, in terms of x4 0.

But the Bialynicki-Birula map on these charts is exactly the map extracting the z, .
|

In particular, the Bialynicki-Birula map induces an isomorphism S°(X\) N X=! = (G/P))q,- Therefore,
the map
A SO(A) NXET!

induces a bijection from the set of regular dominant weights X*(T)+ to the top-dimensional irreducible
components of Xfyzl. A similar discussion applies for € = 7.

For g9 € Gy, q,, define

XE=50(< ) = X570 0 S();

which is a disjoint union of partial flag varieties X57°° (X) for M < A. We are particularly interested in
eg=1orey=n.
3.7. Parametrization of top-dimensional irreducible components: special fiber. Here we establish
a combinatorial parametrization of the top-dimensional irreducible components of Y= for any &o.

For each w € W, let S°(w) = Iwl/I C Flg g, be the corresponding (open) Schubert cell and S(w) C
Flg g, its closure.

Definition 3.7.1. For gg € Al and @ € W, let Y57°°(w) be the closure of Y57 N S°(w) in YS=°°. (As in
Warning this construction may not commute with the base change in €.)
For the statements below, recall the notation hg from §2.3.1]

Lemma 3.7.2. Let v = t(s +er) with r,s € t. Assume s is reqular semisimple.
(1) YE=(w) is an affine space over Fy of dimension
dim Y= (@) = d — #{a € ®F | W(Ay) ¢ HV}.

In particular dim Yffo(@) =d if and only if W is reqular.
(2) YE7"(w) is an affine space over F, of dimension

dim YE7(i) = d — #{a € & | @(Ag) C HOD).
(3) If s +r is hg-generic, then YfY:l({E) is an affine space over Fy of dimension
dim Y57} (@) = d — #{a € &* | @(4o) € HV}.

Proof. As Lemma|3.6.2] we explain how this follows from modifying the proof of [LHLM23bl Theorem 4.2.4].
The main point is that in [LHLM23b, Equation (4.6)], the coefficient (i + do~0 + (@, &)) becomes
e(i + dax0) + (s +er,q)

and we need this to be invertible for all 0 < ¢ < d, 5 and all roots a. Our hypotheses are exactly arranged
for this to be the case.
O
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Remark 3.7.3. The case ¢ = 0 of Lemma can also be found in [BBASV22] proof of Lemma 2.6 (¢)].

Example 3.7.4. If w € Adm(\), then hg < hy. In this case, we find that S°(w) N YfY:l has top dimension
(equal to d) if and only if w € Adm"8(\).

For g9 € A, define the “\-admissible” part of Y570 to be

YT (< A) = Y570 N ( U sm) .

weW -\
Corollary 3.7.5. Let v =t(s +er) withr,s € t.

1) Assume s is regular. Then for eq € {0,n}, the map w — YE=%0(w) induces a bijection between Wree
N vy
and the top-dimensional irreducible components of Y5
2) If s +r is hy-generic, then the map w — YE=1(w) induces a bijection between Adm™2(\) and the
%
top-dimensional irreducible components of YE=' (< A).

Proof. Follows immediately from Lemma [3.7.2] O

4. SPECIALIZATION OF CYCLES

In the previous section we parametrized some irreducible components of XZ, and Y7 over € € {0,1,n}. In
this section we study the behavior of these irreducible components under specialization in &.

4.1. Bases for top homology. We set up some degeneration problems. We have a family XS — Alzq7

X.a, Xy Yor,

| ! |

Spec Q, — Spec Z, +—— Spec F,

Below when we say a subscheme of X5 is “top-dimensional”’, we mean that its dimension is equal to
that of the ambient space XZ7°°, which is d = dim G/B. We write Chyop(—) for the top-degree Chow group

and HE)I\F/)I(—) for the top-degree geometric Borel-Moore homology group; in the latter case the “top” degree

is 2d. Recall our notation for cycle classes from §2.5.3]
Lemma 4.1.1. Let v =t(s +er) with r,s € t.
(1) Assume s is reqular. Then for g € {0,n}, the cycle classes [Y5=°°(w)] form a basis for Chyop(Y5™50)

as W ranges over Wres,
(2) If s+ 1 is hx-generic. Then the cycle classes [YS='(w)] form a basis for Chyop(YE=H(< N)) as @
ranges over Adm™®(\).

Proof. Follows immediately from Corollary 3.7.5] O
4.2. Specialization in . In this subsection we analyze the behavior of specialization in €.

4.2.1. Generic fiber. Below for a closed point €9 € A}, over a field k, we write A%EO) for the localization of A'
at €g, which is evidently a discrete valuation ring. For any family over A% o) there is then a specialization
map from the Chow groups or Borel-Moore homology groups of the generic fiber to those of the special fiber

(cf. and .

Localizing the family X7, over A%o) (over Qg), we have a specialization map

5P, 01 Chiop(X5™") = Chyop(X570). (4.2.1)

Localizing the family X7, over A%l) (over Qq), we have a specialization map
5p. 11 Chiop(X5™") = Chyop(X571). (4.2.2)

Proposition 4.2.1. Let v = (t + p)s with s € t regular.
(1) The map ([@.2.2) is an isomorphism and sends [X5="(N)] = [XS=H(N)] for all A € X.(T)*.
(2) The map sends [X5="(p)] = [X57°(p)].

W~

R
o
i
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Proof. (1) This follows from Lemma [3.6.4]
(2) By Lemma there are open subsets V' C A(qu = Spec Qqe], U C S°(p) such that U :=

XEN(VxU)=Vx Aqu, and such that its complement has fiberwise dimension less than d over V. We
thus have a commutative diagram

Chiop (UT=7) —2==2, Chyop (U=0)
T (4.2.3)
Chyop(X5™(p)) =% Chiop(X5=0(p))

The bound on the fiber dimension of the complement of /¢ implies that the vertical restriction maps are
isomorphisms. Since U* = V x Aéq is the trivial family, we have sp._,[U5="] = [U=], and the result

follows.
O

4.2.2. Special fiber. Let v = t(s + er) with s,7 € {. Assume s is regular and let A € X, (T)* be a dominant
coweight such that s + r is hy-generic.
Localizing the family Y over A%o) (over F,), we have a specialization map

5P, 01 Chiop(YS™(< X)) = Chyop (Y572 N)). (4.2.4)
Localizing the family Y7 over A%1) (over F,), we have a specialization map
P11 Chiop(Y57(SA)) — Chtop(YTl(g A). (4.2.5)

Lemma implies that for eo € {0, 1,7}, the classes [YS7°0(w')] € Chyop(Y57°0(< A)) form a basis as w'’
varies over Adm"®® (). Therefore, for each ¢ € {0, 1} there exists a unique matrix

M= = (mZ =0 € Zi>0) @57 e Admres (\)
(the non-negativity by Lemma [2.4.1)) such that

spo[YSTH @) = > mEaP[YSTO(@)]  for all @ € Adm™E(N).

it
@' €Adm o8 ()\)

Remark 4.2.2 (Independence of A). The definition of m__~° appears to depend on A. However, there is the
following sense in which it is independent of A as long as it is defined: if A < X and w,w’ € Adm"™8(\) C
Adm"™#(X), then each m_ " is the same whether defined in terms of A or X'. This is a consequence of

pushforward functoriality (cf. §2.6.1)) for the closed embedding Y5 (< A) <= Y5(< \).

Lemma 4.2.3. Maintain the running assumptions on s,r and X. Then the matriz M=% := (m__>°) is

unipotent and upper-triangular with respect to the Bruhat order on W, with all entries non-negative and
m_=° =1 for all w € Adm"™®(\).

In particular, (4.2.4) and (4.2.5) are isomorphisms.

Proof. We prove the statement for g = 0, the argument for £y = 1 being similar. The closure of Y= (w) is
a closed subset of A%q x S(w), hence its fiber above € = 0 is a subscheme of S(w). Since ms-9 # 0 if and

ww’

only if Y5=0(w) occurs in this closure, upper triangularity follows. The fact that m%. = 1 follows from the
fact that YS="(w) N (V x S°(w)) =V x A%q is the trivial family for some open V' C Al containing 0 (as in
the proof of Proposition |4.2.1]). d

Definition 4.2.4 (Deforming from £ = 1 to ¢ = 0). Suppose v is hy-generic. Then we abuse notation by
defining

SPeo: ChtOP(Yi:1(§ A) — ChtOP(YiZO(S A)
to be the composition of (4.2.4) with the inverse of (4.2.5)).
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5. DEGENERATION OF IRREDUCIBLE COMPONENTS

In the previous section we established (Lemma [4.2.3) uni-triangularity of the maps sp._,, and sp._,;
on Chyop(YS) with respect to the bases of top-dimensional irreducible components, which are indexed by

(subsets of) W. In this section we will prove under mild technical hypotheses that these specialization maps
are actually the identity map with respect to these bases.

The precise statement is Theorem below. Its significance is to provide control over the geometry
of the Breuil-Mézard cycles produced by Theorem m For example, it will be used to prove that (under
technical assumptions) the Breuil-Mézard cycles constructed in Theorem are effective, an important
property that was not formulated in the original Breuil-Mézard Conjectures. In addition, it enables us to
study the reducibility or reducedness of Breuil-Mézard cycles, which are properties that can be violently
messed up by specialization. Later in we will use Theorem to prove that the decomposition
of Breuil-Mézard cycles into irreducible components (with multiplicities) has the same behavior as certain
decompositions of characteristic cycles carrying significance in mirror symmetry and geometric representation
theory.

5.1. The main statement. The main result of this section is the following.

Theorem 5.1.1. Let v = t(s + er) with s,7 € t. Assume s is reqular. Then the specialization maps enjoy
the following properties.
(1) The map [A.2.4) sends [YS="(w)] — [YE="(w)] for all w € Adm™®(p).
(2) Assume additionally that s+ is 3h,-generic. Then the map [4.2.5) sends [YE="(w)] — [YS='(0)]
for all w € Adm™®(p).

Remark 5.1.2. In fact, our proof shows that the first item holds for all w € Wree. The method of proof
also shows the second item holds for w € Adm"™®(\) provided that s+ r is (hy + 2h,)-generic.

The remainder of this section will be devoted to the proof of Theorem It can be checked in either
Chyop(YE=20) or HEM(YZ50) because the cycle class map is injective in the top degree; we will work with
Borel-Moore homology because we want to use the affine Springer action for deformed affine Springer fibers,
which was defined in terms of homology. Although we defined G over Z, in §2| for the rest of the section
all the geometric objects (e.g., G, 3, Fls, etc.) that come up will be base changed to F,, which we assume to

have characteristic p > h. Therefore we will suppress the subscript F; for the remainder of the section.

5.2. Recap on Springer theory. We review some more background about Springer theory.

5.2.1. SLprmger resolution. Let N' C § be the nilpotent cone. Recall the Springer resolution 7: N — N
where N classifies pairs (e, B') with e € N and B’ C G is a Borel subgroup such that e € #’, the nilpotent
radical of Lie B/: The map 7 forgets the datum of B’. There is an identification N = T*B, where B is the
flag variety of G, under which 7 is the moment map with respect to the identification g = §* induced by

the Killing form. The obvious map from N to E fits into a commutative diagram with the Grothendieck
alteration

=a
|

R v
3
l:m(TKM?

T

which is Cartesian up to nilpotents (cf. Definition [3.4.1)).

5.2.2. Steinberg variety. The Steinberg variety (for G) is St := K/’ X 5 X/’ We let St be the fiber of St over

the fixed Borel B € B under the first projection to N followed by the structure map N = T*B — B. Letting
1 be the nilpotent radical of b, we therefore have an identification

ﬁXNN.

1

StB
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Then the Borel-Moore homology HEM(St 5) is equipped with a natural W-action by the mechanism of 3
since the square

«qQ

[s=13

is Cartesian up to nilpotents.

5.2.3. Homology of the Stemberg variety. The isomorphism G xB StB = St induces a bijection between the
irreducible components of St 5 and of St, which are indexed by W according to the following convention
(consistent with [CGI0, §3.3]): The orbits of G on B x B stratify it into Schubert varieties O(w) C B x B,
ranging over w € W. Then St € N x N = T*B x T*B can be identified with the union of the conormal

bundles to the orbits O(w). The irreducible component St(w) corresponding to w € W is the conormal
bundle to O(w); we denote the corresponding irreducible component of Stz by C(w).

Remark 5.2.1. It follows from the definitions that C(w) can be characterized as follows: C'(w) admits a
d-dimensional open subspace parametrizing pairs (e, B’) € it x B such that e € (Lie B’) N1 and B’ € BwB
has relative position w with respect to B.

Lemma 5.2.2. (1) The group H&%(St) equipped with the Springer action is isomorphic to the regular
representation of W over Q. }
(2) There exist positive integers {a, > 0}wew such that Yy aw[St(w)] is W-invariant.

Proof. Assertion (1) is well-known; see for example [CG10, §3.3].

For (2), choose a,, € Z such that the element >, . -[w] € Q[W] corresponds to >, oy aw[St(w)] €
HEM(St3) under (1). We need to check that a,, is in fact strictly positive for each w € W. For this,
we note that the Springer action on HPM(St) has an alternative definition in terms of degenerations from
i Xg g. In this interpretation, the identification of H&%(St) with Qg[W] is such that [w] corresponds to
the spemahzatlon of a certain irreducible cycle A, in the notation of [CG10, Lemma 3.4.14], hence it is
effective by Lemma An immediate consequence is that the [w] can be expressed in terms of the [St(w)]
by appjlz}lring some upper unipotent triangular (with respect to the Bruhat order) matrix with non-negative
entries ]

Lemma 5.2.3. Let i: Sty < St be the natural inclusion. Then the maps
B BN (Stp) 5 HBM(SY)  and ' HEM(Se) - HEM, . (Stp)
are W -equivariant.

Proof. Apply Lemma to the commutative diagram

SC—— ;,’&
V—
Zo—— =0
Qc — «aqQ

which has all squares Cartesian up to nilpotents. (Il

Corollary 5.2.4. As a W -representation via the Springer action, Htop (StB) is isomorphic to the regular
representation of W over Qg. Furthermore, there exists positive integers a,, > 0 such that

Y au[C(w)] € HEY (St )

weWw
is W -invariant.

Proof. This is immediate from Lemma [5.2.2) plus the second assertion of Lemma [5.2.3] O

7Alternatively, one can also see this from the fact that the class correspond to [w] can be interpreted as the characteristic
cycle of the localization of a Verma module, by [KT84].
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5.3. Lusztig’s fundamental domain. Recall v = t(s + er) with s,¢ € t and s regular. In [Lus20], Lusztig
proves the following.

Theorem 5.3.1 (Lusztig [Lus20]). There is a locally closed subvariety Q50 C Y5=0 such that:

(1) Q52 is a fundamental domain for the translation action of X.(T) on Y=o,
(2) Q-f(:g is isomorphic to St .

(8) Let ﬁ;::: C Yizo be the closure of Qﬁﬁ? With respect to the affine Springer action of W on

HPM(YE=0), the subgroup W C W preserves HBM(Q;:;)) C HEM(YS™"), and the resulting W -

top top
HEM HEM

representation on (ﬁ;zg ) is isomorphic to Hg) (Sts) equipped with the Springer action of W.

Strictly speaking, [Lus20] proved the above theorem in the context where G is a simply connected in
characteristic 0. However his arguments work also in for any G in characteristic p > h + 1, as will be clear
from our sketch of the construction of Q{,:S below.

5.3.1. Semi-infinite stratification. There is a stratification of Grgs by semi-infinite orbits

Sy:=LN-(t"L*G) =t"LN - L*G,

for A € X.(T), which are permuted simply transitively by the translation action of X, (7).

Definition 5.3.2. Let Grf{ZO C Grg be the affine Springer fiber of v (defined by the same equations as
X<=0 but over F instead of Q,). Let Qg(:,? =8N Grizo, the intersection formed in Grgs. Let Qf{:,? be the
pre-image of the Qg(:s under the natural projection map YfY:O — Grfyzo.

By construction, Qﬁ(:,? is a fundamental domain for the X, (T')-action on Xfyzo, hence Q{,:fy) is a fundamental
domain for the X, (7T)-action on Y0

5.3.2. Exponential map. Recall we work in characteristic p > h, so that we have the exponential map
exp: 1((t)) — LN. Define the affine space over F,

()" =P tn
<0
and
Wiy = {E € n((t)”: Adexp(—m)(7) € 8[[1]]}-
The residue map Res: wx , — @ sends E to its coefficient of t~!. The proof of [Lus20, Lemma 3| shows that

Res: w}f,? = fi is an isomorphism, and that E +— exp(E) defines an isomorphism wgfg = Qg(:,[y) Composing

these gives an isomorphism ¢: &t = Q5 as in the diagram below.

¢
T T,
n Res™ ! wX"Y QX"Y
e E exp(—F)

5.3.3. Isomorphism with Steinberg variety. We may view Q@ZS as the space of exp(FE) € QfX:S plus a Borel
subgroup of § containing the reduction of Adey,(—g)(y) € §[[t]] modulo t. Lusztig shows that for e € n
corresponding to E € w57y, the reduction of Adexp(—g)(v) € §[[t]] modulo # coincides with —[e, s] € it C §.
Since e — —[e, s] is an automorphism of fi by the assumed regularity of s, this induces an isomorphism
Sty — Q570

5.4. Deformation of Lusztig’s fundamental domain. We now generalize Lusztig’s construction to the
deformed affine Springer fibers. Note that when ¢ # 0, we do not actually have a translation action
on HEM(Xi), so the construction does not quite produce a fundamental domain for any lattice action.
Nevertheless, it turns out that one can understand fundamental classes of certain irreducible components of
deformed affine Springer fibers in terms of this construction.
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5.4.1. Intersection with negative loop orbit. Recall that we defined

dg _
Ady(y) = Ady(y) - EtQEg L= Ady(7) — et*dlog(g).

For [ > 0, we define the affine space over Fy,
()2 = @ R e ()
0<i<l

Definition 5.4.1. For [ > 0, we define the subspace of n((?));,

wi{/‘hgl = {E € ﬁ((t));l Adep(fE) (’7) € g[[t]]}a
and abbreviate w% == U;so w5 4 <-

Recall that for gy € A%:q = Spec F,[e] we denote by A%EO) the localization of A! at 9. We use this to
construct specialization maps from the fiber over € = 7 to the fiber over ¢ = ¢.

Lemma 5.4.2. Let v = t(s +er) where s € t is reqular. Assume that p > h.
(1) The residue map Res restricts to an isomorphism
wi{,y,thA;U) = w§<,7|A§O) = i X A%oy
(2) If s+ is l-generic with I > h,, then the residue map Res restricts to an isomorphism
Wi n,lan, =Wk alay, =B X AL
Proof. Write E' € w¥ ., as

E=t"By+t By +...= Y t'E; (5.4.1)
>0
Substituting in v = (s + er), we have (cf. [Lus20, Proof of Lemma 3])
—i 1 —i—j+1
AdexP(—E) (7) = t(S =+ ET) + Zt +1[7E1'a s+ 57"} + 5 Z 3 I+ [7Ei7 [7Eja s+ 57"”
i>1 7,71
1 o
+ 6 Z tili]ik+1[7Eia [7Ej> [7Ek7 s+ ET]H +...
i,4,k>1
Then Adg,,_ g (7) is the above expression plus
d .
6t2£(log(exp(E))) =eBy +2et 'Ey+3et PEs+...=e» t ThiE,
>0

The defining condition of w5 -, is Adg, ) (7) € @[[t]]. For m > 0, the coefficient of t =™+ in Adg, (_ gy (7)
is B

1 1
[—Em,s+er]+ (emEy,) + 3 E [—E;, [—Ej,s+er]] + 8 E [—Ei, [-Ej,[-Ex,s+er]]| +... (5.4.2)
i,j>1 i,5,k>1
itj=m i+j+h=m

and we wish to impose that this expression is 0 if m > 1. In particular, this condition solves for F,, in terms
of B, for m’ < m as long as F + [E, s + er] + emFE is an automorphism of #.

(1) In A:(lo)v the map F — [E, s+ er] + emE is an automorphism of fi x A%o) under our assumption that
s is regular. Hence E € w§(77| Al is uniquely determined by FE;, which is unconstrained.

(2) For m < I, the map F +— [E,s + er] + emFE is an automorphism of #t by our hypotheses, and the
equation = 0 solves for F,, uniquely in terms of F;. Furthermore, the recursion also shows that F,,
belongs to the mth layer of the lower central series of 11 x A%l). Now for m > [ > h,, by definition of n((t))_,
we have E,, = 0, and the expression in is automatically O since the mth layer of the lower central
series is trivial. Hence F € wi(mgll Al is uniquely determined by FEj, which is unconstrained. |
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5.4.2. Deformation of the fundamental domain: affine Grassmannian version. We now define the deforma-
tion of Lusztig’s fundamental domain for the spherical version of the affine Springer fiber:

QE{' Y = SO n GI‘E
where we recall that for A € X,.(T), Sy is the semi-infinite orbit through t* L*G. We then define
Q% y,<1 = exp(Wk ,<i) C Qx4

If s is regular, then composing the map exp with the inverse of Res and using Lemma [5.4.2] gives an
isomorphism.

.3 1 -~
¢?0) n X A(O) — Qi{f}'vghp ‘A%O)
If s + r is moreover h,-generic, then we similarly get

e . 1 ~ 15
Py B X Ay = D <n, lay,

5.4.3. Deformation of the fundamental domain: affine flag version. We may view Grx as the space of LG-
conjugates of Lo := g[[t]] C §((¢)), and Flg; as the space of Iwahori subalgebras J C g((t)). Our fixed choice
of Iwahori subgroup I gives a basepoint Jo € Flg lying over L.

For e € i, write E = Res '(e) € WX,y <, Then Adg, gy (7) € Lo, so v € Adg
isomorphism AdeXp (g): Lo — L induces

Adg () § = Lo/tLo = L/tL. (5.4.3)

(E )LO =: L. The

exp

Lemma 5.4.3. Recall that v = t(s—+er). The inverse of the isomorphism (5 takes v — —[e, s+er]+ce.

Proof. We compute:
Adgy—p)(7) =t(s+er) + [-E1, s +er] + ek = —[Er, s ter| +eE1  (mod t).

exp(
|
Corollary 5.4.4. Let v = t(s +er) where s, € t and s is regular.
(1) There is an isomorphism
St x A(o) QYm<h \A . (5.4.4)
(2) If s+ is h,-generic, then there is an isomorphism
Stz x Ay = Q;%Shp\A(ll). (5.4.5)

Proof. Lemma gives a bijection between Borel subgroups of L/tL = Adg(Lo/tLo) containing v and
Borel subgroups of g = Lo /tLg containing —[e, s + er] + ee. Conclude by applying Lemma and noting
that the assumptions imply that in case (1) the map e — —[e, s + er] + €e is an automorphism of @t x A%O),

and in case (2) the map e — —[e, s + er] + ee is an automorphism of #t x A%l). ]

5.5. Analysis of fundamental classes. Recall v = t(s + er) with s,7 € {, and assume s is regular. We
will also assume that s + r is at least h,-generic.

5.5.1. Inclusion into the affine flag variety. We have an inclusion ¢5: Y5 < Flg x A of families over Al =
Spec Fyle]. This induces a commutative diagram

BM 5P-0 BM 0
HEM(YE=7) —=% HEM(Y:™0)

top top

l (5.5.1)
5p5—>
3 (Flg g, o) — > H3' (Flg)

Since Flz xA' — Al is the constant family, the bottom horizontal map can be identified with the iden-
tity map using the canonical identification HEY Flep, ) = HEM(Fls) coming from invariance of (-adic
cohomology under base change of separably closed ground fields.

For g9 € {0,1,7}, we have a pushforward map (55% : H5)' (Ys=%0) — HJ}!(Fl). Recall that there is an
affine Weyl group action on HEM(Fls) [Kac85, §2. 7] which can also be interpreted as the affine Springer
action viewing Fl~ as the affine Springer fiber for the nil-element v = 0. It follows from the construction
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that the map (577" is equivariant for the affine Springer actions. Additionally, the map L%ﬁo is equivariant

for the translation action by LT /LtT = X,(T).

Remark 5.5.1. Since the translation action by the coroot lattice Q¥ C X, (T) on HEM(Fly) is trivial (as
it extends to an action of a connected group), the map Liio factors through the coinvariants of Qv acting
on HPM(YE=0).

As a special case of Lemma we have a commutative diagram

Qi{mgh,, ’ ny — [E/G]

[

W yan, — X5 — [a/G]

whose squares are Cartesian. For g € {0, 1,7}, there is a map HtBol\g(Qi,Zthﬂ) — HPM (Y5=50) sending the

class of an irreducible component to the class of its closure.

Corollary 5.5.2. Each map in the sequence

3 - —eoy vl
Hgy (Stp) = HER (25750) —— HyM(Y57=0) —— HE)!(Flg)

is W -equivariant.

Proof. Apply Lemma [3.4.2] and Proposition [3.5.4] O

5.5.2. Comparison of fundamental classes. For w € W, and gy € {0,1,n}, we have a d-dimensional ir-
reducible component Q377°;, (w) coming from the component C(w) of Stz under its isomorphism with
Oy 5 ’<p,,- We will abbreviate this irreducible variety as Q5 7¢ (w).

On the other hand, recall from Corollary that Y:==50 foNr g0 € {0,n}, and Y= (< p), are d-
dimensional, with top dimensional components parametrized by W' and Adm"™®(p) respectively. Hence

for any g9 € {0, 1,7} we have the fundamental classes [Y==°(w)] € HEM(YZ=°(< p)) for all w € Adm™®(p).

We recall some basic properties of Yffo(@). The reader may need to review i for notation.
Lemma 5.5.3. Let v = t(s + er) with s,r € t, s reqular. Below, equalities are as subschemes of Fla.
(1) Left multiplication by t"w € W induces
t'wYS = Yo ey

(2) Letu € Wres and factorize U uniquely as @ = v wow where w € W is restricted and o = vt¥ € W+
is dominant, cf. (the proof of ) [LHLM23bl Proposition 2.1.5].
(a) For ey € {0,n}, we have

YE(@) = Y, (00D),
(b) If furthermore uw € Adm*%(p), and both s +r, s +r — v are h,-generic, then we have
YT (@) =t oY, (wow).
(3) Let @ € Wy be restricted and o € W. For any o € {0,1,n}, we have
Y7 (wow) = oY% (wow).
(4) For w = tPrw € W with w € W,
Y5 (wow) C (LN N I)tvoreqwowl/I C tvor (LN )wowl/I.
Proof. Assertion (1) follows from a direct computation, using that
Adfy, (7) = w(v) — tev.

Assertions (2) and (3) follow from the proof of [LHLM23bl Proposition 4.3.5] and [LHLM23bl Proposition
4.3.6] respectively, noting that:

e The cited proofs did not use the running assumption that G = GL,, in loc.cit.
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e The role of the genericity assumptions in the cited proofs were only used to guarantee that intersecting
Y5 7°0 with certain open affine Schubert cells are affine spaces of the correct dimension. This holds
for eg = 0 (and hence also for g = 1) due to the regularity of s, and holds for ey = 1 by our
assumptions, cf. Lemma

Finally, (4) follows from writing standard representatives for S°(wow) and the fact that wow is anti-
dominant, see for example [LHLM23bl Corollary 4.2.15].

O
The next lemma expresses components of Y27 in terms of those of the fundamental domain:
Lemma 5.5.4. Let v = t(s + er) with s,r € {, s reqular. Let u € Wree and factorize w uniquely as
U =70 twyw
where W = tPvw € Wy, w € W, and v = vtV € WT.
For ¢ € {0,n}, we have
[YE720(@)] = [t Q750 ot (Wow)] € HEY (Flg).
If w is furthermore in Adm"™®(p), and s+ 71, s+r —v, s+ 1 — v+ wop, are h,-generic, then we have
[Yray:l(a)] [t o O A —tu+twope (WOW)] € HE5) (Flgg).
Proof. By the Lemma m(Z ) we have
YE 60( ) = t_y _lYiwegavv(wow) =t VY'Ey igu(woﬁ)'
Then by Lemma [5.5.3(4) we have
Ye=20, (@) € (LN A D@/T ¢ o LN wowl /i
Hence ¢"~*0Pw Y50 () belongs to Q3 1 tev-ttewopu, <hy’ On the other hand, in our identification of St 5 with
a5 ,?0 tev-ttewopu,<h,’ the elements belonging to L NwowI exactly correspond to pairs (e, B') C ax B such that

B’ € BwowB has relatwe position wow with respect to B. Then Remark shows that ¢¥~*“0PwY<=0()

is dense in Q570 4o, (Wow). O

Corollary 5.5.5. Let v = t(s+er) with s, € t, and s regular. If u € Adm"®(p) \ {t“°P} then
SRS @) = S0 07 ) (wow)] € Hyg' (Fle)

for some w # wy.

Proof. Suppose the conclusion doesn’t hold. Then by Lemma and the fact (cf. Remark [5.5.1) that QV

acts trivially on the image of .77 -0 % must have the form

u = 571100@6 = ’ljilwotp’wo = 671tw0p.
Since the second and the last factorization are reduced, we learn that ¢(u) > £(t*°?). But u € Adm(p) so
equality must occur, a contradiction. O

We record the following property of the affine Springer action for later use:

Lemma 5.5.6. Let v = t(s +er) with s,r € t, and s regular. For each w € W such that w # wy, there is a
simple reflection s, € W such that for the affine Springer action on HEM(Fls), we have

(80 + 1)e5720[Q5 W(wow)] =0c HY (FIG)
Proof. This is probably a well-known fact about the Stqlnberg variety but we give a proof for completeness.
The proof of Lemma shows that V' := QEY:;?,ghp NLNwowl is dense in Q59 (wow). Let g = exp(E)wow €
V with E € wi?, and set e = Res(E). Then
Adexp(—E) (7) C Adwow(Lie i) C g[[tHv

whose reduction modulo t is —[e, s] € ft N Ady,,w (1), as explained in
If w # wy, there is a simple reflection s, € W such that

0 Adugw (i) = N Adugw () N Adwguws, (7).
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Let P, O I be the minimal parahoric corresponding to s,, and let 7 : Flg — LG/PQ be the natural
projection. Our equality above implies Adgzy-1(v) C LieI for all 2 € P,. This shows that 7= (7 (V)) C
Y=, Since V is a maximal dimension locally closed subset of Y=, we learn that V' is dense in 7~ (7 (V)),

and hence that ﬁ?g (wow) = F_lﬁ(ﬁi(:’,s (wow)). This implies the desired conclusion by [KL8S8| §4, Lemma
9. O
5.6. Proof of Theorem Let € € {0,1}. Suppose for some © € Adm"™®(p), we have

(5peme, [Y5T"(@)]) = [Y5™%(@)] # 0 € HEH(YS™2),

so this difference is represented by a non-zero eﬁectwe (by Lemma “ d-cycle.
Factorize © = v lwow as in Lemma Set ' = v — tev + tewgp,, so that Lemma [5.5.4] m implies

[Y5="(@)] = [t—”+w°f’wﬂf (wow)] € Hz' (Flgy),

[Y5==0(@)] = [t7 TP Q750 (wow)] € Hyg' (Flg).
Note that s + 17 — v + wop,, is 2h,-generic: indeed
= (t""v Hwew > (t™v Hvwew = t VTP wyw

belongs to Adm(p), hence —v + wpp,, € Conv(Wp) is h,-small.
Consider the class

0= Z Qg z5Pe ey [y (W0 2)] Z Qo= [y (wo2)] € 1509 (Y8 £0)

zeW zeW
where a,,,, are strictly positive integers as in Corollary [5.2.4 We claim that ¢ has the following properties:
(1) ¢ is represented by a non-zero effective d-cycle in Y7,°
(2) ¢57:°(9) is W-invariant (for the affine Springer actlon) and
(3) ¢57:°(9) belongs to the span of (550 [Q57) (wo2)] for z # wy.
Item (|1 follows from Lemma e positivity of a,,,, and our assumption at the beginning of the proof.
Item (2)) follows from Corollary - (the fact that LE °0 is W-equivariant) and the choice of the integers

S

Aoz -

We now check (3)). For each z € W, by Lemma we have
(5 (wo2)] = [P Y (wo2)] € Hyg' (Flgs),

(9575 (w02)] = 1700V (wo?)] € HEM(Flg),

where 2 = tP2z and v = v — tewgp,. Note that in the case ¢y = 1, Lemma does apply since
5+ 71—V + wopy is 2h,-generic and wop, is hy-small, so s + 1 — v 4+ wop, — wop; is h,-generic. Thus by

Lemma [1.2.3]
(5P2msr0 19572 (w02)]) = 195729 (1002)]

lies in the span of {[t™"0P=YZ/°°(a')]} where @’ € Adm"®(p) such that &' < wpz. Another invocation of
Lemma 23] together with the fact that

[’feyfiogpe—wo [stn (’LNI,,)} - 5ps—>so 7”* [Ys"n(~/)]
is independent of the choice g9 € {0, 1} shows that ¢7,, %) [t7*0P=Y,/% (N’)] lies in the span of {15779, [t~0P=Y70(a")]}

//*

running over @ such that @” < < wpz. Corollary [5.5.5| then Justlﬁes
Now together with Lemma shows that under the affine Springer action

(Z z) 1 0(6) =0.

zeW

But since (7.7 (9) is W-invariant, the left-hand side is [W[¢5:;7°(9), and we learn that :2,7°(0) = 0. Finally

since Flx is 1nd—pr03ect1ve any effective representing the claes 0 = 0 must be actually 0 (as can be seen, for
example by computing degrees under an embedding to a large enough projective space), a contradiction. [
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Part 2. Microlocal analysis

Most of this Part focuses on affine Springer fibers (and not their deformations), so we will use the
abbreviations X, := X5=°, X, := X570, and Y, := Y.

Henceforth we use K(—) := Ky(—) for the Grothendieck group of an exact category, in order to improve
the readability of the notation, because there will be many subscripts (including 0) on the categories, and
we never consider higher K-groups anyways.

Recall that h = h, + 1 is the maximum of the Coxeter numbers of the simple factors of G, and that we
assume throughout that p > h.

6. EQUIVARIANT HOMOLOGY OF AFFINE SPRINGER FIBERS

In this section we recall some notions from equivariant (co)homology, which will be applied to the (de-
formed) affine Springer fibers. We begin with a review of generalities such as equivariant Borel-Moore
homology, equivariant formality, the equivariant localization theorem, and equivariant Euler classes in §6.1]

Then in we recall the “GKM description” (named after Goresky-Kottwitz-MacPherson), which gives a
combinatorial description of the equivariant Borel-Moore homology of spaces satisfying the so-called “GKM
conditions”. We explicate the GKM description for the affine Springer fibers Y., and their variants over the
complex numbers. This is used in particular to fix identifications Htop( ) for all v = ts, where s € qu is
regular, as well as to establish a bridge between the homology of affine Springers in characteristic p and the
homology of their variants over C.

Finally, in we discuss actions on the equivariant Borel-Moore homology of the Y., which in particular
provide equivariant lifts of the translation action and affine Springer action defined in Part 1.

6.1. Equivariant Borel-Moore homology. Suppose X is a finite type scheme over a field k, equipped
with the action of an algebraic group H. Recall that the H-equivariant cohomology of X, denoted Hj;(X),
is the cohomology of the quotient stack [X/H]. We define H};(X) to be the geometric cohomology of [X/H].

Similarly, the H-equivariant (¢-adic) Borel-Moore homology HPM’H(X) is defined as the relative Borel-
Moore homology of the quotient stack X/H relative to [Spec k/H],

HPM () := HPM([X/H]/[Spec k/H)).

We denote by H*BM’H(X ) the geometric H-equivariant Borel-Moore homology, i.e., the same definition after
base changing to a geometric point over Spec k.
For an ind-scheme X = lg X; equipped with compatible H-actions on each X;, we define

HE(X) = lig B (X

with transition maps induced by the closed embeddings X; — Xj.

Example 6.1.1 (Torus actions). In this paper, we will only ever consider equivariant Borel-Moore homology
with respect to the action of a split torus 7. We let t := (LieT)q,. Equivariant Borel-Moore homology has
a natural module structure over equivariant cohomology. Therefore H?M’T(X ) is naturally a module over

H7(pt; Qe) = Symg, (') = O(t) =: Sp.

When the acting torus 7' is understood, we will simply abbreviate S := Sp.
From the definitions we have H?M’T(pt) = H,*(pt), so there is a natural pairing

H(pt) @ HPMT (pt) — HY:(pt) = Qo
which realizes HEM’T(pt) as the graded Q-dual of HY.(pt) = O(t), so we may canonically regard HEM’T(pt)
as Q) 4mt the O(t)-module of top-dimensional differential forms on t. Then any choice of generator of
Wiop € Q{4m gver O(t) is equivalent to a choice of trivialization of HEM T (pt) as an H (pt)-module.
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6.2. Equivariant formality. Let H be a group acting on a variety X. The graded H-equivariant Borel-
Moore homology group H*BM’H(X ) has a graded action action of H}; (pt).
There is an augmentation homomorphism Hj;(pt) — Q. This induces a map

HIPY P (X) @, (o) Qe — HPM(X). (6.2.1)
Recall that X is H-equivariantly formal if this map is an isomorphism.

Remark 6.2.1 (Equivariant classes in top homological degree). If X is H-equivariantly formal and equidi-
mensional of dimension d, then the map

Hy) " (X) — HEM(X)

induced by ([6.2.1)) is an isomorphism: “top-dimensional cycles are equipped with a canonical H-equivariant
structure”.

Example 6.2.2 (Equivalued affine Springer fibers). According to [GKMO06, Theorem 0.2], the equivalued
affine Springer fibers admit a paving by affine spaces, and are therefore pure. Hence they are equivariantly
formal with respect to any group action. This applies in particular to the affine Springer fibers Y, and X,
where v = ts for s € t*, under the translation action of 7.

6.3. The equivariant localization theorem. Let T be a torus acting on a variety X. We recall the

localization theorem for the T-equivariant Borel-Moore homology of X. Recall that HEM’T(X ) has a natural

module structure over S = Sy = O(t). Hence we may regard H?M’T(X ) as a quasicoherent sheaf on t.
Let ¢: X7 — X denote the inclusion of the T-fixed points. The following is the famous Equivariant
Localization Theorem for torus actions, which goes back to work of Atiyah-Bott; a modern reference is

|[AKL™22, Theorem A].
Theorem 6.3.1 (Equivariant Localization Theorem). The kernel and cokernel of the map
vt HPMT(XT) — HPMT(X)

are supported (as quasicoherent sheaves) on the union of Lie K C t as K runs over proper stabilizer subgroups
K CT. In particular, v. is an isomorphism after tensoring over S with Frac(S).

The theorem extends to ind-varieties in the obvious way. Note that the structure of HfM’T(X T is simple:
since T acts trivially on X7 we simply have HY™'T(XT) =S ®q, HBM(XT), which is free over S.
We give some examples below, in which we maintain the notation of Part

Example 6.3.2. Let ¢y € A}Qq be and let X = X:=%. Since v € {[[t]], there is an action of T via left

translation on X (cf. §3.3), and we may identify X7 with the discrete scheme X, (T'), with A € X, (T)
corresponding to t*"LTG € Grg q, -

Example 6.3.3. Let ¢ € A%q and X = YZ=°. Since v € {[[t]], there is an action of T via left translation
on X. Then we may identify XT with the discrete scheme W, with wt € W corresponding to wt* € Y5Teo.

6.4. Equivariant Euler classes. Suppose X is an ind-variety with an action of a torus T, such that X7
consists of isolated points in X. Let z € X7 be a smooth point of X. Decompose the tangent space T, X as
a representation of the torus T into a sum of characters of T,

T X =N, A€ XD

We may view d); as (linear) elements of O(t). Then the equivariant Fuler class of X at x is defined to be
[I,; d\i € O(t), and we denote its inverse by

er(z, X) = € Frac(Sy).

1
IL dXi

If X is T-equivariantly formal of pure dimension d, then by Remark [6.2.1] the fundamental class of X
admits a unique T-equivariant lift, which we denote [X]r € Hgé\/[ T(X). Recall that we have fixed a generator

Wtop of Qi\ dim t.
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Lemma 6.4.1. Suppose X is T-equivariantly and has isolated T-fized points. If x € X7 is a smooth point
of X, then the image of [ X in
HBM T(XT) ®s Frac(St) = @ Frac(St)[z
reXT

under (6.5.1) has component coefficient of [x] equal to ep(x, X) € Frac(S).

Proof. This follows immediately from the Atiyah-Bott localization formula, for which a modern reference (in
much more generality) is JAKL™22, Theorem D]. O

Example 6.4.2. Consider X = G’/B’ with the left translation action of 7. Then the T-fixed points of X
may be identified with the discrete scheme W, where w € W corresponds to the fixed point wB := wB for
any lift v € N(T) of w (note that the coset wB does not depend on the choice of lift). The tangent space
T,5X is T-equivariantly identified as
T, zX = @ Guwa-
acdt
Letting 3 := [[,c4+ do, the equivariant fundamental class [G/B)# is therefore

Z sgnﬁ @ Frac(S

weWw weWw

6.5. GKM description of equivariant Borel-Moore homology. Suppose X is equivariantly formal for
the action of a split torus 7. Then HEM7(X) =~ HBM(X) ®q, St is free over St, so we have an inclusion

Loc’: HBMT(X) — HBMT(XT) @g, Frac(Sr) (6.5.1)
which is the dashed arrow in the diagram below

-

‘[ LOCT’/,f”’ \[
e
HPMT(XT) g, Frac(Sy) =24 HPMT(X) ®s, Frac(Sr)

Recall that we set t := (LieT)q,. Fix a generator wio, of Q{ 4™t which induces an isomorphism

HPMT(X) 2 Sy (cf. Example [6.1.1). Using this, we have

HBMT(XT) @g,. Frac(Sr) = @ Frac(Srt)[z
zeXT

Definition 6.5.1. For o € HZM T( X)), the equivariant support of a is the subset of X7 at which Loc” (a)
has non-zero component in the direct sum decomposition (6.5.1)).

Suppose now that X further satisfies the GKM conditionsﬁ: on any quasicompact subset of X, there are
only finitely many T-fixed points and finitely many one-dimensional T-orbits. We review the so-called GKM
description of HEM T( ), which applies under the GKM conditions. Following the formulation of [BAL21],
Proposition 4.3], it says that the image of is the space of

> folzl € €D Frac(Sr)la]
zeXT zeXT
satisfying the following conditions:

e The poles of f, are of order < 1 and contained in the union of the singular hyperplanes, meaning
hyperplanes of the form ker(dy) for a character x: T'— G, such that X*erx £ X7,
e For every singular character Y (meaning that X**X # XT) and every connected component Y C

Xker(X) | we have
Resker (dx) ( Z f:p wtop) =0

zeXTNY

8Named after Goresky, Kottwitz, and MacPherson who initiated these ideas in [GKMO04, Theorem 7.5].
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where we recall that wyep is the fixed generator of Qf dimt Note that the collection of such Y form
the 1-dimensional orbits of 7" on X.

Example 6.5.2 (Borel-Moore homology of equivalued unramified affine Springer fibers). Let v = ts with
s € {c regular. Then one can write down an analogous version of Y, over the complex numbers, which we
denote Y, c. Then Y, ¢ satisfies the GKM conditions for the translation action of 7', has the same fixed
points as the positive characteristic version analyzed in Example and the 1-dimensional T-orbits are
calculated in [GKMO04, §5.11].

The GKM description of HEM’T(YW) is described explicitly in [BAL21l, Corollary 4.8|, and is manifestly

independent of v (satisfying the hypotheses), and is used to identify H*BM’T(Y77C) for all v satisfying the

hypotheses. By equivariant formality of the T-action, this also identifies HBM(Y., ¢) for all v satisfying the
hypotheses.

To bootstrap these results to positive characteristic, observe that the same analysis shows that for v = ts
such that s € {Fq is regular, then Y., also satisfies the GKM conditions, and with the same combinatorics of
fixed points, singular characters, and 1-dimensional orbits, hence H*BM’T(YW) has the same GKM description.
In particular, we use this description to identify HBMT (Y,) for all v satisfying the hypotheses. By equivariant
formality of the T-action on Y., this also identifies HEM(Y,) for all v satisfying the hypotheses.

Remark 6.5.3 (Deformed affine Springer fibers in the admissible region). Let v = ts with s € qu regular
and A € X, (T)* be a dominant coweight such that -y is hy 1 ,-generic. Then one can deduce from [LHLM23D,
Proposition 3.3.4] that:
e Y:(< \) satisfies the GKM description for T (and in particular is T-equivariantly formal).
e The T-fixed points of the family Y5 (< A) — Spec F[e] are identified with the constant family
Adm(A) x Spec F[e], with wt” € Adm(A) corresponding to [wt”] € Flg g (-
e For each ¢y € Spec F[e], the singular characters are independent of ¢y and the residue conditions
they induce are independent of .
Hence the GKM descriptions of HfM’T(Y,EY:60 (< X)) are independent of eg € Spec F,[e]. This gives compat-
ible identifications of HEM’T(YEY:EO(S A)) for all ey € Spec Fy[e], with respect to which the specialization
maps in ¢ are the identity map. In particular this gives some bases of HEM’T(Y§:€0(§ A)) with respect to

which the specializations in ¢ are the identity maps (but it is completely unclear whether this is the case for
the basis comprised by the cycle classes of top-dimensional irreducible components, so this does not give a

cheap proof of Theorem )

6.6. Actions on equivariant Borel-Moore homology. We define equivariant lifts of the affine Springer
action and translation action on HEM(Y,).

6.6.1. Monodromy-centralizer action. We will define an action of (W, -) on HEM’T(YV) using the GKM

description from Example which we call the monodromy-centralizer action.

Fix a generator wiop € QF dimt  Then Loc! embeds H*BM’T(YV) — D, Frac(Sz)[x]. There is a left

action of @ € W on D, i Frac(Sz)[z] via

@Y fulz] = (@f)[wa]
zeXT zeXT
where wf, refers to the natural W-action on Frac(S;). One checks from the GKM description in Example
that this action preserves the subspace H*BM’T(YW).
Finally, by Remark [6.2.1] it induces an action (W,-) on the non-equivariant Borel-Moore homology
HE}\S(YV), for which the action of X,(T) C W agrees with the translation action of We refer to

(all these variants of) the action (W, ) as the monodromy-centralizer action.
Remark 6.6.1 (Explanation of terminology). This action is also defined (for Y, ¢) in [BAL21], §5.2], up to

converting between left and right actions. As explained in [BATL21, Remark 5.4], the action of the X, (T') C 1%
on HEM’T(YW) is induced by the translation action by the centralizer of v (cf. .
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The action of W C W is subtler in that it is not induced by an action of W on Y., but could be thought
of informally as the the monodromy action coming from a hypothetical local system on *°& whose fiber over
v is H?M’T(Yv); indeed, Example suggests that the Y, are “T-equivariantly homotopy equivalent”.
The cleanest way we know to make this precise is to just use the GKM description, as above.

6.6.2. Affine Springer action. We will define a right action of (W,O) on H?M’T(YW) that lifts the affine
Springer action from The action of w € W on @, 3 Frac(S¢)[z] is given by

e Y fulwl= Y fulad).

zeXxT zeXT

One checks from the GKM description in Example that this action preserves H?M’T(Yﬂ,) embedded
as a subspace of @, g Frac(S¢)[z] via Loc”. By equivariant formality, it induces an action on HEM(Y,),
which agrees with the affine Springer action constructed in according to [GKMO04, §14.4ﬂ We refer to

(all these variants of) the action (W, e) as the affine Springer action.

Remark 6.6.2. It is immediate from the definitions that the actions (W, -) and (W, e) commute with each
other.

7. MODULAR REPRESENTATION THEORY

Let G be a split reductive group defined over F,, with simply connected derived subgroup.
In this section, which has no original results due to us, we recall some facts about the representation
theory of g := Lie G as well as of the Frobenius kernel

G1 = ker(Frob,: G — G),

and their graded variants. Roughly speaking, these will be used in Part 3 to “approximate” the representation
theory of G(F,), which is more directly related to Serre weights. We also review in the crucial theory
of Bezrukavnikov-Mirkovic- Rumynin localization, which provides the bridge between the categories of such
representations and the categories of coherent sheaves that feature into the instance of mirror symmetry
which is relevant for us.

Finally, in §7.6] and §7.7] we collect some natural symmetries of these categories.

7.1. Choice of torus. We fix, from here until the end of the paper, a split maximal torus 7' C G together
with an identification X*(T') = X, (T), realizing T as the Langlands dual group of 7.

Then our choice of B induces a choice of Borel B D T. Let BT = wqB be the opposite Borel to B. Recall
that conventions from are that the positive roots ®T are the roots of T' on b™, equivalently on g/b,
and that p is the half-sum of the positive roots.

The choice of B induces an isomorphism of the flag variety B with G/B. Recall that our positivity
conventions are normalized so that the functor Rep(T) — Coh®(G/B), sending a character A to the line
bundle O()\) = G xB ), takes dominant weights to semi-ample line bundles.

7.2. Center of the universal enveloping algebra. Let £ D F, be a field of characteristic p. For a variety
X over k, we write XV := X Xk, Frob, k for the (first) Frobenius twist of X. We regard G, g, etc. over k and
write Ug for the universal enveloping algebra of g over k. By Rep(g) = Rep(Ug), etc. we mean the category
of finitely generated representations of Ug.

7.2.1. The Harish-Chandra center. We recall some facts about the center of the universal enveloping algebra
Ug. Let h = Lie Ay be the abstract Cartan Lie algebra of g. An argument of Harish-Chandra produces a
map k;[t](W") — Z(Ug). Tts image is called the Harish-Chandra center 3uc.

9For the version over C, but this translates to the version over Fy as in Example m
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7.2.2. The Frobenius center. In the analogous characteristic zero story, the Harish-Chandra center comprises
the entirety of the center of Ug. But in characteristic p, the center of Ug is much larger: there is also the
so-called “Frobenius center”

Symy, gt < Z(Ug)
induced by the map sending X € g to X? — X[P1, whose image we denote 3m. Here X — X[ is the
p-operation on a Lie algebra in characteristic p, e.g., for g = gl,, it sends a matrix to its pth power.

7.2.3. The full center Z(Ug). Under our assumption that p > h, the center of Z(Ug) is generated by the
Harish-Chandra center and the Frobenius center, and has the more precise geometric description (cf. [MR99])

Spec Z(Ug) = b* | W xpew) pw 870 (7.2.1)
Here:
e The map g*() — §*(1) /W is the composition

g - gt g Chevalley, by w.

e The map bh* /W — b*1) /W is induced by the “Artin-Schreier map” ¢ — t? — tPl, where t — tP! is
the p-operation on b.

7.2.4. Representations with central conditions. By the preceding discussion, a character of Z(Ug) is given
by a compatible pair (A € h*,x € g*(l)). For such a compatible pair (A, x), we define:

U = UY) D3uc A, Uy = (UG) D30, X, UGy = (US) Dzg) (X X)-
We also make the following definitions.
e Define Rep? (Ug) to be the full subcategory of Rep(Ug) where 3uc acts with generalized eigenvalue

A
e Define Rep, (Ug) to be the full subcategory of Rep(Ug) where 3p, acts with generalized eigenvalue

X-
e Define Rep*(Ug, ) := Rep™(Ug) N Rep(Ug,, ), and Rep;\((Z/{g) := Rep™(Ug) N Rep, (Ug), etc.

7.3. The Frobenius kernel. Recall that the Frobenius kernel G is the kernel of Frob,: G — G. Then
O(Gh) is a finite-dimensional commutative Hopf algebra over k, which is k-dual to Ugy as a Hopf algebra.
This induces a symmetric monoidal equivalence of categories [Jan03| 1.9.6]

Rep(G1) = Rep(Ugo), (7.3.1)

where we remind that “Rep” means finitely generated representations in all contexts. We will freely use this
equivalence categories to transport statements between Rep(G1) and Rep(Ugp).

Recall that the simple representations of G are in bijection with X*(T')": for each A € X*(T)" there is
a unique simple representation of G with highest weight A, which we denote L(\).

Recall from that a dominant weight A is p-restricted if 0 < (A, @) < p for all simple roots «; the
set of p-restricted weights is denoted X7 (T"). The simple representations of G are exactly the restrictions
of simple representations L(A) of G with highest weight A € X (T).

7.4. Graded representations. Now we invoke the chosen torus T' C G to define T-graded representations.

7.4.1. Graded Lie algebra representations. If the action of T on g fixes a central character y of 3w, then we
define Rep(Ug,,T) be the Harish-Chandra category of representations V' of Ug, together with a lift of V|,
to a representation of 7. We define in an analogous way Rep, (Ug,T), Rep, (U, T), etc.

Example 7.4.1 (x = 0). Take x = 0. then Rep(Ugo,T) is the category of graded Ugo-representations in
the sense of [Jan04, §D.5]. Concretely, Ugo has a natural X*(7T')-grading where X, € g has weight a, for
which Rep(Ugo,T) is the category of X*(T')-graded representations of Ugg.

Example 7.4.2 (Graded simple representations). Take x = 0. The simple representations of Rep(Ugo,T)
(which are the same as the simple representations in Rep,(Ug,T)) are in bijection with X*(7T'), indexed by
their highest weights, and we denote by L(\) the simple representation of Rep(Ugp, T') with highest weight
A e X*T).



36 TONY FENG AND BAO LE HUNG

Example 7.4.3 (Graded baby Verma representations). Take x = 0. Let b = n@®t C g be the Lie algebra of
B. It induces an isomorphist =5 b so for A € X*(T) we may regard d\ € t* as an element of h*. Then
(dA, x) form a character of Z(Ug). We may also regard dX as a character of b by inflation. The graded baby
Verma module Z\b()\) € Rep(Ugo, T') is defined as

Zy(N) = Ugo Dup dX
where d)\ has graded weight A and the universal enveloping algebras are equipped with their natural gradings.

7.4.2. Graded Frobenius kernel representations. Since the Frobenius kernel G; < G is normal, it generates
along with 7" a subgroup scheme G171 < G isomorphic to the pushout of G; and T along T} . Its representation
theory is studied (for example) in [Jan03 I11.9]. The equivalence and its version for 7' combine to give
a monoidal equivalence of categories

Rep(Ugo, T) = Rep(G1T). (7.4.1)

We denote by Zl()\) € Rep(G1T) the simple representation of highest weight A. To define baby Vermas of
G1T, we must make a choice of Borel subgroup. For compatibility with the literature on G17T representations
that we will cite later, we normalize the definition in the following way, which is “opposite” to Example
we denote by Z (A) € Rep(G1T) the graded baby Verma module of highest weight A for the Borel
Bt = wgB C G, ie. Zi(\) corresponds to

Zuwgo(A) = Ugo Gyp+ dX € Rep(Ugo, T)
under (7.4.1). This definition is made for compatibility with [Jan03, [GHSIS8|: our notation agrees with
[Jan03} I1.9.1 equation (2)].

Recall that the linkage class of A € X*(T) is Wag 5, A, We denote by Rep/\(GlT) the Serre subcategory
generate by simples El(/\’) for N € Wag e, A\. The linkage principle says that if X' ¢ Wz e, A, then
Rep*(G1T) and Rep’ (G1T) lie in different blocks of Rep(G1T).

Example 7.4.4 (The extended principal block). The equivalence ([7.3.1)) intertwines
Rep (Ugo, T) 2 b Rep® (G1T),

NEWep A/ WagropA

which is the extended block of A in Rep(G1T). When A is regular for the action of (IW,e,), the sum is
naturally indexed over a torsor for Q¥ := X*(T)/Q. This applies in particular when A = 0, which is the
case of most interest to us; then the RHS is called the extended principal block of Rep(G1T) and abbreviated

Rep” (G4 T).

7.5. BMR Localization. Let B be the flag variety of G. For nilpotent x € g*, let By, be the inverse image of
x under the Grothendieck alterationlﬂﬁ — g* (i.e., the Springer fiber associated to x). Below we a state in a
special case a localization theorem for Lie algebras in positive characteristic due to Bezrukavnikov-Mirkovic.
Recall that the Springer resolution N :=T*Bis the cotangent bundle of the flag variety of G.

Theorem 7.5.1 (|[BM13, Theorem 1.6.7]). Let A € X*(T) N pAg and x € g* be nilpotent and fixed by T.
Then there is an equivalence

~ 1), ~
’Y;\: Db(Rer(ugAaT)) - Db(COhgg) (N(l)))7

W, =~ . v } .
where Cohz(; (N(l)) denotes the category of T -equivariant coherent sheaves on N1 with set-theoretic
X

support on 5’)((1) (with TM -action on N = (T*B)Y) induced by the T-translation action on B).
Moreover, the equivalence %)(‘ is t-exact for the usual t-structure on Db(Rer(Ug)‘,T)) and the exotic

t-structure on Db(CothXi; (NDY).

10This is (tautologically) compatible with our identifications X*(T) & X*(A) = X, (T).
11y Part I we viewed the Grothendieck alteration as a map g — g. It is related to this one via a G-equivariant isomorphism
g 2 g*, which is exists under our characteristic hypotheses (cf. [BMROS8] §3.1.2]).
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Theorem is an equivariant enhancement of the localization theorem from [BMROS8, Theorem 5.3.1],
which gives an equivalence _
D"(Rep, (Ug")) = D(Coh ) (N D). (7.5.1)

Example 7.5.2. We will only apply Theorem for x =0 and A = 0. In this case B, = B is the full flag
variety, and Theorem supplies an equivalence
73 D (Repy(Ug®, T)) = D*(Cohf) (WD), (7.5.2)

In this case, the non-equivariant version goes as follows. Since A\ = 0, the characteristic p analogue of
Beilinson-Bernstein localization identifies D’(Rep(g®)) with the derived category of coherent D-modules on
B. The condition that y = 0 translates into the condition that the p-curvature (of the D-modules obtained
via Beilinson-Bernstein localization) is nilpotent. The ring of differential operators on B pushes forward to
an Azumaya algebra Fr, Dz on B, and D-modules on B with nilpotent p-curvature push forward exactly
to Fr, Dg-modules on (T*B)(M) = N with set-theoretic support on B(). Finally, the Azumaya algebra
Fr, D splits canonically on the formal neighborhood of B() by Cartier descent, giving a Morita equivalence
between coherent Fr, D-modules supported on B and Cohg) (/\7(1)).

The graded version is bootstrapped from the non-graded one by relating D?(Rep,(Ug®, T)) to T-equivariant
D-modules on B, which follows formally from the non-equivariant version by T-equivariantization, and then
tracking the equivariant structure through the Morita equivalence.

Example 7.5.3 (The trivial representation). Take y = 0 and A = 0. The equivalence (7.5.2)) sends the
trivial representation L(0) € Repy(Ug®, T) to i.Oga) where Ogq) is equipped with its native T(})-equivariant
structure induced by the translation action of 7™ on BW.

Example 7.5.4 (Graded baby Verma modules). The choice of Borel B C G induces an isomorphism of the
flag variety B with G/B. Let b = n@®t C g be the Lie algebra of B. Then from [BMRO0S], §3.1.4] we see that
(7.5.2)) sends 25(2;)) to Jp, the T-equivariant skyscraper sheaf on B™) supported at b regarded as a point of
BW | with its native T-equivariant structure induced by the translation action of T on B™M).

7.6. Monodromy-centralizer action. We will define an action of W on K(Repy(Ug®, T)) which is parallel
to the monodromy-centralizer action of §6.6]in a direct sense.

7.6.1. Graded Lie algebra and Frobenius kernel. Let N(T) < G be the normalizer of T. Then the adjoint
action of N(T) on g induces an action of N(T) on Repy(Ug®,T). Under the equivalence (7.3.1)), this
corresponds to the action of N(T') on Rep?(G1T) induced by conjugation action of N(T) on GiT < G.

Now note that at the level of Grothendieck groups, the subgroup T<N(T) acts trivially on K(Rep?(G1T))
since its action is inner. Hence we obtain an action of N(T)/T = W on K(Rep”(G1T)) = K(Rep,Ug®,T)).

In addition, via the obvious quotient map G1T — T we have an action of Rep(T™) on Rep®(G1T)
by inflation and tensoring. On Rep,(Ug®, T') this corresponds to the action of changing the grading: there
is an identification T() = T since T is defined over F,, inducing X*(T(")) = X*(T). With respect to this
identification, the relative Frobenius Frp: T'— T induces the second map in the sequence

X*(T) = x* (1) 25 x*(7)
whose composite is multiplication by p. Hence A € X*(T) = X*(T™M) acts on Rep,(Ug®, T) by translating
the grading by pA.
At the level of Grothendieck groups, this gives an action of X*(T) on K(Rep®(G1T)) = K(Rep,(Ug°, T)).
Together with the earlier W-action, these define an action of W = X*(T) x W on K(Rep,(Ug®,T)), which
we call the monodromy-centralizer action. (This terminology is still unexplained, but is made to be parallel

to §6.6.1) We denote the action of @ € W by @ - (—).

Example 7.6.1 (Graded simple modules). Recall that Ly()) is the simple representation in Rep®(GT)
with highest weight A. For u € X*(T'), we have

t' - [Ly(N)] = [L1(A + pp)] € K(Rep (G1T)). (7.6.1)
For w € W and A € X§(T') (cf. for the notation), we have
wp (L1 (V)] = (L1 (V)] € K(Rep”(GiT)
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because for such A, the simple representation Zl()\) extends to a simple representation of G, where the
conjugation action of N(T') is inner, hence trivial on K(Rep(G)). Together with (7.6.1)), this determines the
(W, -)-action on all simples, and shows that it permutes the classes of simples.

Example 7.6.2 (Graded baby Vermas). Recall that Z,()) is the baby Verma representation in Rep, (Ug°, T)
with highest weight A and Borel b. Note that the central character conditions force A € pX*(T'). For any
u € X*(T), we have

1y [Z6(N)] = [Zo (A + pu)] € K(Repg(Ug”, T)). (7.6.2)
For any w € W, we have according to [Jan03l §9.3]
w p [Z6(N)] = [Zus(wA)] € K(Rep, (Ug", T)) (7.6.3)

where wb is the translate of b by any w € N(T) lifting w. Together with (7.6.2), this determines the
(W, -)-action on all baby Vermas, and shows that it permutes the classes of baby Vermas.

7.6.2. Coherent sheaves. There is an obvious action of Rep(T™) on Cohggi (N M) by tensoring with equi-

variant representations. At the level of Grothendieck groups, this induces an action of X*(T™M) = X*(T)
on K(Coh) (W) 2 K(Coh”" (BM)Y).

Also, writing Cohg&) (N D) = Cohga) (TM\ND), we see that there is an action of N(TM) by left multi-
plication. At the level of Grothendieck groups, it factors over 7} inducing an action of W = N (T(l)) /T M
on K(Coh(T™M\BM)) by left translation.

Together, these combine into an action of W = X*(T(M) x W on K(Cohg((i)) (NM)Y), which we denote
(W7 )

Lemma 7.6.3. At the level of Grothendieck groups, the equivalence (7.5.2)) intertwines the action of (W, “p)
on K(Rep, (Ug®, T)) with the action of (W,-) on K(Cohgfi; (N DY),

Proof. The action of X*(T(M) = X*(T) C W on both sides can be described as tensoring with representa-
tions of TW and it is clear from the construction that the equivalence intertwines these operations.

It follows from inspecting the construction that also intertwines the actions of W. Let us sketch
why: the point is that the map Ug® — I'(B, D) is G-equivariant for the adjoint action of G on Ug® and the
left translation action of G on B. This in turn follows from the fact that the action map

GxB—=B

is equivariant for the conjugation action of G on itself and the left translation action on B. Hence a fortiori
the map Ug’ — T'(B,Dp) is H-equivariant for any subgroup H < G. Apply this to H = N(T) and the
result follows, using that the adjoint action of N(T) induced the W-action on K(Rep,(Ug",T)), while the

translation action of N(T") induced the W-action on K(Cohggi (N DY),
]

7.7. Braid action. Recall that the extended affine Braid group B has generators Ty for w € W, and
relations T T = Tg if len(w') = len(@) + len(@'). We have B = B,g x €, where B,g is the affine Braid
group associated to the Coxeter group Wg.

We will define an action of W on K(Repy(Ug®,T)) which is parallel to the affine Springer action of
in a direct sense.

7.7.1. Graded Lie algebra. Let (x,\) be as in Theorem [7.5.1} In [BMRO6, §2|, Bezrukavnikov-Mirkovic-

Rumynin constructed an action of B on D?(Rep*(Ug, T))'3 We will describe the action of Ty for @ € w.
First, recall that for any p,v € X*(T') there is a translation functor

T Rep”(Ug,T) — Rep”(Ug, T).

For w € €, the action of T, € B on D®(Rep”(Ug, T)) is via T*; in particular, it is exact.

1% i

128trictly speaking, they did not consider the graded version, but the construction also goes through in that case.
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If u lies in the interior of the alcove and v lies on a codimension-1 face, then we define the reflection
functor

Ry, =T} oT]: Rep"(Ug,T) — Rep"(Ug, T).

The functors R, are naturally isomorphic for different choices of v in the interior of the codimension-1
face, so we fix a choice and denote the reflection functor (also known as wall-crossing functor) by R, where

|y

s € W is the reflection through the codimension-1 face. There is a distinguished triangle of functors on
DP(Rep*(Ug, T)),
Id - R; —» I.

Then the action of T, € B on D?(Rep”(Ug, T)) is via I7.
These functors are compatible with the Frobenius-center, hence the same formulas induce a B-action on
D*(Rep, (Ug, T)).

7.7.2. Geometric braid action on coherent sheaves. There is also a B-action on D?(Coh(§"))) constructed in
|[Ric08, Theorem 1.4.1] which preserves each Db(CohB(1> (g™M)). Then Riche shows in [Ric08, Theorem 5.4.1]

that the equivalence of Theorem intertwines the two B-actions. For the graded case, it is also true that
the equivalence Theorem intertwines the two B-actions, by the same argument as for Riche’s result in
the non-graded case.

7.7.3. Converting to right actions. Henceforth we convert the B-action to a right action by the anti-involution
B = Berp given by the inverse map. This is for compatibility with how we normalized the affine Springer
action on HBM(Y ) to be a right action.

7.7.4. Steinberg action. Let Stg := N XN N. This is defined in characteristic p by our convention, but there
is an analogous construction over C that we denote St c. Recall that the Kazhdan-Lusztig isomorphism
(conjectured by Deligne-Langlands) identifies K(Coh®*%™ (Stg.c)), as an algebra under convolution, with
the affine Hecke algebra of (. This induces an isomorphism K(Coh®(Stg.c)) = Z[W} A small argument,
which we presently give, shows that the same holds in characteristic p.

Recall that there is a specialization map in K-theory for a Noetherian scheme X flat over a DVR (cf.
[BMROS, §7.1.3]). When the DVR is Z,, we denote it as

sp, 0 K(Coh(Xq,)) = K(Coh(Xr,)). (7.7.1)

It is defined on a coherent sheaf 7/ Xq, by choosing a Z,-lattice and then taking the (derived) tensor product
with F,,. If a split reductive group scheme H/Z, acts on X/Z,, then there is also an equivariant version.

Let Stg,z, = /\~fzp XNz, ./\~fzp and define Stg q,, etc. analogously.
Lemma 7.7.1. The map
sp,_o: K(Coh“ %™ (Stg q,)) — K(Coh“ % (Stgr,)) (7.7.2)
induced by St z, is an algebra isomorphism (both sides being equipped with the convolution product).
Proof. Over Z,, the identification
Nz, Xspec 7, Nz, = T*(Bz,) Xspec z, T* (Bz,)

realizes the Steinberg variety St as the conormal space (relative to Z,) to the Bruhat stratification of
Bz, x Bz, by diagonal Gz -orbits. In particular, Stg z, admits a stratification into affine spaces over Z,,.
This equips both sides of (7.7.2) with filtrations such that each graded is the specialization map for an affine
space, which is an isomorphism (cf. the Cellular Fibration Lemma [CGI0, §5.5]). Therefore, sp,_,, is an
isomorphism of groups.

The algebra structure on either side is given by convolution, which is defined because over any field NV is
smooth and the projection N'— N is proper. Since Nz is smooth over Z, and the projection Nz —> Nz
is proper, the operations constituting convolution are compatlble with sp,, . Therefore the map is
compatible with the convolution. O
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Note that the flat base change from Q, to C induces an isomorphism
K(Coh®*%™ (Stg.q,)) = K(Coh®* %™ (Stg.c)),

again because of the stratification into affine spaces. We deduce that K(Coh®*Gm (Sta,r,)) is also isomorphic
to the affine Hecke algebra for G.

We resume working over a field k£ of characteristic p, and omit the subscripts indicating the base field.
For any nilpotent x € g*, there is a natural (right) Steinbery action of K(Coh®*®™ (Stg)) on K(Coh” (B,)),
the K-theory of the corresponding Springer fiber, by convolution on the right. On the other hand, the T-
equivariant version of the construction of [Ric08| Theorem 1.4.1] induces a right action of B on Db(CohB (J\/ ).
At the level of Grothendieck groups, according to [BM13l Theorem 1.3.2], if x € g* is nilpotent then the
action of B on K(CohT (N)) = K(Coh” (B,)) factors through the Steinberg action of w.

Repeating this discussion with appropriate Frobenius twists, we obtain a Steinberg action of W on
K(Cohgsi; (N D)), which we denote (W,e). It follows from (the graded version of) Riche’s Theorem that:

Lemma 7.L2. The action ofﬁi on K(Rep,(Ug®, T)) induced by factors through an action ofW that
we denote (W, e,).

Furthermore, at the level of Grothendieck groups the equivalence intertwines the action of (W, o))
on K(Repy(Ug®, T)) with the action of (W, o) on K(Cohggi (N DY),
7.7.5. Comparison to characteristic zero. We want to compare the K-group and actions in Lemma

to the analogous situation in characteristic zero. The flat family Bz, /Z, induces a specialization map in

equivariant K-theory,
sp,_o: K(Coh’@r (Bg,)) — K(Coh™™» (B, )). (7.7.3)
Lemma 7.7.3. The map (7.7.3)) is an isomorphism. It has the following properties:
(1) It is equivariant for the action of (W,-) and also for the Steinberg action of (W, e).
(2) It takes [Opq | to [Opg |-
(3) For each Borel subgroup B < G defined over Zy,, it takes the skyscraper class [0pq, ] € K(CohTar (Bq,))
to the skyscraper class [pg | € K(Coh™F» (Br,)).
Proof. The Bruhat stratification decomposes Bz, into affine spaces over Z,. Therefore (7.7.1) is an isomor-
phism by the same cellular fibration argument as in the proof of Lemma
The compatibility with the action (W,-) is evident from the definitions. The compatibility with the
action (W, e) follows from that the fact that the action maps come from tensor products on smooth ambient
spaces or pushforward along proper morphisms defined over Z,, like in the proof of Lemma which are
therefore compatible with specialization.

The computation of sp on the structure sheaf and skyscrapers is evident from the definition.
O

We note again that the flat base change from Bq, to Bc induces an isomorphism of K-groups, by the
Bruhat stratification into affine spaces.

Remark 7.7.4. The specialization map sp,,_,, and base change from Q,, to C are analyzed for the K-theory
of more general Springer fibers (without the T-equivariance) in [BMROS, Proposition 7.1.7].

7.8. Upshot. Summarizing, we have:
Theorem 7.8.1. There is an isomorphism
K(Repo (U, T)) - K(Coh™ (Bc))
which has the following properties:
(1) It intertwines the left action (AW/, -p) on the LHS with the left action (AW/, -) on the RHS.
(2) It intertwines the right action (W, e,) on the LHS with the right action (W,e) on the RHS.
(3) It sends [L(0)] € K(Rep,(Ug?, T)) to [Op.] € K(Coh™ (Bc)).
(4) It sends [Z(2p)] € K(Repy(Ug®, T)) to [6p.] € K(Coh™ (Bc)).

Proof. Combine Lemma [7.7.3] Lemma [7.7.2] and Lemma [7.6.3] O
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8. SHADOWS OF MIRROR SYMMETRY

Our goal is to compare the representation-theoretic information of G' measured in K(Rep,(Ug®,T)) with
the geometric information of G measured in Chtop(Y,). In the preceding section we explained a more
geometrical incarnation of K(Rep,(Ug®,T)) in terms of coherent sheaves on the flag variety for G. In this
section, we will connect this with Chyo,(Y,). This connection may be viewed as some manifestation of
homological mirror symmetry, which relates Lagrangians on a symplectic manifold and coherent sheaves on
a mirror variety. This provides in particular the passage from G to its dual group G.

Proposition 8.0.1 (Bezrukavnikov—Boixeda Alvarez—McBreen—Yun [BBAMY?23|). Let s € t be regular
semisimple and v = ts € t[[t]]. There is a map

K(CohC (Nc)) — Cheop(Ys), (8.0.1)

with the following properties:

(1) It intertwines the actions (W,-) defined in for the LHS and the RHS.

(2) It intertwines the actions (W, e) defined in ~‘, for the LHS and in ~m for the RHS.
(3) It sends [Op.] € K(Cohg‘é (Ng)) to the fundamental class of the unique (top-dimensional) irreducible
component of Y., which is the pre-image of [t°] € Grg,r, under the projection map Flgy, — GrgF,-

Remark 8.0.2. The left side of (8.0.1)) does not depend on = while the right side seems to depend on it.
Recall however that in Example that Chop(Y,) is “independent of 4” in a suitable sense. With this
said, we may choose 7 to come from a regular semisimple element of tz_[[t]], and by Example again it
is equivalent to prove the analogous statement with Y, ¢, the complex version of the affine Springer fiber,
in place of Y.

Proposition is a consequence of constructions in [BBAMY23|. For the sake of being self-contained,
we sketch the relevant constructions below, while emphasizing that they are entirely due to [BBAMY23|; we
do not claim any original results in this section.

Remark 8.0.3. To explain the title of this section: the map is the shadow of an instance of homo-
logical mirror symmetry which predicts in some form that given a symplectic manifold M with a Lagrangian
skeleton L, there should be an equivalence between a “Fukaya category’ﬁ of microlocal sheaves uShy, (M)
with supports on L, and the derived category of coherent sheaves on a mirror algebraic variety. We do
not attempt to be precise, because the technicalities are complicated and prevent currently existing general
conjectures from covering the case at hand. The paper [BBAMY23| establishes an equivalence of categories
which should be interpreted as “homological mirror symmetry” in this instance. In this case the coherent
category is the obvious one; on the other side Y., will be seen to be Lagrangian in a certain “de Rham moduli
space” M, studied in [BBAMY?22|, and the relevant “Fukaya category” is a certain subcategory of microlocal
sheaves on M, supported on Y,. In particular, this will imply that the maps in are isomorphisms
after tensoring with Q.

We emphasize that our applications do not require the deep categorical equivalences forthcoming in
[BBAMY?23|; we require only the construction of a functor (explained below), which is relatively easy (given
existing technology). Interestingly, although Proposition is a completely decategorified statement, we
do not know how to produce the map except by categorical considerations.

The next two subsections, §8.1and §8:2] will not be logically used in the rest of this paper. They consist
solely of summarizing certain excepts from [BBAMY23], in order to elucidate the nature of Proposition m

8.1. Constructible realization. We work over the complex numbers C. We will define a “constructible
realization” of Cohg (A).

Abbreviate K = LtG for the arc group of G and let I ¢ K be the Iwahori subgroup corresponding to
Bca.

13T his incarnation of the Fukaya category is in the spirit of [NS20] rather than Kontsevich’s original formulation.
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8.1.1. FEquivariant sheaves. Let LIG’ be the first congruence subgroup of the negative loop group, whose
value on a C-algebra R is

L7 G(R) := ker(G(R[t™']) — G(R)).

Fix a regular semi-simple s € , and write v := ts € §[[t]]. Using the Killing form, we may also view s as
an element of g*. There is a filtration of Ll_é by congruence subgroups, and the quotient by the second
congruence subgroup gives a surjection L1_G — g. We write v for the additive character of LI_G' induced
by inflating s € § = §* along this map. We write ¥ for the exponential D-module on A' pulled back to a
character sheaf on LIG.

For a space with an action of L7 G, there is a derived category of sheaves equivariant with respect to
(L7 G,¥). More precisely, we write D(...) for presentable stable co-categories and D(...) for the corre-
sponding homotopy category, and D(L;G‘,\y)(' ..) or D(LféLq’)(' ..) for the r(?slzective equivariant derived
categories. We apply these considerations to Gry := LG/K and Flx := LG/I. More generally, for any
parahoric subgroup I ¢ P ¢ K we consider the equivariant derived categories

Dyp = D(L;é,\p)(LG/P)-
We will construct a functor
D Coh}(N) = D, 5 (8.1.1)
following [BBAMY23| §6].

8.1.2. Ingredients. To begin, we tabulate some categorical equivalences.

(1) Bezrukavnikov-Finkelberg constructed in [BFO8] a monoidal equivalence

Dy (Grg) & D Coh®(0 X4 0) (8.1.2)

L
where the monoidal structure is given by convolution on both sides. Here and throughout, x means

the derived fibered product.
(2) Bezrukavnikov constructed in [Bezl6] a monoidal equivalence

D;(Flg) & D CohC (N x4 N) (8.1.3)

where the monoidal structure is given by convolution on both sides.
(3) Arkhipov-Bezrukavnikov-Ginzburg constructed in [ABG04] an equivalence

L~
D (Flg) = D Coh®(0 x4 N). (8.1.4)
Moreover, the LHS carries a left convolution action Dk (Grs) and a right convolution action by

D;(Flx), while the RHS carries a left convolution action by D Cth(O ig 0) and a right convolution
action by DCth(J\N/ Xg N ). The work [Bezl6] shows that the equivalence respects these
actions via (8.1.2) and (8.1.3).

(4) Bezrukavnikov—Boixeda Alvarez-McBreen—Yun construct in [BBAMY23| Theorem 4.1.3] an equiva-
lence

Dy & — D(Rep(T)). (8.1.5)

Moreover, the LHS carries a lattice translation action on the left by X, (T) and a right convolution

action by Dg(Gre), while the RHS carries a tensoring action by Rep(T') on the left and a right
L
convolution action by D Cth(O xg 0). In [BBAMY23, §4.2] it is proved that the equivalence (8.1.5))

respects the left actions under the identification between Rep(T) and X*(T') = X, (T')-graded vector
spaces, and in [BBAMY?23, §4.3] it is proved that the equivalence (8.1.5|) respects the right actions

under (8.1.2)).
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8.1.3. Conwvolution. Convolution induces a functor

IDw,K ®D}’<(Gré) DK(FIG) — Dw,f' (8.1.6)
(In fact, this is fully faithful because Gry and Flx are ind-proper, but we will not need this.)

Convolution induces a fully faithful functor
D(Rep(T D Coh®(0 x4 N') — D Coh” (N
Rep(T)) &, o | DCOE(0 g &) = DCab” (R),

whose essential image is precisely D Cohk(A). Combining this with the equivalences in (1), (2), (3) and
using (8.1.6) gives the desired functor (8.1.1). Moreover, by construction the functor is equivariant for the
left action of Rep(T), and right convolution action of (8.1.3]).

Remark 8.1.1 (Relation to Geometric Langlands). The category Dy, j is denoted 25¢ in [BBAMY23]. There
is a pullback functor D, g — D, j. Define Dy, C D, ; to be the full subcategory generated by D K under
the right convolution actlon of D (FIG) Then [BBAMY23 Theorem 6.2.1] shows that the functor is
an equivalence onto D,,. The category D, may be interpeted as a certain category of sheaves on the moduli
stack of G‘—bund}es on P! with Iwahori level structure at 0 and certain wild ramification at oo, while the
category D Cohg (./\7 ) may be interpreted as a category of coherent sheaves on a corresponding moduli space
of (Betti) local systems. As such, the equivalence (8 may be viewed as proving a certain wildly ramified
instance of global Geometric Langlands — see [BBAMY?Q, §5].

8.2. Microlocalization. We continue to work over the complex numbers C. Let v = ts for regular semisim-
ple s € t be as in the previous subsection, and Fl, := Y, c. The upshot of the constructible realization is a
map

K(Coh e (Nc)) — K(DI(’L, e (Flg))- (8.2.1)

To obtain the map of Proposition [8. we compose with the singular support map. In this situation
the singular support will be a Lagranglan in the “tw1sted cotangent bundle” T (Ly G\ Flg), and it turns out
that the affine Springer fiber F1, is essentially such a Lagrangian.

8.2.1. Moduli stack of bundles. We will now be more precise, following [BBAMY23| §3]. We fix the curve
P! over C. Let Iy = I be the Iwahori group at 0 and Kgo be the second congruence subgroup at oco. We

consider Bun@(io,f(go) with S-points (€, 7eo, 7y ) Where:

e £ is a G-bundle over P}.
e 7. is a trivialization of £ along the divisor 2005 < Pk.
® 7y 3 is a B-reduction of £ along the divisor 0s < Pg.

In particular, the group K! /K2 g acts on Buné(io,f{go) through changing the level structure 7,
inducing a moment map

p: T* Bung(Ip, K%) — §*.
We write ¢ € g* for the image of s € § = §* given by the Killing form. We write ¥ for the additive character
sheaf on g pulled back from the exponential D-module via .

8.2.2. Hitchin stack. Define the Hitchin stack M (1o, K%) := T* Bung(Iy, K2)), viewed with the canonical
symplectic structure coming from its nature as a cotangent bundle. Then define M, as the symplectic
reduction
My = (M(10,K2) /4 8) = ™' () /d]-

In preparation for describing its functor of points, we trivialize wp1 ([oo] 4 [0]) with the differential form dt /¢,
thus identifying wp:(2[oc] + [0]) = wp:([oc]). Then My, has S-points the groupoid of (€, Too, 7y 5, ¢) Where
(€, 700, T0,8) € Bung(Ip, K2.)(9), and ¢ € H(PL, Ad* € ® wp1([oc])) such that

e Around ocog, ¢ = tdt plus higher order terms under the trivialization 7.

® Reso, () € n under the trivialization 7, 5.

8.2.3. Hitchin fibration. By its nature as a symplectic reduction, M, carries a natural symplectic structure.
There is a Hitchin fibration fy: My — Ay, which is a completely integrable system [BBAMY23, Lemma
3.2.3] and a Gy,-action on Ay contracting it to a central point ay, € Ay. The central Hitchin fiber f, Yay)
is Lagrangian in M.



44 TONY FENG AND BAO LE HUNG

8.2.4. Microlocalization. By the uniformization of Bung for P!, there is a canonical equivalence
Dy i = Dg,w) (Bung(Io, K2))).
Then the formation of singular support induces a map
K(D{y vy (Bung (I, KZ,)) = Chiop (£, ' (ay)). (8.2.2)
Remark 8.2.1. The map is categorified by the microlocalization functor

piLoc: Dy w)(Bung(Ip, K2)) — ,uShf;l(aw)(Mw),

where the right hand side is the category of microlocal sheaves with support in fJ ! (ay). The singular support
of F € Dl(’gj,)(BunG(ig, K?2)) is the naive support of uLoc(F).

8.2.5. Relation to affine Springer fiber. By [BBAMY23l Proposition 3.4.1], there is a canonical homeomor-
phism Fl, — f 1(aw), which in particular induces an isomorphism

Chiop(fy, ' (ay)) = Chiop(FL,) (8.2.3)

compatible with the two actions of W. Finally, composing (8.2.2) with (8.2.3) and ({8.2.1) gives the desired
map of Proposition [8.0.1

8.3. The microlocal support map. We may now define a map that casts representations of G;T onto
cycles in Chyop(Y,).

Definition 8.3.1. We define the microlocal supporlﬁ map
SS: K(Repy(Ug®, T)) — Chyop(Ys)

to be the composition of the maps from Theorem and Proposition [8.0.1
Note that we have

K(Repy(Ug”, T)) = K(Rep(Ugf, T)) =+ K(Rep’ Ugo, T)) = K(Rep” (G1T)),

where the first two isomorphisms come from the fact that the centers act by scalars on simple representations,
and the last isomorphism comes from ([7.3.1]). Therefore we will also view SS as being defined on any of these
other groups. In Part 3, we will mostly view it as a map

SS: K(Rep? (G1T)) — Chiop(Ys).

Since Chyop(Y4) € HEY (Y,), we will also regard SS as having target in HE) (Y, ) at times. By Theorem

and Proposition we know that SS has the following properties.

(1) It intertwines the action of (W, -p) on the LHS (defined in ti with the action of (W, -) on the RHS
(defined in §6.6).

(2) It intertwines the action of (W, e,) on the LHS (defined in !i with the action of (W, o) on the
RHS (defined in §6.6)).

(3) It sends [L(0)] € K(Repy(g® T)) to the fundamental class of the unique (top-dimensional) ir-
reducible component of Y. which is the pre-image of [t°] € GrG,Fq under the projection map
Fléqu — GrG‘,Fq'

14The notation “SS” is an abbreviation for “singular support”. This is synonymous with “microlocal support” which is often
denoted psupp; we do not use the latter notation because it would render certain equations too long.
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Since the map SS is essential, and its definition meandered through a rather serpentine construction, we
recapitulate it in the diagram below, where the left (resp. right) column pertains to G (resp. G).

K(Rep’(GiT))
——— =
K(Repo(Ug?, T)) ---==-rsnnmmmmmmgzreennnnnnnns -4 Chiop(Y-)
BMR localizationl Tsppﬂo
n ~
K(Cohgu) (N(l))) Chtop(Y'y,C)
(5ppﬂo)71l W Tmicrolocalization

K(Cohig (Nc)) K(Dy)

geometric Langlands
Remark 8.3.2. The identification Chyop(Y~.c) — Chop(Y,) from Example was not defined via
sp,_,0- However, from the observation that the degeneration from characteristic zero to characteristic p is

constant on T-fixed points, it is clear that the identification using the GKM description coincides with SPp_s0-

9. DEGENERATION OF AFFINE SPRINGER FIBERS

In this section we assemble the ingredients from the preceding sections in order to finally do geometric
calculations related to the Breuil-Mézard Conjecture (although the precise connection will not be explained
until Part 3). Our goal here is to “understand” the limit cycle sp,,_,o[X,(A)] € Chop(Y,). We will express
this cycle in terms of representation theory via the microlocal support map from Definition [8.3.1

The first difficulty is that the specialization process is a priori mysterious, at least in terms of the basis
of irreducible components, since specialization does not (in general) interact well with the properties of
being reduced or irreducible. A key tool for us is equivariant localization, which allows to calculate the
specialization in terms of torus-fixed points instead. We illustrate this in §9.1} where we calculate explicitly
the equivariant fundamental class of sp,,_,[X,(A)].

We apply this in to express sp,,_,o[X, ()] in terms of the case A = p. In Part 3 this calculation will
be used to reduce the Breuil-Mézard Conjecture for all sufficiently small A\ to the fundamental case A = p.

At the next stage we want to identify sp, ,4[X,(p)] with the microlocal support of a particular baby
Verma module in RepO(GlT). Although we know an explicit formula for the equivariant fundamental class
of the former object, it does not seem to be easy to compute the latter object in these terms. Hence we have
to take a more indirect approach. In we prove a “Recognition Principle” that characterizes the class
sp,0[X4(A)] in somewhat more conceptual terms. Then in §9.4{and Appendix jointly with Bezrukavnikov
and Boixeda Alvarez, we check that this Recognition Principle applies to the desired baby Verma.

9.1. Equivariant class of limit cycles. We fix, once and for all, a generator wop of Q' dimt  We also
abbreviate S := Sj. Define
Bi= ][ doeSymgq,(t)=S. (9.1.1)
acdt
Recall from Example that there is an isomorphism X, (T) = (X?YZEO)T sending A + t*, which identifies
(implicitly using wiop

HEM’T((XE/:EO)T)g @ S[t)\]. (9.1.2)
NEX.(T)
Recall that if X is T-equivariantly formal, then for a € HEN(X) we write ag € HE}];[’T(X ) for its

equivariant lift, which exists and is unique by Remark [6.2.1, This applies to X = X7, whose T-fixed
points may be identified with X, (7T) as in Example

Lemma 9.1.1. Let g € A%Qq be non-zero and let A € X,(T)* be reqular. Then, with respect to (9.1.2)), we
have
5 _ 1 < _ -
LocT([XfY*E0 Ny) = 3 Z sgn(w) [t e HEM7T((X§*EO)T) ®s Frac(S). (9.1.3)
weW
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Proof. Since ) is regular, by Lemmathe Bialynicki-Birula map takes X5~ £0()) isomorphically to G / B.
Therefore, the T-fixed points of X570(A) are identified with {[t“»‘]}wew C X.(T) = (GraQq)T.

As explained in Example the component at wB € (G/B)” of Loc ([G/B] ) € HOYVT(GYB) is
(%) Then we conclude using that wB € G//B corresponds to the fixed point [t%] € X£7%(A) under the
Bialynicki-Birula isomorphism X5=*0(\) = G/B. O
Corollary 9.1.2. With 8 defined as 1) we have

LocT ((X5=(p))7) Z sgn(w)[t?] € HEMT(X5=0)T) g Frac(S).
6 weW
Proof. This follows from Lemmal[9.1.1] (the equivariant version of) Proposition and the fact that sp__,,
is the identity map in the common GKM description of HEM T(X‘S) |

9.2. General Schubert cells. In this part we consider X5="(A+p) < X577, the closure of X?’éo NS°(A+p)
indexed by general A € X,(T))". We will calculate the fundamental class [X5="(\+p)] in terms of the “basic”
case A = 0, which was analyzed in Lemmal[9.1.1] This will have significance for the Breuil-Mézard Conjecture
with Hodge-Tate weights A + p.

By the Equivariant Localization Theorem and Example [6.3.2] we have

HPMT(X5=20) @5 Frac(S) = @) Frac(S)[t"]. (9.2.1)
pEX.(T)
This has an obvious (left) action of X, (T), through left translation on the indexing set.
Theorem 9.2.1. Let ¢ € A}Qq be non-zero and \ € X,.(T)* = X*(T)*. Then we have
LocT[XS=20 (A + )l = Y mu (At - LocT [XE=50 ()] € HEMT(XE=20) @ Frac(S).
n<A

where my,(A) is the multiplicity of the weight p in the highest weight representation Vy of Gq,. Here the
action t*- is the one defined just above, through (9.2.1)).

Proof. According to Lemma [9.1.1] we have

Lo (X570 + plly) = 3 3 sen(w)e* ) e ) Frac(s (9.2.2)
weW neX*(T)
and
1
Loc (XS (p)lg) = 5 D sen(w)[™’] € €D Frac(s)["] (9:23)
weWw neX*(T)

From (9.2.3) we find that
Z m (M- [X57 ()] ¢ Z my (A < Z Sgn(w)[tw”]> € HEM’T(X?SO) ®g Frac(S).  (9.2.4)

n< ;1,<>\ weWw

Below we recall the Weyl character formula. We regard the characters of representations of G as elements
of the group ring Qu[X*(T)] = Q¢[X.(T)]. When writing characters, we use e* € Q,[X*(T)] to represent
the group element A € X*(T) = X, (T). The Weyl character formula says

sgn(w)e? )
3 (e = Zewew BT g e

= Macos (27— c272)
and the Weyl denominator formula says

IT (2 =)= " sen(w)e™” € Qu[X*(T)).

aedt weWw
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Combining them, we find that

S sen(w)e” ) = 3 (0 (Z sgn(w)ewﬂ> e QX" (1))

weW <A weW

Hence we have an identity

Z sgn(w) [t )] = Zm# <Z sgn(w t“’”) @ Frac(S (9.2.5)

weW B<A wew pEX . (T)
Now the desired equality follows from comparing (9.2.2)), (9.2.4), and (9.2.5). O

Below, for ease of notation we abbreviate Cy for the irreducible component Y. (w) of Y., from Corollary
5, for all W € W™2. As usual, [Cg] is its cycle class and [Cg)s its T-equivariant lift.

Lemma 9.2.2. The irreducible component Cywo C Y (< p) has t*° as a smooth point, and the equivariant
Euler class of [Cywe)p at P is

eT(tw”,thp) _ sgn w
B
Proof. This follows from the proof of Lemma [3.7.2 and the explicit description of the affine space chart
around t"*. ]

9.3. Recognition principle. Let S :=S;. We will refer to the GKM description of H*BM’T(YW) inside

HPMT(YT) @5 Frac(S) = @) Frac(S)[w]
wew

Proposition 9.3.1 (Recognition principle). There is a unique class [Z] € HE}\S T(Y.Y) which in the GKM
description has the following properties:

(1) (BEigenclass) [Z) has equivariant support contained in X,(T) C W.
(2) (Support bound) [Z] has equivariant support contained in the admissible set

Adm(p) :={w € W: @ <t“  for somew € wt.
(8) (Normalization) The component of [Z] at t* is 1/ € Frac(S).

Remark 9.3.2. Condition (1) can be formulated alternatively as an eigenproperty (cf. Proposition
below) for the lattice parts of the two actions (W,-) and (W, e), which can be thought of as “Hecke actions”
(because they are literally given by convolving with Hecke operators in the constructible realization of §8.1)).
This explains why we call (1) an “eigenclass” property

Proof. Let [Z] and [Z'] be two elements of Hi%’T(Y ) satisfying all of these conditions. Then [Z] — [Z] is a

class 6§ = Y aglw] € HEM T(Y,Y) with equivariant support concentrated in X, (7') N Adm(p), but not on t*.
Note that as Cg is the closure of Cg N S°(w), [Cgly has equivariant support only on elements < w. We

have
5 = Z mﬂ;[Cﬂ;]T
weWw
for some integers mg. If w is a maximal element such that mg # 0, then d has a non-trivial coefficient at
[w], so w € Adm(p). We conclude that only w € Adm™*(p) contributes in the above sum.
Let w € W, and a be a simple root of T" such that ws, > w, and set & = wt’sqw~'. Then:
e (cf. [BAL21l Proposition 4.6 The 1-dimensional T-orbits of Flé’Fq joining t“? and w, resp.
ts«? and @ belong to Y., (< p). Furthermore, both these orbits are associated to the character
wa € X*(T).

1511 an earlier draft of this paper, the main result of this section was proved using a different Recognition Principle formulated
in terms of a more abstract eigenproperty, before we realized that we could instead work with a more explicit characterization
in terms of translation elements.

16T his is a reference to [GKMO04), §5.11], which focuses on the version of the affine Springer fiber over C, but the same
analysis applies in characteristic p, as explained in Example
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e By [LHLM23al, Proposition 2.2.6], the connected component of Y;‘er W& passing through t*? intersects
Y, (< p)T = Adm(p) at exactly ¥, U and tV5r.
The GKM description thus gives

Resagwa(atwe ) + ReSqwa (a7) + ReSqwa (atwsar) = 0.

But our hypothesis implies that the middle term vanishes (since @ is not a translation), hence the two outer
terms must either both vanish or both not vanish. Since ¢*? is maximal in Adm(p), [Ciwe]s is the only
irreducible component that contributes to asws.r. Hence by Lemma we have

sgn w

/B )
and we have an analogous formula for aswsar. Combining this with the previous observation, we learn that
mywe and Mmywsapr are either both zero or both non-zero. Since we also have my, = 0, this gives mw, = 0 for
all w € W, so mpwe = mywsar = 0.

Finally, if § # 0, then there must be a maximal element w such that mgz # 0. Then § has non-trivial
coefficient at [w], so W is a translation in Adm™®(p). However, Lemma below shows that such a
translation must be of the form ¢, contradicting what we showed in the previous paragraph that mw, = 0
for all w € W.

Qiwp = Mwp

O
Lemma 9.3.3. We have

Adm™®(p) N X.(T) = {t**: w € W}.
Proof. Suppose t* € Adm"™®(p). Then by [LHLM23b, Corollary 2.1.7] we have
t' = Wy "woiy
where

e Wy, € Wy is restricted, i.c., W (Ag) belongs to the fundamental box (cf. §2.3.1)),
e Wy € W is dominant, i.e., wz(Ap) belongs to the dominant cone,
o Wy T wot Pwy. (See [Jan03| I1.6] for the definition of the 1 order.)

The fact that @, ‘wew; is a translation in X, (7T") shows that

t"wot~Pw; = we for some v € X, (T).

Since any dominant alcove is uniquely a dominant translation of a restricted alcove, v is dominant. But then
wot~Pwy T Wa, so the third bullet point above forces ¥ = 0, and

~ 1~ —p =1, ~ _ qwt
Wy ~WoW1 = (w()t ”wl) wowy, =1t p,
where w; is the image of wy in W. O

Remark 9.3.4. The proof of Proposition [0.3.1] applies also to deformed affine Springer fibers as long as
they satisfy the GKM conditions. By Lemma [3.7.2] this holds for v = ts when s is regular semi-simple and
e =0, and if s is furthermore h,-generic then it holds for Yffl (< p). The only step in the proof that requires

additional commentary is the calculation of 1-dimensional T-orbits, which in the deformed case is done in
the proof of [LHLM23b, Proposition 4.3.].

Lemma 9.3.5. The class .
- BM,T
5pp—>O[Xi O<p>]T € Htop (Y’Y)
satisfies the conditions of Proposition[9.3.1]

Proof. By §2.6.1] we have a commutative diagram
il 7 5P, T 7
HATXT) == BT

| |

HPT(K,) s mP (Y
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From this and Corollary we conclude

Loc (sp,,o[X5(p))7) = & > sgn(w)[t"7], (9.3.1)

which visibly satisfies the conditions of Proposition O

9.4. The microlocal support of baby Verma modules. Recall the microlocal support map SS from
Definition Henceforth we mostly focus on K(Rep?(G1T)) instead of K(Rep,(Ug®, T)); although these
are canonically isomorphic we remind that they carry different normalizations for their baby Verma mod-
ules. The following result, obtained jointly with Bezrukavnikov and Boixeda Alvarez, is established in the
Appendix.

Theorem 9.4.1 (Joint with Bezrukavnikov—Boixeda Alvarez). We have
5 e= BM,T
SS[Zl (pp)]’f = sppﬁO[X'y 0(p)]T € Htop (Y’Y)
and under Loc” they are given by %Zwew sgn(w)[t*?].
For the proof of Theorem and also for other purposes later, we need the following technical lemma.

Lemma 9.4.2. Let @ € Wy be restricted (cf. ~'. for notation). Then SS|L (@ o, 0)]# has equivariant
support in W<y, = {U|u < wow}. Furthermore, Ww occurs in the equivariant support.

Proof. We induct on ¢(w), the case {(w) = 0 being true by the normalization condition (3) of

If /(@) > 0, we can find a simple affine reflection s such that ws € Wy and s < @. By [Jan03, 11.7.15-21,
11.9.22] (for description of the wall-crossing functors for G and then their variants for G, T, respectively),
the wall-crossing functor Ry (= O in the notation of loc. cit.) satisfies

[L1(@ 0, 0)] = [Rs(L1(Ws @, 0)] + > mg[Li(i e, 0)] € K(Rep®(G17T))
ﬂ%;wgs:
for some mg € Z (note that u need not be restricted). We will show that the equivariant support of SS
applied to each of the terms on the right-hand side belongs to W<, :

(1) We have SS[R; (Zl(@soZ,O))]T = SS[Zl(@SOPO)]T.pS—f—SS[El(IESOPO)]T. By induction, the equivariant
support of SS[L (s e, 0)] 7 belongs to W<, as, and the equivariant support of SS[Ly (ws e, 0)]7 e, s
belongs to Wgwmpss C Wgwoa’ since wow = (wows)s is a reduced factorization and s is simple.
Furthermore, by induction wow does occur in the equivariant support of this term.

(2) For SS[Ly(u o, 0)]7: Decompose u = t*v with v € W; and v dominant. Note that v(Ap) T t"0(Ag) T
ws(Ap), so £(v) < l(ws) < {(w) (note however that ¥ and w may be incomparable since v may fail
to be in @). By induction, the equivariant support belongs to

tVWSwOG C Wgwoﬁis - Wgwoﬁ

where the first inclusion is Lemma below. We also note that wow cannot occur in the equivariant
support of this term, since (V) < £(w).

Finally, note that we have shown that wow does occur in the equivariant support. Example then shows
that all of Ww occurs in the equivariant support. ([l

Lemma 9.4.3. Let o € Wy, v € X*(T)*t, and v € Wi such that tVT < . Then we have
tUWSwa C W§w0ﬁ~

Proof. Let u < wgv, 80 Ugom < v. Let 0 € W be the unique element such that ot”u is dominant. It suffices
to show ot’u < w.
Since v is dominant, we have v — ov > 0, and
ot’u t t™" " ot'u = tY ou.
We also have ot T Uqom, hence
ot’u T t"Ugom.
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But for dominant elements of W, the 1 order and the Bruhat order coincide, hence
ot’ U < ¥ lgom < 170 < W,
as desired. 0

Let
XUT) :={\eX*(T): (\,a¥) =0 for all « € A}.
Decompose
Ziwo)) = > D muwlLa(ue, 0+ pr)l.
weW, /X0(T) vEX*(T)
Then it follows from [GHSI8| Lemma 10.1.5] that m,,, > 0 if and only if

(™" )dom < wot™u.

The map taking (u,v) — @ = (V)5

from Lemma that SS[L; (u e, 0+ pr)] must contain [Y,(w)] in its support. In particular, if we knew
that all the SS[L;1(u e, 0 + pv)] were effective, then we would learn that SS[Z1(pp)] contains [Y, (w)] for all
w € Adm™®(p), i.e., its support contains all the top dimensional irreducible components of Y., (< p). While
we will only be able to prove this effectivity property for p > 0, we can get the last conclusion already for
p>h+1:

wou is a bijection from {(u,v): my,, # 0} to Adm™®(p). It follows

Proposition 9.4.4. The Zariski closure of Xffo(p) contains all top dimensional irreducible components of
YEY:O(S p). If v = ts with s € ’EFq being h,-generic, the same statement also holds for Xffl(p). More
generally, both statements hold when p is replaced by any reqular X € X*(T)t (under the hypothesis that s
is hx-generic for the e = 1 statement).

Remark 9.4.5. The conclusion of the Proposition for ¢ = 1 was also established in [LHLM23bl Theorem
7.4.2] for G = GL,, and some special choices of « (with worse genericity), using global automorphic inputs.

Proof. For this proof, we need to refer to some notions from the representation theory of quantum groups
recalled in below. We first prove the statement for € = 0. By Theorem it suffices to check that
SS[Z1(pp)] contains all top dimensional irreducible components of Y., (< p). By construction, this reduces
to the same statement for the quantum group version SS[1 Zl,ob(pp)], cf. Lemma However, our above
discussion applies equally well to the quantum simples SS[‘*E(u o, 0 + pv)], which are actually effective by
Corollary The statement for general A follows by taking translations of the statement for p.

The statement for ¢ = 1 now follows from combining the ¢ = 0 case with Theorem 1) and Lemma

23 O

Part 3. Applications to the Breuil-Mézard Conjecture

Recall that G, B, T were defined over Z,. In this section we write
(Qy 57 I) = ReSZq/Zp (Ga Ba T)

In general, for S over Zy, Qq, or F,; we will denote by S the Weil restriction of S to Z,, Q,, or F,,. Note that
the (deformed) affine Springer fibers Xf/, Xi, etc. may either be regarded as Weil restrictions or as defined
by the same formulas as X5, Y%, etc. with G in place of G.

Fix an algebraic closure Qp and let J := HomQP(Qq,Qp) be the set of Q-algebra embeddings of Q,
into Qp. Although G is not split, so that it lies outside the scope of Parts 1 and 2, the base change

Gwz, Z,= [[ G
JjeJ
is split. We will only be applying the results of the previous Parts after base changing to (an extension of)
Z,, so that objects are just the J-fold product of their correspond constructions for G.
Let I be the relative Frobenius of Gg , so G = G(F,) = G(F,). Let 7 be the finite order automorphism

of (pr,ﬁfp,zfp) from [GHSIS|, Proof of Lemma 9.2.4]. It is characterized by the property that For~1 is
the relative Frobenius for the Fp-structure on pr induced by the split group [] jeg GF,.
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We write
XH(T) == X*(T xz, Q,) = X*(T xz, Fp)

for the geometric character group of T. We write ® C X*(T) for the geometric roots, @ C @ for the positive
geometric roots, and A C ®* for the simple geometric roots, etc. One exception is that we abuse notation
by writing p := ) .4+ a for the half sum of positive roots of G, without an underlineﬂ

~

The automorphism 7 induces an automorphism of X*(T') = X, (T) which we denote by the same name.
Explicitly, for A = (X;)jes € X*(T') and ¢ the Frobenius automorphism of Z,, then the component of m(\)
at the embedding j € J is Ajo,-1.

Note that when p = ¢ the underlines can all be omitted and 7 is trivial, so the entirety of the preceding
discussion can be ignored; none of the main ideas are lost when specializing to this case.

10. THE BREUIL-MEZARD CONJECTURE

In this section we set up the formulation of the geometric, refined version of the Breuil-Mézard Conjecture.
In we discuss the parametrization of Serre weights. In we define tame inertial types and their
parametrization by Deligne-Lusztig representations. In we recall the Emerton-Gee stack and state
Emerton-Gee’s formulation of the Breuil-Mézard Conjecture.

10.1. Serre weights. Fix an algebraic closure k = F,,. The simple representations of G(F,) = G(F,) over
k are called the Serre weights of G.
For A € X*(T), write L()) for the simple representation of G/k with highest weight .

10.1.1. Parametrization of Serre weights. The p-restricted weights X% (T) C X*(T)T are defined as
Xi(T):={ eX(D)":0< (\,a")y<p—1forallac Al
Note that this is consistent with §7.3]in the case ¢ = p. Let
XUT) ;== {A e X*(T): (\,a") =0 for all o € A}.
Then X;(T) is a finite union of X°(T')-cosets. For A € Xj(T), we write F(X) := L(A)|g(r,)- Then F()) is a
simple representation of G(F,), and the map A — F()) induces a bijection
Xi(T)

—_ ights of G}.
F— )X +> {Serre weights of G}

10.1.2. The Frobenius kernel. We write G; := ker(G LN G) for the Frobenius kernel of G and G;T < G
for the subgroup scheme generated by G; and T. For A € X*(T), let fl()\) be the simple representation of
G, T with highest weight A. (As a representation of G;, we have El()\) := L(\o)|g, where )g is the unique
pX*(T)-translate of X into the fundamental box.) Then El(/\) is simple and the map A — Zl()\) induces a
bijection

X*(T) «+ {simple G, T-representations} .
10.1.3. Reparametrization of Serre weights. Recall the following notations:

e A, C X*(T) is the dominant base alcove anchored at 0, and C,, := —p+pA, is the dominant p-shifted
base p-alcove.
o The dominant affine Weyl group elements are

ot ~ T~ . .
W ={weW:we,(, is dominant}
and the dominant p-restricted affine Weyl group elements are
o PO A . . .
W, ={welWW :we,C, is p-restricted (and dominant)}.

o~
We will occasionally use the reparametrization from [LHLM23bl (2.5)] of Serre weights by pairs w; € W
and w € X*(T) such that w — p € C:

F(g, w) = F(n~ (1) & (w = p))-

17The notation p was contemplated, but made later formulas too horrific.
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10.2. Tame inertial types. We now assume that G = GL,, /Q,. We recall some notation regarding tame
inertial parameters from [LHLM23D].

10.2.1. Fundamental characters. Let E be a sufficiently large coefficient field and O its ring of integers. Let
K be a finite unramified extension of Q, of degree d. Fix a separable closure K of K. Choose u € K such

that u?'—1 = —p and define wg : Galg — (’)[X( to be the character given by
g(u) = wk(g)u for all g € Galg .

Note that since u is well-defined up to multiplication by a (p? — 1)st root of unity, wx is independent of the
choice of u.

10.2.2. Tame inertial parameters. The notion of tame inertial L-parameter is defined as in [LHLM23bl, §2.4].
We parametrize them combinatorially as follows. For (w, ) € W x X, ('), we let 7(w,pn): Iq, — T(E) be

the tame inertial L-parameter
d—1
(S ow ) o

i=0
where
e F* is the endomorphism pr—' on X, (T), and
e d > 1is an integer such that (F* ow™!)4 = p? and
e wy is the composition of wQ, 4 with a fixed inclusion Q¢ — FE.

This parametrization is highly redundant (see [LHLM23bl Proposition 2.4.5] for the equivalence relation).
Any 1-generic tame inertial L-parameter 7 admits a lowest alcove presentation, meaning that 7 = 7(w, p)
where p € C lies in the fundamental alcove.

A tame Weil-Deligne inertial type T is a conjugacy class of pairs (r,, N;), where r, is a tame inertial
L-parameter and N, in a nilpotent element of Lie G (E), which can be extended to a Weil-Deligne represen-
tation [

There are also wild Weil-Deligne inertial types, but we never deal with them in this paper and therefore
do not discuss them any further.

10.2.3. Tame inertial types. To a Weil-Deligne inertial type 7 the inertial Local Langlands correspondence
associates a smooth irreducible G(Z,)-representation o(7) called the inertial type of 7, with properties
explained in [LHLM23b| Theorem 2.5.4].

We focus on the case where 7 is tame, and o(7) is then called a tame inertial type. Let (w, u) € W x X*(T)
be a good pair in the sense of [LLHLI9, §2.2]. Then we have a Deligne-Lusztig representation R(w, p) [GHSIS|,
Proposition 9.2.1 and 9.2.2]. For 1-generic p, we can take R(w,pu) = o(7(w, ), according to [LHLM23Dbl,
Proposition 2.5.5].

10.3. The Emerton-Gee stack. Recall that we are assuming G = GL,, /Qy, so G = GL,. Emerton-Gee
have constructed a moduli stack X¥¢ of rank n (¢, I')-modules, whose groupoid of points in any finite Z,-
algebra A is naturally equivalent to the groupoid of continuous representations Galg, — GL,(A). Therefore,
we refer to XFC as the moduli stack of n-dimensional representations of Galg,-

The underlying reduced substack XE§ is of finite type over Fy, equidimensional of dimension fn(n—1)/2,
where we recall that ¢ = p/. For a pair (), 7) where A € X, (T) and 7 is a tame inertial type, Emerton-Gee
constructed a substack XYM ¢ XFC which is finite type and flat over Spf Z,, and then determined by
the property that for any finite flat Z,-algebra A°, XS 7(A°) is the groupoid of A°-lattices in potentially
crystalline Galg,-representations with Hodge-Tate weights A and inertial type 7. When A is regular, the
special fiber Xcrys’/\’T|Fp is an algebraic stack of dimension fn(n —1)/2 = dim XE§; when X is irregular, the
dimension of its special fiber is strictly smaller.

For a Serre weight o, let W () be the Weyl module with highest weight A and

N (A7) :=[W(A) ®o(r) : o]
1E;Using the notation 7 for both tame inertial L-parameters and tame Weil-Deligne inertial types looks abusive, but we may

regard any tame inertial L-parameter as a tame Weil-Deligne inertial by taking N; = 0. (See [LHLM23b, Remark 2.5.2] for
elaboration.)
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be the Jordan-Holder multiplicity of o in a mod p reduction of W(\) ® o(7). The geometric Breuil-Mézard
Conjecture due to Emerton-Gee, predicts:

Conjecture 10.3.1 (cf. [EG23, Conjecture 8.2.2]). There is a collection of effective cycles Z(o) € Chyop(XES)
indezed by Serre weights o of GL,,(F,), such that for all X € X*(T)* and inertial types T, we have

[T g T =", (A, 7)Z(0) € Chyop(XES).

Remark 10.3.2. The effectivity is not part of the original formulations in [BM02] [EG23]|, but it has become
part of the conjectural picture relating the Breuil-Mézard Conjecture to patching, and is conjectured explicitly
in [EG20, §9.4].

Remark 10.3.3 (Generalization to other groups). Generalizing Conjecture[10.3.1{beyond G = GL,, requires:

(1) The construction of an Emerton-Gee stack for G.

(2) The construction of substacks of potentially crystalline representations (with given Hodge-Tate
weights and inertial parameter).

(3) An inertial Local Langlands correspondence for G.

None of these ingredients was available when we began writing this paper, but the situation has since changed
rapidly. The Emerton-Gee stack is now available in large generality thanks to [Lin23b|; the potentially
crystalline substacks are available in large generality thanks to [Lin23c|; and the inertial Local Langlands is
mostly unavailable, but if one restricts to tame 7 then it is available in large generality thanks to [Lin23al.

We also note the work [Lee23| which obtains these ingredients in the special case G = GSp, /Q, (using
the Local Langlands Correspondence for GSp, established by Gan-Takeda).

11. EXISTENCE OF BREUIL-MEZARD CYCLES

Let G = GL,, /Q, and XES be the Emerton-Gee stack of representations of Gal(Q,/Qq) into G. In this
section we will prove the following Theorem, which gives partial evidence to Conjecture [10.3.1]

Theorem 11.0.1. There exists a collection { Z¥% () € Chyop(XED)}, indexed by Serre weights o for G(F,),
such that for all X € X*(T') and 7 = 7(w, p) satisfying p € Cy is 2hx4,-generic, we have

(XA, = ) e (A )2 o), (11.0.1)

where ny (A, 7) is defined as in Conjecture [10.5. 1}

Remark 11.0.2. Later in we will discuss properties of the cycles ZE%(s) such as their effectivity,
uniqueness, and decomposition into irreducible components.

Here is the outline of this section. In §IT.1] we discuss the relationship between the deformed affine
Springer fibers X 2:1 and the potentially crystalline substacks X°V$M7 of XEG . Roughly speaking, we cook
up v from 7 so that iizl(g A) is a “model” for (J,, -, XerysA'T at least at the level of top homology. In
we discuss the comparison of the special fibers Xfyzl as «y varies. In we construct the incarnations
Zf;:l(a) of Breuil-Mézard cycles on the model spaces Xizl, and we prove that they satisfy relations
which should be thought of as corresponding on the model to (11.0.1)). Finally in we show how to
produce the ZFS (o) of Theorem from the cycles Z5=!(0) on the models, and then in §11.6| we show
how to deduce that they satisfy the relations .

11.1. Modeling potentially crystalline loci. Let 7 = 7(w, 1) be a lowest alcove presentation of a tame
inertial parameter. We define y(w, ) = ts where s € t is the regular semisimple element associated to
(w, u) from [LHLM23D]|: explicitly, it is given by the term “Diag(...)” from the equation below [LHLM23b
(7.6)], whose notation is explained in [LHLM23b| Example 2.4.1]. The only thing that we need to take away
from this formula is that modulo p we have v = t(w™'u). Below we tacitly use the equivalence between
representations from Galg, into G and L-parameters from Galq, into G.

The deformed affine Springer fiber Xizl provides a homological model for the union of potentially crys-
talline loci with regular Hodge-Tate weights in the following sense:



54 TONY FENG AND BAO LE HUNG

Theorem 11.1.1. (Homological model theorem) Let 7 = 7(w, 1), X € X*(T)*. Suppose ju is ho(r p)-generic,
and set y = t(w=u). Then there is an isomorphism

transfer., : Chtop(Xizl(S At p)) = ChtOp(X;AJFP 5

with the following properties.
(1) For each N < X+ p,

transfer,, (sp,_,o[X5= (V)]) = [X’\ ] € Chyop(X, <A+N).

(2) Let 0 € JHW (M) @ R(w, ). There is a um’que pair (u,v) € Wl X EJF with w = v~ twou €
Adm™®(\ + p) such that o = F(r~(u) e, (t*wv—1(0) — p)). Then
transfor, (Y5~ (@)]) = [Co] € Chyop (X577),

where we recall that C, is the irreducible component of X, ed corresponding to o, ¢f. [EG23, Theorem
1.2.1, Theorem 6.5.1].

The proof appears in Appendix [B]

Remark 11.1.2. (1) A slightly more sophisticated version of the argument in Appendix [B} which will
appear in [LH]|, establishes the theorem for p just about hx,-generic, which is expected to be
optimal.

(2) When 7 is very generic relative to A in the sense that p avoids some universal closed subvariety in
(A;ﬁp)j depending on A, the first part of Theorem can be deduced from [LHLM23b, Theorem
7.3.2]. However, the nature of this very generic condition prevents us from making this deduction
when A has a dependency on p.

When g is around max{hxy, + 4h,, 2hx4, }-generic the second part of theorem can be deduced
from [LHLM23b, Theorem 7.4.2|, but the argument in loc.cit. relies on input from Taylor-Wiles

patching.
(3) Combing Theorem [11.1.1| with Corollary we immediately deduce
A+p,T
XFq,fed = U Co
ceJH(W(N)®ao(T))

whenever 7 is hy(x42,)-generic.

We want to define candidate Breuil-Mézard cycles Z2%(g) on XFC as o ranges over Serre weights. We
will do this by choosing some auxiliary tame type 7 that contains ¢ as a Jordan-Hélder factor and transferring
a cycle Z5='(o) from the model 12:1. In turn, the cycle Z5=' (o) will be constructed by applying the inverse

of sp._g: Chyop (Xffl) — Chyep (Xizo) to the microlocal support of simple representations of G,T.
For this to work, we need to know that the recipe produces cycles that are independent of the choice of
the auxiliary tame type 7 (or essentially equivalently, ). This requires understanding how the intersection

of Xy 27 and X, ’\p ™ behaves under the two transfer maps (i.e., a “change-of-type” formula).

Write § :— w—p’ and let v := vy(w, u) and v := y(w', 1'). By the first part of Lemma[5.5.3] left translation
by (w')~'t°w maps Xfle isomorphically to Xi/zl as subschemes of Fls,

b (1450t Yo - > YO (11.1.1)
This induces an isomorphism
t0 ()~ 14601 Cheop(Y5™") = Chyop (Y ") (11.1.2)
and similarly on Borel-Moore homology. Given A, \' € X*(T)*, (11.1.2) induces a partially defined map

- R -

Chyop (Y (S A)) -=2---7-%5 Chyop(YS7 (S X)) (11.1.3)
where the domain of definition is generated by the classes of top-dimensional irreducible components con-
tained in 1221@ A) which are mapped by tr(,-1;s,, to top-dimensional irreducible components lying in
YY),
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Proposition 11.1.3 (Change-of-type fomula). Let A € X*(I)*, X € X*(I)", and § == p — u'. Let
T =T7(w,p), and 7" = T(w', ') be two lowest alcove presentations such that pi is hao(xyp)-generic and p' is
ho(x 4y -generic. Then the diagram

BTy =146

Chiop (Y5 (S A p)) -ommmmmmmmiomon oo » Chiop (Y57 (£ A +p))
trm %rwz
Chyop(Xred')

commutes.

Proof. From Theorem we have
transfer., ([Xfyzl({[;)]) = [Cs]
where w = v wot € Adm*™®(A\+p) and o = F(7~!(u)e,(t"wv—1(0)—p)). The condition that tr(w/)—ltéw[li/::l({lj)]

is defined guarantees that o € JH(W (\) ® R(w,)). By Theorem [11.1.1(2), there is @’ = (') lwou’ €
Adm"™®(\ 4 p) such that

.Y/
hence F(r~ (@) o, (t*wd=(0) — p)) = F(z~ (W) o, (t* w'(@)~1(0) — p)). Up to adjusting by Q it suffices
to consider the case u = u’, hence

transfer., ([Xezl(@/)]) = [Cs),

trwo~H(0) = t* w' (7)1 (0)
so that /
thwo ™t =t w' (@) s
for some s € W. But by Lemma[5.5.3] for an appropriate 41 we have
WY (@) = trwi T YT (woll) = 4w (7)) T Y ST (wort) =t w! (77) TN ST (wott) = ¢ w YT (@)
so that

100 (Y57 (@) = (Y57 (@)

as required. ]
11.2. Gluing homology. As has been discussed, the spaces Xffl are models for the special fibers Xsrys’AﬂFp C
X EG\FP, where v = tw™'u. As 7 varies, the special fibers of potentially crystalline substacks overlap. In
this section, we will see how to implement the corresponding overlapping for the irreducible components of
Ye=!
L

Recall that in Example we used the GKM description to fix (in particular) an identification

BM,T = GKM BM,T =
Hig, ™ (Y57°) —— Hygp (Y5) (11.2.1)

characterized by the commutativity of the diagram (where S := S¢)

BM,T =0 GKM BM,T =0
Htop (X'Ey ) ~ Htop (Xfy’ )

[ [

Frac(S) @3 Hyp T(Y5™") —— Frac(S) @s Hipy T (Y57°)

Frac(S) @ How T((YS=")T) —— Frac(S) ®s Hea T(Y570)T)
@ﬁeﬁ Frac(S)[w] ——— @weﬁ Frac(S)[w]

By the equivariant formality of Xi:o and Xfy,:o and Remark (11.2.1) induces in turn an identification
of the non-equivariant top Borel-Moore homology groups,

HEY(YS™0) = HEY (Y57). (11.2.2)
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Emerton-Gee stack Models Affine Springer fiber

transfer,,

transfer.,

FIGURE 1. This cartoon (produced with the aid of ChatGPT after much coaxing) depicts the
construction of Breuil-Mézard cycles. The triangle represents the p-dilated fundamental alcove C,
whose weights are the p in the lowest-alcove presentation R(w,u) for tame types; the choice of w
and p together is captured by v = (w, ). The models Y5='(< A) provide charts for corresponding
portions of ng; the sizes of the charts, depicted by the dashed circles, depend on the genericity
of v, which is measured by the distance from the walls. Cycles are initially produced on the affine
Springer fiber via microlocal support, deformed to the models at ¢ = 1, and then transferred to

the Emerton-Gee stack. Well-definedness of the cycles comes from the fact that transfer, and sp’
effect the “same amount” of gluing.

Definition 11.2.1 (Renomalized specialization). Suppose v = y(w, u) where p is hy-generic. Then we
define the renormalized specialization map

spr: Chyop (Y5~ (S A)) < Chiop(YS™)

to be the composition of sp__,, in the sense of Definition [£.2.4] followed by the monodromy-translation action
of tFw.

The significance of the renormalized specialization map is seen in the Proposition below, whose statement
should be compared to Proposition and interpreted as saying that “the maps sp™ implement the

same combinatorial gluing relations among {Hg) (Y=!)}, as the maps transfer,” (see Figure .

Lemma 11.2.2. If v is hy-generic, then the spaces Y ~°°(< A) are equivariantly formal for eg =1 or 7.

Proof. According to Lemma , the hypotheses imply that ngl(g A) has an affine paving and therefore
that its cohomology is pure. O

Proposition 11.2.3. Let v = v(w, ) and v = vy(w', 1'). Assume that v is hy-generic and ' is hy-generic.
Then the diagram

HBM(YE 1(< )\/)) 5Py HBM(Ya 0)

top top
H (11.2.3)

s}
HEY (Y57 (S A) ————— HEY (Y70

~
|
|
i

By =146 4

commutes, where 0 :== p — p’ and the left vertical arrow is the partially defined map induced by (11.1.3)).
Proof. By Lemma [I1.2.2] and Remark [6.2.1] if ~ is h-generic then we have
HEM(YE=50 (< \)) <~ HiY T(f (< \)) < Frac(S) ®g Honw T(f (< \) (11.2.4)

top top top

for any 9 € {0,1,n}. Therefore it suffices to check the commutativity of the diagram in rationalized T-
equivariant Borel-Moore homology. Then we may apply the equivariant localization theorem to compare
the rationalized T-equivariant homology version of with the corresponding diagram for the ratio-
nalized equivariant homology version for the T-fixed points. This embeds the corresponding diagram for
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T-equivariant Borel-Moore homology

B _ 5Flre/n - B
HBM’Z(XE//_l(S /\/)) v HBM’I(XE,_O)

top top 0%
~

(=148, H11.2.2 (11.2.5)

BM,T /~,e= SPy BM,T ,e=
Hig, (Y5 (<A) ———— Hyg, (Y579

into the similar diagram for T-equivariant Borel-Moore homology of the T-fixed points, tensored with Frac(S).
Since the family Y? restricts to the constant family W x Spec Fy[e] on T-fixed points, the similar diagram
on fixed points reads

Bocii SIE) £ @ iy Sl

A
tr(w/)—ltéw }
i

@aew S[w] L Gaﬁew Slw]

for which the commutativity is evident.
O

11.3. Breuil-Mézard cycles on the model. We now undertake the construction of Breuil-Mézard cycles.
The plan is to define cycles on the affine Springer fibers Xfyzo using the microlocal support map (cf. Definition

, then to deform them to the X,Eyzl, and finally to transfer them to the Emerton-Gee stack using the
maps transfer, from Theorem [11.1.1} as in the diagram below.

transfer.

-1
K(Rep (G1T)) 25 Chop (Y2=f P22l (Y51 ™ Chyop (A7)« Chyop (XES)

Recall the definition of W, from §10.1.3

Definition 11.3.1 (Cycles on the affine Springer fibers). Let v = ts with s € {(F,) regular. For u € ﬁl
and & € C, we define

2= e, €) = t57PSS[Ly(u e, 0)] € Chyop (YE™). (11.3.1)
For later use we record the effect of the monodromy action on the cycles just defined.
Lemma 11.3.2 (Monodromy action on the cycles). Let u € p+C, and u € El. If v € X*(T) is sufficiently
small so that p— p+ Wv C Cy, then
wt™H - Zf/:O(u o, (u—p+v))=tH. Zizo(u o, (L—p+wr)) € Chtop(XiZO). (11.3.2)

Proof. The LHS of (11.3.2) is
wt” - SS[Ly (u o, 0)] =t w- SS[L (u o, 0)]

and the RHS of (11.3.2) is t“* - SS[L1(u o, 0)]. The two agree because w - (L1 (u o, 0)] = (L1 (u o, 0)] as
explained in Example O

Our next task is to transport the cycles to the model Xfyzl. First we analyze when the cycle fozo(u 0, §)
lies in the image of the renormalized specialization map sp>™" on Chyop (XTl(g A+ p)), and can therefore
be deformed to € = 1.
Definition 11.3.3 (Admissible tuples). Let u € El,w € W and v € X*(T). We say that (u,w,v) is
admissible for A € X*(T)* if

E ) dom < wot ™ Pu.

Remark 11.3.4. Suppose p is (hy +2h,)-generic. Then by [LHLM23bl Proposition 2.3.7], the Serre weight

F(m=Y(u) e, (u — p+ v)) appears as a Jordan-Holder factor of W(\) ® R(w, u) if and only if (u,w,v) is
admissible for A.

Lemma 11.3.5. We have t=#17- Z==(u e, (u—p+w~'v)) € Chiop(YS7"(< A+ p)) if and only if (u,w,v)
is admissible for \.
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Proof. This follows from Lemma O

If p1 is (ha + h,)-generic and v = y(w, i), then

Sp s Chiop (YS! (S A+ p)) = Chiop(Y5™) (11.3.3)

is defined. By Lemmas [11.3.2 and [11.3.5) w™ 't~ #*7 . Z==0(u e, (1 — p + v)) lies in the image of (11.3.3)
precisely when (u,w,v) is admissible for A.
We can now define the incarnation of Breuil-Mézard cycles on the models.

Definition 11.3.6 (Cycles on the model). Assume p € p+Cy is (hy + h,)-generic and let v = y(w, p). For
(u, w,v) which are admissible for , we define Z5='(u e, (1 — p+v))x € Chtop(Xfle(S A+ p)) to be the
unique cycle satisfying

spi™ (257 (wey (= p+v))a) = 257 (wey (1= p+ 7)) € Chiop(YS™).

(This notation reflects that in practice v is “small” relative to u, so we visualize the {¢} for which Z,‘?:l (uepé)a
is defined as forming a constellation of weights orbiting u.)
For o = F(r'u e, (u— p+v)), we denote

25 (0)n = 25 (uwy (= p+ ).

Remark 11.3.7 (Independence of \). If X < X" and v is (hy + h,)-generic, then + is also (hy + h,)-generic
and the inclusion Y= (< A+ p) < YI7H(< X +p) sends ZE= ! (ue, (w—p+v))a > Z57 (wey (u—p+v))x.
We therefore have a well-defined class

ZZ" (uep, (n—p+v)) € Chyop(YS)

as long as there exists A such that p is (hy + h,)-generic and (u,w,v) are admissible for A. In this case we
say that the Serre weight o = F(7~'ue, (1 — p+ v)) is admissible for (v, \), and we abbreviate Z5=!(0) :=

Zc= (u ey, (1 — p+v)). With these definitions, the identity
spi™ (257 (wey (u—p+1))) = Z57(uey (= p+1)) € Chiop(Y5™")
holds as long as all of its terms are defined.

We will next establish a certain “independence” of v for the cycles Z,i:l (o), in preparation for transferring
these cycles to the Emerton-Gee stack.

Lemma 11.3.8 (Independence of v). Let p,w, ', w’,d,v,7" be as in Proposition . Let u € El and
§ € Cy such that Z5=" (u e, &) and Z57" (u 8, &) are both defined. Then tr (-1, (25 (u @), €)) is defined
and

) 150257 (w0 €)) = 257 (w0, €) € Chyop (Y5, (11.3.4)

¥

Proof. Note that it is enough to check the equality in Hal\g, since we have Chyop — Hfol\g

By definition, if Z5="(u ), £) is defined then spX™(Z5="(u ), £)) € HEY (Y™ %) is defined and equals
t5+0 . SS[Ly (u e, 0)].

Similarly, if Zﬁ,:l(u o, {) is defined then spr;;n(Zslzl(u e, £)) € HEM (Ys- %) is defined and equals t¢1 .
SS[Ly(u e, 0)].

Taking A and X so that ¢ = F(rm 'ue, (u— p+v)) is admissible for (y,)) and (7/,\’), the partially
defined map

tr<w/>—1t6

HEM(YEH (< A+ p)) -0 » HEF (YT (S X +9))

top top

includes Z5=!(u e, €) in its domain, 50 tr(,)-145,, (25" (w e, €)) is defined in HEM(YS7' (< X' 4 p)), and the

equality (11.3.4]) then follows from the previous paragraphs plus the commutativity of the diagram (|11.2.3]).
O
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11.4. Breuil-Mézard relations on the model. We will next verify a collection of relations on the models,
which will later be seen to correspond to under transfer,. In terms of Figure |1, we will show that
the cycles Zizl(a) verify all the Breuil-Mézard relations which concern cycles contained in a single “chart”
labeled by a single ~.

The most fundamental case is where A = 0, corresponding to potentially Galois representations with
minimal regular Hodge-Tate weights, which is handled by the Theorem below.

Theorem 11.4.1. Suppose that i € p+ Cy is 2h,-generic. Let v = y(w, p). Then we have

5Pl X57H ()] = Y _[R(w, 1): 0] 257 (0) € Chyop(Y57).

In this expression, we understand the summand to be 0 whenever [R(w,p): o] = 0 (even when Z5='(0) is
undefined — we are implicitly claiming that Z5=" (o) is defined whenever [R(w,p): o] #0).

Before giving the proof of Theorem [11.4.1] we record some representation-theoretic preliminaries. We
will relate the multiplicities [R(w, u): o] to decomposition multiplicities for G;T using Jantzen’s generic
decomposition pattern (found in this generality in [GHSIS| Proposition 10.1.2])@ if p is 2h,-generic, then

Rw,p)= Y, > [Zilp—p+pp): Li(ue, (u—p)+pv)Fue, (n—p+wrv). (114.1)
Wl /0 (1) vEX (D)

Let mf , = [21 (L—p+ pp): El(u o, (1 — p) + pv)]. Note that by the translation principle, this is
independent of i as long as p — p is regular in C,. In particular, we have

mh, = [21 (pp) : zl(u o, 0+ pr)],

We also note for future use that
(11.4.2)

H — H
mﬂ'u,ﬂ'u - mu,y’

since we have

my, =
= [Z1(m(n = p) + pp) : La(mu oy w(p — p) + prv)]
=[Zi(p—p+pp) : Li(mu e, (n— p) +prv)| = mby, o

where on the third line we use the translation principle to replace w(pu — p) by © — p.

=[Z1(u—p+pp): La(ue, (1~ p) + pv)]
Z

Lemma 11.4.2. (1) If pu is m-generic for some m > 2h,, then every o such that [R(w, p): o] # 0 is of the
form o = F(\) where A+ p is (m — h,)-generic.

(2) If X+ p is m-generic and [o(T): F(X)] # 0 then o(1) = R(w, i) where p is (m — h,)-generic.
Proof. Part (1) follows from [LHLM23D, Proposition 2.3.7], and part (2) follows from [LHLM23b, Lemma
2.3.4]. O

Proof of Theorem[I1.].1. Since
We, 0= |J U {ue,0+pr} (11.4.3)
weW, /X0(1) veX*(Z)
we have ~ R
Sl = 33D i, SS[E(u e, 0+ p)] € Chop(Y2). (11.4.4)
weW, /X0(T) VX (L)
By translation equivariance of SS, we have SS[Zl(u o, 0+pv) =t"- SS[El(u ¢,,0)], so we can rewrite (11.4.4)
as
SS[Zi(pp)] =Y _mht ,t” - SS[L1(u e, 0)] € Chyop(YE™). (11.4.5)

u,v

There is a discrepancy with the formula appearing in [GHS18| Proposition 10.1.2] because they use the dot action of the
p-dilated extended affine Weyl group, while we use the p-dilated dot action of the extended affine Weyl group. Also note that
their “R(w, u + p)” is our R(w, ).
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For later comparison, we reparametrize u — 7w and v — 7v so that inserting Theorem [9.4.1]into (11.4.5)
gives

sprO[Xizo(p)] = Z Z mTru 7TI/tT”/ : SS[Z]- (ﬂ-u ®p 0)] € ChtOP(XiZO)' (1146)
weW , /X0(T) vEX* (L)

Substituting the observation (11.4.2) that mk, ., =mf , into (11.4.6) gives

sp,Lo X0 = ) > ml ™ SS[Li(ru e, 0)] € Chyop(YE0). (11.4.7)
weW, /X0(1) vEX* (D)

The genericity assumptions are such that Definition [11.3.6[says, using also (11.3.2)),

P02 (ru ey (1 — p+wrw)) = ™ - SS[Ly (1u e, 0)] € Chyop(YZ™0). (11.4.8)
Using this we may rewrite (11.4.7) as
o] = Y Y mleh o (ru ey, (4 p b wmy)) € Chygp(Y30). (1149)

weW , /X0(T) vEX* (I)
The assumptions imply that
SPeo¢ ChtOP(Xizl(S 2p)) — ChtOP(Xizo(S 2p))
is an isomorphism (cf. Lemma . Therefore each Z5=°(ru o), (1 — p —|— w7r1/)) for which m{; , # 0 lies in
the domain where sp,_,, is an isomorphism, so we may apply 5p5 9) along with Proposition

(and also use that specializations in £ and p commute by Lemma [2.4.3)) to ﬁnd tha@

5Pp_>o[XfY:1(,0)] = Z Z mh, 257 YHru ey, (10— p+wrv)). (11.4.10)
uwEW, /pX0(T) veX*(I)

Note that Z5=! (7u e, (u — p + wrv)) = 257 (0) for o = F(u e, (1 — p+ wnv)). Putting this into (11.4.10)
completes the proof. O

We will next show that our Breuil-Mézard cycles Zﬁzl(a) satisfy the further relations expected from
higher Hodge-Tate weights (the precise sense in which this is related to higher Hodge-Tate weights will be
explained later in §11.6). We begin with a purely representation-theoretic lemma.

Lemma 11.4.3. Assume p > 2h,. Let A € X*(T)" be such that p+k € p+C, is 2h,-generic for all weights
Kk of W(N). Forv e X*(T), wrzte my(N) for the multiplicity of k as weight of W(X). Then we have

W)@ R(w,w)] =Y meN[R(w, p+ )] € K(Repy,(G(F)))).
KREX*(T)
Proof. Given ¢ € X5(T) such that & 4 « lies in the same alcove as & for all weights « of W (), [LLHLM20,

Lemma 4.2.4] implies that we have

W) @ LE)] = Y meM[LE+ k)] € K(Repy(G(Fy)))- (11.4.11)

reX*(T)

By (11.4.1)) we have

=3 Y mulFus, (u— p+v))] € K(Repy(GIF,)),

uEEl veX*(T)

where m,, , = [21(u —p+pp): Li(u o, (1 — p) + pv)] as before (recall that we saw it was independent of
by the translation principle). Under our assumptions, m, , # 0 implies that & := u e, (1 — p + v) satisfies
the condition needed to apply (11.4.11). We therefore have

[W(N) @ R(w, p)] = Z My (N) Z Z My [F(ue, (u—p+v)+r)] € KRep,(G(F,))). (11.4.12)

KEX*(T) ueW, vEX*(I)

20Here again, if mﬁ,l, = 0 then the corresponding summand is interpreted as 0, and we are implicitly asserting that mﬁ,y =0
if Tu- (p—p+wrv) ¢ X(T) or if Z577(uep (u — p+ wrr)) is undefined.
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Since the character of W () is invariant over W, we may rewrite
A1) = > meN) Y. Y mus[Flue, (n—p+r+v))] € KRepy(G(F,))).  (11.4.13)
REX*(T) ueW, veX*(T)
Then we obtain the desired equality upon rearranging terms and applying (11.4.1).
O

The next theorem is the generalization of Theorem that handles higher Hodge-Tate weights, al-
though we will see that the proof is a reduction to Theorem

Theorem 11.4.4 (Breuil-Mézard relations on the models). Let A € X*(T)*. Suppose that p is (hx + 2h,)-
generic. Let v = y(w, u). Then we have

50,0 XST (A + )] = D _[W(A) @ R(w, p): 0]257"(0) € Chyop(Y5™). (11.4.14)

o

Proof. By Lemma [£.2.3] the assumptions imply that
sp. 00 Chyiop (Xfy:l(g A+p)) = Ch‘mp(Xny:O(S A+p))

is defined and is an isomorphism, so the identity can be checked after applying sp,_,,. We first analyze what

happens upon doing this to the LHS of (11.4.14). Applying Proposition and then Theorem we
deduce that

5ps—>0[§2:1(/\ + P)] = Z mn(/\)5pp—>0tn : [Xizo(p)} € Chtop(Xizo)- (11'4'15)
KEX*(T)
Putting Theorem [11.4.1}into (11.4.15) yields
bo X O ) = 3 ) SR, ) ot Z50(0) € Chuop (Y70). (11.4.16)
KEX*(T) o

For u € W, and v € X*(T), consider the contribution of o := F(u o, (t—p+wnv)) on the RHS of (11.4.16).
Set ¢/ := F(u e, (1 — p + r + wnv)). By construction we have t* - 2:=(¢) = Z5=°(0"). Also we saw from

the translation principle that [R(w, u) : 0] = [R(w, p + &) : ¢'], so we may rewrite (11.4.16)) as

oKX A+l = D me(W)D [R(w, p+ k) 0] 2570("). (11.4.17)
KEX*(T) o

By Lemma the coefficient of Z5=%(¢”) in ([11.4.17) is
Z my(N)[R(w, p+ k) : 0'] = [W(A) @ R(w, u) : '],

KEX*(T)

so that (11.4.17)) agrees with
ST S o 712577(0) € Chg(5°),

o

as desired.
O

11.5. Breuil-Mézard cycles. Here we will finally construct Breuil-Mézard cycles on the Emerton-Gee stack
XEG,
Composing Theorem [11.1.1| with the obvious embedding Chtop(Xl;\jp ) — Chyop(XES) gives a map
transfer., : Chtop(giﬂ(g A4 p)) = Chiop(XES).

We suppress the dependence of transfer, on A, because it is independent of A in the obvious sense whenever
defined.

Lemma 11.5.1 (Independence of ). For all v such that Zﬁzl(u o, k) is defined, the classes
transferpy(Zszl(u o, 1)) € Chyop(XES)

coincide.
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Proof. This follows from Proposition [11.1.3] and Lemma [11.3.8 O

Definition 11.5.2 (Construction of Breuil-Mézard cycles). Suppose that ¢ = F(u e, £) occurs in a tame
type 7 = R(w, p) where i is 2h,-generic (this is guaranteed whenever £ + p is 2h,-generic: up to adjusting
u by an element in 2, we can assume u € t”EaH and we can then take v = 0 in Remark . Then the
cycle 2571 (o) € Chtop(Xfyzl) is defined in Definition Then we define

ZEC(g) = transferW(fozl(U)) € Chyop(XED).

A priori this definition seems to depend on the choice of -, but the independence of the choice of v was
established in Lemma [IT.5.11

11.6. Proof of Theorem [11.0.1. We now complete the proof of Theorem [11.0.1} Let A € X*(T)* and
T = 7(w, ) be a lowest alcove presentation of a tame inertial parameter such that p is (2h, + hy)-generic.
Let v := v(w, ). Then from Theorem [11.4.4] we have that

50,0l X5 (A )] = 30 (A1) Z57(0) € Chuop(Y57). (116.1)

Consider applying transfer,. Since transferv(sppﬁo[Xf/:O(/\ + p)]) = [Xx***7|g,] by Theorem [11.1.1(1) and
Z85(0) = transfer, (Z5=') by definition, (I1.6.1)) becomes

T

(VAT ] =Y np(A, 1) 27%(0) € Chyop(Xied),
which is exactly what we wanted to show. O

12. COMPLEMENTS ON THE BREUIL-MEZARD CYCLES

Here we establish some additional properties of the cycles ZFG (o) produced in Theorem In
we establish the second part of Theorem [I.3.1] asserting that if Conjecture [I0.3.1]is true, then the “true”
Breuil-Mézard cycles must agree with the cycles Z¥% (o) as soon as ¢ is sufficiently generic (which can be
quantified effectively).

In we show that the decomposition of Breuil-Mézard cycles into irreducible components is “the
same” as the decomposition of the characteristic variety SS[L1())] into irreducible components. This fulfills

Theorem 3).
In §12.3] we show that for sufficiently large p (which can again be quantified effectively), the cycles ZF4 ()
are effective. The proof is based on (!) the theory of quantum groups.

12.1. Uniqueness. First we investigate the uniqueness properties of the cycles Z¥% (o) constructed in the
previous section. The main result of this subsection is:

Theorem 12.1.1. If there are effective cycles Z(o) € Chyop(XES) satisfying Conjecture [10.5.1), then Z (o)
agrees with the ZE9 (o) from Definition whenever o = F(X) such that X is 6h,-generic.

Remark 12.1.2. The proof of Theorem only uses the following “bounded support” property of Z(o):
if [R(w,p): o] # 0 for some 2h,-generic p, then the support of Z(o) is contained in X°¥*#7|g . This
property is clearly implied by effectivity. Note that the Z¥% (o) constructed by Theorem have this
bounded support property, but are not obviously effective.

12.1.1. Reformulation in equivariant homology. For each 7 = 7(w, u) and v = y(w, u) such that p is 2h,-
generic, Theorem [TT.1.1] gives an isomorphism

transfer;1: Chtop(Xngp’T) = Chiop (Xffl(g ),
which we also think as a partially defined (inverse) transfer map on Chyo, (XE$). Thus applying transfer. ! to

the cycles Z(o) from the hypothesis of Theorem [12.1.1] gives a collection of cycles Z,izl(U)Jr € Chyep (Xizl(g
p) for each o € JH(R(w, ). Recall the renormalized specialization map from Definition [11.2.1

5P Chiop (Y5™H(< p)) 2 Chyop(Y5(< p)) = Chiop (Y5).
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Then we get cycles Z5=0(0)" := spZ™ (257! (0)") € Chyop(Y5™ 9). On the other hand, the Breuil-Mezard
cycles Z°= o) we constructed in Definition m Were characterized by the property (cf. also Definition

11.3.1)
spi (27N (F(n u ey €))) = 577 - SS[Ly(u @, 0)] € Chyop (Y5™).
Therefore Theorem [I2.1.1] is equivalent to the statement

Z50(F(r u e, €)1 = 1477 - SS[Ly(u e, 0)] € Chiop (YS™). (12.1.1)

Now recall that the spaces Chyop (Xizo) (resp. HEY(YS™ o, HE}\S T(XE %)) are canonically identified via

(11.2.1) as we vary v = ~(w, ) over possible choices of (w,pu). It follows from Proposition [11.1.3| and
Proposition [11.2.3| that under these identifications Z5=%(c)" is independent of the choice of .

12.1.2. Equivariant support bounds. We establish some technical statements on the equivariant support of
Z0(F(ntu e, €))T for later use.

Lemma 12.1.3. Assume all types containing o = F(m~'ue,&) are 2h,-generic. Then Loct (ZE Yo );) has
equivariant support in t¢ (ngou).

In particular, the lemma applies whenever § + p is 3h,-generic.

Proof. The tame types o(7) = R(w, ) containing o are exactly those such that for k := u— p—¢&, the triple
(u, w,—k) is admissible for 0 in the sense of Definition |11.3.3] i.e.,

(tw_ln)dom == (tnw)dom S thipu-

It follows from the definitions that any class in sp., ,) © transfer;( (Chtop( P T)) has equivariant
support in t#w - Adm(p). Hence (using the effectivity assumption) we learn that the equivariant support of
Zszo(o)TT belongs to

ﬂ t5+PtEw - Adm(p).
KEX™(T), weW:
(t"w)dom=wot™ Pu

But Lemma [12.1.4[ below shows this intersection is exactly thngou- g

Lemma 12.1.4. Let u € El. Then we have

m t"w Adm(p) = ngou'
R€X™(T), weW:
(t"w)dom=wot ™ "u

Proof. Suppose T belong to the LHS. Since (Wt"w)dqom = (t*w)dom, we see that
(wot~Pu) " toT € Adm(p)
for all o € W. In particular, for an appropriate choice of o, we get
(wot ™ u) " toT = (wot ™ u) twoy
with i € EJF. But now [LHLM23b), Proposition 2.1.6 (4)] implies that 3 < u, hence 7 = 0~ woy < wou.
Conversely, if 7 € W, ,,, then for a suitable o € W we have
(t"w) 7T = ((t"W)dom) ' < (wot~Pu)~H(wou) = u~tPu

since (t"w)dom < wot™ Pu, o < wou, and the second-to-last product is a reduced factorization by [LHLM23bl,
Lemma 2.1.4]. O
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12.1.3. A reconstruction algorithm. The idea to prove (|12.1.1)) is that we should be able to reconstruct each
side from the Breuil-Mézard relations. Here we explain how to carry out this reconstruction process.

e HoML

top (Xizo) parametrized by a subset

Situation 12.1.5. Suppose we have a collection of cycles Z(u, &)

—~+
of W, x C, and an integer h such that:
(1) For any (w, ) such that p is 2h,-generic, we have for some mi}’ € S,
v - SSIZ1 (pp))p = 3 i Z u, o — p -+ wr) (12.1.2)
u,v
where .
e The sum runs over (u,v) € W, x X*(T) such that (t7")gom < wot Pu, and each term in the
sum is defined.
e When (t7")dom = tPwou, we have mi;l = 1.
(2) For every u and every h-generic &, Z(u, &) is defined and has equivariant support in 57 -ngou.

Proposition 12.1.6. In Situation for any & which is (h + 3h,)-generic, Z(u,§) is uniquely deter-
mined.

Proposition essentially follows from the recursive algorithm to compute generic Breuil-Mezard
cycles in terms of Emerton-Gee stacks in [LHLM23bl §8.6.1]. For the convenience of the reader, we will
adapt this algorithm to the more combinatorial setting of equivariant homology. This gets rid of the inputs
from patching in loc.cit., and our reformulation should be more practical for computer implementation.

By item 1) it is enough to compute the component of LocT(Z(u, €)) at each 57 € tfﬁgwou' If Cis an
equivariant cycle class and Z € W, we will use the short hand mz(C) for the component of LocZ(C) at Z.
Our algorithm will be based on recursion for the following notion of defect.
Definition 12.1.7. Let 2 = {7 € E where Z < wot™Pu. The defect of Z with respect to Z(u,§) is defined
to be dz(u, &) := £(u) — £(Taom) > 0.
We have the following key recursion relation, which expresses mz(Z(u,§)) in terms of the mz for lower
defect situations:
Lemma 12.1.8. Suppose we are given Z € W, (u,&) € E1 x Cqy such that z € tf*‘pﬁgwou. Write

~ ~ . ~ o5t
7=t Powyr  with oW, TeW .

Assume z(0) is (max{h, h,} + 2h,)-generic.
Let k € X*(T) and w € W be such that
ocwpt Pu = t"w
and set =& + Kk — p. Then
mz(t*w - SS[Z1 (pp)lg) = m=(Z(w, ) + Y mz(Z(«/,¢"))
ul’gl
where the sum runs over (u/,€') € W, x C, such that Z € t5/+”E§w0u, and oz(v', &) < §z(u, §).
Proof. Note that
wH(—p 4+ 2(0) = (5T w) 71Z(0) = (wot™Pu) "Lt TP o) THETPoweZ(0) = (wot P u) " tweE(0).
By [LHLM23D, Proposition 2.1.6], we have (wot~?u)~*woZ € Adm(p), hence u — z(0) is h,-small. It follows
that p is 2h,-generic. In particular, we have equation (12.1.2) for our choice of (w, ).
We now observe:
(1) Z(u,§&) contributes to the right-hand side of (12.1.2)) with coefficient m,, _,,-1,, = 1. This is because
E=p—p—kand
(t"wW)dom = (twfl")dom = wpt Pu.
(2) Any pair (u/,v") contributing to (12.1.2)) for our choice (w, u) has the property that & = p— p+wv/
is h-generic. This is because (t7 )gom < wot Pu’ belongs to W, hence wr/ € —E(t;o"r;)(ﬂ) is
h,-small.
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The second item in particular implies that the equivariant support of any contributing Z(u',&’) belongs to
t€/+pw<w0u’ .

It remains to check 05 (u/, &) < 05 (u, €) when (u/, &) # (u,€). Assume 2 belongs to the equivariant support
of some Z(v',¢’) (thus & = &+ k + wr'). Then we can write

Z=t8"rg
with § < wou’. In particular, ggom < v/, and 6z(v', &) = (') — £(Ydom)-
We have
tEoweT = 5T g = 5wt w g = tEowetPut” w(7)
and

(wot™Pu) " woZ = " w T = (7 dom) ' Taom (12.1.3)

for some o’ € W.
Now by [LHLM23b, Lemma 2.1.4], we have

0((wot~Pu)  tweZ) = L((wotu) two) 4+ (T)
and
((tP) = L(u= tPu) = £((wotPu) " twou) = £((wotPu)  twg) + £(u)

so that

C((wot ™ u) rwoTaom) = L(t?) — 6x(u, £).
But this quantity also equals

(t3er) ™ 0 Taom) < (™ Vaom) + £(07) + €(Faom)

< l(wot~"u’) + L(wo) + (u) — 0z(u/, &) = £(t7) — 0z(u/, €).

We conclude that §z(u', &) < 6z(u, ). If equality occurs, then we must have
(™ Vaom = tPwor’, o' = wo.

But applying [LHLM23bl Proposition 2.1.5], to the leftmost and rightmost factorization in equation ((12.1.3)

forces w/ = u and hence (t™" )aom = (t*

v = (wot Pu)"H(0) = —w 'k

®)dom = Wol Pu. But this implies

so ' =&+ k+wr =€

Corollary 12.1.9. In Situation the quantity mz(Z(u,§)) is uniquely determined whenever

o Z e W satisfies 2(0) is (max{h, hp} + 2h,)-generic, and

o (u,8) e W, x Cy satisfies z € t*TPW ., ...
Proof. Lemma [12.1.8| gives a recursive formula for mz(Z(u, £)) with respect to the defect dz(u,&) > 0. O
Proof of Proposition[12.1.6, For any (u,§) such that & + p is (max{h,h,} + 3h,)-generic, we know the
equivariant support of Z(u,§) is bounded by t5+pw<w0u. But if z € t5+pw<wou, then £ + p — Z(0) is h,-

small, so Z(0) is (max{h, h,} +2h,)-generic. Thus Corollary [12.1.9]shows that each mz(Z(u, &)) are uniquely
determined, hence so is Z(u, ). a

12.1.4. Proof of Theorem[I2.1.1l After the reformulation in §12.1.1] we need to check the equation
Zf/,ZO(F(Wflu ., {))Tz — 6+ . SS[Ly (u e, 0)l7
whenever ¢ is 6h,-generic.
We are in Situation [12.1.5( for the cycles Z(u,&) := ZZ=(F(n~ 'u e, f)); with the choice of h = 3h, by

Lemmal|12.1.3] On the other hand, we are also in Situation|12.1.5|for the cycle; Z'(u,§) = t5+p~SS[E1 (uey0)] 7
and the choice h = 0, with the same structure constants mf7. Thus Proposition applies and gives
the desired equality.
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12.2. Decomposition of Breuil-Mézard cycles. Let X*¢ be the Emerton-Gee stack for G = GL,, /Q,.
Emerton-Gee have explicitly described the irreducible components of ng’. They show that XYES’ is equidi-
mensional, and biject the (top-dimensional) irreducible components with Serre weights (these results can be
found in [EG23|, Theorem 1.2.1, Theorem 6.5.1, Erratal); for a Serre weight ¢ we denote the corresponding
irreducible component by C,,.

It is an interesting problem to express ZFG(o) in terms of the irreducible component basis [C,] of
Chyop(XE). One expects that

2EC(0) = [Co] = Y noer[Cor)

where the sum runs over ¢’ which are “less than” o in some natural partial order, and n,,» = 1. For
G = GL2/Q,, it turns out that ZB% (o) = C, except when o is a Steinberg weight, which is not generic
enough to be covered by our theory. However, numerical computations suggest that even for very generic
o, Z8%(o) can be reducible already for n = 4 [LHLM23b, Remark 1.5.11]. We hazard a guess that as n
increases, the number of irreducible components of ZF%(s) is unbounded, even when quantified over very
generic o.

In general, if Xi,...,X,, are the top-dimensional irreducible components of X (assumed to be equidi-
mensional), then

Chyop(X) = EB Q[Xi].

Write mult(o : [X;]) for the coefficient of [X;] in oo. We say o € Chyop(X) is effective if each mult(a : [X;]) >
0.

By Theorem [11.1.1{2) and the definition of Z¥%(o), the decomposition of ZF%(s) into the [C,/] is the
same as the decomposition of the Z5=!() into the irreducible components Y£=!(w). More precisely, if o’
and w are related as in Theorem [11.1.1{(2), then we have

mult(Z25%(0): C,r) = mult (fozl(a): Yizl(@)) . (12.2.1)
Proposition 12.2.1. Let 7 = 7(w, ) be a lowest alcove presentation such that p is 3h,-generic and
Zﬁzl(u o, &) is defined for v := y(w,u). Then we have
mult (257 (u e, €) : [Y=)(@)]) = mult (SS[fl(u o, 0)] : th=¢=Puy - [Y§=0(w)]) .
Proof. By definition we have
§po 025 (u ey §) = w T HHEP SS[ Ly (u e, 0)),
and by Theorem [5.1.1] we have

spe_o[Y57H(@)] = [Y57"(w)].
Comparing these gives the result. O

Proposition [12.2.1] and (12.2.1)) equate the problem of finding the decomposition of Breuil-Mézard cycles

(in the regime of generic o) with the problem of finding the decomposition of SS[L1())] into irreducible
components. This latter problem is an affine analogue of the famous representation-theoretic problem of
calculating the characteristic variety of simple representations of gc, studied for example in [KS97, Wil15].

12.3. Effectivity. Next we prove that the cycles Z¥%(o) are effective under the assumption that p is very
large.

Theorem 12.3.1. Assume that Lusztig’s Conjecture holds for G at p. (This is satisfied for all p larger than
an explicit bound, e.g., the quantity “U(wg)” in [Fiel2l §1.3].) Then the Z¥% (o) produced by Theorem|11.0.1
are effective.

The proof shows a more general statement: under the hypothesis of Lusztig’s Conjecture, the cycles
Z,Efl(g) (which were defined for any G with simply connected derived subgroup) are effective. For the proof
we may and do return to the situation where G is split reductive over F.

The assumption on Lusztig’s conjecture is an artefact of our argument, which goes by comparison with the
quantum group. The point is that our Breuil-Mézard cycles are constructed from the microlocal support of
(derived) D-modules, so effectivity comes from knowing that the relevant complexes of D-modules actually
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lie in the heart. To control this, we need knowledge about the categorification of the map in Proposition
As that categorification occurs over C, it can only be compared to representation theory over C. The
quantum group at a pth root of unity provides a C-linear category of representations that resembles, at the
level of Grothendieck groups, the representation theory of a Lie algebra in characteristic p, and enters the
argument for that reason.

We comment in Remark on how improvements in modular representation theory, which may be
expected in the not-too-distant future, should prove the effectivity under the assumption that p exceeds an
explicit linear bound on h,, by a similar argument.

12.3.1. Brief guide to quantum groups. For the number theorist’s convenience, we begin with a brief in-
troduction to quantum groups. Let G be a split reductive group and gc be its Lie algebra over C. The
quantum group associated to gc is a Hopf algebra over Clv, v 1], which is roughly a 1-parameter deformation
(in the parameter v) of the universal enveloping algebra Ugec. For our purposes it is useful to think of this
deformation as analogous to the “l-parameter deformation” Ugz.

In fact there are two standard forms of a quantum group associated to gc, one called the de Concini—
Kac form and denoted il,g, and the other called Lusztig’s form and denoted U,g (we will only consider
quantum groups over C and so suppress this subscript). These two forms are analogous to the two forms
of enveloping algebras for Lie algebras over Z: the universal enveloping algebra, and the hyperalgebra (i.e.,
the dual to the ring of functions on G). Either form of the quantum group can be “specialized” to any
g € C* by sending v + ¢; we denote these specializations by 4l,g and U,g. Just as the natural map from the
universal enveloping algebra to the hyperalgebra is an isomorphism in characteristic zero, there is a natural
map 4,9 — U,g, which is an isomorphism for generic ¢ (i.e., when ¢ is not a root of unity), and far from an
isomorphism when ¢ is a root of unity.

We continue to assume that p is larger than the Coxeter number of any simple factor of G, and also that p > 3.
Let ¢ be a primitive pth root of unity. Going forward, it will be more convenient for us to use the de Concini—
Kac form, as its specialization to ¢, denoted g, is more analogous to Ugr,. As the reader will see, our
proof of Theorem rests on the strength of the analogy between iUcg and Ugr,. (The number theorist
might think of the analogy between number fields and function fields as a metaphor for this analogy.)

12.3.2. Center of the quantum group. We will now explain the structure of the center of the quantum group
$leg, which should be compared to

Under the assumptions on p, de Concini — Kac calculated Z(l;g). Reminiscent of , it has the form
Z(Ucg) = 31c @a3u0n9 35, 138, Where the subalgebra 13uc — Z(Lcg) is the (quantum) Harish-Chandra
center and the subalgebra 93p, is the (quantum) Frobenius center (cf. [Tanl6l p.48]). Hence a character of
Z(Y¢g) is given by a compatible pair (), x) where A is a character of 93¢ and x is a character of 93g,. For
such a compatible pair, we define:

Uegh 1= el D30 A, Uey = Ueg @3, X, Uedy 1= Ued Dzug) (A X)-
We also make the following definitions, recalling that “Rep” always means the category of finitely generated
representations.

e Define Rep”(8,g) to be the full subcategory of Rep(il; g) where 935¢ acts with generalized eigenvalue
A
e Define Rep, (4¢g) to be the full subcategory of Rep(¢g) where 93r, acts with generalized eigenvalue

X.
e Define Rep” (U¢g,) := Rep™(Ug) N Rep(Llcgy ), and Rep; (U¢g) := Rep™(Ueg) N Rep, (¢ g), etc.
When 7' preserves A and x, we have the categories of “graded” representations Rep, (Ueg?, T), ete. defined

analogously to (see [Tan22, §7.2] for the definitions).

Example 12.3.2 (Quantum simple representations). Take y = 0. The simple objects of Rep,(U¢g°, T') are
in bijection with W, where w € W corresponds to 1L(w e, 0), the simple representation with highest weight
we,0e€ X*(T).

Example 12.3.3 (Quantum baby Verma modules). Take y =0 and A € W e,0. Let b=n®tC g be the
Lie algebra of B. There is an associated baby Verma module

Zy(\) = ego Pyeb dA
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where d)\ has graded weight A and the universal enveloping algebras are equipped with their natural gradings.

12.3.3. Comparison with modular representation theory. Take y and A to be the trivial characters. In this
case, the quantum analogue of BMR localizatiorﬁ [Tan22l §1.9] is an equivalence

19 D" (Repy (84g”, T)) = DP(Coh e (Ne)) (12.3.1)

which is exact with respect to the usual t-structure on the LHS and the exotic t-structure on the RHS. It
induces an isomorphism

K (Repy (4cg®, T)) = K(Cohze (Ng)) 2 K(Coh™ (Bc))
which is equivariant for the action of Rep(7¢), and sends
9 Z g (pp)] = £ - (O] (12.3.2)

In Lemma [7.7.3| we produced an isomorphism K(Coh™*» (Br,)) = K(Coh™@(Bg)). Combining this with
(7.5.2) and (|12.3.1)) gives a chain of isomorphisms

K(Repy(Ug®, T)) =2 K(Coh™ 7 (Bg,)) = K(Coh’® (Bg)) = K(Repy (8eg’, T)). (12.3.3)

Lemma 12.3.4. Let Bz < Gz be a Borel subgroup defined over Z. Then the composite isomorphism
(12.3.3) sends the class of the baby Verma [Zu,,u(N\)] € K(Repy(Ug®,T)) to the class of the baby Verma
[ Zwoe (V)] € K(Repy (Ucg®, 7).

Proof. We saw in Lemma that the middle isomorphism K(Coh’*» (Br,)) = K(Coh™@(Bc)) sends the
skyscraper [O,, BFp] — [Owpc], and is equivariant for the tensoring action of Rep(T).

The result then follows from the fact that ZUU[,()\) and qéwob(/\) localize to the skyscraper sheaf at the
mod p and complex fibers of Bz (with the same grading), respectively, cf. Example a

In general, the isomorphism of does not send the class of the simple module [E()\)] € K(Repo(Ug°,T))
to the class of the simple module [1L()\)] € K(Rep,(4¢g°, 7)) in general. This is related to the failure of
Lusztig’s Conjecture [Lus80|, a conjectural formula for the characters of simple representations of G in char-
acteristic p. Lusztig originally conjectured that this character formula would hold as soon as p > 2h — 2
where h is the Coxeter number of G. The character formula was proven to hold for all sufficiently large p
(building on a long program by many people) by Andersen-Jantzen-Soergel [AJS94]. The bound on p was
made effective by Fiebig [Fiel2]. On the other hand, Williamson showed in [Will7] that there are counterex-
amples to the character formula for p super-polynomially large in h. The significance of Lusztig’s Conjecture
to us comes from the following Proposition.

Proposition 12.3.5. If Lusztig’s character formula holds for G at p, then the composite map in ((12.3.3))
sends [L())] € K(Repo(Ug®,T)) to [L(N)] € K(Repy(£leg”, T)).
Proof. Since these K-groups are free as Z[X*(T")]-modules (acting by change of grading), it suffices to check

the equality after tensoring with Q(X™*(7T')). The classes of the baby Vermas (with respect to any chosen b)
generate in

K(Repy (Ug°,T)) @zx-(1)) QX *(T)) = K(Repy(Ue”, T)) @zpx- (1)) QX (T)) (12.3.4)

since the characters of the simple modules L()) for A € X} (T) may be written in terms of the characters of
w - [Zy(pp)] after passing to the fraction field Q(X,(T)). (As an aside, we remark that this may also be seen
from the coherent realization using Theorem and equivariant localization in K-theory.)

Therefore we have unique (ngz € N)g g such that

[Zo(@ 0, 0)] = > naay[L(@ », 0)] € K(Repy(Ug®, T)).
w' eW
Define ("ngg € N)gg analogously for the quantum group. Lusztig’s Conjecture says that the characters
of L(w e, 0) and IL(w e, 0) coincide for all w € 1% (cf. [Jan03l H.12]). Since we have seen in Lemma
that the composite map takes [Zy (@ o, 0)] — (97 (@ e, 0)], we must therefore have (ngg )w,a =

21The accreditation of this result seems tricky. It was claimed the main theorem of [BKO0S§|, but there appear to be serious
gaps in the proof there — see [Tanl4] Remark 5.4].
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("M@ ), and they are uni-triangular with respect to the partial order 1, hence invertible in Q(X*(T)).
Therefore the composite map (12.3.3) must send [L(w' e, 0)] — [1L(w e, 0)]. O

12.3.4. Effectivity of Breuil-Mézard cycles. The key input to effectivity is the following t-exactness property
from [BBAMY?23|.

Proposition 12.3.6 (|[BBAMY23| Theorem 6.3.5]). The functor Db(Cohg(/\Nf)) — Dy g from (8.1.1)) is
t-exact for the perverse t-structure on the target and the exotic t-structure on source.

Corollary 12.3.7. (1) The singular support of qvg(qz()\)) is effective.

(2) If Lusztig’s Conjecture holds for G at p, then the class SS|L(\)] € H&%(Xizo) is effective.

Proof. (1) This follows from Proposition[12.3.6|and the effectivity of the singular support of perverse sheaves.
(2) Combine Proposition [12.3.5{ with (1). O

Proof of Theorem[12:3.1] By Corollary (2), the hypothesis implies that SS[L(\)] is effective. (Note
that if we were willing to impose a small genericity assumption, we could simply conclude by invoking
Proposition at this point.) By definition, ZE€(s) is obtained from SS[L())] by the composition of (a)
applying w=1t=#, (b) applying (sp._,,) "', and (c) applying sp._,;. Then observe that all of these operations
preserve effectivity: (b) by Theorem [5.1.1[1) and (c) by Lemma O

Remark 12.3.8. The above argument is in some sense a hack to circumvent the issue that “mod p Geometric
Langlands” is not currently available. There should be an analogue of for G/F, on the LHS, and mod
p sheaves on the RHS. The main missing input is an analogue of Bezrukavnikov’s equivalence in characteristic
p, but this has seen significant recent progress by Bezrukavnikov—Riche et al. We are therefore optimistic
that we will soon be able to apply this same t-exactness argument to show the effectivity Zﬁzo(a) without
the assumption that p is extremely large.

Part 4. Appendices

APPENDIX A. THE MICROLOCAL SUPPORT OF BABY VERMAS
BY R. BEZRUKAVNIKOV, P. BOIXEDA A1LVvAREZ, T. FENG, B. LE HUNG

We will prove T heorem by showing that SS[Z 1(p)] satisfies the conditions of the Recognition Principle
Conditions (2) and (3) are not difficult to verify by direct computation. However, the “eigenclass”
condition is less accessible; indeed, at first glance it seems to require calculating the equivariant fundamental
class, which was the difficulty in the first plagg However, it admits a more conceptual interpretation in terms
of the interplay between the two actions of W restricted to X*(7T). The key point is then that under BMR
localization, baby Vermas are localized to skyscraper sheaves in the coherent realization. This suggests that
they are “Hecke eigensheaves” in some sense, and making this precise leads to the “eigenclass” condition; this
was in fact the origin of the name.

A.1. Eigenclass condition. We remind that we regard ' < B < G, etc. as being over F), in this part. The
G-action on our fixed Borel B < G induces an isomorphism G/B — B. The fixed points for the T-action
on B are identified with W, with w € W corresponding to wB € B. We let O,p be the skyscraper sheaf
at wB viewed as a point in the zero section of N := T*(B). Since wB is T-fixed, O, p carries a native
T-equivariant structure, which we use to view it as an object of Cohg(./v ).

Example A.1.1 (BMR localization of baby Verma). As explained in Example 2[,(2,0) localizes to the

class of the skyscraper sheaf [O5] € Cohg(N). We will calculate the BMR. localization of [Zy,6(pp)]. To
this end, observe by comparing characters that we have

[Z5(20)] = [Zu,y0(2p)] € K(Cohg(N))

where wy € W is the longest Weyl element. Hence writing Zj, (pp) =t7"-p Zy (2pp) and using the equivariance

of SS for the (W, -,)-action, we find that
SS[Zuyu(pp)] =t - [Os] € K(Cohk (N)). (A.1.1)
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Recall from §7.4.2) that for A € X*(T) we defined the representation Z1(\) € Rep®(G1T) to correspond to
Zwon(A). Hence we may rewrite (A.1.1)) as
SS[Z1(pp)] =t~ - [Op] € K(Cohk(N)). (A.1.2)

Recall that X*(T) acts on K(Cohg (V) = K(Coh”(B)) in two ways through the embedding X*(T) < w.

(1) For the --action, A € X*(T') acts by tensoring with the T-equivariant line bundle O()), which is the
pullback of the T-equivariant line bundle on a point corresponding to the character A\ of T'.
(2) Fir the e-action, A € X*(T) acts by tensoring with the G-equivariant line bundle O(\) = G xZ A!
on B, where B acts on A' through the character \.
Moreover, it is evident that the two actions of X*(T') commute with each other.

Lemma A.1.2. For any p € X*(T), on the object t" - O, 5 € Coh™ (B), we have
A (" [Owp]) = (" - [Owp]) o t* € K(Coh™ (B)).
Proof. We immediately reduce to the case u = 0 since the two actions of X*(7T') commute. By definition,
tr - Owp = O(\) ® Oy is Oyp equipped with T-equivariant structure placing it in graded degree .
For g € T, we have gwB = w(w™'gwB) € B. Therefore, the left translation of g € T on O, p ® t* =
Owp ®O(=\) acts as multiplication by A(w~tgw) = (wA)(g). Hence O, @ O(—\) is O, p in graded degree
wA for the left translation action of ¢. |

Proposition A.1.3. The translation action of X.(T) on SS[Zl (pp)] agrees with the affine Springer action of

=

X.(T) on SS[Zy(pp)]. In particular, the equivariant support of SS[Z1pp)] is concentrated on the translation

elements X.(T) C W.

Proof. By (A.1.2) and Lemma we see that
t* - S8[Z: (pp)] = SS[Z1(pp)]  t* € K(Coh™ (B))
for all A € X*(T). This gives the first statement of the Proposition. This implies that the two actions

of X,(T) — one restricted from (W,-) and the other restricted from (W, e) — also agree after lifting to
T-equivariant Borel-Moore homology, so that

7" - SS[Z1(pp)l7 @ 1" = SS[Z1(pp)] -
By the description of the two W-actions in T -equivariant Borel-Moore homology (cf. , this implies that
if @ belongs to the equivariant support of SS[Z;(pp)]; then so does twt=" =t~ for any v € X,.(T),

where w is the projection of w to W. But if w # 1, the set t*~“Yw is unbounded, a contradiction; this
concludes the proof. O

A.2. Support bound and normalization conditions.
Proposition A.2.1. Assume that p > 2h,. Then SS[Z, (pp)]# has equivariant support in Adm(p) C w.

Proof. By [GHSI8| Lemma 10.1.5], the simple constituents of Z (pp) consists of Zl(pl/ + w e, 0) where
ot~ 1 wot P
for all 0 € W. This is equivalent to ot™" 1 wot Pw for the choice of o such that ot~ is dominant.
In turn, this is equivalent to ot < wet Pw for this choice. By Lemma m it suffices to show that
t"Wewew C Adm(p) for such w, v, 0.
Let w be the projection of w to W. Then we have the reduced factorization
e = (wot P W) wow.
We have
(Ut_y)_l < (U’Ot_pﬁj)_la o < wp
hence for any u < wow,
-1
t"u = (ot™") tou < (wotPw) twew =t P

belongs to Adm(p). This shows the desired inclusion tngwoa C Adm(p).
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Proposition A.2.2. The coefficient of LocT (SS[Zl(pp)]T) at [tP] is 1/8 € Frac(S).

Proof. From the proof of Proposition the only factor El (pr+we,0) of 21 (pp) whose microlocal support
can contribute to the coefficient of [¢?] is the one with w = 1 and wot ™" = wet~*, i.e., El(pyqtfbopO) = El(pp).
Since Ly(pp) occurs in Z;(pp) with multiplicity one, and SS[El(pp)]T = t?[G/B]; has coefficient 1/8 by
Example [6.4.2] we are done. U

Proof of Theorem[9.].1] The equality

- _ 1 w
Loc (50X (p)]r) = = 3 sgn(w)it”]
5 weW
comes from (9.3.1). As observed in Lemmam7 this shows that sp, ,o[X5=%(p)] 5 satisfies the properties of
Proposition [9.3.1]
Propositions [A.1.3} [A.2.1] and [A.2.2] show that SS[Z;(pp)]; also satisfy the characterizing properties in
Proposition Hence they coincide. (]

APPENDIX B. THE HOMOLOGICAL MODEL THEOREM
BY B. LE HUNG

In this appendix, we explain some ideas developed in [LH] (which deals with the much more complicated
setup of non-generic tame types) to give a sketch of proof of Theorem As we will cite several lengthy
formulas from [LHLM23Db|, we will align our conventions with this reference. Especially, our affine flag
varieties are written as right cosets, and we work with the upper triangular Borel. We can convert between
the two conventions by transposing all statements involving matrices.

We recall the basic setup. We wish to study Galois representations of Gx where K = Qs = Q . All
spaces we study will be over the ring of integer O of a sufficiently large finite extension E/Q,, with residue
field F. Unlike [LHLM23b|, we will suppress subscripts O for the spaces over 0. Set J = Hom(K, Qp),
which is identified with Z/f using arithmetic Frobenius according to the conventions of [LHLM23bl §1.9.2].

B.1. Generalities.

B.1.1. Loop groups. For a O-algebra R, we denote by R[v]“»+» the completion of R[v] with respect to
v(v + p). Consider the functors on Noetherian test rings R

)

v(v +p) X
LTG(R) = {A € GL,(R[v]"*@+»), A is upper triangular modulo v}
LT M(R) = {A € M,,(R[v]"*+»), A is upper triangular modulo v}

LG(R) = GLy(RJv] v+ [m

LM(R) = M,,(R[v]"vc+p

and for integers a, b
LG"(R) = {g € LG(R) |g € (v +p)"L* M(R) and (v+p)’g " € L* M(R)}

For A\ = (A,---\,) € X.(T)" with \; € [0,h], we also define L=*G(R) c LI®MG(R) to be the subset
of A such that all its k x k minors belong to (v + p)n—k+1T+An R[y]Nvw+r) | and its determinant is in
(v + PP (Rlo] e ).

Remark B.1.1. Compared to [LHLM23b], the difference is that we complete R[v] with respect to v(v + p)
instead of (v 4 p). This makes no difference for p-adically complete test rings, but makes a difference when
we work over rings where p is invertible.
For each N > 0 we have a reduction mod v™ maps
rn : LY M(R) - My(R) < M, (R[v]/v™)
where My (R) is the subset which is upper triangular mod v. Define L{,G(R), L; M(R) to be the pre-image
of 1 in LTG(R), and of 0 in LT M(R), respectively. The choice of coordinate v gives a functorial R-linear
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splitting R[v]/v™ — R[v] v+ and hence gives a section sy : My — LT M. We warn the reader that the
restriction of 7y to LTG(R) does not surject onto My N GL,(R[v]/vY) in general. Finally, we note that
v = vP gives a well-defined map My — My

B.1.2. Twisted affine Grassmannians. Let Grg = L*g\Lg. It is an ind-scheme over O, with the following
properties:
e The generic fiber (Grg)r = (Grar, )r X (FlgL, )E is the product of affine Grassmannian for loop
variable v + p and the affine flag variety for the loop variable v (over E).
e The special fiber (Grg)r = (FlgL, )r, the affine flag variety (for the upper triangular Iwahori).

For each a,b € Z, Gr[ga’b] = LG\ LI*!G is a finite type closed subscheme of Grg, and under the isomorphism
(Grg)g = (Grew, )E X (FlaL, ) g its projection to second factor is the base point of (Flgr, )&.
For N > 0, we also have Grg xy = L},G\LG. Then Grg y — Grg is a torsor for the group L*G/L}G

B.1.3. Tuwisted ¢ action. Suppose R is p-adically complete. Then R[v]"*¢+» = R[v+p] = R[v], so Frobenius
¢ : R[v] = R[v] sending v + vP extends to R[v] v+ . Given (s,u) € W7 x X*(T)7, we define the (s, u)-
twisted ¢-conjugation action of (LTG)7» on (LG)7"\» by

(I(j))j . (A(j))j = 7@ A4) (Ad( vm)(so(j(j—l))—l))

We warn the reader that this is different from the definition in [LHLM23D, §5.2|, in that we do not incorporate
the shift by 7 in loc.cit.
An important feature of the twisted action is that it can often be straightened over p-power torsion bases:

Proposition B.1.2. Suppose N > %, and (s,p1) € W7 x X1(T)7. Then over O/p™, the (s, u)-

twisted @-conjugation action and left translation action by (L')\',Q)j have the same orbits, and hence

0,h]
(MG [ (i) (LHG N0 st = (GG DT o
Proof. Exactly as in the proof of [LHLM23b| Lemma 5.2.2], this follows once for A € LGI®"(R), the operation
X = AAd(sy Lok ) (p(X))A™!

defines a topologically nilpotent endomorphism on Lie L;Q = ™M, (R[v]). The result now follows from
p+1

the fact that A Ad(s; 'v)(p(X))A™" belongs to %Mn(R[{’UH) € pPN=PHI=h=M+IN (R[v]) when R is
an O/pM-algebra. O

If we let 7 = 7(s, ) be the inertial type corresponding to (s, i), the quotient stack
Y[O,h],-r _ [(L[O’h]g)j’Ap/%(s,u) (LJrg)J,/\p}

is exactly the p-adic formal stack of Breuil-Kisin modules of height < h with descent data of type 7, cf
[LHLM23b!, Proposition 5.2.1]. If X € (X.(T)*)7, we also have the stack Y <M := [, ,(L=YG) /o, (5 0y (LT G)T 7).
Note however that the object with the same name in [LHLM23bl §5.3] is the p-saturation of the reduced

part of our YSM7.

B.2. Monodromy condition. Fix h > 0. Let 7 = 7(s, ) be a tame inertial type, with p at least m-generic
with m > 2h. Set J' = Hom(Qr ,Q ) = Z/fr where r is the order of s. The data (s,u) gives rises to
various quantities sg, ./, a’ (") as explicated in [LHLM23D, Example 2.4.1] (noting that the role of y 4 7 in
loc.cit. is played by p here). As in the main text, the precise formulas for these quantities are not important
for us.

Let R be a p-adically complete O-algebra. Let A = (AW)) € (LI®MG(R))7, which we inflate to a tuple in
(LIOMG(R))Y" by demanding AY") to only depend on j’ mod f. Set A*U") = (v+p)"(AU))~1 € LT M(R).

Define the expression Nég/) (A) as

NG PG »? NG L
O et T g er)h(p ot op? )t

p A" —1, K4 G =1\ 4% G
promr A Adlsy v eV 7)) A +

p
(p + vP) (p + vP?)h—1

:/\/5” + Al )Ad(s—lvu]/>( (ij’—l)))A*,(j’) I
o i
,N(J ) +A(7 )Ad(s—lvujl>(z

‘P(NLJ *1)) A* (")
ST (p+ vPF)R ! )
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where the M(j ) are defined recursively by
-/ d . _ -/ -/ * -/
Ny = <e’vd—A<J + [Diag((str, 1) ™ (' U)), AT A7
M(j ) _ Ad( Loy )(“P(/\/;(ifl)))/l*’(j/)
Remark B.2.1. It follows from the proof of [LHLM23bl Equation (7.8)] that

NG € +mE=E Mat,, (R[v + p])

The monodromy condition for type 7 is the condition

, 1
N € (0p)" L MR ) (B2.1)
or, more precisely, the condition that
d 3 y
() Tomp (v NG L), = 0 (B.2.2)

for 0 <t < h—2,1<k,¢<n. The formula defining NE{;I) only makes sense in R[ 1[v], however the quantity

in belongs to R, so that condition makes sense already over R. Note also the condition for
4’ is the same as the condition for (j/ 4+ f). Hence, we can define LGI%":V=.< to be the closed subfunctor
of (LI%"MG)7"» cut out by equation . We also define LGSMV~> with its obvious meaning. All these
objects are stable under the twisted ¢ conjugation action of type 7.

The crucial feature of this condition is the following:

Proposition B.2.2. (JLHLM23b, Proposition 7.2.3]) Let 7 = 7(s, ) and XOMAT = | JXSMT be the poten-
tially crystalline Emerton-Gee stack of tame type T and Hodge-Tate weights belong to [0, h] Assume p is (h+
1)-generic. Then X1OM7 js isomorphic to the p-saturation of the generic fiber of [LG0:M V. /o o) (LTG)T 0]
If X is a collection of Hodge-Tate weights belonging to [0, k], under this isomorphism X<™7 identifies with
the p-saturation of the generic fiber of [LGSMVre [, (o (LTG)T "]

B.2.1. Approximating monodromy. The monodromy condition only makes sense after p-adic comple-
tion, since the formula for Néé")( A) has infinitely many terms. Define the truncation

N (A ./\/'J)—&-A(J Ad(s; vr") tr —l
v <;Nﬂk1(+v”)

is the polynomial

Jswrw (@(ry (VD)) ) ant)

where the term trN(WM)
k=1
1 : A
7,51\/7'1\[( (1 - — 4+
p(h—1)1 kl;[l D p

Lo)e R%Mv}

Define the N-th truncated monodromy condition as
./ 1
NYO(A) € (04 p)! T LEMRL ) (B.2.3)

which again is understood as the Vanishing of appropriate derivatives evaluated at v = —p.

By Remark-, the sum defining N J )( A) has only finitely many terms, and furthermore, the structure
of the recursion shows that , . ‘ ‘

NV () = Ng 4+ A f (e (4)) 4500

where fy is a regular function MY, = (LY M/LEM)% — (LY M)Z. This implies that the N-th trun-
cated monodromy condition can be decompleted to give subfunctor LGIOM:Vrn LGSAVrN of (LIOMG)T
These subfunctors are invariant under the left translation action by L;{,Q , thus induce closed subschemes

0,h], V. <AV,
GrgﬁN]’ 'N,Gr_g’N N C Grg N.

s

Remark B.2.3. The N = 0th truncation (GI‘;%’VT'O)F has the same underlying reduced scheme as the

deformed affine Springer fiber Xffl(g A) for the element v = ~(s,u) = t(w~'p) attached to the type
7 =17(s, ), up to transposing the situation.
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We have the following estimate:
Proposition B.2.4. Let R be a p-adically complete O-algebra and suppose we are given f : SpfR —
(LIMG)T | corresponding to A = (AD)). Let Iy Iy  be the pull back along f of the ideals defining the
subfunctors LGV 7> LGV N . Then
(1) For all N >0

7,007

m72h+3) m72h+3)

(Iv, np =Iv,..p
(2) Given an integer M, for any sufficiently large N
(IV vajw) = (IV ooapM)
Proof. The first item follows immediately from (the proof of) [LHLM23bl Proposition 7.1.10], noting that

maximal power of v dividing sy7n (p(ry (/\fl(i/fl))) is at least that of gp(/\f(] 71))
For the second item, observe:

o swr (rn (VD)) = o9 TY) belongs to o™ N5 Mat, (R + p).
‘ (1-L)YN—s—(h—1)i
eEpr Z,.

d \s p’ _ Pi’
o () omn (o () — F oy

A crude estimate then shows that (£)%|,—_, (J\/(J (A )—N](Vj’)(A)) ¢ prini{max{(1-3)N.1+ (=D} R
for s < h — 2, which immediately gives what we want. ]

We can also control the generic fiber:

Lemma B.2.5. Suppose we are given a morphism fn : (LY M/LILM)Y = (My)g — (LTM)L. Let
X C (LMG)T be the (left LT, G-invariant) subfunctor of (LG)% cut out by the condition

d
—(A)A™ + A A)A™ e Lt
VAT 4 Afry ()47 € (LMY
Recall there is a natural isomorphism ¢ : (LG)Y, = (LGL,)% x (L GL,)Y, where the first factor has loop
variable v+ p and the second has loop variable v. Then X = (][], [OMH)j(L CGL,)7 (v+p)* GLY g x I,

where T € L GL,, is the standard upper triangular Twahori group scheme of L GL,, in loop variable v.
In particular dim(L{G)7\X < (dim(L*G/L}G) + dim(GL,, /B))#J .

Proof. Let R be an E-algebra. Write ¢(fnrn(4)) = (B,C) € M,(R[v + p]) x M,(R[v]). The differential
equation

d

—)X+XB=0

(v dv) +
has a unique solution X (B) in GL,(R[v + p]) which is congruent to 1 mod (v + p), and the assignment
B — X(B) is a regular function on M, (Ev + p]).
The map A = (B, C) — (AX(B),C) thus gives an isomorphism from X (R) to the space of pairs (Y, Z)
such that
o Y € M, (R[v+ p]) such that (v + p)"Y~! € M, (R[v+ p])? and

qy 1
Yy-1¢ M, (R[v + p])7

dv v+p

e Z € M,(R[v])?, and is upper triangular mod v.

The result now follows from the well-known fact that the space of regular singular lattices on the trivial bundle
with trivial connection on the punctured disk in characteristic 0 is isomorphic to the space of filtrations on
the fiber at 0 of the trivial bundle. O

B.2.2. Comparing limit cycles By Proposmlon 4} for each N > 0, the spaces LQFA VN a1l coincide and
<AV,

are equal to LGz , and this common space is invariant under both the left action and the (s, u)-twisted
p-conjugation action of (L'*‘Q)ﬁ . By Proposition these two actions have the same orbits when restricted
the subgroup (Lfg)g . The common quotient stack by either restricted action is then exactly the Bg -torsor
over the deformed affine Springer fiber (Gré’(\jv“o)p obtained by pulling back along (Grg1)? — (Grg)?. In

particular, it has dimension < dim(GLg ), with equality achieved when A is regular.
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For each N > 0, define 21%)‘ to be the special fiber of the closure of the generic fiber of Gré’}(,v“N, which

is in fact descends (or ascends if N = 0) to a closed subscheme of (Grg ;)g of dimension < dim(GLY), with

equality if \ is regular. At the level of cycle classes, it is even invariant under left translation by (LTG)7,
and hence descends to a cycle class [ZE,)"T] € Chtop((Grg,}\)’v”o)F) = Chtop(Xfl(g A).

We also denote by Z5* the special fiber of the closure of the generic fiber of [LGSMVree /(o (LTG)T /0]
This also induces a cycle class [ZSM7] € Chtop((Grgz’v“O)F) by ascending along the natural B -torsor and

then descending by left translation under BY. We have the following key invariance property

Theorem B.2.6. The cycle classes [ZE,)"T] are independent of N € NU{co}.

Proof. Fix N > 0, and consider the following family Gré)]‘\’,v”\' © 5 Al: For an (O-algebra R, its R-points
consists of (A4,¢) € (Grgﬁv)j(R) x A'(R) such that
§ , ~ 1
NG (A) + (1= N (A) € (v p)" T LT MRL))
By Proposition the special fiber of this family is the constant family over AL with fiber the natural
(LG/L§G)7 -cover of (Gréﬁ’v*’“)}:. On the other hand, by Lemma [B.2.5 after inverting p, this family is
isomorphic to a constant family over AL of unions of flag varieties. By Lemma these two facts imply
[Z3M7] = [257).
To finish, it suffices to show that for sufficiently large IV

(237 = [2227].

This is a consequence of the fact that [LGSMVree /(o (LTG)7"#] is a topologically finite type p-adic
formal stack with regular generic fiber. In particular, the p*°-torsion of its structure sheaf is bounded.

The boundedness and Proposition implies that for all sufficiently large N, ZNE,)"T embeds into
gNm, the pullback of ZZM to (Grg n)7. On the other hand we can find a finite type smooth affine cover
U — [LG=MYme /g (5,0 (LTG)7"#] such that the map can be lifted to a map U — (LG)7"». Using such a
cover and Proposition [B:2:4] an elementary argument shows that for any finite flat O-algebra A and a point
in U(A) with image 2 € LG7 (A), we can find a point in LGSV~ (A) lifting 2 mod p. This implies that in
fact Z~J§,)"T = ZN’OO, and the proof is finished. |

B.3. Proof of Theorem [11.1.1} It follows from Proposition and the discussion on the previous
sectioc that we have a natural inclusion

L Chyop(Xe 7)< Chyop (Gr5 3V ))

and the group on the right identifies with Chop (X,Eyzl (< A+p)) by Remark w The first part of Theorem
now follows from Theorem and an easy induction on A’ (note that if X’ is irregular, the equality
we need to check reduces 0 = 0).

Once we have proven the first part, we learn that the image ¢ Chtop(XE)‘er '™ contains classes of irreducible
components occurring in sp,, HO[Xffl(/\ +p)]. But Corollary shows that all top dimensional component
of 1221(§ A+ p) occurs this way, hence ¢ is an isomorphism, and we can define transfer, = 1.

Finally, we prove second part of Theorem Let w = v 'wou € Adm™®(\ + p) and set o =
F(r=(a) e, (t*wv=1(0) — p)). Then from what we have already proven, ¢! ([Xfyzl(@)]) must correspond to

some irreducible component C,: of XrEe((f’. Then [LHLM23b| Lemma 7.4.6], which forces o/ = o by looking at
restrictions to inertia of a generic Galois representation occurring in C,+ (cf the proof of [LHLM23b, Theorem
7.4.2]).

Remark B.3.1. As alluded to in the main text, Theorem [I1.1.I]actually holds under the weaker hypothesis
that p is hyy,-generic. The sole source for the stronger hypothesis in the above proof is the first part
Proposition cited from [LHLM23b| Proposition 7.1.10] which controls how much p-divisibility there is
in the error terms of the monodromy operator. In fact, by working with the slightly modified monodromy
condition which keep track of the data of the residue % integrally, one would obtain the sought-after

improved version of Proposition The details will occur in [LH].
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