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1 SEMI-INFINITE FLAG VARIETIES

1 Semi-infinite flag varieties

1.1 The flag variety

Fix a semisimple, simply-connected algebraic group G. The discussion applies to general
fields, but for simplicity let’s just take everything to be over C. The flag variety of G is
Fl = G/B where B ⊂ G is a Borel subgroup.

The flag variety is a union of Schubert cells:

Fl =
⊔
w∈W

Flw

and it is well known that dim Flw = `(w). The closure Flw is (usually) singular. If we denote
by ICw the intersection cohomology complex of Flw, then for y ∈ W the Poincaré polyno-
mial of ICw at a point of Fly is given by the Kazhdan-Lusztig polynomials. For our purposes,
you can basically take this to be the definition of the Kazhdan-Lusztig polynomials.

If C is the category of perverse sheaves on Fl which is construtible along the Schubert
stratification, then it is known that C is equivalent to category O for g = Lie G.

There are generalizations of this, e.g. parabolic versions. We’re going to be interested
in infinite-dimensional generalizations. From the finite-dimensional story, we emphasize
that the Bruhat cells are singular, so the behavior of their IC sheaves tells us interesting
geometric information about their singularities.

1.2 Loop groups

Let K = C((t)) and O = C[[t]] ⊂ K . The loop group of G, at least as an abstract group, is
G(K). (We’ll turn our attention to describing its algebro-geometric structure later.) We’ll
call this the formal loop group. You can think of this as being like a Kac-Moody group. So
what should be the meaning of a flag variety for the loop group?

There are different possible answers, each suitable for its own purposes. As in the
finite-dimensional case, the flag is a homogeneous space for the group in question. There
are three possible generalizations of B to the infinite-dimensional case:

1. I+, which gives the thin flag variety Fl+ := G(K)/I+,

2. I−, which gives the thick flag variety Fl− := G(K)/I−,

3. B∞/2, which gives the semi-infinite flag variety G(K)/B∞/2.

These are all infinite-dimensional, but the first two are only “mildly infinite-dimensional.”
We’ll see work with them by reducing to finite-dimensional cases. However, the semi-
infinite flag variety is “genuinely” infinite-dimensional. So we’ll spend a lot of time dis-
cussing what it even means to have “singularities” of Schubert varieties for the semi-infinite
flag variety.
Remark 1.1. What if we try the naïve generalization G(K)/G(O)? In fact this is close to
the semi-infinite flag variety. However, the choices I+ and I− are natural because they exist
for any Kac-Moody group, while B∞/2 is something quite special to the loop group.
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1 SEMI-INFINITE FLAG VARIETIES

1.3 Affine flag varieties

1.3.1 The thin flag variety

Definition 1.2. We define I+ ⊂ G(O) to be the pre-image of some Borel subgroup B ⊂ G
under evaluation at t = 0:

I+
� � //

��

G(O)

evaluation at t = 0
��

B �
� // G

So G(O)/I+ � G/B.
We define the thin flag variety to be Fl+ = G(K)/I+.

Theorem 1.3. There exists a natural ind-scheme structure on G(K)/I+ such that all I+-
orbits (and their closures) are finite-dimensional.

This is related to the discussion of the affine Grassmannian from the first week. Recall
that GrG = G(K)/G(O). This admits a natural quotient map from Fl+, whose fiber is G/B.

G/B // Fl+

��
GrG

Recall that we considered G(O)-orbits on G(K)/G(O), and found that they were finite-
dimensional with closures being projective varieties. Moreover, they were parametrized by
the Cartan decomposition:

G(O)\G(K)/G(O) = Λ+

where Λ is the coweight lattice of G and Λ+ is the subset of dominant coweights.

Remark 1.4. G(O) contains I+, and we are thinking of I+ as an analogue of the Borel. In
the finite-dimensional case, a subgroup containing a Borel subgroup is called parabolic, so
we should think of G(O) as a parabolic subgroup of G(K). The G(O)-orbits on GR should
be thought of as being like P-orbits on G/P where P ⊂ G is some parabolic.

We can also say what the I+ orbits on G(K)/I+ are parametrized by. The answer is the
affine Weyl group: since W acts on Λ, we can form Waff = Λ oW, and we have

I+\G(K)/I+ � Waff .

An important property of the thin flag variety is that its Schubert varieties are finite-dimensional.

1.3.2 The thick flag variety

Now let me comment briefly on the thin flag variety, Fl−. It is basically like taking an
“opposite Borel subgroup” to I+. In the finite-dimensional world, a Borel is isomorphic to
its opposite, but not so in the infinite-dimensional world.
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1 SEMI-INFINITE FLAG VARIETIES

Choose B− ⊂ G opposite to B. We will construct I− ⊂ G[t−1]. Note that G(O)∩G[t−1] =

G (which you can think of as being the constant loops).

Definition 1.5. We define I− to be the pre-image in G[t−1] of B− under evaluation at t−1 = 0:

I−
� � //

��

G[t−1]

evaluate at t−1 = 0
��

B−
� � // G

In particular, I+ ∩ I− = B ∩ B−, the maximal torus of G.
We define the thick flag variety Fl− = G(K)/I−.

Recall that the thin flag variety was an ind-scheme. By contrast, the thick flag variety
has an honest scheme structure!

Theorem 1.6. There exists a natural scheme structure on Fl−.

Now we might naïvely again consider I−-orbits on Fl− in analogy to the thin case, but
this turns out to be very bad. For example, I−\G(K)/I− is not discrete, and it’s certainly not
the affine Weyl group, which is what we would like.

Exercise 1.7. Show that I−\G(K)/I− is not countable.

The solution turns out to be just to take I+ orbits again. Then we have an isomorphism
of sets

I+\G(K)/I− � Waff .

This gives a stratification
Fl− =

⊔
w∈Waff

Fl−,w .

Theorem 1.8. The Schubert varieties Fl−,w are infinite-dimensional. However, if Fl−,y ⊂
Fl−,w then Fl−,y has finite codimension in Fl−,w.

Since the orbit closure of Fl−,w=1 is the whole ind-scheme, this amounts to saying that
every Schubert cell has finite codimension.

Remark 1.9. These two constructions can be performed in some generality for Kac-Moody
groups.

1.4 The semi-infinite flag variety

We need to define B∞/2. This will be a subgroup of B(K), which you can think of as being
“almost” equal to it.

Definition 1.10. Let B = TU, where U is the unipotent radical of B. Then we define

B∞/2 = T (O)U(K)

So B(K)/B∞/2 = T (K)/T (O) = Λ.
We define Fl∞/2 = G(K)/B∞/2.
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1 SEMI-INFINITE FLAG VARIETIES

Theorem 1.11. There is a natural ind-scheme structure on Fl∞/2.

Goal: explain what it means to talk about singularities of Schubert varieties in Fl∞/2.

First, what are the Schubert varieties in Fl∞/2? We’ve taken I+ orbits in the two previous
cases, and we do the same here.

Lemma 1.12. We have a natural identifications

I+\Fl∞/2 � Waff

In fact, it is easy to see that Λ acts on the right in Fl∞/2 = G(K)/B∞/2 since it normalizes
B∞/2, and commutes with the left action of I+.

Lemma 1.13. We have a natural identification

G(O)\Fl∞/2 � Λ

in which the Λ-action is the natural one on Waff .

In all three cases, we have seen that

• the I+-orbits are in one-to-one correspondence with Waff and

• the G(O)-orbits were in 1-1 correspondence with Λ, the coweight lattice of G.

For T ⊂ G a maximal torus, a coweight λ ∈ Λ is a map Gm → T . Taking K-points, we get
λ : K× → T (K) ⊂ G(K) and we denote λ(t) = tλ.

Lemma 1.14. In all cases, λ 7→ G(O)tλ is a bijection between G(O)\Fl? and Λ.

Exercise 1.15. Formulate the statement for I+-orbits.

Problem. As before, we have a stratification of Fl∞/2 into Schubert cells parametrized by
the affine Weyl group:

Fl =
⊔

w∈Waff

Fl∞/2,w .

In this case, however, the Schubert cells have infinite dimension and codimension. This
explains why we call Fl∞/2 the “semi-infinite” flag variety.

You can think of the following toy model. The Laurent power series C((t)) is infinite
dimensions in two ways. The space C[[t]] ⊂ C((t)) is infinite-dimensional, but it only kills
one of the infinite directions, so its codimension is still infinite. That is sort of like what’s
going on here.
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1 SEMI-INFINITE FLAG VARIETIES

Goal: explain in what sense the singularities of Fl∞/2,w are finite-dimensional.

Let us end with a remark. Informally, Fl∞/2 is the universal cover of G(K)/B(K). You
can think of G(K)/B(K) = G/B(K) as the loop space of the flag variety. Then G/B(K) is
not simply-connected, as its fundamental group will be isomorphic to the second homology
group of the flag variety, which is H2(G/B,Z) � Λ (by Hurewicz’s Theorem, since G/B is
simply-connected). The semi-infinite flag variety Fl− is a Λ-cover of G/B(K), so in that
sense you can think of it as the universal cover.
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2 GEOMETRY OF THE SEMI-INFINITE FLAG VARIETY

2 Geometry of the semi-infinite flag variety

The goal of this section is to put the construction we discussed on a set-theoretic level in
the first section on a solid algebro-geometric footing. We will build towards formulating
a general theorem of Drinfeld and Grinberg-Kazhdan which will imply that at least on the
level of formal neighborhoods, the Schuber varieties Fl∞/2,w have finite-dimensional singu-
larities. This motivates the definition of quasi-maps which will serve as explicit models for
these singularities.

Recall that we said that I+-orbits on Fl+ are of finite dimension, the I+-orbits on Fl− are
of finite codimension, and the I+-orbits on Fl∞/2 are of both infinite dimension and infinite
codimension. The first two situations were at least somewhat reasonable, but concerning
the third we ask:

Question. How can we work with Schubert varieties in Fl∞/2?

Some reductions.

• The closure of the G(O)-orbits are “special cases” of the closures of I+-orbits, in the
sense that the closure of every G(O)-orbit contains a unique dense I+-orbit. Since
the codimension of I+ in G(O) is finite, this should tell us that it in order to study
I+-orbits, it “suffices” to study G(O)-orbits.

• Recall that we defined Fl∞/2 = G(K)/T (O)U(K), which admits a right action of
Λ = T (K)/T (O) since T (K) normalizes U(K). The action of Λ on G(O)-orbits turns
out to be simply-transitive. Therefore, all of the orbit closures look the same, so we
can study them all by studying one of them.

• By the preceding observations, we can basically study the orbit of the image of the
identity e ∈ Fl∞/2 = G(K)/T (O)U(K). The orbit is obviously a homogeneous space
for G(O), and the stabilizer is precisely G(O) ∩ T (O)U(K) = B(O). So the orbit is
the image of the natural injection G(O)/B(O) ↪→ F∞/2, and we want to consider its
closure.

At this point it’s time for us to embark on a more algebro-geometric discussion of
everything.

2.1 Arc and loop spaces

Let D = Spec C[[t]] = Spec O and D∗ = Spec C((t)) = Spec K . We think of D as the
“formal disc” and D∗ as the “formal punctured disc.”

Definition 2.1. Let X be any scheme over C. Then we can form an object X∞ parametrizing
maps D→ X. Formally, we define the arc space

X∞ = lim
←−−
n>0

Xn,
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2 GEOMETRY OF THE SEMI-INFINITE FLAG VARIETY

where Xn is the defined by the functor of points

Xn(R) = X(R[t]/tn) = HomC(Spec R[t]/tn, X)

for R any C-algebra. (Some refer to Xn as the scheme of n-jets over X.) If X is of finite type
over C, then so is Xn. The projective limit is over the natural maps Xn → Xm for n ≥ m.

In nice situations, one has X∞(R) = X(R[[t]]). However, we warn that this is not at all
obvious - it is not even true for general X! It is true if X is finite type over C, but even then
it is fairly difficult to prove. However, if X is affine (or even quasi-affine) then it is true and
easy to prove.

Definition 2.2. Assume that X is quasi-affine. Then we define the functor

LX(R) = X(R((t)).

You should think of LX as being the algebro-geometric analogue of the “loop space on
X.”

Theorem 2.3. LX is an ind-scheme, there is a closed embedding X∞ ↪→ LX.

We’re interested in applying this construction to X = G/U, which is traditionally called
the “basic affine space of G.” Note that X admits a T -action on the right, since U is a normal
subgroup of B with T = B/U.

Example 2.4. When G = SL(2), we have X = A2 \ {0} (see the problem sheets).

Definition 2.5. We define the semi-infinite flag variety to be

Fl∞/2 = LX/T (O).

Exercise 2.6. Define this as an ind-scheme.

2.2 Schubert varieties

Now consider the orbit of 1 ∈ LX under G(O). Since the stabilizer is G(O)∩U(O), this can
be identified with the natural inclusion G(O)/U(O) ↪→ LX.

Definition 2.7. If X = G/U is the quasi-affine space of G, then define X := Spec H0(X,OX)
(which is an affine closure of G/U).

Example 2.8. If G = SL(2), then X = A2 \ {0} (as we saw earlier) and X = A2.

Example 2.9. If G = SL(3), then X is described as follows. Let V � C3 be the standard
representation of G. Then X = {(v, v∗) | v ∈ V, v∗ ∈ V∗, 〈v, v∗〉 = 0}. Here T is two-
dimensional, with the two dimensions acting by dilations on v and v∗, respectively.

What is the basic affine space X itself? It’s supposed to be an open subset of X, and it
turns out to be the one where neither v nor v∗ is equal to 0. Why? We just have to show that
G acts transitively on such pairs with stabilizer U.
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2 GEOMETRY OF THE SEMI-INFINITE FLAG VARIETY

Definition 2.10. The inclusion X ↪→ X induces a map LX ↪→ LX. We let LX
◦
↪→ LX be

the subset consisting of loops generically landing in X (i.e. such that the generic point of D
lands in X, although the special fiber might not).

The space LX
◦

looks very similar to LX (and indeed, is the same on the level of C-
points), but the scheme structure is different. It turns out that LX

◦
is better, so it should be

the basis for the scheme structure on Fl∞/2. For example, LX is disconnected and LX
◦

is
connected.

Lemma 2.11. We have that G(O)/U(O) (closure in LX
◦
) is X∞ ∩ LX

◦
.

This is telling us that the orbit of the identity element under G(O) in dense.

Corollary 2.12. We have G(O)/B(O) (the closure in Fl∞/2) = X∞ ∩ LX
◦
/T (O).

Conclusion: Our Schubert variety is X∞ ∩ LX
◦
/T (O).

Let’s give some examples of the difference between LX and LX
◦
. Recall that we said

that they have the same C-points, which makes a little hard to see any difference, but their
scheme structures looks very distinct. Typically, LX is a disjoint union of strata of LX

◦
.

Example 2.13. If X = A1 and X = Gm, then we claim that LX is disconnected. By definition,
LX(C) = C((t))× and an element of LX(C) is of the form a(t) = antn+(higher order terms)
for n ∈ Z. We can “stratify” by the valuation, obtaining

LXn = {a(t) | a(t) = antn + an+1tn+1 + . . . , an , 0}.

Lemma 2.14. The LXn are the connected components of LX.

If we consider LX(C) = C((t)), then it turns out that the components are glued together
at 0.To see this, you have to test against arbitrary rings R. Although LX

◦
(C) = C((t))×, if

you consider general rings then you will find that the components are still glued.
If R is a C-algebra, then

LX(R) = R((t))

LX(R) = R((t))×

LX
◦
(R) = R((t)) − {0}.

The point is that if you consider a family parametrized by R, in LX(R) the number n
cannot jump (the coefficient of tn is always forced to be in R×), but in LX

◦
(R) it can jump.

This reflects the fact that in LX = R((t)), the “lowest term” n can jump in families, hence
LX
◦

all the LXn get glued together.

Example 2.15. Let Y ⊂ Pn be a projective variety and X the affine cone over Y in Cn+1, so
X = X \ {0}. Then

LX =
⊔

LXα, α ∈ H2(Y,Z).

But there is no such decomposition for LX
◦
.
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2 GEOMETRY OF THE SEMI-INFINITE FLAG VARIETY

2.3 Local model of singularities

Definition 2.16. If X is any affine variety over C and X is a non-singular open subscheme,
then denote

X
◦

∞ = X∞ ∩ LX
◦
,

which is an ind-scheme whose C-points are the maps from D to X which formally lie in X.

There is a general theorem about such spaces, which says that in a certain sense the sin-
gularities are finite-dimensional. More precisely, any point has a formal neighborhood (a
well-defined notion for any point in any scheme) looking like a product S ×W, where S is
a formal neighborhood in a infinite product of A1s - in particular, infinite-dimensional but
independent of γ - and W is a finite-dimensional formal neighborhood.

Theorem 2.17 (Drinfeld, Grinberg-Kazhdan). Let γ ∈ X
◦

∞(C). Then the formal neighbor-
hood of γ has a decomposition S ×W where S is the formal neighborhood of 0 in A1

∞ and
W is a formal neighborhood of a point in a scheme of finite type.

Remark 2.18. If X is non-singular, then the space of formal arcs is also non-singular: we
can take S to be the full formal neighborhood. So the singularities of the space of formal
arcs come from the singularities of X. (More precisely, if X is formally smooth, then X∞ is
formally smooth).

This means that there is a finite-dimensional transversal slice in the space of deforma-
tions. That is, the space of deformations has infinitely many free dimensions, and finitely
many constrained dimensions. So at least from the perspective of formal neighborhoods,
the space of singularities is finite-dimensional.

Now consider G/U(O) ∩G(K)/U(K), i.e. loops which generically go into G/U. This
has a stratification by G(O)-orbits.

Lemma 2.19. For a coweight λ, we have G(O)tλ ⊂ G/U(O) if and only if λ is a sum of
positive coroots (recall that we assumed G was simply-connected).
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2 GEOMETRY OF THE SEMI-INFINITE FLAG VARIETY

In particular, the closure of the orbit we’re interested in contains infinitely many orbits.
However, the Theorem tells us that their transversal deformations are finitely constrained.

Question: Is there a nice choice for W?

This is where the space of quasi-maps comes into the picture. Philosophically, we
are running into trouble because we are considering infinite loop spaces, which is horribly
infinite-dimensional. In these situations, there is a way out of the trouble which always
partially works. Namely, the universal way to deal with problems of ∞-dimensionality of
X∞, LX, . . . is to replace the formal disk D by a smooth projective curve (e.g. P1).

This principal works quite generally, but one has to pay a price because it forces us to
attack a local problem with a global model.

Definition 2.20. The space of quasi-maps to the flag variety QMaps(P1,G/B) is Maps(P1,G/U/T )◦

where the superscript ◦ means the generic point of P1 goes to G/B.

Remark 2.21. Although G/B is projective, we can still compactify it inside a stack G/U/T .
For example P1 can be compactified within the stack A2/Gm.

This provides a finite-dimensional model for W (but we have to consider a compactifi-
cation). We will undertake a thorough study of quasi-maps in the next section.
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3 QUASI-MAPS

3 Quasi-maps

3.1 Initial discussion

Let Y be a projective variety. Then we can stratify the space of maps into Y:

Maps(P1,Y) =
⊔

α∈H2(Y,Z)

Mapsα(P1,Y).

One problem is that the space Mapsα(P1,Y) is usually not compact, so we would like to
have a compactification.

3.1.1 Maps to projective space.

Let X = Pn, so H2(Y,Z) = Z. For any α ∈ Z≥0, a map f : P1 → Pn is equivalent to the
data of a line sub-bundle L ⊂ On+1

P1 , and under this equivalence we have deg f = α ⇐⇒

degL = −α.
Now it’s easy to see why this space is non-compact. The condition degL = −α forces

L � O(−α), but this line bundle has an automorphism group C×. So we get an inclusion

Mapsα(P1,Pn) ↪→ {σ : OP1(−α)→ O⊕(n+1)
P1 | σ , 0}/C×. (1)

Since maps OP1(−α) → O⊕(n+1)
P1 are equivalent to global sections of OP1(α)⊕(n+1), the right

hand side is a projective space, of dimension (n + 1)(α + 1) − 1. However, the map is an
open embedding but not an isomorphism. The reason is that the right hand side parametrizes
subsheaves but not subbundles (subbundles are inclusions of subsheaves whose quotients
are locally free). The important slogan is that subsheaf , subbundle.

Example 3.1. If n = 1 and α = 1, then the left hand side of (1) is

Mapsα(P1,P1) = {P1 → P1 of degree 1}.

This is precisely the automorphism group PGL(2), which is evidently not compact. On the
right hand side of (1), we are considering a non-zero map of the form OP1(−1) → O⊕2

P1 ,
which of course is equivalent to two maps OP1(−1) → O⊕2

P1 . Now, any map O(−1) ↪→ O
vanishes at one point of P1. If the two maps vanish at different points, then the map is an
injection on fibers, hence the inclusion of a subbundle. However, if the zeros coincide then
the corresponding map O(−1) ↪→ O⊕2 is not a subbundle.

In other words, (1) describes the inclusion of PGL(2) in P3 as 2 × 2 invertible matrices
up to scalars. If we took all non-zero 2 × 2 matrices, then we would get all of P3.

So we see that in this case we can compactify Mapsα(P1,Pn) by

QMapsα(P1,Pn) =

{
subsheaves L ⊂ On+1

P1

degL=−α

}
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3 QUASI-MAPS

which will turn out to be some projective space.

Stacky interpretation. There is a fancier definition of this compactification as maps P1 →

[Cn+1/C×] (the stacky compactification of projective space) such that the generic point of
P1 lands in P1.

To digest this, we recall what it means to map a test scheme S to a quotient stack [W/G].
By definition, such a map is the data of

• a G-bundle F on S ,

• A G-equivariant map F → W,

F

��

G-equiv. // W

��
S // [W/G]

Remark 3.2. Such a G-equivariant map is equivalent to the data of a section of FW → S ,
where FW = F ×G W = F × W/G (quotient by the diagonal action) is the associated
W-bundle over S .

In our case, G = Gm and a Gm-bundle is equivalent to a line bundle L. Since W = Cn+1,
we have FW = On+1

P1 ⊗ L
−1. Thus, a section of FW is equivalent to a map L → On+1

P1 . We
haven’t yet imposed the open condition that the generic point of P1 is sent to P1. The open
condition says that the section is non-zero at the generic point, i.e.
of sheaves.

Generalization to subvarieties. We can generalize to mapping to subvarieties of projective
space. Suppose Y ⊂ Pn is a closed subvariety. Denote by X the afine cone over Y in Cn+1

and X = X \ {0}. Then

QMaps(P1,Y) =
{

maps P1 → Pn

generically landing in Y

}
=

{
maps P1 → X/C×

generically landing in X/C× = Y

}
Substratification. Given a quasi-map f : P1 → Pn, we get an injection of sheaves L ↪→

On+1
P1 defining an honest map P1 \ {x1, . . . , xn} → P

n. But since the target is projective, we
can complete this to an honest map f̃ : P1 → Pn.

However, this is sort of misleading. It is true set-theoretically, but it doesn’t work well
in families because deg f̃ is smaller than deg f .

Lemma 3.3. We have an identification of sets

QMapsα(P1,Pn) =
⊔

0≤β≤α

Mapsβ(P1,Pn) × Symα−β(P1)︸                                ︷︷                                ︸
Qβ

.

13



3 QUASI-MAPS

Proof. We explained that any quasi-map can be saturated to a map. This lowers the degree
of the map, but by how much?

For x ∈ P1, and a map f : P1 → Pn, corresponding to the line bundle inclusion L ↪→

On+1
P1 , there is a notion of the “defect of f at x” which measures the order of vanishing at

x of L ↪→ On+1. The defect at x is the maximal integer d such that we get an induced
inclusion L(dx) ↪→ On+1

P1 .
Thinking of Symα−β(P1) as effective divisors of degree α − β on P1, the coefficient of

[p] in a divisor is precisely the defect at that point. �

This gives a stratification of QMapsα(P1,Pn). We claim that

Q
β

=
⊔
γ≤β

Qγ.

In particular, for β = α we find that Mapsβ(P1,Pn) × Symα−β(P1) is the open stratum.

3.1.2 Products of projective spaces

Now we’ve defined the notion of quasi-maps into a variety embedded in projective space.
Now suppose that we are given an embedding Y ↪→ Pn1 × . . . × Pnk . We can define
QMapsα(P1,Y) where α ∈ Zk.

This is what we’ll do for Y = G/B the flag variety, which has a natural closed embedding
into a product of projective spaces. Since Y = G/UT , we have an open embedding Y ⊂
[G/U/T ]. Then QMaps(P1,Y) are in bijection with maps from P1 to the stack [G/U/T ]
which generically land in Y .

We claim that a quasi-map P1 → Y is equivalent to the data:

1. A principal T -bundle FT on P1.

2. For all λ : T → C× dominant, and FT,λ the induced line bundle on P1, an injection of
sheaves κλ : FT,λ ↪→ OP1 ⊗ V(λ). (If this were an injection of bundles, we would get
a map instead of a quasi-map.) Here V(λ) is the irreducible representation of highest
weight λ.

3. For all λ, µ the diagram commutes

FT,λ+µ

κλ⊗κµ //

κλ+µ

��

O ⊗ V(λ) ⊗ V(µ)

O ⊗ V(λ + µ)

44

Lemma 3.4. We have
C[G/U] �

⊕
λ

V(λ)

14



3 QUASI-MAPS

where G acts naturally, T acts by λ on V(λ), and

V(λ) ⊗ V(µ)→ V(λ + µ)

is the multiplication.

We claim that if you plug this description into our discussion, then you will see this
equivalence.

Exercise 3.5. Check this.

Now we can define a stratum QMapsα(P1,Y) for α ∈ Hom(C×,T ) =: Λ, the coroot
lattice of G. There is a natural partial order on Λ, defined by α ≥ β if and only if α(λ) ≥ β(λ)
for all dominant weights λ.

Lemma 3.6. We have

QMapsα(P1,Y) =
⊔

0≤β≤α

Mapsβ(P1,Y) × Symα−β(P1)

where Symα−β(P1) =
{∑

γixi |
xi∈P

1,γi∈Λ
γ≥0,

∑
γi=α−β

}
, now regarding the defect as an element of Λ.

3.2 Main statement

For describing the singularities of Fl∞/2 in terms of quasi-maps, the main statement is the
following.

Statement. Let f ∈ QMapsα(P1,Y) be such that defect( f ) = α · 0. (Thus f is a constant
“map.”) We claim that the formal neighborhood of f in QMapsα(P1,Y) serves as a model
for the singularities of the closure of a G(O)-orbit on Fl∞/2 at a point of Fl∞/2,α.

Since Fl∞/2 =
⊔

Fl∞/2,α and

Fl∞/2,0 =
⊔
α≥0

Fl∞/2,α

it is tempting to restrict our attention to quasi-maps with defect only at 0. Unfortunately, it
turns out that this is not well-defined: it defines a constructible but not locally closed subset.
So we can consider a single point where the defect is only at 0, but not the space of such
points. If we want to get a reasonable space, then we have to allow the defect be anywhere
on our global curve.

Said again differently, the finite-dimensional thing was a transversal slice to the orbit
Fl∞/2,α but this transversal slice somehow “knows” about all the points on the global curve.
This bites us later when trying to define a category of perverse sheaves on Fl∞/2.

–
Last time we saw that QMapsα(P1,G/B) is a projective variety of dimension dim G/B+

2|α|, where α =
∑

i〈α, ωi〉, ωi the fundamental weights, and α =
∑

aiαi then |α| =
∑

ai.
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3 QUASI-MAPS

Example 3.7. Let G = SL(2). Then QMapsα(P1,G/B = P1) = P?.

Example 3.8. If G = SL(3), then G/U = {v ∈ C3, ξ ∈ (C3)∗ | 〈v, ξ〉 = 0}. What is a
quasi-map in this case? We have to specify:

• A line bundle L1 ↪→ OP1 ⊗ C3,

• A line bundle L2 ↪→ OP1 ⊗ (C3)∗,

• 〈L1,L2〉 = 0.

The locus of maps are where these sheaf injections are actually bundle injections. The
quasimaps condition relaxes them to be merely injections at the generic point.

What is the degree α? It is specified by degL1 and degL2. That means that if we fix
the degreese, then both maps are projective spaces, hence QMapsα is given by quadratic
equations in P? × P??. In fact, there will be many equations, if you think about what is
involved in 〈L1,L2〉 = 0. Indeed, you can think of the pairing as giving a map L1 ⊗ L2 →

OP1 . Think of L1,L2 as both being pretty negative, so their tensor product is even more
negative, and we demand that this is the zero map.

16
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4 Other applications of quasi-maps

We motivated the spaces QMaps through their application to the singularities of Fl∞/2, but
in this section we touch on their relation to other interesting objects.

4.1 IC sheaves

In the previous section we stated that

QMapsα(P1,G/B) =
⊔

Mapsβ(P1,G/B) × Symα−β(P1).

The deepest stratum is when β = 0, so the map is constant. Then there is a substratification
refining this one, based on the number of distinct points appearing in Symα(P1). The deep-
est stratum of this substratification is where all points coincide, and we see only P1. So the
deepest stratum of QMapsα(P1,G/B) is G/B × P1.

Question. How can we describe the stalks of the IC sheaf of QMapsα?

It turns out that you can compare them to some “periodic Kazhdan-Lustzig polynomi-
als” which were defined by Lustzig.

Next we turn our attention to the IC-sheaves of closures of G(O)-orbits. How can we
model singularities of all semi-infinite Schubert varieties (the closures of I+-orbits)? It turns
out that we can do this just by considering products of the form

⊔
α QMapsα(P1,G/B)×G/B.

Exercise 4.1. Define a stratification such that the strata are in bijection with elements w ∈
Waff . You can use IC sheaves of these strata to get all periodic Lusztig polynomials.

4.2 Variant of QMaps

Now let C be any smooth projective curve. Consider the moduli stack BunG(C). Then we
have a map

BunB(C)
p
−→ BunG(C)

(more generally, any homomorphism G → H induces a map BunG → BunH by change of
structure group). This morphism has the property that p−1(Ftriv) = Maps(C,G/B).

We also have a map

BunB(C)
q
−→ BunT (C) � Pic(C)rank G.

The connected components of BunT (C) are in bijection with α ∈ Λ. Moreover, if qα : BunαB(C)→
BunαT (C) is the restriction of the map over the connected component corresponding to α,
then qα is representable.
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4 OTHER APPLICATIONS OF QUASI-MAPS

Thus we have a diagram

BunαB(C)

pα
��

qα // BunαT (C)

BunG(C)

If G = GL(n), then F ∈ BunG(C) can be viewed equivalently as a vector bundle of rank n,
and the possible reductions to B are obtained by choosing a flag 0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ F

where rank Fi = i. From this it is easy to see that the fibers of pα are quasi-projective
schemes. So a natural question is if there is a relative compactification of this map.

We’ve already seen that the fiber over the trivial bundle is Maps(C,G/B), and this has a
compactification by the space of quasi-maps QMaps(C,G/B).

Theorem 4.2. There exists a relative compactification of pα,

pα : BunB → BunG

such that

1. (pα)−1(Ftriv) = QMapsα(C,G/B).

2. Bun
α

B(C) =
⊔
β BunβB(C) × Symα−β(C).

The singularities depend only on the defect (not even on the curve!). So a description of
the IC sheaves for QMapsα(P1,G/B) would yield a description of the IC sheaves for BunB.

Remark 4.3. The space BunB first appeared in the context of the geometric Langlands cor-
respondence. The geometric Langlands correspondence is about perverse nice perverse
sheaves on BunG, which are analogues of classical automorphic forms, and the “geomet-
ric Eisenstein series” are geometric analogues of classical Eisenstein series. The classical
Eisenstein series can be thought of as obtained by p! for p : BunG → BunG.

In geometric situations, it was known that it is bad to take the direct image under a
non-proper map, which is how the question for compactifications was inspired.

In this problem, the description of the IC sheaves plays an important role, for example
in the appearance of certain L-functions in the functional equation.

Remark 4.4. Consider the map BunB(C) → BunG(C). These will have the same singulari-
ties on an open set. If C = P1, then Ftriv is open in BunG(C), because it contains the open
substack [pt /G], so in that case is suffices to study the single fiber over the trivial bundle.
However, on a general curve this is not true.

We discussed quasi-maps into a target of the form Y ⊂ Pn1 × . . . × Pnk . The flag variety
has a canonical embedding of this form. Namely, if ω1, . . . , ω` are the fundamental weights
of G, then we have a canonical embedding

G/B ↪→
∏

i

P(V(ωi)).

So we can define QMapsα(C,G/B) coming from this embedding.
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4.3 Kontsevich moduli spaces

We want to relate quasi-maps to Kontsevich’s moduli spaces, so fix C = P1. How can
we relate QMaps to Kontsevich’s spaces? The thing is, Kontsevich’s spaces parametrize
not maps from a fixed P1, but from varying domain curves. This seems orthogonal to our
situation.

The remedy is through the “graph space.” For α ∈ H2(Y,Z) we define

Graphα(Y) =M0,0
(α,1)

(Y × P1).

Here the first 0 in M0,0 means genus 0, the second 0 means no marked points, and (α, 1)
means that the image of the fundament class is of type (α, 1) ∈ H∗(Y × P1).

We claim that Graphα(Y) contains the space Mapsα(P1,Y) as an open subset. Why? The
point is that we can take the space where the curve has no singularities, hence is abstractly
isomorphic to P1. If we then make it have degree 1 over P1, then projecting to the P1 com-
ponent gives a canonical isomorphism with P1. Then this will be the graph of a morphism
P1 → Y .

Lemma 4.5. There exists a proper map Graphsα(Y)→ QMapsα(Y) which is the identity on
Mapsα(P1,Y).

This is not trivial. The proof is by reduction to the case of Y = Pn.
This has some nice applications. Sometimes, if you want to compute something in

Gromov-Witten theory then it is easier to work on QMaps.

Exercise 4.6. Describe this map set-theoretically.

Theorem 4.7. If Y = G/B, then QMapsα(P1,G/B) is normal and Cohen-Macaulay. If G is
simply-laced, then it is also Gorenstein, and has rational singularities.

Remark 4.8. For the flag variety, the Graph space is even smooth (as a Deligne-Mumford
stack), so it is in some sense a resolution of singularities.

4.4 Zastava space

We consider QMapsα(P1,G/B)∞, meaning the space of quasi-maps with no defect at ∞.
Since we have no defect at infinity, any such quasi-map defines an honest map at ∞, so we
can “evaluate it” to obtain a map to G/B:

QMapsα(P1,G/B)∞

ηα

��
G/B

This is a locally trivial fibration. Pick a point on the base, say 1 ∈ G/B (but it doesn’t really
matter) and set Zα = (ηα)−1(1). This is called the space of based quasi-maps P1 → G/B.
Inside it we have Zα0 , the space of based maps. Then you can easily convince yourself that
dim Zα = 2|α|. This is even, so it has a chance to be symplectic. In fact, we have:
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Proposition 4.9. There is a canonical Poisson structure on Zα, which is generically sym-
plectic

However, the symplectic locus is of codimension 1, so the singularities are not sym-
plectic (which would imply that the symplectic locus had codimension 2).

Now, since based quasi-maps have no defect at∞, they have a “defect map” to A1.

Proposition 4.10. There exists a map πα : Zα → Symα(A1), which is an “integrable sys-
tem.”

Finally, the map πα has a “factorization property” in the following sense. Suppose you
have a divisor D =

∑
βixi +

∑
γ jy j where βi and γ j are in Λ, and xi, y j ∈ A

1 are such that
xi , y j for all i, j. Denote β =

∑
βi and γ =

∑
γ j. Then:

Proposition 4.11. We have

(πα)−1(D) � (πβ)−1(Dβ) × (πγ)−1(Dγ).

Remark 4.12. Zα and Zα0 are familiar spaces in Gauge theory. Zα0 is the space of “framed
magnetic monopoles” on S 3, and Zα is a natural partial compactification. (This is due to
Donaldson for G = SL(2).)
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5 Parabolic and affine generalizations and IC sheaves

5.1 Parabolic generalization

Let G be a simply-connected, simple reductive group and P ⊂ G a parabolic subgroup.
We can consider the partial flag variety G/P, and then the space Mapsθ(P1,G/P) where θ
is in some lattice ΛP depending on P (the bigger P is the smaller this lattice; for maximal
parabolics it has rank 1).

One way to think about this canonically is that if you write P = MUP, then ΛP is the
cocharacter lattice of M/[M,M]:

ΛP � Hom(Gm,M/[M,M]) = Hom(Z(M∨),Gm)

where M∨ is the Langlands dual to M.
What would be a notion of quasi-map into G/P?
Here is one possibility, which is the one that we’ll adopt. The quotient G/[P, P] is

quasi-affine. In analogy to the case of Borels, we could define

QMapsθ(P1,G/P) = Mapsθ(P1,G/[P, P]/?)0

where the subscript 0 means that the generic point goes to G/P. For choosoing ?, note that
G/P is a quotient of G/[P, P] by some torus, namely TM := M/[M,M].

Definition 5.1. We define QMapsθ(P1,G/P) = Mapsθ(P1,G/[P, P]/TM)0.
Then QMapsθ(P1,G/P) is a projective variety, and Mapsθ(G/P) ⊂ QMapsθ(P1,G/P) is

open and dense.

Remark 5.2. There is another choice, which is also important. Recall from the problem
sheet that the quotient G/UP is also quasi-affine. We can embed G/P ↪→ (G/UP)/M. This
can also be used to define quasi-maps, and you end up with a different space, Q̃Maps

θ
(P1,G/P).

Exercise 5.3. Show that there exists a projective birtaional morphism Q̃Maps
θ
(P1,G/P)→

QMapsθ(P1,G/P). The fibers are certain closed subsets inside Gr.
It’s especially instructive to look at G = SL(n) and P a maximal parabolic. Then G/P

is a Grassmannian.

Stratification. We have a stratification

QMapsθ(P1,G/P) =
⊔

0≤θ′≤θ

Mapsθ
′

(P1,G/P) × Symθ−θ′(P1).

The spaces QMapsθ(P1,G/P) serve as finite-dimensional models for the singularities of
closures of G(O)-orbits in G(K)/[P, P](K)M(O), which is a parabolic version of the semi-
infinite partial flag variety FlP,∞/2. This admits an action of ΛP = M(K)/[M,M](K)M(O).

Problem. Describe stalks of IC sheaves of QMapsθ(P1,G/P).
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In the previous section we discussed quasi-maps and based quasi-maps, and we saw that
they had some nice properties. We can consider analogous parabolic versions: let ZθP,0 be
the space of based maps P1 → G/P sending∞ 7→ 1. This lies inside the space ZθP of based
quasi-maps which are not allowed to have a defect at ∞. Thus, this projects to Symθ A1

because nothing bad is allowed to happen at ∞, and has a factorization property similar to
the one we discussed last time.

5.2 Affine generalizations

We want to generalize this even further, to relate it to other objects which have been dis-
cussed here.

Let G be simple and simply-connected. Define

Bund
G(A2) =

{
(F , φ) |

G-bundles F on P2

c2(F )=d
φ=trivialization of F |PS∞

}
.

Why do we pass to the compactification P2 when defining a moduli space of bundles on
A2? We can view a bundle on A2 as a bundle on the compactification P2, together with a
trivialization at ∞What would happen if we used a different compactificaton? It’s easy to
see that this actually doesn’t depend on the compactification. If we replace P2 by another
smooth projetive surface S and a divisor D∞ on S such that S \ D∞ = A2, then we get the
same space.

Example 5.4. One could take S = P1 × P1. This is the only other choice that we use in
practice.

Theorem 5.5. The space Bund
G(A2) is a smooth variety of dimension 2dh∨ where h∨ is the

dual Coxeter number, and has a symplectic structure.

Example 5.6. If G = SL(n), then h∨ = n so dim Bund
G(A2) = 2dn.

Lemma 5.7. Bund
G(A2) may be identified with the space of based maps of degree d from P1

to G(K)/G(k[t−1]) (the thick affine Grassmannian as a scheme).

Here K = C((t)) as always. The notion of degree is that the thick affine Grassmannian
has a canonical line bundle ♠♠♠ TONY: [what is it?], and the degree is the degree of its
pullback. Alternatively, one can show that H2 of the affine Grassmannian is Z, and then
demand that the image of the fundamental class of P1 maps to d.

Remark 5.8. The thick affine Grassmannian should be thought of as a partial flag variety
for the loop group. Although it is wildly infinite-dimensional, the space of based maps into
is finite-dimensional. (Of course, without the basing it is infinite-dimensional, as even the
space of constant maps is infinite-dimensional.) In fact, the finite-dimensionality is true for
any partial flag variety of any symmetrizable Kac-moody group.

Proof. We use the fact that GrG := G(K)/G[t−1] is the moduli space of G-bundles on P1

trivialized at the formal neighborhood of∞ ∈ P1.
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Exercise 5.9. Prove this. (Beware that this is the thick affine Grassmannian, not the thin
one that Xinwen talked about.)

Then a map P1 f
−→ GrG is equivalent to the data of a G-bundle on P1 trivialized at the

formal neighborhood of P1 ×∞.

Now what about based maps? The based condition says that F |∞×P1 is trivial, and the
trivialization is tautological. So the result boils down to the following sublemma.

�

Lemma 5.10. If F ∈ BunG(P1 × P1) is trivialized on P1
ver ∪ P

1
hor, then the trivialization

extends uniquely to P̂1
hor in a compatible way.

These spaces have significance in gauge theory. There is an “Uhlenbeck partial com-
pactification”Ud

G(A2), with a stratification

Ud
G(A2) =

⊔
0≤d′≤d

Bund′
G (A2) × Symd−d′(A2).

In this case quasi-maps are well-defined, but the result is not a scheme of finite type.
Example 5.11. Conside the affine plane with the two axes removed, and then the origin put
back in.
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This is a constructible subset of a scheme, which is not itself a scheme.

Exercise 5.12. Define an affine scheme of infinite type over C whose set of C-points is this.

Compactifying A2 by P1 × P1 involves choosing vertical and horizontal directions. The
“right” thing to do is to work with all possible choices of coordinates at the same time! This
rectifies the problem that appears in the exercise. This is how one constructUd

G(A2), which
is an affine scheme of finite type containing Bund

G(A2) as a dense open subset.

Example 5.13. If G = SL(n), thenUd
G(A2) is a (singular) Nakajima quiver variety.

Question. Describe the IC sheaves on Zα,ZθP, andUd
G(A2).

Remark 5.14. If you can describe the IC sheaf then you can describe the intersection coho-
mology, because all of these spaces have a C×-action which contracts the whole space to a
unique fixed point.

Example 5.15. In the Uhlenbeck space of A2, the fixed point is in the deepest stratum
d′ = 0, with defect d · 0, and bundle being the trivial bundle.

It is a general phenomenon that if you have an equivariant sheaf on a space ? with
an action contracting everything to a point, then the stalk of the IC-sheaf at that point is
H•(IC?). The fixed point is the “most singular” point, and he answer for the IC stalk at the
most singular point is:

• In the Borel case P = B and Zα the space of based maps to G/B, we have the inclusion
of dual Lie algebras g∨ ⊃ n∨. The answer is Sym(n∨[2])α up to some universal shift.

So the total dimension, ignoring the grading, is equal to the number of “Kostant
partitions” of α, i.e. the number of partitions of α into sums of positive roots. This
is the value of the Poincaré polynomial at 1. If you want the polynomial itself, then
you count partitions with a certain weight:∑

P∈Kostant(α)

q−|P|.

• In the parabolic case, you have P ⊂ G hence g∨ ⊃ n∨P, which has an action of M∨.
Then it turns out that the answer is that the stalk of IC(ZθP) at the most singular point
is Sym(n fM∨

P∨ [z])θ where (eM∨ , hM∨ , fM∨) is the principal sl2 triple in m∨ = Lie(M∨).
The grading is by the eigenvalues of hM∨ .

• If G is simply laced then (gaff)∨ = (g∨)aff (but not in general). If G is simply-laced,
then the stalk of the IC sheaf ofUd

G(A2) at the most singular point is

Sym(tg f [t][2])d.

Here the d is the degree in t, and (e, n, f ) is the principal triple.
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