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1. LOCAL L-FACTORS AND y-FACTORS

Let F' be a local field of characteristic 0. The Local Langlands Correspondence
gives a finite-to-one map from irreducible admissible representation of G(F') to Lang-
lands parameters:

Irr(G) — ®(G).

We want to recall the definition of L-factors and e-factors.

1.1. Representations of the Weil group. Let W be the Weil group of F.

Definition 1.1. A representation o: Wr — GL(V) is admissible if it is smooth and
o(Wp) consists of semi-simple elements.

1.1.1. F = C. The Weil group is Wg = C*, so irreducible admissible representa-
tions are characters of C*, which are parametrized by pairs (¢ € Z,t € C), with

(0,1) (%: 2 |2t (;’)Z> .

1.1.2. F =R. The Weil group is Wr = C* x Gal(C/R). We let j be the image of
the non-trivial element of Gal(C/R) under the splitting, so we have a presentation
Wr=C*®C%j, j>=-1, jzj =z

All irreducible representations of Wgr have dimension 1 or 2, since Wr has an
abelian index-2 subgroup.
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e Irreducible characters of Wg are parametrized by {+} x {t € C}, with
ter (ong: 2z |2)Y, e £1).

The Local Langlands correspondence with representations of GL;(R) matches
orp 1@
o_trsgn® ||
e Next we discuss the irreducible 2-dimensional representations of Wg. These
are parametrized by {¢ € Z,t € C}. A model for oy can be presented with
basis eq, e such that

¢
VA
coi(z)er = <|r> 2

—£
z
Ue7t(z)€2 = <|z|> |Z|2t€2

out(jler = ez
ari(f)es = (—1)‘er.
Fact 1.1. Admissible representations of W are automatically semi-simple.

Under the local Langlands correspondence, the oy ; correspond to discrete
series representations of GL2(R), namely oy, <+ Dy @ | - |* where Dy is the
discrete series of SLa(R).

1.1.3. The p-adic case. The p-adic theory is much more complicated. We’ll just
describe some low rank examples. In addition, we’ll assume that the residue charac-
teristic is odd.

Definition 1.1. An admissible pair (F,x): consists of:

e a quadratic extension E/F, and
e a character x of £, satisfying
(1) x doesn’t factor through Nm: E* — F*.
(2) If X|1+wpoy factors through Ng/p, then E/F is unramified.

From such an admissible pair, we can construct an irreducible 2-dimensional
representation of Wg. Let ag: Wg — E* be the Artin reciprocity map. Then
Xoa,;;1 is the character associated to Wg by local class field theory, and we can form

Ind}fv/g (xo aEl), a 2-dimensional representation of Wr. The conditions in Definition
imply that this is irreducible. The assumption that the residue characteristic
is > 3 implies that all irreducible admissible representations of Wr come from this
construction, so we get a bijection.

Under the local Langlands correspondence, admissible pairs are bijection with the

supercuspidal representations of GLo(F').
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1.2. Local L-factors. Now we're going to define the L-factor associated to Weil-
Deligne representations.

Definition 1.1. Let 0: Wr — GL(V). The L-factor associated to o is
L(s,0) := det(1 — ¢ *o(Frob,) | V1)L
We have multiplicativity of both L-factors and e-factors in direct sums:
L(s,01 @ 03) = L(s,01)L(s,02)
and
€(s,01 @ g2) = €(s,01)€(s, 02).

1.2.1. F = R. Refer to the parametrization of L-parameters in §I.1.2] The L-factor
is
RGO (s40)/2) o= opy
L(s,o0p) = {7 CHHVPD((s +241)/2) 0 =0y
2(2m) CHHID(s+ 4+ ) o =0
1.2.2. F = C. Refer to the parametrization of L-parameters in §I.1.1] The L-factor
is

¢
L(s,004) = 2(2m)~H+3)T (s Ftr ’2‘> .

1.3. e-factors. We now discuss the local e-factors.

1.3.1. F =R. We define

1 0 =041
€(s,0,1) =<4 o=0_y
i o =0y

where we choose 1) = ?™%.

1.3.2. F = C. We define
€(8,0004),%) = il

where we choose 1) = 2mi(x1%),

1.3.3. p-adic. We now consider the case where F' is a p-adic field.

Theorem 1.1. Let ¢ be a non-trivial additive character of F'. As E ranges over all
finite extensions of F, there exists a unique family of functions

X

{admissible rep’'ns of Wg} — Clg™?%, ¢°]
denoted
o €(s,0,9p =1 oTrg/p)
satisfying the following properties:
(1) (GLi-normalization) If x is a character of E*, then e(s,x o ag,¥p) =

e(s,x,vYr) from Tate’s thesis.
(2) (Additivity) We have €(s,01 @ 02,Vp) = €(s,01,VE)e(s, 02, VE).
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(3) (Inductive in degree 0) If E D K D F, then

e(s,Ind%‘g o, V) e(s,Ind%if Iy, Yr)"

6(8107 wE) B 6(87 1W}57¢E)n

where n = dimo.

Proposition 1.2. This e-factor enjoys the following properties:
(1) €(s,0,) = ¢"/2=9)¢(1/2, 0,4) where n(c) € Z is the Artin conductor.
(2) Functional equation

E(S,O’, ¢)€(1 - 870-\/711)_1) =1

1.4. Local factors for L-parameters. Since G is split, G = G x I'r. Suppose
we have an L-parameter

¢: WDp — LG.

We denote by ¢ the Weil representation ¢ : W — LG which is the summand of ¢
corresponding to ker V.
Let

p: G — GL(V)
be any (algebraic) representation.

Definition 1.1. Given an L-parameter ¢, we define

L(s,¢,p) == L(s,po )
and

e(s, ¢,p) :=¢€(s,p0 ¢).

Suppose
po 6= @@ Sy
n>0
as representations of WDg x SLo. Denote the space of o, by V,,. Then
L(s,,p) = [ [ det(1 — g2 *o(Frob) | (Va)") ™!
n>0
and
(s,6,p) = €(1/2, 9, p)g" ">

where

a(pogp) = (n+1a(on) + Y ndim((Vy)y)

n>0 n>0
with a(p o ) the Artin conductor of oy, and
€(1/2,¢.p) = [ ] e(1/2,00)" " T det(=(Frob) | (V) )"

n>0 n>0



THE BRAVERMAN-KAZHDAN-NGO APPROACH TO L-FUNCTIONS 5

1.5. v-factors. Let ¢, p be as before. We define the associated ~y-factor to be

L(1 — v o
7(57(257/)71/}) = (1 S,ﬁ’(g (1)06(;)’[) gba,(b)

From the functional equation for €, we get

7(87907[))1/))7(1 - 87@7pv7w_1) =1

We can apply this to our previous examples.

Example 1.1. Suppose F' is p-adic. If o is irreducible admissible of Wr with
dimo > 1, we have L(s,0) = 1 but the e factor is complicated.

Unramified representations of GL,, correspond to parameters ¢ which are trivial on
SLy and inertia, so they are completely specified by ¢(Frob), a semi-simple conjugacy
class in GL,(C). Such representations are m < IndgL" (X1 ®...® xpn) with all x;
unramified, and the corresponding ¢(Frob) is diag(x1(w@),. .., xn(@)). Then

n

L(s,0) = [J(1 = xi(@)g~*)~"

i=1
and €(s,0,1) = 1.
Exercise 1.2. For ' = R or C, pick your favorite G and G and compute the poles
of L(s,p,p) in terms of the parametrization.
Exercise 1.3. Suppose F'is p-adic. Compute L(s, Indwg X, Sym"™) and (s, Ind%g X, Sym™).
[The e-factor is complicated for n = 1, but less bad for n > 2.|

2. THE LOCAL LANGLANDS CORRESPONDENCE

Let F' be a non-archimedean field of char 0. Let O be the ring of integers of F
and w € O a uniformizer. Let ¢ = |O/w0O|.

2.1. Characterization of LLC. Let .Z: Irr(GL,) — ®(GL,), sending m — ¢ =
Z(m). We defined L-factors and e-factors on the Galois side. How do we define
them in terms of representation theory?
Godement-Jacquet explained how to go construct them directly from 7, in a com-
patible way.
L<37 7T) = L(S, (/7)

6(87 7T7 /l/}) = 6(87 7T7 /lj})
Furthermore, the conductor of m should agree with the Artin conductor of . Recall
that ¢(m) = 0 iff 7 is unramified. In general,

e(m) = Itnzi[l)l{t: vk £ 0}

where

A B =
K; = {(C D) € GL,(0): CEZF(&;:;;(?)}

This normalization assumes 9|o = Id and vol(O) = 1.
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The L-factors and e-factors do not determine the representations. (For supercus-
pidals the L-factor is always 1, while the e-factor is more complicated, but still not
rich enough to determine 7.)

Theorem 2.1. There is a unique map
Z: Irr(GLg) — ©(GLg)
satisfying:
(1) L(s,m® x) = L(s, Z(m) @ x) for all x of F*.
(2) e(s,m @ x, ) =€(s,L(m) ® x,v) for all x of F*.
Why is this enough? One line of reasoning comes from the converse theorem.

Another comes from functoriality. For G/F connected, split, reductive, there should
be a map from

{r e Irr(G)} = {p: WDp — G}.

Given a representation p: G5 GLN(C), we get a Langlands parameter for GLy,
hence £,(7) := II € Irr(GLy). Furthermore, it is easy to show that the v-factors
enjoy
’7(57 P P 1/1) = ’Y(Sa pPoP, d}) = 7(57 Ep(ﬂ-)’ d})
(The same holds for the € and L-factors.)
In the setting of the theorem, think G = GLy x GL; and p is the tensor product
of the standard representations.

2.2. The Hecke algebra. Let B be a Borel subgroup over F. Suppose a Levi
decomposition B = TU. Let X*(T), X.(T) be the character/cocharacter groups.
Let K = G(O) be a hyperspecial maximal compact subgroup of G(F).

Definition 2.1. The Hecke algebra is H(G, K) = (C°(K\G/K), ) where the mul-
tiplication % is given by

fiealo) = [ fila)fala™g) da.
G
We have a decomposition
o) = | Kn=)K
peEXT(T)

where X,(T) = {\ € X.(T): (\,a) > Oforalla € A}. Let Ig,)x be the
characteristic function of Kp(w)K. Then H(G, K) is commutative.

2.3. Satake transform. Define the Satake transform
Sat: H(G,K) — H(T,T(0))
by
Sat(f)(t) — & °(t) / f(tu) du
U(F)

where dp is the modular character of B.
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We have a map v: T(F)/T(0) = X,(T) = X*(T) sending
t— (y(t), x) :=ord x(t) for all x € X*(T).
Theorem 2.1 (Harish-Chandra). For regular t € T'(F), we have

Sat(f)(t) = D() /G o F057s

where D(t) = 61/%(t)| det Ady () — Idy |
Theorem 2.2 (Satake). The Satake transform induces

Sat: H(G, K) = CIX.(T)W =~ c[x*(T)V
where W is the Weyl group of G.

2.4. Change of basis. For A € X (T), we have
Sat(Trex@)x) = a7 xa + > ax(w)xu
<A
where pp is the half sum of positive roots, ay(u) € Z, and x) = Tr V).

We can invert this to express ) in terms of the Satake basis.

Theorem 2.1 (Lusztig-Kato). We have

X\ = q—(>\7,DB> Z PM,)\(Q) Sat(IKu(w)K)
p<ApeX i (T)

where P, \ 1s a Kazhdan-Lusztig polynomial.

2.5. Satake parameter. Let (7, V;) be an irreducible admissible representation of
G(F). For all f € C°(G), we define an operator 7(f) by

m(f)v = flg)m(g)vdg, veV.
G(F)

We define the trace of m as a distribution,
Try: C(G) — C

sending f — Trn(f).

For v € Vj, assume 7 is unramified, and f € H(G,K). If v € V&, which is
1-dimensional, then it must be an eigenvector for the H(G, K)-action, i.e. w(f)v =
w(f)v. This w defines a character of H(G, K), which is of the form

w(f) = / Sat(f)(1)0(1) dt
T(F)

G(F)
B(F) 0.

Definition 2.1. We define the Satake parameter of w, denoted ¢, as the semi-simple
conjugacy class of G determined by the property that

Trr(f) = Sat(f)(cx)-

where m < Ind



8 LECTURES BY LEI ZHANG

3. THE BASIC FUNCTION

3.1. Goal. Assume that we have a group G satisfying the following properties.
(1) There exists a short exact sequence,

15 Gy— G2 G, — 1 (3.1)

hence also a short exact sequence

0= X, (Tp) = Xo(T) 2% X,(G) — 0.

(2) We have a representation p: G — GL(V) such that p(z) = z - Id for z € C*

for Gy, = G induced by (3.1).
Our goal is to define the basic function L, s such that

Trr(L,s) = L(s,m,p).

3.2. Example. Let G = GLo, p the standard representation of G = GLy(C).
Consider a representation of the form 7 < Ind%L2 (x1 ® x2), where x1,x2 are
unramified characters. The Satake parameter is

(o) ()

The associated L-factor is then
1

(1—aq*)(1-Bg*)

L(s,m,p) = (3.2)

We Taylor-expand (3.2])

9] k
L(s,m,p) = Z <Z OéiﬁkZ) q ",

k=0 \:=0

which we can rewrite as

L(s,m,p) = i Tr <Symk p (0‘ 6)) gk (3.3)

k=0
Now, we have

TT(SYmk p) = q_k/2 Z Sat(IKdiag(wa,wb)K) (3.4)

a+b=k
a>b>0

Inserting (3.4)) into (3.3)) above, we find that

L(s,m,p) = Z Z Sat(IKdiag(wa,wb)K)q_k(s‘H/Q)

k>0 a+b=k
a>b>0

= Z Sat(IKdiag(wa,wb)K)q_(s+1/2)(a+b)'
a>b>0
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We define a new function
Lysi= 3 Ticdiugae a2,
a>b>0
Recalling that Trx(f) = Sat(f)(cz) for all f € H(G, K), the upshot is that
Trn(L,s) = L(s, 7, p).

Notice that the support of Ly, s is Max2(O) N GLa(F).
Suppose we take s = —1/2. Then we get

L1z = D Tcaingen s
a>b>0
This is just the characteristic function of May2(O) N GLa(F).

3.3. Definition of the basic function. Let 7 be an unramified representation of
G, with Satake parameter c;. Suppose we’re given a representation

p: G = GLx(C).
By definition,
L(s,m,p) = det(In — plcr)qg®) 7"
We again want to rewrite this in terms of Satake transforms. First, we have

det(Iy — p(ea)g ™)t =D Tr (Sym’“ p(cw)) g
We then decompose Sym” p in terms of irreducibles.
Sym” p = Z Z m(Sym® p : V)V
k20 xexx (T)
hence
(Sym plcx) ) => " > m(sym*p: Va)xalen)g "
k20 xeXx (T)

To express xr in terms of Satake transforms, we use the Lusztig-Kato formula from
Theorem 2.3k

X = a0 Pua(a) Sat (g (e ).
HSA

We then plug this in to get a complicated formula for the L-function in terms of the
Satake transform of some function.

Definition 3.1. Define
L7 := Sat™!(Tr Sym"* p) =: Z au(q; 8, k) (e i
peXI(T)
Define the basic function to be

=Y LEig " € C®(K\G/K).
k>0
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By construction, we have
Trm(L,s) = L(s,m,p).
Several natural questions present themselves:

(1) What is the support of L, 7 (It will be a union of double cosets K pu(w)K,
but which ones?)
(2) Find M, to replace May2 in the example of such that the support of

L, is contained in G(F') N M¢(O) and supp(L, ) is compact in M,(F').
4. REDUCTIVE MONOIDS

4.1. Linear algebraic monoids.
Definition 4.1. A linear algebraic monoid M is an affine algebraic variety together
with an associative morphism

w:Mx M — M

and an identity element 1 € M for p.
We define the unit group of a linear algebraic monoid M to be

G(M):={geM:g'ec M}

Theorem 4.2. Let G be an irreducible algebraic group. There exists an irreducible
algebraic monoid M with G(M) = G such that G # M if and only if X*(G) # {1}.

Let M be reductive (i.e. G(M) is reductive), normal, with 0 € M and one-
dimensional center. We will generally restrict our attention to such monoids, possibly
relaxing the last condition. Under these conditions, have the following facts:

(1) If M is smooth, then M = M, ., (F) as algebraic monoids.
(2) (M —0)/G,, is projective.
4.2. Example: Vinberg’s universal monoid of SL3. Let G’ = SLs,
t1
T :=<t:= to cq.
(trt2) ™
Let Z' be the center of G'.
Define Gt = (G’ x T")/Z’. We have a short exact sequence
1—SLy =Gt = T'/7 —1.

We will construct a monoid M for GT. The idea is to take a large faithful repre-
sentation, and take the affine closure in the space of endomorphisms.

Define two representations of G’ = SLy: p1 = Id and py = g — (¢~ *)", corre-
sponding to the fundamental weights wq(t) = ¢1 and wa(t) = t1t9, respectively.

We will define new representations p;r: GT — GLg3, by

(t,9) — wi(wo(t™1))pi(g).

where wg be the longest Weyl element, which specializes in this case to

pi: (t,g) — (titag)

1)T
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and
Py (tg) = (1lg™)").
Let a1 (t) = t1t; " and aa(t) = t113. Hence we have (o™, p*): G* — G2,xGL3 x GL3
by
(t,9) = (tity ' 1at3, tatag, ta (g™1)T).
Let M be the affine closure of the image of (a™,p") in G2 x M2, ;. We can
describe the image as

A1 (ADY=(AT) Ag=zy1d;
{($7 Y, Ala A2) € G»?n X GL% : /\2A11:CCA2 } .
/\2A2=yA1

We have G* = G(M™). Writing M = (J,c, GTeG™, we have #A = 11 in this

case. There is an action of G’ x G’ on M™T. Let
T Mt — MY/)G' x G

be the GIT quotient.
Example 4.1. For G’ = SLy, M = Msyo and m: M™ — M™//SLs x SLy and
m(g) = detg.

In the previous example, M /G’ x G’ = G2. In general, the quotient is an affine
space of dimension rank equal to rank G'.

4.3. Example: G’ = SLy. Let’s go back to the G’ = SLy case. Let A\, : <t t_1> —

t". This is the highest weight of the representation p, = Sym” of SLo.

Consider Z' € T' € G = SLy. We define A, € X*(T5¢) = X, (T*) by Ap(a) = a™.
This extends to a morphism G, — G.

We then define M*» by the cartesian diagrams

M s M+
o
An
G, — G}
Explicitly,
M = {(a,m) € Gq X Mayyo: 7 (m) = M\p(a), ie. det(m)=a"}.
e If n = 2m is even, then we have
GLy x SLy = G(M™)
by
(a,9) — (a,a™g).
e If n =2m + 1 is odd, then

GLy = G(M™™)

by
g +— (detg, (det g)™g).
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The dual groups are then GL;(C) x PGLy(C). We take p = Sym”. This is always
well defined.
Exercise 4.1. Check that supp(L, s) C M (O) N G (F).
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