# Geometric Langlands and Bridgeland stabilities

Roman Bezrukavnikov Notes by Tony Feng

## 1 Setup

The subject of this talk is the geometry of symlpectic resolutions. Suppose  $X \xrightarrow{\pi} Y$  is a symplectic resolution of singularities, so  $(X, \omega)$  is algebraic symplectic and  $\pi$  is a resolution (i.e. birational).

Assume further that there is a  $\mathbb{G}_m$ -action on X and Y, and  $\pi$  is equivariant for this action. Suppose that  $\omega$  has weight d > 0, i.e.  $t^*\omega = t^d\omega$  (d = 2). Assume that  $k = \overline{k}$ , and sometimes we need characteristic 0.

We are really interested in the category  $C = D^b \operatorname{Coh}(X)$ . Let  $C_0$  be the full subcategory of sheaves supported on the special fiber, equivalent of  $D^b \operatorname{Coh}_{\pi^{-1}(0)}(X)$ . We will see conjectures/Theorems concerning

- the action of  $\pi_1(K)$ , where K is the "complexified Kähler parameter space," on C and  $C_0$ ,
- the relation to  $QH^*_{\mathbb{C}^*}(X)$
- Bridgeland stabilities,

*Example* 1.1. Let G be a semisimple algebraic group. Form the flag vartiety G/B. Then  $T^*G/B$  is algebraic symplectic, and we can consider the moment map

$$T^*(G/B) \xrightarrow{\pi} \mathcal{N} \subset \mathfrak{g} \cong \mathfrak{g}^*.$$

For future reference, let's recall the explicit description. We can think of

$$T^*(G/B) = \{B, u \in \operatorname{rad}(B)\}$$

and  $\pi$  maps  $(B, u) \mapsto u$ .

### 2 Geometric Langlands

Geometric Langlands is about an equivalence between the derived category of *D*-modules on  $\text{Bun}_G(C)$ , for a complete curve *C*, with the derived category of local systems with structure group  ${}^LG$  on *C*.

$$D(D - \mathbf{mod}(\operatorname{Bun}_G(C))) \longleftrightarrow D\operatorname{LocSys}_{L_G}(C).$$

This is the "unramified version."

How do we add ramification? The simplest way is to add ramification at some  $x \in C$ . You account for this on the left hand side by including the data of a trivialization at x. The corresponding modification of the Galois (right hand) side is to allow local systems to have a regular singularity at x and a <sup>*L*</sup>*B* structure at x such that the residue of the connection is stricly upper triangular: Res<sub> $\Delta$ </sub>  $\in$  rad(b).

**Local situation.** Work locally around *x*, by replacing *C* by the formal disc around *x*. Then one gets a local version. The right hand side will be replaced with local systems on  $\mathbb{D}$  with regular singularities at *x*, with a <sup>*L*</sup>*B* structure satisfying the residue condition. The left hand side becomes  $\text{Bun}_G(\mathbb{D})$  with a flag at *x* and trivialization on  $\mathbb{D}^*$ , i.e. the affine flag variety Fl.

 $D(D - \mathbf{mod}_{Whit}(Fl)) \longleftrightarrow DLocSys_{L_G}(\mathbb{D}, \underset{B-struc. on residue}{\operatorname{reg. sing. at } x})$ 

where we have imposed a technical condition on the allowed *D*-modules, which we don't want to go into.

This allows us to transport the perverse *t*-structure on the left hand side to the right hand side, called the Geometric-Langlands (GL) *t*-structure. There are two aspects: global over Y := N, and local over Y.

**Theorem 2.1.** The GL t-structure on  $D^bCoh^G(X)$  is compatible under the direct image functor  $\pi_*$  with the perverse coherent sheaves of middle perversity. (To define it, use that G acting on Y has finitely many orbits, of even dimension.)

*Remark* 2.2. Schnell proved that under Geometric Langlands for GL(1), holonomic *D*-modules on  $\text{Bun}_{\text{GL}(1)} = \text{Pic}(C)$  go to perverse coherent sheaves of middle perversity.

The Geometric Langlands correspondence also induces a *t*-structure on  $D^b(\operatorname{Coh}_{\pi^{-1}(y)}(X))$  for any  $y \in Y$ .

### **3** Enter Bridgeland Stabilities

#### **3.1** Local operators (functors)

The set { $(E, F), (\mathcal{E}', \mathcal{F}'), \varphi \colon \mathcal{E}|_{C-x} \cong \mathcal{E}'|_{C-x}$ } turns out to be isomorphic to  $W_{\text{aff}}$ .  $\clubsuit \to \mathsf{TONY}$ : [um??] The data corresponding to  $w \in W_{\text{aff}}$  can be thought of as a pair of bundles with "relative position w."

If we consider stuff with a *fixed* relative position  $w \in W_{aff}$ , this we have obvious projection maps to  $Bun_G(C, x)$ :



Let  $R_w = p_{2*}p_1^*$ . Then  $R_{w_1}R_{w_2} = R_{w_1w_2}$  if  $\ell(w_1w_2) = \ell(w_1) + \ell(w_2)$ . These are precisely the relations for the affine Braid group  $B_{\text{aff}}$ , so we have an action of  $B_{\text{aff}}$  on  $\text{Bun}_G(C, x)$ .

**Corollary 3.1.**  $B_{\text{aff}}$  acts on  $D^b(Coh^G(X))$ .

The action is equivariant, hence extends to an action on the the equivariant derived category.

The action on the Grothendieck group  $K(\operatorname{Coh}^{\mathbb{C}^{\times}}(X))$  is isomorphic to the monodromy of the equivariant quantum connection on  $QH^*_{\mathbb{C}^*}(X)$ .

**Conjecture 3.2.** Something like this works for any symplectic resolution, where  $B_{\text{aff}}$  is replaced by  $\pi_* K$  and it fits into a structure resembling Bridgeland stability.

#### 3.2 The affine braid group

Definition 3.3. Fix the inclusion  $t_{\mathbb{R}}^* \subset t_{\mathbb{C}}^*$ . We have an action of W on  $\Sigma$ , the set of coroot hyperplanes  $H_{\alpha}$ . The affine Weyl group  $W_{\text{aff}}$  acts on  $\widetilde{\Sigma}$ , the set of affine coroot hyperplanes. We define the affine braid group  $B_{\text{aff}} = \pi_1(t^*_{\mathbb{C}} \setminus \bigcup_{H \in \widetilde{\Sigma}} H/W_{\text{aff}}).$ Set  $(t^*_{\mathbb{C}})^0 = t^*_{\mathbb{C}} \setminus \bigcup_{H \in \widetilde{\Sigma}} H/W_{\text{aff}}$ , so  $B_{\text{aff}} = \pi_1((t^*_{\mathbb{C}})^0).$ 

**Theorem 3.4.** There exists an open set  $U \subset (t^*_{\mathbb{C}})^0$  and a covering  $\widetilde{U} \to U$  with an action of  $B_{\text{aff}}$  and an embedding  $\widetilde{U} \hookrightarrow \text{Stab}(C_0)$ , the space of Bridgeland stability conditions on  $C_0$ .

Let  $X \to Y$  be a symplectic resolution. Consider another symplectic resolution  $X' \to Y$ . Let  $V = H^2(X)$ , which can be canonically identified for all such X. A given X is determined by its ample cone  $C_X \subset V$ . There is a symmetry group W acting on V, and  $\bigcup_{X,w} w \cdot C_X$  is dense in V. Let  $\Sigma$  be the collection of the hyperplanes bounding  $w(C_x)$  over all w, X.

**Conjecture 3.5.**  $QH^*_{\mathbb{C}^*}(X)$  has a family of connections on  $\mathbb{C}^* \otimes H^2(X,\mathbb{Z})$  with singularities on subtori  $\exp(2\pi i H)$  where H is a hyperplane parallel to one in  $\Sigma$ .

*Remark* 3.6. This is known for  $X \subset T^*(G/B)$ , and more recently for X quiver varieties by work of Maulik-Okounkov.

Let  $V_{\mathbb{C}}^0$  be the complement to  $H_{\mathbb{C}}$  for  $H \in \widetilde{\Sigma}$ . This has many alcoves, which are components of  $V_{\mathbb{R}} \cap V_{\mathbb{C}}^0$ , and imaginary cones, which are of the form  $V_{\mathbb{R}} + iwC_x$ .

**Conjecture 3.7.** We can assign to each alcove an abelian category (thought of as a noncommutative resolution of Y) and to each cone Coh(X), and to each class of a path a derived equivalence, so that  $\pi_1(V^0_{\mathbb{C}})$  acts on  $D^b(\operatorname{Coh}^{\mathbb{C}^*}(X))$  such that the action on the Grothendieck group K is isomorphic to the mondromy of  $QH^*_{C^*}(X)$ .