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TONY FENG

ABSTRACT. These are notes for a talk on the paper [Feng]. We will explain a geometric
approach to the base change fundamental lemma over function fields, which is based
on ideas of Ngô Bao Châu. The approach works by comparing the cohomology groups
of moduli spaces of shtukas, which we will introduce.
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1. AUTOMORPHIC FORMS OVER FUNCTION FIELDS

To orient ourselves, we begin with a brief survey on the evolution of the Langlands
program in different contexts.

1.1. The evolution of automorphic forms. The subject of automorphic forms is con-
cerned with functions on spaces such as

G (Q)\G (AQ)/
∏

p

G (Zp ). (1.1.1)

These spaces are, approximately, smooth manifolds, and we can study them using the
techniques of topology, differential geometry, and functional analysis.

For certain G , (1.1.1) can be realized as the complex points of an algebraic variety,
which would then be called a Shimura variety. This interpretation allows us to addi-
tionally harness the tools of algebraic geometry, which significantly enriches the story.

1.1.1. Function fields. There are two types of “global fields”: the number fields, which
are finite extensions of Q, and the global function fields, which are the field of rational
functions on a smooth projective curve X over Fq . There is a strong analogy between
these two types of fields, and it is natural to consider the analogue of (1.1.1) in the func-
tion field case.
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Fix a smooth projective curve X over Fq and let F be its function field. The analogue
of (1.1.1) is

G (F )\G (AF )/
∏

x∈|X |
G (Ox ) (1.1.2)

where Ox is the completed local ring of X at x . Let Fx = Frac(Ox ); this is called a local
function field, and it is (non-canonically) isomorphic to Fq d ((t )).

The theory of automorphic forms on (1.1.2) has many parallels to the characteris-
tic 0 case. Note, however, that the geometry of (1.1.2) is uninteresting: it is a discrete
set. (Since there are no archimedean places, it is the quotient of a space by an open
subspace.)

1.1.2. Geometric Langlands. In the case where G is split reductive over Fq , Weil ob-
served that (1.1.2) could be interpreted as the set of rational points of a certain algebra-
geometric object BunG , the moduli stack of G -bundles on X .1 This puts interesting ge-
ometry back into the picture. Moreover, we are motivated by Grothendieck’s “function-
sheaf dictionary” to look for sheaves on BunG which corresponds to automorphic func-
tions on (1.1.2). This line of thought leads to the Geometric Langlands program, pio-
neered by Drinfeld and Laumon.

1.2. Moduli of shtukas. Using Weil’s observation, we can rewrite

G (F )\G (AF )/
∏

x∈|X |
G (Ox ) =

�

E =G -bundle on X
ϕ : Frob∗E ∼−→E

�

. (1.2.1)

We will denote the right hand side by Sht0
G . It is a discrete groupoid, which we will

consider as an algebraic stack. We can interpret the space of Q`-valued functions on
(1.2.1) as H 0

ét(Sht0
G ; Q`). This seems a little silly, but we can now expand the picture to

get something interesting.
In (1.2.1) we have demandedϕ, which is a map of G -bundles, to be an isomorphism.

We could broaden our scope by allowing it to have “zeros” and “poles” over a point
x ∈ X . These are indexed by the set

G (Ox )\G (Fx )/G (Ox ) = X +∗ (G ).

Thus we have found that the space Sht0
G , which was not very interesting (just a discrete

groupoid), fits naturally into a collection of spaces Sht
µ
G indexed by µ ∈ X +∗ (G ), which

is the moduli space parametrizing






x ∈ X
E =G -bundle on X

ϕ : Frob∗E
≤µ
−→

x
E







.

1One direction of the bijection can be described as follows. Given a G -bundle E , choose trivializations
of E in a formal neighborhood of each x ∈ X , as well as the generic point (the possibility of trivializing at
the generic point is why we need G to be split reductive over k ). The transition functions between these
trivializations gives an element of G (AF ), but because of the ambiguity in the choice of trivialization we
really only get a well-defined element of G (F )\G (AF )/

∏

x∈|X |G (Ox ).
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We have an obvious map

Sht
µ
G

X

π

sending (x ,E ,ϕ) 7→ x , which tracks “where the pole of ϕ occurs”. The spaces Sht
µ
G are

roughly analogous to the Shimura varieties mentioned earlier.
We can now broaden our picture again. Why force ϕ to have a pole over only one

x ∈ X ? For each finite set I , we can define a space Sht
µ
G ,I that parametrizes











{xi ∈ X }i∈I

E =G -bundle on X

ϕ : Frob∗E
≤µ
−→
{xi }
E











.

We have similarly a map

Sht
µ
G ,I

X I

π

but for #I > 1, this picture has no analogue for Shimura varieties. Indeed, the analogy
matches X with Spec Z, but one cannot form (Spec Z)I in an interesting way.

1.3. Higher automorphic forms. As explained above, traditional automorphic forms
could be thought of as elements of H 0(Sht0

G ,;; Q`). This is naturally generalized by H ∗(Sht
µ
G ,I )

or Rπ∗(Sht
µ
G ,I ). (We are ignoring some technical points here – we should take coeffi-

cients in perverse sheaves, and use compactly supported cohomology instead.) It is
reasonable to think of elements of these spaces higher automorphic forms, and they
have played crucial roles in several recent breakthroughs in the study of automorphic
forms over function fields.

• The work of Vincent Lafforgue [Laff12], constructing the “automorphic-to-Galois”
direction of the Global Langlands correspondence for arbitrary reductive G over
function fields.

To say something very brief (and woefully inadequate), Lafforgue’s proof works
by embedding the space of (traditional) automorphic forms into various spaces
of higher automorphic forms, and the using the geometry of shtukas to per-
forming interesting geometric constructions on the latter.
• There are various situations where period integrals of automorphic forms are

related to special values of L-functions. Zhiwei Yun and Wei Zhang have shown
in [YZ17] that in the function field setting, analogous “period integrals” of higher
automorphic forms are related to special values of higher derivatives of L-functions.
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To say something very brief (and woefully inadequate), their proof upgrades
Jacquet’s relative trace formula proof of Waldspurger’s formula to a “higher ver-
sion” of the relative trace formula, comparing traces on spaces of higher auto-
morphic forms.

2. THE BASE CHANGE FUNDAMENTAL LEMMA

Today I will explain another result, namely the base change fundamental lemma,
whose proof also depends on “higher version” of certain classical constructions.

2.1. Formulation of the base change fundamental lemma.

2.1.1. Orbital integrals. Let Fv be a local field and Ev /Fv be an unramified field exten-
sion of degree r .

• Let f ∈C∞c (G (Fv ); Q`).
• Let γ ∈G (Fv ) and Gγ(Fv ) be its centralizer.

Definition 2.1.1. The orbital integral Oγ( f ) is “the integral of f over the orbit of γ”:

Oγ( f ) :=

∫

G (Fv )/Gγ(Fv )
f (g −1γg )d g .

2.1.2. Twisted orbital integrals. Let Ev /Fv be an unramified extension, σ ∈Gal(Ev /Fv )
a generator. Consider G (Ev ) acting on itself by twisted conjugation :

g ·δ= g −1δσ(g ).

• Let f ∈C∞c (G (Ev ); Q`).
• Let δ ∈G (Ev ) and Gδσ(Ev ) be its twisted centralizer.

Definition 2.1.2. The twisted orbital integral TOδσ( f ) is “the integral of f over the
twisted orbit of δ”:

TOδσ( f ) :=

∫

G (Ev )/Gδσ(Ev )
f (g −1δσ(g ))d g .

2.1.3. The base change fundamental lemma. Roughly speaking, the base change fun-
damental lemma predicts that:

Oγ1
( f1) = TOγ2

( f2).

However, to make this meaningful we need to clarify (i) how γ1 and γ2 are related, and
(ii) how f1 and f2 are related? We address (i) first.

2.1.4. Base change of a conjugacy class.

Definition 2.1.3 (Norm of a (stable) conjugacy class). Given γ2 ∈G (Ev ), define

NmEv /Fv
(γ2) := γ2 ·σ(γ2) · . . . ·σr−1(γ2).

This is well-defined as a stable conjugacy class.
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2.1.5. The base change homomorphism. By the Satake isomorphism, we can view

MaxSpecH (G (Fv ))“= ”

�

unramified Galois representations
Gal(Fv )→ ÒG (Q`)

�

.

Definition 2.1.4. The restriction map from representations of Gal(F v /Fv ) to Gal(E v /Ev )
induces a base change homomorphism

bEv /Fv
:H (G (Ev ))→H (G (Fv )).

Generalizing this, we also have a version of the base change homomorphism for the
center of a parahoric Hecke algebra

HI(G (Fv )) :=Cc (I\G (Fv )/I; Q`)

where I is a parahoric subgroup, by using the Bernstein isomorphism:

Z (HI(G (Fv )))
∼−→H (G (Fv )),

which is given by convolution with IK .

Conjecture 2.1.5 (Base change FL for GLn , parahoric version). If δ ∈ GLn (Ev ) is such
that Nm(δ) is regular semisimple and separable, then we have

TOδσ( f ) =ONmEv /Fv (δ)
(bEv /Fv

( f ))

for all f ∈ Z (HI(G (Ev ))).

Remark 2.1.6. The full Base Change Fundamental Lemma (in either its spherical or
Iwahori versions) asserts more than just what is contained in Conjecture 2.1.5; see
[Hai09]. We also caution that the formulation of base change for general G is more
complicated; we have taken advantage of the fact that GLn does not suffer from (or
enjoy?) endoscopy to simplify the formulation.

2.2. Results. We now briefly survey known results towards the base change fundamen-
tal lemma.

2.2.1. Results over p -adic fields. We begin by discussing the case where Fv is a p -adic
field, where the results are more complete. The spherical BCFL was proved by Kot-
twitz for unit the element [Kott86], and independently extended to the whole (spheri-
cal) Hecke algebra by Clozel [Clo90] and Labesse [Lab90], even for general G . Extending
their methods, the parahoric BCFL proved by Haines in [Hai09]. The proofs are ana-
lytic. They depend on the (twisted) trace formula, which has not been developed in the
function-field setting.

2.2.2. Result over function fields. We now let Fv be a local function field over Fq . In this
case, we do not know the BCFL in general. For GLn , Ngô proved Conjecture 2.1.5 for
the spherical Hecke algebra, almost. In [Feng], still for GLn , I extended his methods to
prove Conjecture 2.1.5, in the same “almost” sense2. There is a clear strategy to extend
the proof to the whole Hecke algebra, but as of yet we have not undertaken the pain to
carry this out. As I will explain, the argument is geometric.

2The meaning of “almost” is that the test function f are taken in the Hecke algebra of SLn , viewed as a
subspace of the Hecke algebra of GLn
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2.3. Applications. Broadly speaking, the base change fundamental lemma arises in
applications as a kind of exchange rate between different “currencies”. (Specific exam-
ples will be given shortly below.) More precisely, one wants to compare two types of
trace formulae, arising from different sources, and one does this by comparing “geo-
metric sides”, which are expressed in terms of some kind of orbital integral. But it is
often the case that one trace formula involves twisted orbital integrals, while the other
involves just orbital integrals. These are the two different “currencies”, and one needs
fundamental lemma to convert between them.

2.3.1. Zeta functions of Shimura varieties. The motivation for Haines’ pursuit of a para-
horic version of the BCFL was to calculate the Hasse-Weil zeta function of a Shimura
variety with parahoric level structure in terms of automorphic L-functions. The prob-
lem is to obtain the local factor at a place of parahoric reduction. Using the Langlands-
Kottwitz method, one can compute the semi-simple zeta factor in terms of (twisted)
orbital integrals, and then one needs to convert the twisted orbital integrals into ordi-
nary orbital integrals in order to relate them to automorphic representations (via the
Arthur-Selberg trace formula).

2.3.2. Base change for automorphic representations. As already mentioned, in the function-
field setting Vincent Lafforgue has constructed Galois representations attached to au-
tomorphic forms for all G . Building on his methods and various other results, Böckle-
Harris-Khare-Thorne proved potential automorphy for Galois representations [BHKT],
under some technical hypotheses but still with remarkable generality with respect to
G .

This reduces the global Langlands correspondence over function fields to the base
change problem. The case of cyclic base change with respect to an extension E /F , i.e.
comparing automorphic forms for G and G ′ = ResE /F G , has been studied classically
(in the characteristic 0 case) with some success. It proceeds by a comparison of the
trace formula for G and the twisted trace formula for G ′. The geometric side of the
trace formula for G will involve orbital integrals, and the geometric side of the twisted
trace formula for G ′ will involve twisted orbital integrals, so one needs to be able to
compare the two.

3. IDEAS OF THE PROOF

We outline the key geometric ideas in Ngô’s proof [Ngo06] of the spherical version of
Conjecture 2.1.5. Our argument for the parahoric case will follow the same geometric
framework, with some additional complications that are discussed in §4.

We will restrict our attention to G = GLn . Although the ideas clearly have broader
scope, the phenomenon of endoscopy complicates matters for general G , and we do
not yet have a proof beyond GLn .

3.1. Trivial base change. For a degenerate version of base change, replace the field
extension E /F by the totally split étale algebra extension F r /F . Then ResF r /F G =G r .
The base of representations from G to G r is trivial, but let’s imagine studying this base
change by comparing “trace formulae” for each group. This amounts to the following
algebra exercise.
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Lemma 3.1.1 (Comparison of trace formulae for trivial base change). Let f1, . . . , fr be
endomorphisms of a vector space V . Let τ: V ⊗r → V ⊗r be the automorphism given by
cyclic rotation. Then

Tr(( f1⊗ . . .⊗ fr ) ◦τ, V ⊗r ) = Tr( f1 ◦ . . . ◦ fr , V ).

In particular, we would find

Tr(( f1 ◦ . . . fr ) ◦τ, H ∗
c (Sht0

G r ; Q`)) = Tr( f1 ◦ . . . ◦ fr , H ∗
c (Sht0

G ; Q`)). (3.1.1)

3.2. Higher trace formulae. Equation (3.1.1) is not very interesting. But we can ask for
what a “higher version” (in the sense of §1.3) of (3.1.1) would look like, and it turns out
to be interesting.

An indication that the comparison becomes non-trivial is that it’s somewhat subtle
to pinpoint which two things should be compared. We postulate that on the left side,

H ∗
c (Sht0

G r ) should be replaced with H ∗
c (Sht

(µ,...,µ)
G r ). It turns out that on the right hand

side, we then need to consider H ∗
c (Sht

r.µ
G )where Sht

r.µ
G parametrizes







x ∈ X
{Ei =G -bundle on X }ri=1

Frob∗Er
≤µ
−→

x
E1
≤µ
−→

x
. . .
≤µ
−→

x
Er







.

Now, this space has an obvious symmetry by a cyclic rotation τ′, sending

h

Frob∗Er
≤µ
−→

x
E1
≤µ
−→

x
. . .
≤µ
−→

x
Er

i

7→
h

Frob∗Er−1
≤µ
−→

x
Frob∗Er

≤µ
−→

x
E1
≤µ
−→

x
. . .
≤µ
−→

x
Er−1

i

.

Remark 3.2.1. It turns out that the canonical map Sht
r.µ
G → Sht

rµ
G induces an isomor-

phism on cohomology, so we could in principle just phrase our “higher trace” as the
cohomology of Sht

rµ
G . However, the extra operator τ′ becomes invisible at the level of

Sht
rµ
G , so it is better to look at Sht

r.µ
G .

We have a diagram

Sht
(µ,...,µ)
G r Sht

r.µ
G

X

Our claim is then:

Claim 3.2.2. For x0 ∈ X , we have

Tr(( f1, . . . , fr ) ◦τ ◦Frob, H ∗
c (Sht

(µ,...,µ)
G r |x0

)) = Tr(( f1 ◦ . . . ◦ fr ) ◦τ′ ◦Frob, H ∗
c (Sht

r.µ
G |x0

)).
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3.3. Comparison of higher trace formulae. To prove Claim (3.2.2), we could try to
compute both sides using the Langlands-Kottwitz method. The output is:

Tr(( f1, . . . , fr ) ◦τ ◦Frob, H ∗
c (Sht

(µ,...,µ)
G r )|x0

) Tr(( f1 ◦ . . . ◦ fr ) ◦τ′ ◦Frob, H ∗
c (Sht

r.µ
G )|x0

)

∑

(. . .)TOδσ(ψµ,r )
︸ ︷︷ ︸

factor at x0

∑

(. . .)Ob (γ)(b (ψµ,r ))
︸ ︷︷ ︸

factor at x0

.

?

We haven’t precisely defined the objects δσ,ψµ,r appearing above, or explained all the
terms of the formula, and we won’t do that here. The important observation is that we
are confronted by exactly the problem of the base change fundamental lemma – we
need to be able to translate TOδσ’s into Oγ’s!

Let’s now try to reverse this reasoning. Suppose we could prove Claim 3.2.2 by some
other method, not using the base change fundamental lemma. Then we would have
some non-trivial comparison of TOδσ’s and Oγ’s. It is not hard to show that, by advan-
tageous choices of the Hecke operators f1, . . . , fr , we could manage to isolate TOδσ and
Oγ, and obtain precisely the BCFL.

Lemma 3.3.1. Claim 3.2.2 implies Conjecture 2.1.5, almost3.

It then remains to somehow prove Claim 3.2.2. For this, the key idea is to let the

points move. That is, letting [r ] = {1, . . . , r }, we consider spaces gSht
(µ,...,µ)
G r ,[r ] and Sht

r.µ
G ,[r ]

parametrizing

gSht
(µ,...,µ)
G r ,[r ] =











{xi ∈ X }i∈[r ]
{Ei =G -bundle on X }i∈[r ]
ϕi : Frob∗Ei

≤µ
−→

xi
Ei i ∈ [r ]











.

Sht
r.µ
G ,[r ] =











{xi ∈ X }i=1,...,r

{Ei =G -bundle on X }ri=1

Frob∗Er
≤µ
−→

x1
E1
≤µ
−→

x2
E2
≤µ
−→

x3
. . .
≤µ
−→
xr
Er











.

These spaces naturally live over X r , and their restrictions to the diagonal ∆(X ) ,→ X r

3This means, as in §2.2, that one only gets Conjecture 2.1.5 for f coming from the Hecke algebra of SLn .
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obvious recover our old spaces Sht
(µ,...,µ)
G r and Sht

r.µ
G , i.e. all squares in the following di-

agram are cartesian.

Sht
(µ,...,µ)
G r Sht

r.µ
G

X

gSht
(µ,...,µ)
G r ,[r ] Sht

r.µ
G ,[r ]

X r

∆

πA πB

Why should this make things any easier? The point is that we now have a deforma-
tion of our original problem, and if we can prove the analogue of Claim 3.2.2 over many
points of X r , away from∆, then we can deduce by “continuity” (this is quite non-trivial;
see §4) that it holds over∆ as well. And indeed, if we look at a point x = (x1, . . . , xr ) ∈ X r

with the xi pairwise distinct (and satisfying another condition, which we won’t discuss),
then the Langlands-Kottwitz method produces only (untwisted!) orbital integrals for

both gSht
(µ,...,µ)
G r ,[r ] |x and Sht

r.µ
G ,[r ] |x , allowing the two traces to be equated without any sort

of fundamental lemma.

3.4. Summary. The geometric proofs of fundamental lemmas often have a bewilder-
ing flavor of circularity, so we review our steps to clarify the structure of the proof:

(1) We were originally interested in comparing global traces, coming from ResE /F G
and G .

(2) We (should be able to) reduce the comparison of these global traces to a com-
parison of local integrals, TOδσ and Oγ.

(3) We used the Langlands-Kottwitz method to reduce the comparison of TOδσ
and Oγ to the comparison of higher global traces, coming from the much more
degenerate situation of ResF r /F G =G r and G .

(4) We deformed these global traces to different global traces. This deformation
uses algebraic geometry, and has no apparent analogue in the arithmetic (char-
acteristic 0) situation.

(5) Finally, we use the Langlands-Kottwiz method again to compute these different
global traces, reducing to a comparison of local quantities, Oγ and Oγ, which
can be equated directly.

4. THE PARAHORIC CASE

We now briefly indicate some of the additional complications that arise in the para-
horic situation.
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4.1. Continuity. At the end of §3.3, we made a vague allusion to a “continuity” prin-
ciple in order to complete the proof. Making this precise and rigorous is not a trivial
matter.

There are natural perverse sheaves, denotedFA andFB , that one takes for the co-

efficients of cohomology of gSht
(µ,...,µ)
G r ,[r ] and Sht

r.µ
G ,[r ], respectively. The statement we want

is that RπA!FA is a local system, and similarly for RπB !FB . For simplicity let’s just dis-
cuss πA ; the story for πB is completely analogous. This sort of property follows if one
knows that the geometry of πA is “nice enough”. Typically, this means that πA should
be “smooth” and “proper”.

• Typically the moduli stack of shtukas is of infinite type, and will not be proper.
However, since we are only interested in a local problem, we can get around this
by changing G from GLn to a sufficiently ramified division algebra. This doesn’t
change what happens locally, except at a few points, but constrains the global
problem to be proper.
• The moduli stack of shtukas are not smooth. However, when G is reductive over

all of X , the singularities will be “locally constant”, which one quantifies by ex-
hibiting a well-behaved resolution of singularities, and so if one puts in the ap-
propriate perverse sheaves for coefficients then the situation is okay. In sum-
mary, the non-smoothness is not problematic in the case of hyperspecial level
structure.

4.2. Integral models. If we want to get a base change fundamental lemma for para-
horic Hecke algebras, then we must take parahoric level structure. In this case, the
second bullet point is not okay. In fact, in this case it is not obvious how to even define
ShtG over all of X . This is the problem of constructing “integral models”. In the func-
tion field case, it is not too hard to identify favorable integral models (see [Feng, §2]),
though for Shimura varieties this problem is much more difficult, and has only recently
been solved by Kisin-Pappas [KP].

4.3. Nearby cycles. Even after one has integral models, they acquire singularities above
points where G is not reductive in a “discontinuous” way, so RπA!FA cannot be locally
constant.

To correct this, one modifies the sheaf of coefficients in order to make the cohomol-
ogy become locally constant. This comes from a process called nearby cycles. Given a
family Y → S , with S a valuation ring with generic point η and special point s , and a
sheaf F on Y , the “nearby cycles sheaf RΨ(F )” is a sheaf on Ys which basically con-
structed to have the property that (if Y → S is proper),

H ∗
c (Yη;F ) ∼←−H ∗

c (Ys ; RΨ(F )).

We take Y =gSht
(µ,...,µ)
G r ,[r ] restricted to the henselization of X r at a diagonal point x0, and

F to be the restriction of FA . Taking cohomology of nearby cycles then restores the
continuity property of cohomology, but pushes the problem to one of computing.

Tr(( f1, . . . , fr ) ◦τ ◦Frob, H ∗
c (gSht

(µ,...,µ)
G r ,[r ] |x0

; RΨ(FA))).
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By the Grothendieck-Lefschetz formula, this amounts to point-counting plus calculat-
ing the traces on stalks of RΨ(FA). The latter is not easily accessed from the construc-
tion of nearby cycles.

4.4. Local models. Describing the stalks RΨ(FA) explicitly amounts to describing ex-
plicitly the singularities which appear on the special fiber of the degeneration in §4.3.
The key to access this problem is to use a local model to compare the situation to one
which is both simpler, and has more algebraic structure.

A local model is another family which has the same singularities, but potentially a
different (and simpler) global structure. In this case a local model is furnished by a de-
generation of so-called “affine flag varieties”. Not only are these simpler in that they do
not involve “arithmetic”, but they have a “convolution” (which one can think of roughly
as being like a group structure) which equips their category of sheaves with a multi-
plicative structure. The key is then to prove a structural statement: “nearby cycles is
central for the convolution”. It turns out that the property of being central is special
enough that we can use it to pin down RΨ(FA) in a sufficiently explicit way.
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