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1 Setup

The subject of this talk is the geometry of symlpectic resolutions. Suppose X
π
−→ Y is a

symplectic resolution of singularities, so (X, ω) is algebraic symplectic and π is a resolution
(i.e. birational).

Assume further that there is a Gm-action on X and Y , and π is equivariant for this action.
Suppose that ω has weight d > 0, i.e. t∗ω = tdω (d = 2). Assume that k = k, and

sometimes we need characteristic 0.
We are really interested in the category C = Db Coh(X). Let C0 be the full subcate-

gory of sheaves supported on the special fiber, equivalent ot Db Cohπ−1(0)(X). We will see
conjectures/Theorems concerning

• the action of π1(K), where K is the “complexified Kähler parameter space,” on C and
C0,

• the relation to QH∗
C∗

(X)

• Bridgeland stabilities,

Example 1.1. Let G be a semisimple algebraic group. Form the flag vartiety G/B. Then
T ∗G/B is algebraic symplectic, and we can consider the moment map

T ∗(G/B)
π
−→ N ⊂ g � g∗.

For future reference, let’s recall the explicit description. We can think of

T ∗(G/B) = {B, u ∈ rad(B)}

and π maps (B, u) 7→ u.

2 Geometric Langlands

Geometric Langlands is about an equivalence between the derived category of D-modules
on BunG(C), for a complete curve C, with the derived category of local systems with struc-
ture group LG on C.

D(D −mod(BunG(C)))←→ DLocSysLG(C).
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3 ENTER BRIDGELAND STABILITIES

This is the “unramified version.”
How do we add ramification? The simplest way is to add ramification at some x ∈ C.

You account for this on the left hand side by including the data of a trivialization at x. The
corresponding modification of the Galois (right hand) side is to allow local systems to have
a regular singularity at x and a LB structure at x such that the residue of the connection is
stricly upper triangular: Res∆ ∈ rad(b).

Local situation. Work locally around x, by replacing C by the formal disc around x. Then
one gets a local version. The right hand side will be replaced with local systems on D with
regular singularities at x, with a LB structure satisfying the residue condition. The left hand
side becomes BunG(D) with a flag at x and trivialization on D∗, i.e. the affine flag variety
Fl.

D(D −modWhit(Fl))←→ DLocSysLG(D, reg. sing. at x
B-struc. on residue)

where we have imposed a technical condition on the allowed D-modules, which we don’t
want to go into.

This allows us to transport the perverse t-structure on the left hand side to the right hand
side, called the Geometric-Langlands (GL) t-structure. There are two aspects: global over
Y := N , and local over Y .

Theorem 2.1. The GL t-structure on DbCohG(X) is compatible under the direct image
functor π∗ with the perverse coherent sheaves of middle perversity. (To define it, use that G
acting on Y has finitely many orbits, of even dimension.)

Remark 2.2. Schnell proved that under Geometric Langlands for GL(1), holonomic D-
modules on BunGL(1) = Pic(C) go to perverse coherent sheaves of middle perversity.

The Geometric Langlands correspondence also induces a t-structure on Db(Cohπ−1(y)(X))
for any y ∈ Y .

3 Enter Bridgeland Stabilities

3.1 Local operators (functors)

The set {(E, F), (E′,F ′), ϕ : E|C−x � E
′|C−x} turns out to be isomorphic to Waff . ♠♠♠ TONY:

[um??] The data corresponding to w ∈ Waff can be thought of as a pair of bundles with
“relative position w.”

If we consider stuff with a fixed relative position w ∈ Waff , this we have obvious projec-
tion maps to BunG(C, x):

{(E,F ), (E′,F ′), ϕ : E|C−x � E
′|C−x}w

p1

tt

p2

**
BunG(C, x) BunG(C, x)

2



3 ENTER BRIDGELAND STABILITIES

Let Rw = p2∗p∗1. Then Rw1Rw2 = Rw1w2 if `(w1w2) = `(w1) + `(w2). These are precisely the
relations for the affine Braid group Baff , so we have an action of Baff on BunG(C, x).

Corollary 3.1. Baff acts on Db(CohG(X)).

The action is equivariant, hence extends to an action on the the equivariant derived
category.

The action on the Grothendieck group K(CohC
×

(X)) is isomorphic to the monodromy
of the equivariant quantum connection on QH∗

C∗
(X).

Conjecture 3.2. Something like this works for any symplectic resolution, where Baff is
replaced by π∗K and it fits into a structure resembling Bridgeland stability.

3.2 The affine braid group

Definition 3.3. Fix the inclusion t∗R ⊂ t∗
C

. We have an action of W on Σ, the set of coroot
hyperplanes Hα. The affine Weyl group Waff acts on Σ̃, the set of affine coroot hyperplanes.
We define the affine braid group Baff = π1(t∗

C
\
⋃

H∈Σ̃ H/Waff).
Set (t∗

C
)0 = t∗

C
\
⋃

H∈Σ̃ H/Waff , so Baff = π1((t∗
C

)0).

Theorem 3.4. There exists an open set U ⊂ (t∗
C

)0 and a covering Ũ → U with an action of
Baff and an embedding Ũ ↪→ Stab(C0), the space of Bridgeland stability conditions on C0.

Let X → Y be a symplectic resolution. Consider another symplectic resolution X′ → Y .
Let V = H2(X), which can be canonically identified for all such X. A given X is determined
by its ample cone CX ⊂ V . There is a symmetry group W acting on V , and

⋃
X,w w · CX is

dense in V . Let Σ be the collection of the hyperplanes bounding w(Cx) over all w, X.

Conjecture 3.5. QH∗
C∗

(X) has a family of connections on C∗ ⊗ H2(X,Z) with singularities
on subtori exp(2πiH) where H is a hyperplane parallel to one in Σ.

Remark 3.6. This is known for X ⊂ T ∗(G/B), and more recently for X quiver varieties by
work of Maulik-Okounkov.

Let V0
C

be the complement to HC for H ∈ Σ̃. This has many alcoves, which are compo-
nents of VR ∩ V0

C
, and imaginary cones, which are of the form VR + iwCx.

Conjecture 3.7. We can assign to each alcove an abelian category (thought of as a non-
commutative resolution of Y) and to each cone Coh(X), and to each class of a path a derived
equivalence, so that π1(V0

C
) acts on Db(CohC

∗

(X)) such that the action on the Grothendieck
group K is isomorphic to the mondromy of QH∗C∗(X).
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