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1 Introduction

1.1 Donaldson-Thomas Theory

Let X be a Calabi-Yau threefold, i.e. a smooth threefold over C with KX � OX .
Donaldson-Thomas theory is a curve-counting theory, a mathematical analogue of EPS

counting in string theory. Although this has its origins in string theory, and has undergone
very sophisticated developments, it has now come “full circle” in mathematics, meaning
that the mathematical approach is actually quite simple.

The first step is to consider the parameter space for curves:

Hilbn,β(X) = {Z ⊂ X | [Z] = β ∈ H2(X), n = χ(OZ)}.

So n would be the genus for smooth curves.
Now, the geometric version of counting is taking the Euler characteristic. This naïve

thing is almost the right thing to do: we have a Behrend function ν : Hilb → Z, and the
Donaldson-Thomas invariant is a weighted sum of Euler characteristics:

DTn,β(X) = e(Hilbn,β(X), ν) =
∑
k∈Z

k · e(ν−1(k)).

Today we’ll ignore the Behrend function. The amazing thing is that, for somewhat myste-
rious reasons, there are many contexts in which this doesn’t hurt you at all. At then end, if
there is time, I’ll talk about how to put the Behrend function back in. We define

DTβ(X) =
∑
n∈Z

DTβ,n(X)(−p)n ∈ Z((p)).

What makes this so interesting is not so much the individual enumerative geometry answers,
but the structure that these partition functions exhibit.

Today we’ll assume that there is an elliptic fibration X → S .
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Slogan. The partition functions DTβ(X) are controlled by Jacobi forms.

There is a slew of conjectures and theorems that make this precise in various settings.
So instead of trying to formulate a general statement, I want to focus on particular examples
and discuss how they generalize.

Example 1.1. The simplest example is that of trivial fibrations X = K3 × E or X = A × E
where A is an abelian surface and E is an elliptic curve.

Non-trivial fibrations: X could be the total space of KS where S → P1 is an elliptic
surface.

1.2 Main example

We will focus on the example X = K3 × E. This is nice in many ways (e.g. it is a trivial
fibration) but it has some problems. One is that all the invariants DTn,β(X) = 0. There are
two reasons for this:

1. E acts freely on Hilbn,β(X), which implies that e(Hilbn,β(X)). Indeed, if an elliptic
curve acts and you take the Euler characteristic restricted to the fixed point set, you
get 0.

2. (Using that the weighted DT invariant is deformation-invariant) We can deform X sot
hat β is not algebraic, so Hilbn,β(X) = ∅. s

We can solve both of these problems simultaneously by defining a modified DT invari-
ant.

Definition 1.2. Define DTn,β(X) = e(Hilbn,β(X)/E). This is invariant only under deforma-
tions leaving β algebraic.

One way to think about this is that there is a deformation in the direction of E, which is
dual to the obstruction for deformations in non-algebraic directions, and we are removing
both of these at once.

Let’s package these into a generating function. We’ll need to introduce a little bit of
notation. Suppose βh ∈ H2(K3) is a primtiive curve class such that β2

h = 2h − 2 (so h is the
arithmetic genus). Then we get classes βh + dE ∈ H2(X). We have two discrete parameters
here: d describes the degree of the projection to E, and h is the genus of the projection to
K3.

DTh(X) =
∑
d,n

DTn,βh+dE(X)(−p)nqd−1.

We also define
DT (X) =

∑
h

DTh(X)̃qh−1.

So p tracks the arithmetic genus, and q tracks the degree of the projection to E, and q̃ tracks
the genus of the projection to K3.
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2 IDEA OF THE PROOF

Conjecture 1.3 (Oberdieck-Pandharipande). DT (X) = −1/χ10 where χ10 is an Igusa cusp
form of weight 10, which is a genus 2 Siegel modular form, in terms of the coordinates
p = e2πiz, q = e2πiτ, q̃ = e2πĩz.

One of the nice things about this Igusa Siegel form is that it admits a Borcherds product

χ10 = pqq̃
∏
n,d,h

(1 − pnqdq̃h)c(4hd−n2)

Write
Z =
∑
n,d

c(4d − n2)pnqd = −24℘F2

where
℘ =

1
12

+
p

(1 − p)2 +
∑

d

∑
k|d

k(pk + p−k − 2)qd

and

−F2 = p−1(1 − p)2
∞∏

m=1

(1 − pqm)2(1 − p−1qm)2(1 − qm)−4.

What do these formulas tell us about the geometry?
In this formula, there is a symmetry between q and q̃, which implies a symmetry be-

tween d ↔ h. That’s very surprising!
One can ask about DTh(X) for a fixed h, which corresponds to expanding DT (X) in the

q̃ variable. By general theory, these coefficients will be Jacobi forms (of weight −10 and
index h − 1). One way to think about a Jacobi form is as a meromorphic section of line
bundle over the universal elliptic curve (τ is the elliptic curve variable.)

Example 1.4. DT0(X) = 1
F2∆

, DT1(X) = −24℘/∆, and

∆ = q
∞∏

n=1

(1 − qm)24.

Even the first equation (the constant term) encapsulates the KKV equation.

Theorem 1.5 (Bryan). The conjecture holds for h = 0 and h = 1.

The proof is via a new computational technique, develoepd together with M. Kool,
which is a mix of motivic and toric methods. In particular, it forms a connection between
the topological vertex and these Jacobi forms.

2 Idea of the proof

The Hilbert schemes can be nasty. They can parametrize curves with many irreducible
components, non-reduced components (and the “directions” can vary in complicated ways),
embedded points, etc. Thus Hilb is very complicated and very singular.
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But because we’re computing Euler characteristics, we have some tools. For example,
they are motivic, so we can chop up the space and compute the Euler characteristic on the
pieces. Also, if we have a group action then we can use localization to restrict to the fixed
point set.

Quick digression on the topological vertex. Suppose that X is a toric CY3 (running
example is the total space of O(−1) ⊕ O(−1) → P1). Then we have a three-dimensional
torus action, so

DT (X) =
∑

e(Hilbn,β(X)(C∗)3
)qβpn

=
∑

loc. monomial
subschemes Z

q[Z] pχ(OZ )

♠♠♠ TONY: [???] There is a picture with two graphs with legs φ, φ, β, which for some
reason implies that this can be written as a sum over partitions of some universal function
times a matching monomial

=
∑

β partition

q|β|Vβφφ(p)Vβφφ(p)p•.

What’s going on here? For three partitions α, β, γ we define

Vαβγ(p) =
∑

p|π|

where the sum is over 3D partitions with legs α, β, γ. This was computed “explicitly” in
terms of Schur functions by Okounkov and collaborators.

Now, in our case X = K3 × E doesn’t have a torus action.

1. First stratify Hilb(X) into strata that can be written in terms of symmetric products
and simpler Hilbert schemes.

2. Find actions of C× on E or individual strata. Then we can restrict to the fixed point
set. (This is predicated on a good understanding the support of the curves being
parametrized.)

3. Iterate the first two steps to reduce to subschemes which are “formally locally mono-
mial” and then use the topological vertex.
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