Geometric Langlands and Bridgeland stabilities

Roman Bezrukavnikov Notes by Tony Feng

1 Setup

The subject of this talk is the geometry of symlpectic resolutions. Suppose $X \stackrel{\wedge}{\rightarrow} Y$ is a symplectic resolution of singularities, so (X, ω) is algebraic symplectic and π is a resolution (i.e. birational).

Assume further that there is a \mathbb{G}_m -action on *X* and *Y*, and π is equivariant for this action. Suppose that ω has weight $d > 0$, i.e. $t^* \omega = t^d \omega$ ($d = 2$). Assume that $k = \overline{k}$, and estimes we need characteristic 0. sometimes we need characteristic 0.

We are really interested in the category $C = D^b \text{Coh}(X)$. Let C_0 be the full subcategory of sheaves supported on the special fiber, equivalent ot $D^b \text{Coh}_{\pi^{-1}(0)}(X)$. We will see conjectures/Theorems concerning

- the action of $\pi_1(K)$, where *K* is the "complexified Kähler parameter space," on *C* and C_0 ,
- the relation to $QH^*_{\mathbb{C}^*}(X)$
- Bridgeland stabilities,

Example 1.1*.* Let *^G* be a semisimple algebraic group. Form the flag vartiety *^G*/*B*. Then *T* [∗]*G*/*^B* is algebraic symplectic, and we can consider the moment map

$$
T^*(G/B) \xrightarrow{\pi} \mathcal{N} \subset \mathfrak{g} \cong \mathfrak{g}^*.
$$

For future reference, let's recall the explicit description. We can think of

$$
T^*(G/B) = \{B, u \in \text{rad}(B)\}\
$$

and π maps $(B, u) \mapsto u$.

2 Geometric Langlands

Geometric Langlands is about an equivalence between the derived category of *D*-modules on Bun_{G}(*C*), for a complete curve *C*, with the derived category of local systems with structure group ${}^L G$ on C.

$$
D(D-\text{mod}(\text{Bun}_G(C))) \longleftrightarrow DLocSys_{G}(C).
$$

This is the "unramified version."

How do we add ramification? The simplest way is to add ramification at some $x \in C$. You account for this on the left hand side by including the data of a trivialization at *x*. The corresponding modification of the Galois (right hand) side is to allow local systems to have a regular singularity at *x* and a ${}^L B$ structure at *x* such that the residue of the connection is stricly upper triangular: $Res_{\Delta} \in rad(b)$.

Local situation. Work locally around *x*, by replacing *C* by the formal disc around *x*. Then one gets a local version. The right hand side will be replaced with local systems on D with regular singularities at *x*, with a ^L*B* structure satisfying the residue condition. The left hand side becomes $Bun_G(\mathbb{D})$ with a flag at *x* and trivialization on \mathbb{D}^* , i.e. the affine flag variety Fl.

D(*D* − **mod**_{Whit}(Fl)) ←→ *D*LocSys_{*LG*}(\mathbb{D} , *B*-struc. on residue)

where we have imposed a technical condition on the allowed *D*-modules, which we don't want to go into.

This allows us to transport the perverse *t*-structure on the left hand side to the right hand side, called the Geometric-Langlands (GL) *t*-structure. There are two aspects: global over $Y := N$, and local over *Y*.

Theorem 2.1. *The GL t-structure on* $D^bCoh^G(X)$ *is compatible under the direct image functor* ^π[∗] *with the perverse coherent sheaves of middle perversity. (To define it, use that G acting on Y has finitely many orbits, of even dimension.)*

Remark 2.2*.* Schnell proved that under Geometric Langlands for GL(1), holonomic *D*modules on $Bun_{GL(1)} = Pic(C)$ go to perverse coherent sheaves of middle perversity.

The Geometric Langlands correspondence also induces a *t*-structure on $D^b(\text{Coh}_{\pi^{-1}(y)}(X))$ for any $y \in Y$.

3 Enter Bridgeland Stabilities

3.1 Local operators (functors)

The set $\{(E, F), (\mathcal{E}', \mathcal{F}'), \varphi : \mathcal{E}|_{C-x} \cong \mathcal{E}'|_{C-x}\}$ turns out to be isomorphic to W_{aff} . $\blacktriangle \blacktriangle \blacktriangle$ TONY:
[*um* 22] The data corresponding to $w \in W$ a can be thought of as a pair of bundles with [um??] The data corresponding to $w \in W_{\text{aff}}$ can be thought of as a pair of bundles with "relative position *w*."

If we consider stuff with a *fixed* relative position $w \in W_{\text{aff}}$, this we have obvious projection maps to $Bun_G(C, x)$:

Let $R_w = p_{2*}p_1^*$ ^{*}₁. Then $R_{w_1}R_{w_2} = R_{w_1w_2}$ if $\ell(w_1w_2) = \ell(w_1) + \ell(w_2)$. These are precisely the relations for the affine Braid group B_{aff} , so we have an action of B_{aff} on Bun_{*G*}(*C*, *x*).

Corollary 3.1. *B*_{aff} *acts on* $D^b(Coh^G(X))$ *.*

The action is equivariant, hence extends to an action on the the equivariant derived category.

The action on the Grothendieck group $K(\text{Coh}^{\mathbb{C}^{\times}}(X))$ is isomorphic to the monodromy of the equivariant quantum connection on $QH^*_{\mathbb{C}^*}(X)$.

Conjecture 3.2. *Something like this works for any symplectic resolution, where B*aff *is replaced by* π∗*K and it fits into a structure resembling Bridgeland stability.*

3.2 The affine braid group

Definition 3.3. Fix the inclusion $t_{\mathbb{R}}^* \subset t_{\mathbb{C}}^*$. We have an action of *W* on Σ, the set of coroot hyperplanes H_α . The affine Weyl group W_{aff} acts on $\widetilde{\Sigma}$, the set of affine coroot hyperplanes. We define the *affine braid group* $B_{\text{aff}} = \pi_1(t^*_{\mathbb{C}} \setminus \bigcup_{H \in \widetilde{\Sigma}} H/W_{\text{aff}})$.
Set $(t^*_{\mathbb{C}})^0 = t^*_{\mathbb{C}} \setminus \bigcup_{H \in \widetilde{\Sigma}} H/W_{\text{aff}}$, so $B_{\text{aff}} = \pi_1((t^*_{\mathbb{C}})^0)$.

Theorem 3.4. *There exists an open set* $U \subset (t_{\mathbb{C}}^*)^0$ *and a covering* $\widetilde{U} \to U$ *with an action of* B_{aff} *and an embedding* $\widetilde{U} \hookrightarrow$ Stab(C_0), the space of Bridgeland stability conditions on C_0 .

Let $X \to Y$ be a symplectic resolution. Consider another symplectic resolution $X' \to Y$. Let $V = H^2(X)$, which can be canonically identified for all such X. A given X is determined by its ample cone $C_X \subset V$. There is a symmetry group *W* acting on *V*, and $\bigcup_{X,w} w \cdot C_X$ is dance in *V*. Let Σ be the collection of the hyperplanes bounding $w(C)$ over all $w \cdot Y$ dense in *V*. Let Σ be the collection of the hyperplanes bounding $w(C_x)$ over all w, X .

Conjecture 3.5. $QH_{\mathbb{C}^*}^*(X)$ has a family of connections on $\mathbb{C}^* \otimes H^2(X,\mathbb{Z})$ with singularities on subtori $\exp(2\pi iH)$ where H is a hyperplane parallel to one in Σ *on subtori* $exp(2πiH)$ *where H is a hyperplane parallel to one in* Σ*.*

Remark 3.6. This is known for $X \subset T^*(G/B)$, and more recently for *X* quiver varieties by work of Maulik-Okounkov work of Maulik-Okounkov.

Let $V^0_{\mathbb{C}}$ be the complement to $H_{\mathbb{C}}$ for $H \in \widetilde{\Sigma}$. This has many alcoves, which are components of $\check{V}_{\mathbb{R}} \cap V_{\mathbb{C}}^0$, and imaginary cones, which are of the form $V_{\mathbb{R}} + iwC_x$.

Conjecture 3.7. *We can assign to each alcove an abelian category (thought of as a noncommutative resolution of Y) and to each cone Coh*(*X*)*, and to each class of a path a derived equivalence, so that* $\pi_1(V_{\mathbbC}^0)$ *acts on* $D^b(\text{Coh}^{\mathbb{C}^*}(X))$ *such that the action on the Grothendieck aroun K* is isomorphic to the mondromy of OH^* (X) *group* K *is isomorphic to the mondromy of* $QH_{C^*}^*(X)$ *.*