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1. Motivation

Beyond Endoscopy is an idea of Langlands for approaching functoriality, intro-
duced in a 2000 paper (where he calls it a “pipe dream”).

LetG,H be reductive groups. Suppose you have a “nice” homomorphism ψ : LH ↪→
LG. Then there should be a transfer of packets of automorphic representations
πH 99K πG satisfying various compatibility conditions. Perhaps the most important
one is that for any finite-dimensional representation ρ : LG → GL(Vρ), we should
have

L(s, πH , ρ ◦ ψ) = L(s, πG, ρ).

Remark 1.1. The definition of these L-functions is subtle. At all but finitely many
places it is clear how to define them, but of course we want to pin down all of the
factors.

Why should we have such a transfer? Conjecturally, the automorphic representa-
tions are parametrized by Langlands parameters

L ϕπ−−→ LG

where L is conjectural “global Langlands group”. If we believe in this, then any
parameter L → LH induces by composition with ψ to a parameter L → LG.

Now the global Langlands group, and hence the parameters, are all very conjec-
tural. But we could imagine trying to describe the image of the transfer from H to
G without knowing the ϕπ, and this is what Beyond Endoscopy is about.

More precisely, we could try to classify the parameters ϕπ according to their
images.

• At the top we have parameters ϕπ such that ϕπ(L ) = LG.
1
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• For each H such that LH ↪→ LG, we could try to identify the representations
transferred from H.

The idea of Beyond Endoscopy is to try to detect the automorphic representations of
G that “came from” H by transfer, for each H. In other words, we want to stratisfy
L2(G(F )\G(AF )) according to the images of the associated parameters, to get

L2(G(F )\G(AF )) =
⊕

(LH,σ : LH↪→LG)

⊕
π : Im (ϕπ)∼σ(LH)

mπ · π

The aim of Beyond Endoscopy is to establish a candidate stratification of this kind,
without any reference to the parameters ϕπ, and instead using the trace formula.

So we want to detect “transfers from H”. This should be detected by L-functions.
More precisely, the pole at s = 1 of L(s, πG, ρ) for some ρ should detect whether πG
came from some H. Why? The principle that for Artin L-functions, the order of
the pole at s = 1 is the multiplicity of the trivial representation.

Consider the conjectural picture

L LG

LH

ϕπ

ϕπH ψ

Suppose Im ϕπ = LH. So we expect that if ϕπ(L ) = LH, then mπ(ρ), the multi-
plicity of the pole of L(s, πH , ρ◦ψ) = L(s, πG, ρ) is m(1, ρ|ψ(LH)). By varying ρ, one
can try to detect whether πG comes from πH .

Langlands proposed a way to use the trace formula to isolate the representations
π such that L(s, πG, ρ) has a pole at s = 1, taking multiplicity into account. We
want a formula for ∑

π

Trπ(f) ·mπ(ρ)

where mπ(ρ) is the multiplicity of the pole of L(s, π, ρ) at s = 1.
Fix a finite set of places S, including the infinite ones (because of issues of defining

local L-factors). We want a “trace-like” formula∑
π

Tr(πS(fS))mπ(ρ)

where mπ(ρ) is the multiplicity of the pole of the partial L-function LS(s, π, ρ). The
goal of next lectures will be to develop some sort of “computable” (in terms of orbital
integrals) expression for this. By playing with fS , we can then try to isolate π, and
hence mπ(ρ).

The strategy for getting such a formula is to use the stable trace formula and then
perform a Poisson summation on the geometric side. In these lectures, we will just
develop the geometric side until it looks like we could use Poisson summation. (More
precisely, we follow [FLN] and our goal is to explain (3.31) of [FLN], which converts
the geometric side of the trace formula into something that looks like a sum over a
lattice in an affine space.)
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1.1. The geometric side. The geometric side of the trace formula roughly looks
like ∑

γ∈G(F )/∼st

vol(γ)Ost
γ (f)

where
• ∼st is the equivalence relation of stable conjugacy and Ost

γ is a stable orbital
integral,
• f is a test function,
• vol(γ) = vol(Z(A)Gγ(F )\Gγ(A)).

We promised to make this look like a sum over lattices in an affine space. This
affine space is the Steinberg-Hitchin base, and we’ll explain it. After that, we’ll
discuss choices of measures for the orbits. The point is that the orbital integrals are
singular, which makes them not amenable to Poisson summation, but there is a way
to change the measures to remove this problem.

2. The Steinberg-Hitchin base

2.1. The Chevalley map. We want a space that parametrizes stable conjugacy
classes in G.

2.1.1. The case of GLn. For GLn, stable conjugacy classes of regular semisimple
elements are in bijection with characteristic polynomials with nonvanishing discrim-
inant. The map

g 7→ coefficients of CharPoly(g)

induces a morphism
GLn → An.

The fibers over an open dense subset of points are stable conjugacy classes.

2.1.2. Chevalley map for Lie algebras. Assume for the moment that we are over an
algebraically closed field F . The case of interest is where F is a non-archimedean
local field.

Let G be a reductive group over F and g := Lie(G). Fix a Cartan subalgebra
t ⊂ g.

The G-orbits on g form an affine variety Spec O(g)G. We denote by F [t]W the
W -invariant regular functions on t. In the case G = GLn, this is the algebra of sym-
metric polynomials in n variables, which we know is the free algebra on elementary
symmetric polynomials. In general, one thinks of F [t]W as the algebra of “elementary
W -invariant symmetric polynomials”; it turns out to be free:

F [t]W ∼= F [a1, . . . , ar].

In other words,
t//W ∼= Spec F [a1, . . . , ar] ∼= Ar.

The map t→ t//W is

(t1, . . . , tr) 7→ (a1(t1, . . . , tr), . . . , ar(t1, . . . , tr)).
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Example 2.1. For G = GLn,

a1(t1, . . . , tr) = t1 + . . .+ tr

...
...

ar(t1, . . . , tr) = t1 . . . tr

Theorem 2.2 (Chevalley restriction theorem). The map P 7→ P |t induces

F [g]G ∼= F [t]W .

The map F [g]G ↪→ F [g] induces

g→ t/W ' Ar

sendingX to the uniqueW -orbit in t consisting of elements conjugate to the semisim-
ple part of X.

The map g→ t/W is defined over F . What does the image look like?
Example 2.3. Let g = sl2(R). The Chevalley map sends

X ∼
(

x y + z
y − z −x

)
∈ sl2(R)

to detX = −x2 − (y2 − z2) = z2 − (x2 + y2).
The fibers are hyperboloids, with 1 or 2 components. The fibers are stable orbits,

but the rational orbits are the components.
Let T be a split maximal torus over F . We use T to form AG := t/W . Recall that

tori in GL2(F ) (up to F -conjugacy) correspond bijectively to degree 2 algebras E/F
(possibly E = F ⊕ F ). Our space AG(F ), up to a set of positive codimension, are
a disjoint union of images of representatives of conjugacy classes of tori. Explicitly,
for (a, b) ∈ AG (with coordinates such that X 7→ (Tr(X), det(X)) =: a, b), if a2− 4b
is a square then the point is in the image of a split torus, and if it is non-square then
it comes from the torus F (

√
a2 − 4b).

2.2. The group. Let G be split over F , and assume that Gder is simply connected.
For now, assume also that G is semisimple, so G = Gder and hence is simply

connected under our assumptions.
We briefly remind some basics of algebraic groups. Given a choose of split maximal

torus T ⊂ G, we can form a root datum (X∗(T ),Φ, X∗(T ),Φ∨). Let Λ be the root
lattice Z · Φ ⊂ X∗(T )⊗Z R. Let P be the weight lattice

P := {µ ∈ X∗(T )⊗Z R : 〈µ, λ〉 := 2
(µ, λ)

(λ, λ)
∈ Z}.

We have P ⊃ X∗(T ) ⊃ Λ.
Definition 2.1. For semisimple G, we say G is simply connected if P = X∗(T ).
Example 2.2. For G = SL2, the root is

α

(
t
t−1

)
7→ t2.

Hence Λ = 2Z and P = Z = X∗(T ).
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Recall that the Chevalley map is given by “elementary symmetric functions”.
These can be thought of as traces of rational representations of G. To make this
precise, let {µi} be the fundamental weights for G, a Z-basis for P . For each µi, we
have an algebraic representation ρi : G→ GL(V ) over F , of highest weight µi.

Example 2.3. For SL2, µ1 = 1 ∈ Z and ρ1 is the standard representation (on a
2-dimensional space over F ). The representation of highest weight n is Symn ρ1.

More generally, for SLn the representations corresponding to the fundamental
weights are the ∧i(ρstd). Their traces recover the elementary symmetric polynomials,
which we met before.

We want Tr ρi to generate the whole algebra of W -invariant polynomials on T . If
the µi span X∗(T ) (i.e. the simply connected case) then this happens.

The upshot is that if G is semisimple and simply connected, then we get a map
G→ T/W defined over F ,

g 7→ (Tr ρi(g)).

This is called the Steinberg map.

Remark 2.4. Note that for SL2, the Steinberg map is Tr, while the Chevalley map
is det.

When G is reductive, and Gder is simply connected, there is a sequence

1→ A := Z ∩Gder → Z ×Gder → G→ 1

and there is a map Z × Gder → Z ×AGder
which we view as the Steinberg map in

that case. For defining measures on stable orbits, write γ ∈ GLn as γ = γ′ · z with
γ′ ∈ Gder and z ∈ Z, and use the Steinberg map. (It doesn’t matter much that this
expression isn’t unique.)

Note: for a classical group, e.g. G = GLn, you still have a map G → Z ×AGder
,

but it will induce a slightly different measure on the base.
For reductive split G, and Gder simply connected, the Steinberg-Hitchin base is

A := Z ×AGder
. ([FLN] call B := AGder

.)1

3. Measures on orbits

Let γ be regular semisimple. The orbital integral of f over γ is

Oγ(f) :=

∫
Tγ\G

f(g−1γg)
dg

dt
.

We need to explain the normalization of measures.
Note: a stable orbit is a finite union of rational orbits, and the stabilizers are all

isomorphic, so it is equivalent to define a measure on stable orbits or rational orbits.

1If not simply connected, the base would be a quotient, which could be singular.
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3.1. The approach in the trace formula. There are finitely many conjugacy
classes of tori. You can pick a measure dt on a representative of each conjugacy
class. Then you take the quotient measure. We need to discuss this more carefully.

How do you pick a Haar measure on a group? There are two natural ways.
(1) Start with an invariant differential form ω. (We’ll explain shortly how this

gives a measure.)
(2) Pick a compact open subgroup and specify its volume. Since Haar measures

are unique up to scalar, this pins down the Haar measure.
A lot of arithmetic information is hiding in the conversion between these two ways.

To start, pin down a normalization of a measure dx on A1. (From this choice,
other normalizations will be built canonically.) There are two natural ways normalize
this:

(1) Demand vol(OF ) = 1. This is what we will do.
(2) ([FLN]) Fix global field L and a place v such that Lv = F . Fix a character of

L. Normalize all local measures |dx| on A1 so that Fourier inversion holds.
These are different, e.g. if ψ has conductor 0, the difference is a factor of √q.

As explained by Weil [Adeles and algebraic groups], any volume form (meaning
top-degree, everywhere non-vanishing) gives a measure|dω|v: writing

ω = f(x1, . . . , xd)dx1 ∧ . . . ∧ dxd

locally corresponds to the measure∫
|f(x1, . . . , xd)|v|dx1 ∧ . . . ∧ dxd|v.

Fact 3.1. Let F be a local field. Weil explained that if X is a smooth scheme over
OF , and ω is a volume form on X, then∫

X(OF )
|ω|F

is canonical (since the volume form is unique up to O×F ), and is equal to

#Xk(Fq)

qdimX

Proof sketch. This works for A1 by explicit computation, hence also for Ad. Since
X is smooth over OF , the reduction modulo the uniformizer $ map on X looks
locally the same as on Ad. (We are using Hensel’s Lemma here.) But the volume of
the fiber over every point in Ad/Fq is q−d, so the same holds for X. �

Next we discuss the dg on G. We choose an invariant differential form ω on G.
Example 3.2. For G = Gm, the invariant form is dx

x , and

vol(Gm(OF )) =
q − 1

q
.
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Example 3.3. For G = GL2, we can take

ω =
dg+

|det g|2
.

Because G is smooth,

volG(OFv) =
# GL2(Fq)

q4

3.2. Measure on tori. For Tγ which is not split, it is a non-trivial issue to make
sense of its integral points, since it does not come with a natural integral model.

To get ω, we need (local) coordinates. There is an obvious choice of T is split,
but what if it’s not? The point is that there is still a natural choice.

Over F , we can split T and choose a basis χ1, . . . , χr of X∗(T ). Then we get a
volume form “ω = dχ1 ∧ . . . dχr” on T over F .
Example 3.1. A torus T ⊂ GL2(F ) corresponds to a quadratic extension E/F .
Suppose E = F (

√
ε). Then

T (F ) =

(
x y
εy x

)
.

We can choose χ1 to map to x+
√
εy and χ2 to map to x−

√
εy. Then

(dx+
√
εdy) ∧ (dx−

√
εdy) = −2

√
εdx ∧ dy.

Since we’re using Gm, we should divide by χ1χ2, so we get −2
√
εdx∧dy

x2−εy2 . So we end
up with a differential form, but it is not defined over F .

Weil proposed a better solution. We’ll just say it in the special case of tori. If
T = ResE/F Gm, Weil builds in the discriminant of E/F as well. In the global
situation, one would put in |∆|1/2 dimT . If E/F is unramified and p 6= 2, then
|2
√
ε|p = 1, so it doesn’t affect anything (and also |∆|p = 1). The

√
ε matters when

the local extension is ramified, and |∆|p = 1√
p which agrees with |2

√
ε|p if p 6= 2.

Question: what if T is not a restriction ResE/F Gm? We don’t know a general
answer.

Unlike a non-commutative G, T has a unique maximal compact subgroup, which
can be described as

{t ∈ T (F ) : |χ(t)| = 1 for all χ : T → Gm defined over F}.

Example 3.2. If T ⊂ SL2 is the norm 1 torus, then there are no characters and
T (F ) = E1 is already compact.
Example 3.3. In GL2, T (F ) = E× and T 0 = {e ∈ E× : NmE/F (E) ∈ O×F }.

The volume of T 0 with respect to our measure ω (the honest pull-back, without
tweaking by discriminant) is

|2
√
ε|
∫
O×
E

dxdy

xy
.

The factor |2
√
ε| is 1 if E is unramified and 1/

√
q if E is ramified, and by Fact 3.1

the second factor is 1/q2 · #O×E (mod $E), which is q2 − 1 in the unramified case
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and (q − 1)q in the ramified case. (Imagine solving for x2 − py2 to be a unit: this
forces x to be a unit, and y can be anything.)

Summary:

vol|dω|(T
0) =


q−1
q

q+1
q E/F unramified,

q−1
q

q
q

1√
q E/F ramified,(

q−1
q

)2
T split.

Suppose this situation came from T = ResK/LGm for a global extension K/L,
and we use Weil’s pullback (to get rid of 1√

q ). Let χK be the quadratic character
associated to the extension K/L

χK(v) =


0 v ramified,
−1 v inert,
1 v split.

Then we can write the answer as follows:

vol(T 0) =

(
1− 1

q

)(
1− χE(v)

qv

)
(3.1)

This suggests a connection to L-functions.
Remark 3.4. We want to take a product over primes eventually. The factor

1− 1

qv

will cause the product to diverge. So Weil introduced convergence factors, which for
will be (1− 1

qv
)−1 (which can be seen as coming from the “Gm-part of T ”).

In general, we have a representation σT of Gal(K/L) on X∗(T ), and it restricts
trivially to the subspace of rational characters, by definition. The convergence factor
is L(1, σT ). This kills the pole, but leaves the residue of the L-function at s = 1.
When working with T = ResE/Qp

Gm, you get the residue of the L-function.
This expresses volω(T 0) as the value at 1 of an Artin L-function. This is almost

true in general, but if T is ramified then it is true if you replace T 0 with a subgroup
of finite index.

Now we have a quotient measure dg/dt on G/Gγ , so we have defined the orbital
integral

Oγ(f) =

∫
G/Gγ

f(g−1γg)
dg

dt
.

We next want to explain how to change the measure.

3.3. Another measure on orbits. Recall that stable orbits are fibers of the Stein-
berg map

c : G→ Z ×AGder
).

Once we specify the measure dg on G and Z ×AGder
(on which we take dx/x on Z

and dx normalized so that O has volume 1 on the affine part), this should induce a
quotient measure on stable orbits.



PREPARATION FOR BEYOND ENDOSCOPY 9

Each stable orbit gets a measure ωa, which differs from the old one, by a constant
depending on the orbit. We can express this as a “quotient form”. Splitting (locally)

T (G) = T (Oγ)⊕ T (Z ×AGder

(here Oγ is the orbit through γ) we have chosen volume forms on G and Z ×AGder
,

so we get a volume form ωa on TOγ
ωG = ωa ∧ da.

Another way to think about this is that ωa is characterized by the property that
for f ∈ C∞c (G), ∫

G
f(g) dg =

∫
Z×AGder

(∫
c−1(a)

fdωa

)
da.

How does ωa relate to dg/dt? The latter depends only on the stable conjugacy
class (because it depends only on the centralizer), while ωa depends on γ.

Let’s consider the Lie algebra, because the Chevalley map there is a little easier
to think about. Recall the Weyl integration formula∫

g
f(Y )dY =

∑
T/∼conj

|WT |−1

∫
treg

|D(X)|f(g−1Xg)
dg

dt
dX. (3.2)

Here D(X) is the Weyl discriminant

D(X) =
∏
α∈Φ

α(X) = det(ad(X), g/t)

where
• t := Lie(ZG(X)),
• dX is the affine space measure on t,
• dY is the affine space measure on g, and
• dg is related to dY by the exponential map.

The formula (3.2) comes from the fact that the map

G/T × t→ g

sending
(g,X) 7→ g−1Xg

has non-vanishing Jacobian.
We want to replace the integral over treg with an integral over treg/W , which looks

like the Steinberg-Hitchin base. We saw that tsplit/W was a disjoint union of images
of tori. For each of them, the map tsplit → tsplit/W is |WT | : 1. But its Jacobian is
non-trivial. But it has the form cT

∏
α>0 α(X). Summing it up, we get

1

|W |
|D(X)|dX ∧ dg

dt
=

1

|W |
dωa ∧ (da = |D(X)|1/2dX)

So it looks like we’re getting (for the Lie algebra)

dωa ∼
dg

dt
|D(X)|1/2. (3.3)
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3.4. Summary. We briefly summarize what we have discussed so far. We have
introduced three different choices of measure.

(1) (“Canonical normalization”) In the trace formula, the measure used is dg
dt

where dg is normalized so that vol(G(O)) = 1 and vol(T̃ (Ov)) = 1.
This normalization is useful for the trace formula, because with this nor-

malization almost all finite places have local orbital integrals equal to 1, and
so the products that appear are really just finite products.

(2) On the other hand, we explained that one could take dωG
dωT

, the quotient of a
measure on G by a measure on T , with both measures induced by invariant
volume forms.

(3) (“Geometric measures”) Finally, the “geometric measures” introduced in [FLN]
are of the form dωG

dωA
. The idea behind this measures is to treat stable orbits

as fibers of the Steinberg map (the ωA is a measured induced by an invariant
form on the Steinberg-Hitchin base).

The conversion between (1) and (2) is G(Fq)q
− dimG from the volume of G(O),

and T (Fq)q
− dimT from the volume of T (O). In other words,

dωG
dωT

=
G(Fq)q

− dimG

T (Fq)q−dimT

dg

dt
.

The ratio can be written as a ratio of Artin L-factors evaluated at 1. In particular,
the conversion factor doesn’t depend on the element.

To go from (2) to (3), by (3.3) we find pick up a factor of |D(γ)|1/2 where γ ∈ G(F )
and D(γ) is the Weyl discriminant.

4. Examples

4.1. G = GL2. In this case one can use the Bruhat-Tits tree to compute orbital
integrals. This is explained by Kottwitz; we will just give the answer. Let γ ∈ G be
regular. If γ is split or unramified, then

dγ = val(1− e1

e2
) (4.1)

where e1, e2 are the eigenvalues of γ if γ. If γ is ramified, then

dγ = sup{valE(γ − a) : a ∈ O×F }.

Perhaps a better way to think about dγ is that it’s basically half the valuation of
D(γ), but rounded to an integer, i.e.

|D(γ)| =

{
q−2dγ unramified or split,
q−2dγ−1 ramified.

Remark 4.1. The way that dγ really comes up in the calculation is that it’s the
integer such that the set of fixed vertices under the action by γ on the tree equals
the number of vertices whose distance to the standard apartment is ≤ dγ .
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Assume γ ∈ GL2(Ov) (if it is not conjugate to such an element, its orbital integrals
are 0). Then

Ocan
γ (IG(Ov)) =


qdγ γ split,
1 + (q + 1) q

dγ−1
q−1 γ unramified,

2 q
dγ+1−1
q−1 γ ramified.

Here we’re using the canonical measure, with a caveat. The factor of 2 in the ramified
case is unpleasant. In fact Kottwitz actually doesn’t quite say which measure he’s
using in the ramified case. I believe that the 2 disappears if you use what we’re
calling the canonical measure.
Remark 4.2. This example illustrates the principle that orbital integrals diverge
as γ approaches non-regular elements. Indeed, if dγ is large, i.e. γ is close to being
non-regular, then Oγ(IG(Ov)) ∼ |D(γ)|−1/2, and |D(γ)| → 0.

What happens if you use the geometric normalization? By §3.4, if E/F is the
quadratic extension corresponding to T then

Ogeom
γ (IG(Ov)) = |D(γ)|1/2 #G(Fq)q

− dimG

#T (Fq)q− dimT
|∆E |1/2F Ocan

γ (IG(Ov)).

This comes out to
1 + 1

q γ split
(1− 1

q )(q−dγ + q+1
q−1(1− q−dγ ) γ unramified

q2−1
q2

q−dγ q
dγ+1−1
q−1 γ ramified

The thing to note here is what happens when dγ = 0, which is the case for almost
all primes. In that case one gets 1 + 1

q if γ is split, and 1− 1
q if γ is unramified. So

this looks like an L-value, and one has to worry about convergence.

4.2. Analytic class number formula. Next we want to give a simple illustration
of how some of these factors encode arithmetic invariants, namely the class number
formula, which says

lim
s→1

(s− 1)ζK(s) =
2r+tπtRKhK
ωK |∆K |1/2

.

Here
• K is a number field,
• ∆K is the discriminant of K/Q,
• hK is the class number,
• ωK is the number of roots of unity in K,
• r is the number of real embeddings,
• 2t is the number of complex embeddings,
• RK is the regulator.
• ζK is the Dedekind zeta function.
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We focus on the simplest case, which is associated to imaginary quadratic exten-
sions of Q. In that case, the formula specializes to

L(1, χK) =
2πhK

|∆K |1/2ωK
.

We’re going to explain that this formula can be re-interpreted as a volume calcula-
tion, and specifically that both sides calculate the same volume.

Recall that weak approximation says Q×\(Af )×/
∏
p Z
×
p = 1 because the class

number of Q is 1. In general this kind of double coset space is almost the class
group, but one has to be careful with units. What one has is the following short
exact sequence:

1→ (K× ∩
∏
v

O×v )\
∏
O×v → K×\A×f → Cl(K)→ 1.

If we assume vol(O×v ) = 1, i.e. what we have been calling the “canonical measures”,
then we find that the (canonically normalized) volume of K×\A×f is hK

ωK
.

We may interpret K× = ResK/Q(Gm)(Q). In §3.2 we found that

vol dx
x

(O×v ) = (1− 1

p
)Lv(1, χ)−1|∆K |1/2v . (4.2)

The factors 1− 1
p (which come from the split part Gm ⊂ T ) are killed when passing

to the Tamagawa measure τ .
Next we need to know some facts about the Tamagawa number, which is the

volume of K×\A×K for a measure coming from a differential form, but adjusted by
volume factors for convergence.
Fact 4.1. We have τ(Gm) = 1, and τ is preserved by restriction of scalars, hence
τ(RK/Q(Gm)) = 1.

Now we compute
1 = τ(T (Q)\T (A))

in another way. We have

T (Q)\T (AQ) = K×\A×K,f · T (R)

and T (R) is a circle after killing the Gm, so the natural contribution from it is 2π.
Hence we have 2πτ(K×\A×K,f ) = 1, and by (4.2) and the fact that volcan(K×\A×f ) =
hK
ωK

we get

τ(K×\A×K,f ) = L(1, χ)−1|∆K |1/2.

Putting everything together then gives∏
v<∞

Lv(1, χ)−1 · |∆K |1/2v · 2π · hK
ωK︸︷︷︸

volcan

= 1.
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5. Eichler-Selberg trace formula

The Eichler-Selberg trace formula is a formula for the trace of a Hecke operator
Tn on Sk, the space of cusp forms of weight k and (for simplicity) level 1.

Think of this as a special case of the Arthur-Selberg trace formula for GL2, applied
to a specific test function. We will choose a test function that gives Tn on Sk. The
trace formula reads

Tr(Tn,k) =
k − 1

12
I�(n)nk/2−1

− 1

2

∑
t2<4n

ρk+1 − ρk−1

ρ− ρ
∑
m

hw

(
t2 − 4n

m2

)
− 1

2

∑
d|n

min(d, n/d)k−1

where
• We define

I�(n) :=

{
1 n = perfect square
0 otherwise

• ρ, ρ are the roots of X2 − tX + n,
• hw( t

2−4n
m2 ) is the “(weighted) class number of the order in Q(ρ) which has

discriminant t2−4n
m2 ”, weighted by the size of its automorphism group.

The term k−1
12 I�(n)nk/2−1 is the contribution of the (orbital integral over) the

volume.
The term 1

2

∑
t2<4n

ρk+1−ρk−1

ρ−ρ
∑

m hw( t
2−4n
m2 ) is the contribution from the elliptic

part.
The term 1

2

∑
d|n min(d, n/d)k−1 is the contribution from the hyperbolic and unipo-

tent conjugacy classes.
A book by Knightly-Li explains how to deduce this from the Arthur-Selberg trace

formula. We obviously don’t have time to explain this, so we will just make a couple
remarks.

First of all, what’s the test function that one plugs into the Arthur-Selberg trace
formula? Answer: f = f∞

∏
fp where

• f∞ is the complex conjugate of the matrix coefficient of discrete series with
highest weight k (this kills off everything except the weight k cusp forms),
• fp = IG(Zp) · IZ(Qp) if p - n,
• IM(n) · IZ(Qp) if p | n. This means the characteristic function of matrices in
M(Zp) whose determinant has valuation n.

The sum
∑

t2<4n is already a sum of traces. We can view (t, n) as a point in
the Steinberg-Hitchin base. The factor ρk+1−ρk−1

ρ−ρ comes from Oγ(f∞). What about∑
m hw( t

2−4n
m2 )? We have basically already seen that

Oγ · vol(T (Q)\T (A)) = h(Z[ρ])
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when the discriminant of X2 − tX + n has valuation 0. Zhiwei Yun generalized this
kind of calculation to GLn (namely, expressing orbital integrals in terms of class
numbers).
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