Diamonds for the Perplexed

Notes by Tony Feng for a talk by Dennis Gaitsgory

April 8, 2016

These are notes for a 20-minute discussion session by Dennis Gaitsgory on the basics of diamonds and their application to the moduli stack of bundles on the Fargues-Fontaine curve.

1 Diamonds for the perplexed

The "diamondification" $Y \rightsquigarrow Y^{\diamond}$ is a functor

Presheaves on $\operatorname{Perf}_{\operatorname{Spa} E} \to \operatorname{Presheaves}$ on $\operatorname{Perf}_{\overline{\mathbb{F}}_a}$.

What is Y^{\diamond} ? Its functor of points is

$$Y^{\diamond}(R) = \begin{cases} R^{\#} = \text{ untilt of } R/\mathbb{Q}_p \\ \operatorname{Spa}(R^{\#}) \to Y/\operatorname{Spa} E \end{cases}$$

Suppose *Y* is representable, i.e. is given by a perfectoid space over Spa *E*. In this case, we claim that Y^{\diamond} is also representable, namely by Y^{\flat} .

Proof. The *R*-points are untilts $R^{\#}$ of *R* over Spa *E*. There is a theorem due to Scholze that perfectoid spaces over a perfectoid *Y* are equivalent to those over Y^{\flat} .

Definition 1.1. A *diamond* Z is a presheaf on $\operatorname{Perf}_{\mathbb{F}_q}$ such that there exists a map $Y \to Z$ such that *Y* is representable and the morphism is representable and quasi-profinite covering.

The point is not a diamond.

Lemma 1.2. Let $S \in \operatorname{Perf}_{\mathbb{F}_q}$. Then

$$(Y_{S,E})^{\diamond} = S \times (\operatorname{Spa} E)^{\diamond}$$

Proof. Assume $S = \text{Spa}(R, R^+)$. Let's check the functor of points on $\text{Spa} B \in \text{Perf}_{\mathbb{F}_p}$. For the left side, we have by definition

$$Y^{\diamond}_{S,E}(B) = \begin{cases} B^{\#}/\operatorname{Spa}(E) \\ \iota \colon (B^{\#})^{\flat} \cong B \\ \operatorname{Spa} B^{\#} \to Y_{S,E} \end{cases}.$$

At the level of rings, a map Spa $B^{\#} \to Y_{S,E}$ is the same as $W_E(R^+) \to B^{\#+}$ satisfying an invertibility condition, which by the adjunction is the same as $R^+ \to B^{\#+b} = B^+$.

On the right side, we have by definition

$$S \times (\operatorname{Spa} E)^{\diamond}(B) = \begin{cases} B^{\#} / \operatorname{Spa}(E) \\ \iota \colon (B^{\#})^{\flat} \cong B \\ R^{+} \to B^{+} \end{cases}.$$

These look more or less the same. The only thing left is to carefully track the invertibility condition that comes packaged in with the map $\operatorname{Spa} B^{\#} \to Y_{S,E}$. The condition is that the map $W_E(R^+) \to B^{\#+}$ must not kill ϖ or $[\varpi^{\flat}]$. But ϖ is a unit in *E*, hence also in $B^{\#}$, so that is built into the the fact that $B^{\#}$ is over $\operatorname{Spa}(E)$, and the analogous condition for ϖ^{\flat} comes from similar reasoning with respect to the isomorphism $\iota: (B^{\#})^{\flat} \cong B$.

2 The stack Bun_G

2.1 The classical version

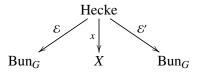
Bun_G is a presheaf on Perf_{\mathbb{F}_q}, with Bun_G(S) is the groupoid of G-bundles on Y_S equivariant with respect to Frob_S.

There is a map $\operatorname{Gr}_{G}^{B_{dR}} \to \operatorname{Bun}_{G} \times (\operatorname{Spa} E)^{\diamond}$. This is supposed to be smooth after taking some kind of Bott-Samuelson resolution of the affine Grassmannian.

In the usual world of algebraic geometry, there is a Hecke stack Hecke which parametrizes

$$S \mapsto \left\{ (\mathcal{E}, \mathcal{E}', x, \iota) \colon \mathcal{E}, \mathcal{E}' = G\text{-bundles}/S \times X \\ \iota \colon \mathcal{E} \cong \mathcal{E}'|_{S \times X - \Gamma_x} \right\}.$$

We have maps



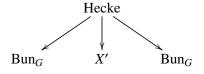
2.2 The diamond version

We denote a mirror curve $X' = \operatorname{Spa} E^{\diamond} / \operatorname{Frob}$. What does this mean?

$$X'(S) = \left\{ \begin{matrix} S^{\#}/E \\ \iota \colon (S^{\#})^{\flat} \cong S \end{matrix} \right\} / \sim$$

where the equivalence relation is for the action of Frobenius on ι .

Again we have maps



where Hecke has the functor of points

Hecke(S) =
$$\begin{cases} \mathcal{E}, \mathcal{E}' = G \text{-bundles} / Y_S, \text{Frob}_S \text{-equivariant} \\ \iota: (S^{\#})^b \cong S \leftrightarrow S^{\#} \xrightarrow{\theta} Y_S \\ \mathcal{E} \cong \mathcal{E}' \text{ away from } \theta \text{ and Frobenius translates} \end{cases} / \sim$$

The datum is up to Frobenius, hence the map to X'.