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1. LocAL GODEMENT-JACQUET-TAMAGAWA THEORY

Let G = GL, and let F be a p-adic field. (There are analogous results for
archimedean local fields and local function fields.) The goal is to establish an analytic
theory for standard L-functions of GL,,, via integral representations of L-functions.

1.1. Preliminaries. There are two main ingredients: Schwartz space, and Fourier
transform, and we’ll discuss each of these in turn.

1.1.1. Schwartz space. We have an embedding G < M,,, the space of n X n-matrices.
It is important that this is a G x G-equivariant embedding (with the action by left
and right translations). Aside: this is an affine spherical embedding.

Remark 1.1. M, is a reductive monoid for G. (In fact, it is the only smooth one.)

Definition 1.2. The space of Schwartz functions for G is the space of functions
obtained by restriction of CZ°(M,,) to G.

1.1.2. Fourier transform. There is a Fourier transform
F: CX(M,) — CZ(My,)
given by sending f € C°(M,) to

F(f)() = /M (Te(ay)) f(y)dy™

where

e dy™ is a Haar measure on M,,,
e 1. ' — C is self-dual with respect to F, so

FFU)() = f(—x).
We will sometimes write f := F(f).
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1.2. Main results. Let 7 € Irr(G). Let C(m) be the space of matrix coefficients for
7. Define

o) = [ 1@eta)detgt T dy
for f € C°(M,,) and ¢ € C(m).

Theorem 1.1. We have the following facts.

(1) Z (s, f,) is absolutely convergent for Re s > 0.
(2) Z(s, f,¢) is a rational function in q~° (where q is the cardinality of the
residue field of F'). Moreover, the family of rational functions

I(m) :={Z (s, f,0): [ € CZ(Mp), ¢ € C(m)},
viewed as functions on G by restriction, admits a greatest common denomi-
nator, denoted £ (s, ).
(3) (Functional equation) There exists a rational function v(s,m,¢) € C(q~%)
such that

(=5, F(f), ") =7(s,m,9) Z(s, f,¢)
with
v/ (9) =plg™") e C(@).
1.2.1. The L-function. Assuming Theorem we can define Z(s,7) as follows.

For all f € C°(M,) and ¢ € C(m), for h € G we define new functions fi, ¢ by
fi1(g) :== f(gh) and ¢1(g) := ¢(gh). Then one can compute that

3%Jwﬁ=éﬁ@w@M%W“?@=RMM*JW%®ﬁW

This implies that I(7) is a Clg**]-module in C(q~%), i.e. a fractional ideal. For
0 # ¢ > C(7) with ¢(e) # 0 and X0 = ¢, we have that 2 (s,Ix,, ) is constant.
In particular,
I(m) > Cla*, ).

Since C[¢**] is a PID, I(7) has a generator of the form P(g~*)~! for P(X) € C[X]
with P(0) = 1. We define

ZL(s,m) = Pq~*)""
Remark 1.1. Under the local Langlands correspondence, the Godement-Jacquet
L-function coincides with the Langlands L-function associated to the corresponding
Weil-Deligne representation.

1.2.2. The e-factor. The functional equation then gives an expression for the ~-factor
in terms of .Z(s, 7). We define the e-factor
ZL(s,m)
€(s,m,9) = (s, m,9) - Z0—s,10)

The functional equation can then be reformulated as

0@0(1_87]:(.]0)790\/) :E(S T ¢)°@p(87f790)
L1 —s,7Y) N PL(s,m)
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Since the ratio Z(s, f,¢)/Z(s,7) € Clg™*], we deduce that (s, m,1)) is a unit in

C[¢™*]. Hence it is a monomial in ¢~.

Corollary 1.1. We have

’Y(Sv T, 1/]) : ’Y(]- -5 7Tva /l]b) = wﬂ(_l)
where wy is the central character of .

Proof sketch. The main input is that F(F(f))(xz) = f(—z). Applying the functional
equation twice, we get on one hand

§(37F(f(f))7¢) = 7(1 - 377Tv7¢)g(1 - Svf.(f)a 90\/)
= 7(1 - 5771-\/71/])/7(877771/})%(83 f7 80),
but on the other hand the LHS can also be identified with wr(—1)Z (s, f, ). O

1.3. Relation with parabolic induction. By the work of Jacquet and Harish-
Chandra, we know that for any 7 € Irr(G), we can find a parabolic subgroup P C G
with Levi decomposition P = M N, and a supercuspidal representation 7 of M, such
that

7 < Ind% 7.

For convenience we restrict ourselves to the case where P is a maximal parabolic.
So let P be the standard maximal parabolic subgroup in G of type (m1, mg) with

mi + mg = n,
p_ GL,,, N .
GL,,

So M = GL,,, x GL;,, and 7 = 01 ® 02, where o; is a supercuspidal representation
of GL(m;).
We recall some properties of Ind]G; T.

(1) By definition,

Ind$ 7 = {smooth functions F: G — V;: F(pg) = 6p(p)/*7(p)F(g)}.

(2) Ind% 7 = Ind% 7.
(3) For F € Ind$ 7 and F € Ind% 7,

2(9) = (F, (ndE 7)(9) Fypag »

can be computed in terms of matrix coeflicients of 7:

olg) = /K (F(k), F(kg))r. dk

where K = GL,,(Op) is our fixed maximal compact subgroup.
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1.3.1. Zeta integrals. Our immediate is to reduce the theory of zeta integrals for such
7 to those of 7.
For f € C°(M,) and ¢ € C(r) C C(Ind% 1) as above,

/f (9)] det g+ dg
= [ [ 5@F 0, F k) ket g
GJK

After the change of variables g — k~!g, this becomes

fro) = /K /G U g) k), F(g))| det g+ "% dgdk (1.1)

Using the Iwasawa decomposition G = PK, we can break up the integral over G into
separate integrals over P and K. Writing g = pk’ with respect to this decomposition,
we get

(1) = / / / FO Pk ) (0) /2 (F (), 7(0) F (k)| det pl** 5 dpdkdk  (1.2)

Writing p = <g1 g ) with ¢; € GLy,, and u € My, xm,, and noting that dp(p) =
2
| det g1 || det g2|~™2, and using the explicit expression for Haar measure
1
dp = ————— dgidgodu
p [ det g1 |™ g1a4g2

the integral becomes

@[ L Lo 5 ren( ),

- | det g1 \5+ ] det gg|8+ dgldggdudk‘dk' (1.3)

o <ﬁ(k), T (91 92> F(k’)>T € C(o1) ® C(02) (1.4)

so it is a valid test function ¢ for the zeta integral for GL,,, X GL,,. It only remains

to see that
/f(/-c_l <91 “)k) du € C(Mp,) ® C°(My,).
N g2

Lemma 1.1. Let f € C°(M,,). Then

/Nf<91 g“2>d € C (M) ® O (Mny).

Proof. Decompose C2°(Mp,) = ®,2C°(F). Then the statement is obvious. O

Using K-finiteness of f and (1.4) gives: Z(s, f, ) is a finite linear combination
of terms Z(s, f1,¢1)Z (s, fa, (pg) w1th fi € C°(M,y,,) with cpz € C(o;). Hence if the

GCD property holds for o1 ® o9, it also holds for m < Indp T=01® 09.
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Remark 1.2. The L-factor for 7 is not always exactly the product of the L-factors
for o1 and o9. What we find is that

Z(s,m)
Z(s,01)ZL(s,02)

An example where this fails is G = GLg, and 7 = St — Indg?(égf).

e C[¢*].

1.3.2. Functional equation. What about the functional equation? We want to show
that the functional equation for the Levi factor implies it for the induced representa-
tion. This comes from an interaction of parabolic induction and Fourier transform.

Lemma 1.1. Let f € C°(M,), gi € My,,, and define

o) Lo D)o

r(f)=r(f)
where the LHS Fourier transform is on C2°(Mp, ) @ C2°(M,y,,) and the RHS Fourier
transform is on C°(M,y,).

Then

Proof. By definition,
r(A) (91 92> _/ f(g1 ;) s
//n ( > (TFKZ Z) (gl ;)])dudadbdcdd

An easy computation shows that the trace is just Tr(ag; + cu + dg2), so

r(f( ) / / » (C d)zp(Tr(agl—|—cu—|—dgg))dudadbdcdd. (1.5)

Now apply Fourier inversion for the variables ¢, u and you get

= /a,b,df <g Z) »(Tr(amy + dms)) dadbdd = r(f) (91 gz> .
O

We will now show that if the functional equation holds for 7, then it holds for any
7 Ind%7. Asin , the zeta integral is

i-erinr- | ] (o (¢ ) o

1=+ "5 | et go| 15 5 dgrdgadudkdk’
(1.6)

-| det g1

We set
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so that
)= (e (1 ) ) =0z ( ) )

-1
Moving the 7 <g1 g ) to the other side, one gets that £V is the matrix coefficient
2

appearing earlier.
Defining

U (9) = FRT ),
we have - -

r(FR) = e (R R,
It follows that FE for o1 ® o9 implies it for 7.

Remark 1.2. All subrepresentations m of Indg 7 have the same ~-factor, which is
v =(s,01,¥)y(s,02,1). This is a very important fact — it implies that the ~-factor
defines a rational function on the Bernstein variety Q(G).

Definition 1.3. For a reductive group G, the Bernstein center 3(G) is the ring of
conjugation-invariant, essentially compact distributions on G, which means that for
® € 3(G), PxCX(G) C CX(G), e.g. the d-distribution. It was proved by Bernstein
that Plancherel transform induces an isomorphism between 3(G) and the regular
functions on Q(G). This is a countable disjoint union of finite-dimensional complex
varieties.
QG) = [] M.0]c
[M,0]

where [M, o] runs over Levi subgroups and o runs over their supercuspidal represen-
tations, up to G-conjugation.

The set {[M,xo]: x € W(M)} where ¥(M) is the set of unramified characters
of M, is a connected component in Q(G). You can show that ¥(M)/Stab(o) —
{[M,xo]: x € ¥(M)} is surjective with finite fibers, which gives a C-algebraic
variety structure on the latter.

The ~-function is not a regular function but a rational function on Q(G).
1.4. The supercuspidal case. Suppose 7 is supercuspidal.

1.4.1. Absolute convergence. Recall that by definition, matrix coefficients of super-
cuspidal representations are compactly supported mod center: for all ¢ € C(m),
Z(G)\supp(y) is compact.

This implies that

n—1

(s, fop) < C /M F(g)l] det g+ *7* dg

Recall that the Haar measures on M,, and G are related by

dg™
dg =
Y7 Tdet gl
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where dg™ is the Haar measure on M,, and dg is the Haar measure on G. Hence we
can write this estimate as

s, f, @ <C/ |detg\5'|r 2 g<C/ |detg\‘(”'|r 2 _”dg

1.4.2. Calculation of £ (s, ). We next want to show that £ (s, 7) = 1. By Bushnell-
Kutzko’s type theory for supercuspidal , there exists 0 # ¢ € C(7) and an idem-
potent e, € C2°(G) with support in K = GL,,(OF) such that e x ) xe¥ = ¢V and
moreover,

eqx x C°(My) x ex = C°(G).

Consider .Z(s, f,¢). We have € (m) = V¥ ®c V as a G x G-representation. By ir-
reducibility (since the G x G-translates of ¢ span C(7), and we can move this
translation to the f part), we only need to consider zeta integrals of the form

P (s, [,09) = Z(s, f,e) x o) xe)).
We claim that

L (s, frex xh xey) = Z(s,ex * fx ex, 7). (1.7)

Hence we only need test functions of f € C°(G), for which the zeta integral is
always convergent (no denominator).
Next we prove the claim . Let’s just expand out the definitions.

Z (s, f,el *goﬂ*e /f (e) *goﬂ*e g )|detg\s'Ir 2 dg

Y eeilo) = [ eaped®)erv-alg) dadb.
GxG
Substituting the second formula into the first, the zeta integral becomes
[ H@e a0 a ) et gl dadbdg (1)
GxGxG
— [ H@erla A Blenly ab) | detgl* F dadbdg
GxGxG

Recalling suppe, C Kp, we have |deta|] = |detg~lab] = 1. Hence |detg| =
|det(ga—'g~'ab)| = | detb|. So we can rewrite (1.§)) as

F(9)ex(a™)p2(b)ex (g ab)| det b** 2 dadbdg.
3
and we have
/ f(g)eﬁ(g_lab)eﬁ(a_l)dadg =erx freg(b) O
G2

In particular, I(7) = {Z(s, f,¢): f € C(G),p € C(m)} and Z (s, f, ) is holo-
morphic in s, so Z(s,m) = 1.



8 LECTURES BY ZHILIN LUO

1.4.3. The functional equation. Next, the functional equation. Consider G x G acting
on CX(M,) by
(9,h) - f(x) = fg~'xh).
One easily computes that
(g:h) - f = | det gh™"["(h, 9)F.
Then

"@p((gv h) : f? (97 h‘) © P, S) = /G f(gilxh)(,@(qil.fh)‘ det (IZ‘SJF”T?1 dx
= [det gh "t T Z (s, £, )

We define an action of G x G on C(¢*) by (g,h) -t = | det gh*1\5+nT_lt. Then this
shows that Z(s, —, —) can be interpreted as an element of
Homgxa(C°(M,) ®@c C(m),C(q™?)).

We want to show that 2(1—s, F(—),(—)") € Homgxa(CX(M,) ®@c C(n), C(q~*%))
as well. This will be an explicit calculation.

—

g(l -5 (gv h)f, (ga h)‘)pv) = /G’ ‘ det gh_1|n(h79) : f(l'){(h,g) : SO]V(IL‘)| det l’|1_5+nT_l dx

= |det gh ™" - |det hg ! |* T Z(1 — s, F, V)

:|detgh—1\s+i£*1
To get the functional equation it only remains to establish that
dimg(g-sy Homgya(C:°(My) ®c C(r),C(g™ 7)) < 1.
Let ¢ € Homgxa(CX(M,) ®@c C(7),C(¢"*)). By the same argument as before,
we know that ¢ is determined by ¢ |Ccoo( M,)®cCp0 - Then
UCE (M) ®c Cpy) = UCE (Mn) Rc ey * ¢y * e) = Len x C(Mn) * ex, 7)

so £ is determined by its restriction to C°(G) ®c C¢2. So we reduce to showing
that

dimg gy Homgya(C:° (G) ®c C(r),C(q™ 7)) < 1.

The Hom space is isomorphic to
Homexa(C(m) = VY @V, (C2°(G))” ®c Clg 7).

Since C(m) is smooth, this lands in the smooth vectors, so it’s the same as
Homgxa(C(m) = VY @V, (C(G))" ®@c Cg™)).

Now we’ll give an explicit description for C°(G). Let H = G, viewed as the diagonal
subgroup of G' x G. Then CX(G) = ¢ — Ind$*¢(1), so (C)Y = Ind$*%(1).
So what we'’re interested in is

Homgx¢(C(m), Indf“ (1) @c C(g~*)).
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As H acts on C(g™®) trivially, there is a natural embedding
Ind7*%(1) ®c C(g~*) = Ind7*“(Cg™)),

and the Hom space of interest has an embedding into Homgx ¢ (C(7), Ind%XG C(q™9)).
By Frobenius reciprocity, this is the same as

Homp (C(m), C(q~*)) = Homp (C(r), C) ®@c C(q°).
By irreducibility, we win.
1.5. Spherical case. Let 7 be a spherical representation of G, so dimc 7% = 1.
Recall: we have a zonal spherical function I'(g) associated to 7, satisfying

e m(g)v =T(g)v for v e VK,

o [, T(hkg)dk =T (h)I'(g)

e The zonal spherical function for 7 is T'z(g) = I'x(g™1).
For the standard Borel B C G we have

BJU =T = (F¥)".

Fix x; unramified characters of F'*. We can form the unramified character y for T,
and then Tnd%(x).

Theorem 1.1 (Borel, Matsumoto, Casselman). Ind%(x) contains a unique vector
¢ such that ¢(bk) = 65(b)Y/2x(b).
The vector ¢ generates a spherical representation 7.

-1

The contragredient is IndG(y) = Indg y . It has a corresponding vector ¢ €

Ind$ ¥, and
Tolo) = [ olka)itiak = [ olak)ak
is a matrix coefficient.
Theorem 1.2. We have
L(s,m) = HX(S, Xi)-
and
(s, m, 1) = 1.
Proof. We compute Z (s, f,T'y) from the definition. We can assume f € C°(M,,)E*E

because I' is bi-K-invariant. So this is
n—1
| H@)otieg) detgl* "5 dyd.
GxK
By Iwasawa decomposition g = bk for b € B,k € K and we can rewrite this as
= / F(bk)p(bk)| det b|*H T db = / F()35(6Y2)x (b)] det b*T"Z db
KxB B

The answer is a finite linear combination of expressions of the form [[" , Z(s, fi, xi)
for f; € C°(F), and we can use Tate’s thesis.
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On the other hand, for f = I, (0,), we can compute F(f) = f, and this implies
that e(s,m,¢) = 1. g

2. GLOBAL GODEMENT-JACQUET THEORY

We first fix some notation. Let

e (G = GL,, over a number field F,
e A be the ring of adeles,
* [G] = G(F)\G(AFR).
Our goal is to establish the analytic theory of the standard L-function of GL,,
following the framework of Tate’s thesis.

2.1. Cuspidal automorphic forms. Fix a Hecke character w;: [GL;] — C*. Let
L?(|G],w) be the space of square-integrable f: [G] — C with central character w:

f(zg) =w(z)f(g) for z € Z(AF), g € G(AFp).
We say f € L%([G],w) is a cusp form if

f(ng)dn =0
[N]

for any unipotent radical N C G, for almost all g € G(Af). Let LZ([G],w) be the
space of cusp forms. One can show that it is a closed subspace of L?([G],w) and is
invariant under the action of G(A ). Furthermore, it has a discrete decomposition

Ly([G),w) = P~ (2.1)
with each 7 being an irreducible G(A r)-representation.

Definition 2.1. Call a 7 appearing in (2.1)) a cuspidal automorphic representation
of G.

2.2. Global zeta integrals. For each cuspidal automorphic representation 7, define

C(m)=R¢:=|g~ / Bi(hg)B2(h)dh | : B1, B2 € T ¢ .
Z(Ap)G(I\G(AF)

Then define the global Schwartz space

S (Mu(AF)) = Q) 7 (Mu(F))

PE|F|
where

e If p is non-archimedean,
L (Mn(Fp)) = CF(Myn(Fp))

e If p is archimedean,
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where
G (2) = {exp(—ﬂ' Tr(zTz)) F,~R,
exp(—2n Tr(zlz)) F,=C.
The restricted tensor product is with respect to I Ma(Op,) at the non-archimedean
places.
Remark 2.1. When p is archimedean, M,,(F},) is viewed as a real algebraic variety.

Definition 2.2. For f € . (M, (AFr)) and ¢ € C(w), define
n—1
2 fop)= [ F@el)ldetg T dg,
G(AF)

Theorem 2.3 (Tate for GL;, Godement-Jacquet for GL,,). We have the following
facts.

(1) Z(s, f,¢) is absolutely convergent for Re s > 0.
(2) Z(s, f,) is entire.
(3) Z(1—s,F(f), ") = Z(s,f, )

Remark 2.4. We can write 7 as a restricted tensor product

/
Y
™= Q).

where 7, is a unitary representation of GLj,(F}) if F}, is non-archimedean, such that
mp is unramified almost everywhere. Furthermore, this induces a restricted tensor
product structure on C(m):

/
C(m) = ® C(mp)
PE|F|
with respect to I',, (which is taken to be the zonal spherical function of 7, whenever
Tp is unramified).

Let f =@, fp and ¢ = &, op. Then
"%p(safv(p) - H‘Qp(s?fpagop)'
p

2.2.1. Absolute convergence. We know that f, = IMn(OFp) and ¢, = I', almost
everywhere. For such places, the local factor is

Z (s, fp.op) = Q‘”(s,IMn(OFP),Fp) = ZL(s,mp).
If the Satake parameter of m, is
o (mp)
a(mp) =
o (mp)
then ¢~1/2 < |a;(m,)| < ¢'/2. Since
ZL(s,mp) = det(I, — a(mp)g )"
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the convergence then follows from the convergence of the Riemann ¢ function.

2.2.2. Meromorphic continuation and functional equation.

Theorem 2.1 (Poisson summation). Let f € ./ (M, (AFr)) and g,h € G(AF). Then
. [T = Y |detghT RF(F) g vh).
YEM (F) YEMn(F)

Proof. The proof goes by Poisson summation. It is essentially the same argument
as in Tate’s thesis, iterated n? times. ]

The Poisson summation implies the meromorphic continuation without much trou-
ble, so we turn our attention to the functional equation. We work in the region
Re s > 3/2, where the zeta integral converges absolutely. (Also, we elide some
analytic issues.) Define

G':={g € G(AF): |detg| = 1}.
Then G'Z(AF) = G(AF), so
G(F)Z(Ap)\G(Ar) = G(F)(Z(Ap) N GH\G' = G(F\G'

Taking

o(g) = /  Bu(hg)Ba(R)dh
G(F)\GT

the zeta integral becomes

Z (s, 1) :/G(A )f(g}w(g)ldetgls“51 dg
2/ f(g)/  Bi(hg)By(h)dh| det g|*T T dg
GG

G(AF)
(g hlg) = / (" 9)Bu(g)Ba()| det g dhdg
Ar \GT

Now we’re going to apply Poisson summation and unfolding.
Since (1 is automorphic, we can rewrite this as

3 /h S )| Bi(9)Ba(h)] det gl F dgdh.

g€lq] YEG(F)

We can apply Poisson summation to the bracketed term. Up to boundary terms,
this gives

Z f(h™yg) Z F(f)(g 7 h)| det g| ™ + (boundary terms).
veG(F YEG(F)
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In fact the boundary terms will vanish due to cuspidality of £1,82. We can insert
this above to get

-[ Z F(F)(g~ 197 1) By(9)Balh)| et g| | det g|**+*7* dhdg
9G] JheG(F)\GT

YEG(F

:/E[G /}LGG F)\Gi Z ‘F(f)v(h_lyg)ﬁl( ) ( )\detg|5 2 dhdg

1
YEG(F)

:/ / _F(N)Y(h ' 9)Bi(9)Ba(R)| det g3 dgdh
g€lG] JheG(F)\G?

(g hg) = / / )V (9)B1(hg) Ba(h)| det g~ "5 dhdg
geG(AFR) JheG F)\G1
—/ F(1) (9)lg)] det 9>+ dg
geG(AF)

— gt n=1
=9 = [ F(ee ) detgl 5 dg
9gEG(AF)
- ‘Qp(l - Svf(f%@v)'
We now handle the boundary terms which we previously ignored.
Lemma 2.2. For 0 <m <n,

/ / S F(hyg)Bi(9)Ba(h)| det g+ F dhdg = 0.
9€[G) JheG(F)\G?

EM,(F)
rank y=m

Proof. The point is that we want to break this up into integrals over unipotent
subgroups, which will be 0 by cuspidality. For convenience, assume first that m > 0.
Let

Ry, = {y € M,(F): ranky = m}.

This has an action of G(F') by right translation. We claim that the representatives
for each orbit are

v (I%m 8) , v € GL,(F) (2.2)

and its stabilizer is

The subgroup

is a unipotent radical in G.
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For each orbit with representative (12.2]), the contribution to the integral is

/ €l /hec:m\a 2 (’“7 (I%m 8) 59) B1(g)Ba(R)| det g|** "= dhdg
g

L eePn(F\G(F)

1 (Idm 0O e gensd
:/ Pun(F)\G(A )/h s’ (h 17( 0 0) g) Aol det gl dhdg
g€rm F €

We then break up P, (F)\G(Ar) = Un(F)\Un(Ar) X Pp(F)Un(Arp)\G(AFR).
Using that for all n € U,,(A),

Iy, 0\ _ (Idn O
o o/ " Lo o

we can rewrite this integral as

1 (Idy, O
= _ vy o)
gEPy (F)Um (Ar)\G(AF) JheG(F)\G?
. /[ } B1(ng)dn B2(h)|det g|5+n7_1 dgdh
U

Now the inner term f[U] B1(ng)dn = 0 by cuspidality of (3.
That was all for m > 0. When m = 0, we get

0 [ [ g mmldetgl T dhdg
g€[G] JheG(F)\G*

Taking the h integration, and using that cusp forms are orthogonal to constant
functions, we also win. ]

3. THE BRAVERMAN-KAZHDAN PROGRAM

3.1. The conjectures. Let G be a split, connected reductive algebraic group over
a local field F'. For convenience, assume that F' is p-adic.

Fix a maximal torus ' C G, which gives rise to a root datum (X*(7'), ®, X,(T), ®").
We then form the reductive group G /C with swapped roots and coroots. The L-
group is LG = G x We.

Let p: YG — GL(V,), and set n = dimV,,. Let 7 € Irr(G). We are interested in
defining an L-factor L(s,m, p). If the Local Langlands Correspondence is known for
G, then we can define L(s,, p) by lifting to GL,,, and using Langlands’ definition
of the L-function for a Galois representation. However, a definition of this form
is usually not useful for global purposes, e.g. proving analytic continuation and
functional equation.

Braverman-Kazhdan (2000) proposed a generalization of Godement-Jacquet the-
ory, with the goal of obtaining integral representations for L-functions for other G.
We have seen that Godement-Jacquet theory has two main ingredients of local har-
monic analysis: a definition of a Schwartz space .7,(G), and a theory of the Fourier
transform F,. To have generalizations of these, we need to impose some assumptions

on G.
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(1) We assume that there is a short exact sequence
159G >G5 G,—1

where Gq is a split semi-simple, simply connected algebraic group over F|,
and o plays the role of the determinant for GL,,.
(2) pis a faithful representation such that

1—— Gy —— L@ » LGy > 1

H I F

1 — G,, — GL(V,) — PGL(V,) —— 1

and plg,, (=) = = 1dy,.
Remark 3.1. These may seem like strong conditions, but Ngé pointed out that they
are often satisfied. Indeed, start with any split semisimple G and fix a representation

p of é\o. Then, by Vinberg’s theory of reductive monoids, there always exists a short
exact sequence

15Gp—=GLGy—1
giving rise to these assumptions. Note that G may depend on p.

Example 3.2. Let Gy = SLg, p = Sym" as a (projective) representation of EJB.
Then

GLo n=2k+1.
Conjecturally, there exists a Schwartz space S,(G) C C*(G) such that

F(s,frp) = /G F@)e(@)o(g)l* dg

with analogous properties to the Godement-Jacquet case, e.g. meromorphic contin-
uation, a Fourier transform F,, and a functional equation

0@‘9(1 - S,fp(f),(pv) = ’Y(S?ﬂ'?pa w)ff(&f?f’)

Remark 3.3. The number ¢ € C is not important for analytic purposes. A different
normalization gives an unramified shift of S,(G) and F,. But it is important for
geometric reasons. It was first pointed out in work of Bouthier-Ngo6-Sakellaridis that

¢ should be of the form

oo {SL2 xGuy 1 =2k,

0:=2(pp, \) (3.1)
where pp is the half-sum of the positive roots with respect to the Borel B D T, and
A is the highest weight of p.

Example 3.4. For GL,, and p = std, pg = ("771, ”ng,) and Agq = (1,0,...,0),
(13.1) gives p =n — 1, as in Godement-Jacquet theory.

3.2. The Schwartz space. There are three approaches/properties for defining the
Schwartz space .7, (G) C C*®(G).
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3.2.1. Analytic desiderata. For f € 7,(G) and ¢ € C(7), the zeta integral Z (s, f, )
should be absolutely convergent for Res > 0, and a rational function in ¢—° which
admits a common denominator .Z (s, 7, p).

3.2.2. .7,(G) should be a H(G) x H(G)-module by left and right convolution.

3.2.3. Geometric property. To phrase the third (crucial) property, we need to recall
the theory of reductive monoids.

For G = GL,,, we took the affine spherical embedding G — M,,, which is G x G-
equivariant, whose image is open and dense. We then took the restriction of C2°(M,,)
to G as our space of Schwartz functions.

In general, given (G, p) we have a G x G-equivariant affine spherical embedding
G — M, with open dense image, where M, is a reductive monoid. Note that in
almost all cases except the Godement-Jacquet case (GLy,std), M, is singular. So
C°(M,) is not the right object to use.

Example 3.1. An example is the case of G = GSp(4) , p = Std representation of

o —

GSp(4) (by the exceptional isomorphism GSp(4) = GO(5). Then M, = MSp(4) is a
cone (matrices m such that m? Jm = \J, possibly with A = 0). One can show that
C°(MSp(4)) does not give the standard L-factors. It turns out that one needs to
allow moderate growth near the singularities, rather than constancy.

We want to define .7,(G) = I'.(M,, 5/’?;) where ﬁ; is the “Schwartz sheaf”, where
cohomology is taken with respect to the p-adic topology on M,. The idea is that
S,(G) should be related to a “conjectural theory of perverse sheaves on M,”.
Example 3.2 (Bouthier-Ngo-Sakellaridis). Let F' = F4((t)) be the trace of Frobe-
nius of “ICys (0,)” (the trace is well-defined) then you get the basic function L,,.

Let’s review the concept of the basic function. This should be L, € .7,(G)%*E
where K is a fixed maximal compact open subgroup of G. There is a spectral
characterization of L,: for an unramified irerducible representation 7 of G, one
should have

/G L,(g)Tx(9)|o(9)|** % dg = Z(s,7, p).

In particular, one can show that

/G L, (9)Tx(9)|o(9)|**# dg = Sat(Ly)(a(r, )

£
2

where oz(7r5+%) is the Satake parameter of 7_ L and Topt =T ® |g(_)’s+§.

+
Example 3.3. For (GL,,std), L, = IMn(Opp)- M, is smooth, so we can take IC to
be the constant sheaf.

Remark 3.4. L, is important for global purposes.
The global Schwartz space should be restricted tensor product

Sp(G(AF)) = Q) Z5(G(F))
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with respect to the basic functions L, .

3.3. Fourier transform. Braverman-Kazhdan conjectured that F, can be given by
convolution against a stable distribution ®,,, on G.

Example 3.1. Let’s see this in the standard case (GLj,std). We have G — M,
and

_ _dg*

| det g™

dg

Then
F(f)w)= | o(T()f (y)dy™
:/Gz/J(Tlr(:cy))f(y)dy+
:/Gzp(Tr(xy))!dety”f(y) dy

= |detal ™ [ w(Tx(oy))|detayl" f(5) dy
GLn
= |det x| " (Psta,p * ) (@)
where
Pgtap () = Y(Tr(x)) |det z|™.

To generalize this, we will construct ®,,, a stable distribution on G, and define

Fol£)(g) = 1o()| ™ (@p * £)(9).

It was conjectured by Braverman-Kazhdan that the action of ®,, ; on a repre-
sentation m € Irr(G) is given by

W((I)p,zb,S) =(s,m, p,v)lds

in a generic sense, because @, , is just a rational function on the Bernstein center
(it may have poles).

We need to make sense of the action 7(®, ), since @, , is a distribution.
Furthermore, it turns out that we need to modify things in order to get the functional
equation

f(l - Safp(f)790v) = 7(37W7Pa ¢)$(Saf, (P)

Luo found that to get this functional equation, the action should instead be given

by

¢
— 7Y, p, ) Id, . (3.2)

T(Qpups) = v(=s — 5
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Let’s try to give a formal derivation of the functional equation from (3.2)). We assume
Re s < 0, and ignore analytic issues.

P - s, Ff /|a 5 (@, ) (9)¢" (9) dg
(g g /ra Y5 (@ % 1) (g7 )olg) do
// oo (W) Fy)dye(g)|o(g)* 2 dg

(g~ gy =/ .0 (y) F(9)e gy olgy™)|* 2 dydg
GxG

Focus on the integration over y:

/ 0 ()lo(y ) 2 p(gy ™) dy = / . (y)|o(y)| T2 (yg ) dy
G G

=m'(@, 1) ¢ (g7
©(9)

Inserting this above, we get

Qs /f o(g)[*t2dg = Z(s, [, ).

Remark 3.2. The distribution ®,, is closely related to the distribution in the
Bernstein center 3(G). Originally, 3(G) = Endgep(g)(Id). This turns out to be iso-
morphic to conjugation-invariant essentially compactly supported distributions on G,
where “essentially compact” means @« C°(G) C C2°(G). Bernstein showed that the
Plancherel formula identifies this with regular functions on Q(G) := [, [M, olc-

We explain this notation: M is a Levi subgroup of G, and ¢ is a supercuspidal
representation of M (for M = GLj, this means a quasi-character). [M,o]q is the
G-conjugation equivalence classes of (M, o). The subset {[M, xo]g: x € V(M)} is
a connected component in Q(G).

3.4. Braverman-Kazhdan conjectural construction for ®,,. First we discuss
Braverman-Kazhdan’s conjectural description. Since we assumed that G is split, we
can pick a maximal split torus T' C G. We have

T4 G GLv)).

By conjugating, we may assume that po¢ on T factors through the standard fn C
GL(V,). (Here n = dimV,.) Hence we get a group homomorphism

T 24 T,
A\
This induces T, LT On T,, we have a standard Fourier transform distribution,

I/J(tl—l-...—l-tn)‘tl tn| ’dtl...dtn|.
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We can construct a distribution on 7" by pushing forward:

Dporp(t) = p) (Wt 4.+ tp)|tr oot [dtr .. dty)).
Remark 3.1. A regularization is needed for the pushforward p,’.

How do we get a distribution on G7 We use the Chevalley map
c: G - T/W

where W is the Weyl group of (G, T). If we can define a W-equivariant structure on
® 0., then we can pull it back to G™® via the Chevalley map ¢, and extend it to G.

Conjecture 3.2 (Braverman-Kazhdan). This construction gives the correct distri-
bution.

Remark 3.3. The W-action is non-trivial. In particular, in the finite field case
and the Z-module setting, there are parallel constructions. Ngo6-Cheng confirmed
the conjecture for (GLy, p) over finite fields, and Chen confirmed it for (G, p) in the
Z-module setting.

3.5. Ngo6’s conjectural construction. Ngbé emphasized that the stable distribu-
tion @, should be locally integrable and smooth on the regular semisimple points.
Moreover, ®, |7 should agree with a canonical construction on 7" for all maximal
tori T C G.

Remark 3.1. Let T C G be a split torus, and p¥: T,, — T be as before. We had
the function ¥(t1 + ...+ t,)|t1...t,| on Ty, Let U = ker(p") C T,. This is also a
torus, so it has a natural Haar measure du. We define

(I)pomb(t) = / aq Tﬁ(al 4+ ...+ an)|a1 . an|dtu

Example 3.2. Let 7 € Irryy(G), Luo showed that for K < G a maximal open
compact,

I (@)K =1, « H(G, K).
Also,

K 1
ot =L «Sat ™ [ ———————
o p14L ( 2( 577[.7PV)>

where pV is the contragredient of p, and @ffw is the projection of @, to the unram-
ified component. The analytic issues are fine, and

ypI((LP) =L,

and

ﬂpK(yp(G)KXK) = yp(G)KXK

and similarly fpr preserves L2(G, K, |o|"*1 dg).
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A parallel theory exists for archimedean local fields, and you can define L, for
archimedean local fields via the Harish-Chandra transform. In particular, L, s can
be plugged into the Arthur-Selberg trace formula for Re s > 0. This gives something

like
> maTra(f) =Y vol(y)O4(f)

The spectral side picks up everywhere unramified representations, and we expect
that O, (L, s) can tell us information about Z(s,r, p).

3 6. Global theory. Let F' be a number field. We have a global Fourier transform

=®, Fpp 0 L(G(AF)) = Q, 7p(G(F})).

For f =@, fp, assume that there are po,p1 € |F| such that f,, € C(G(Fp,))
and fppl(fpl) € C=(G(Fp))-

Conjecture 3.1 (Poisson summation). Under these assumptions, we have

2 f= 2> R

vyEG(F) ~EG(F)

Remark 3.2. In general there should be “boundary terms” in Conjecture 3.1} but
the assumptions should imply that they are 0.

Remark 3.3. By the converse theorem of Piatetskii-Shapiro—Cogdell, we expect that
a Poisson summation formula should imply functorial lifting. Laurent Lafforgue has
defined kernels giving functorial liftings from the PSF.
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