
THE ARTIN-TATE PAIRING ON THE BRAUER GROUP OF A
SURFACE

TONY FENG

Abstract. There is a canonical pairing on the Brauer group of a surface over a finite
field, and an old conjecture of Tate predicts that this pairing is alternating. In this talk I
will present a resolution to Tate’s conjecture. The key new ingredient is a circle of ideas
originating in algebraic topology, centered around the Steenrod operations. The talk will
advertise these new tools (while assuming minimal background in algebraic topology).
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1. Introduction

1.1. Tate’s question. Let X be a smooth, projective, geometrically connected surface over
Fq. Let ` be a prime distinct from the characteristic of Fq. Artin and Tate introduced a
skew-symmetric pairing 〈·, ·〉AT on Br(X)[`∞], which I will define a little later. I call this
the Artin-Tate pairing. The question that concerns us is very easy to state:

Conjecture 1.1 (Tate, 1966). The pairing 〈·, ·〉AT is alternating.

Let me remind you that skew-symmetric means

〈x, y〉AT + 〈y, x〉AT = 0

while alternating means

〈x, x〉AT = 0.

They are equivalent if 2 is invertible, but otherwise the second condition is stronger.
The purpose of this talk is to present an answer to Conjecture 1.1. But before getting

that I want to provide a little context and motivation for the problem.

Notes for 60 minute talk on [?].
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1.2. Context. The motivation for studying Br(X) and the pairing actually comes from the
Birch and Swinnerton-Dyer Conjecture, through a “geometric analogue” of BSD which was
found by Artin and Tate [?], and is now called the Artin-Tate Conjecture.

The basic idea is that there is a dictionary between the invariants appearing the BSD
Conjecture and certain invariants of a smooth, projective, geometrically connected surface
X over Fq. The Artin-Tate Conjecture is the translation of the BSD Conjecture under this
dictionary.

BSD Conjecture Artin-Tate Conjecture
L(E, s) ζ(X, s)
E(K) NS(X)
X(E) Br(X)

Cassels-Tate pairing Artin-Tate pairing
In fact, the two conjectures are equivalent in many cases! More precisely, work of Milne and
Gordon shows (as originally conjectured by Tate) that for a surface which admits a curve
fibration f : X → C, the Artin-Tate Conjecture for X is equivalent to the BSD Conjecture
for the Jacobian of the generic fiber of f .

As you might guess from the analogy, Br(X) should be finite but we do not know how
to prove it.1 We’ll set Br(X)nd to be the maximal non-divisible quotient of Br(X); they
are conjecturally equal but Br(X)nd is unconditionally finite. The Artin-Tate pairing is
constructed as a non-degenerate skew-symmetric pairing on Br(X)nd.

1.3. Some amusing history. Tate motivates Conjecture 1.1 by stating in [?] that the
Cassels-Tate pairing is alternating for Jacobians. This sounds pretty compelling, except
for one critical flaw: the premise is false! Cassels had proved that it was alternating for
elliptic curves, and Tate had generalized the alternating property to an abelian variety with
principal polarization arising from a line bundle (over the ground field). Every Jacobian
is canonically principally polarized, but over a general field this polarization actually need
not arise from a line bundle. In fact, Poonen and Stoll eventually showed, more than 30
years later in [?], that the Cassels-Tate pairing need not be alternating even for Jacobians
of dimension g ≥ 2.

The history of Conjecture 1.1 is perhaps even more tortuous than that of the analogous
question for the Cassels-Tate pairing. In the 1970’s Manin exhibited a surface X with
Br(X)nd = Z/2Z. Since Z/2Z cannot support a nondegenerating alternating pairing, it
seems to disprove Conjecture 1.1! In fact, it is an elementary algebra exercise to check that a
finite abelian group with a nondegenerate alternating pairing must have square order. (This
is analogous to fact that a finite-dimensional vector space with a nondegenerate alternating
pairing has even dimension.)

But in 1997 Urabe found mistakes in Manin’s calculations. Moreover, Urabe proved [?]
that #Br(X)nd actually is always a perfect square!2 A similar result was proved in 2005
(using different methods) by Liu-Lorenzini-Raynaud [?], who showed that if Br(X) is finite
then #Br(X) is a perfect square.

1.4. Results. Our main theorem finally brings closure to this rather troubled past:

Theorem 1.2 (F). Conjecture 1.1 is correct.

1The finiteness is known to imply both the Artin-Tate Conjecture and the BSD Conjecture for Jacobians
over function fields.

2Poonen and Stoll also showed that the analogous statement is false for Xnd.
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The rest of the talk will be concerned with the proof of Theorem 1.2. However, let me
mention at the outset that proof rests on tools coming from homotopy theory.

2. Pairings on the cohomology of a surface

2.1. Notation. For an abelian group G, we write Gnd for the maximal non-divisible quo-
tient of G, which is the quotient of G by its largest divisible subgroup.

Let X be a smooth, projective, geometrically connected surface over Fq. Let ` 6= char Fq

be a prime.

2.2. The Brauer group. We define the Brauer group of X to be Br(X) := H2
ét(X;Gm).

We will define a non-degenerate pairing on Br(X)nd[`
∞].

Lemma 2.1. We have an isomorphism

Br(X)nd[`
∞]

∼←− H2
ét(X,Q`/Z`(1))nd.

Proof. Exercise using the Kummer sequence. �

From the short exact sequence

0→ Z`(1)→ Q`(1)→ Q`(1)/Z`(1)→ 0

we obtain a boundary map

δ̃ : H2
ét(X,Q`/Z`(1))

∼−→ H3
ét(X,Z`(1)).

Lemma 2.2. The map δ̃ induces an isomorphism

δ̃ : H2
ét(X,Q`/Z`(1))nd

∼−→ H3
ét(X,Z`(1))tors.

Proof. Exercise in chasing long exact sequences. �

2.3. Poincaré duality for étale cohomology. Note that I am really using the abso-
lute étale cohomology H∗ét(X). This is to be contrasted with geometric étale cohomology
H∗ét(XFq

). It may be helpful to comment on what these “look like”.
The geometric étale cohomology of a variety is meant to look like the singular coho-

mology of the analogous complex manifold. For instance, the geometric étale cohomology
of a smooth projective surface should behave like a the singular cohomology of a compact
orientable 4-manifold: in particular, it should enjoy a Poincaré duality of dimension 4.

On the other hand, absolute étale cohomology blends geometric étale cohomology and Ga-
lois cohomology of the ground field. In general, it does not look like the singular cohomology
of any manifold. However, something special happens for Fq, which is that Gal(Fq/Fq) ∼= Ẑ

looks very similar to π1(S
1) = Z. The upshot is that H∗(Gal(Fq/Fq)) has a Poincaré dual-

ity of dimension 1. Hence the absolute étale cohomology H∗ét(XFq
) has a Poincaré duality

of dimension 5. More precisely, we have a fundamental class in H5
ét(X;Z`(2)) which gives

an isomorphism ∫
: H5

ét(X;Z`(2))
∼−→ Z`.

The cup product then induces a perfect pairing

Hi
ét(X;Z`(1))×H5−i

ét (X;Z`(1))→ H5
ét(X;Z`(2))

∼−→ Z`.
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2.4. The Artin-Tate pairing. We can now define the pairing 〈·, ·〉AT on Br(X)nd[`
∞] =

H2
ét(X,Q`/Z`(1))nd.

Definition 2.3. For x, x′ ∈ H2
ét(X,Q`/Z`(1)), we define

〈x, x′〉AT :=

∫
X

x ^ (βx′).

Remark 2.4. The only property that we used to make this definition is a 5-dimensional
Poincaré duality. So an analogous definition could have been made for a 5-dimensional
orientable closed manifold. That is called the linking form, and in fact it plays an important
role in the classification of 5-manifolds.

The analogy between the linking form on 5-manifolds and the Artin-Tate pairing provided
the first traction for my approach towards Conjecture 1.1: my method began by trying to
adapt certain technology which was useful to study the linking form. However, the argument
ultimately goes beyond what was previously known in the topological setting, and yields
new results even for manifolds. More precisely, the proof of Theorem 1.2 simultaneously
establishes a necessary and sufficient criterion for the linking form (on any odd-dimensional
closed orientable manifold) to be alternating, which was not previously known.

2.5. An auxiliary pairing. We define an auxiliary pairing on the groupH2
ét(X;Z/`nZ(1))nd.

Again the key point is that there is a 5-dimensional Poincaré duality for H∗ét(X;Z/`nZ(∗)),
which means in particular that there is a fundamental class inducing an isomorphism∫

: H5
ét(X;Z/`nZ(2))

∼−→ Z/`nZ.

The short exact sequence of sheaves

0→ Z/`nZ(1)
`n−→ Z/`2nZ(1)→ Z/`nZ(1)→ 0

inducing the Bockstein operation

β : Hi
ét(X;Z/`nZ(1))→ Hi+1

ét (X;Z/`nZ(1)).

Definition 2.5. We define the pairing

〈·, ·〉n : H2
ét(X;Z/`nZ(1))×H2

ét(X;Z/`nZ(1))→ Z/`nZ

by

〈x, y〉n :=

∫
x ^ βy.

(Note that 〈·, ·〉n need not be nondegenerate.)

What is the relation between 〈·, ·〉n and the Artin-Tate pairing? The long exact sequence
associated to

0→ Z`(1)→ Z`(1)→ Z/`nZ(1)→ 0

provides a surjection

H2
ét(X;Z/`nZ(1)) � H3

ét(X;Z`(1))[`
n].



THE ARTIN-TATE PAIRING ON THE BRAUER GROUP OF A SURFACE 5

Proposition 2.6. This is compatible for the pairings 〈·, ·〉n and 〈·, ·〉AT in the sense that
the following diagram commutes

H2
ét(X;Z/`nZ(1))

����

× H2
ét(X;Z/`nZ(1))

����

〈·,·〉n // H5
ét(X;Z/`nZ(1))

∼
��

H3
ét(X,Z`(1))[`

n] × H3
ét(X;Z`(1))[`

n]
〈·,·〉AT

// H5
ét(X;Q`/Z`(1))[`

n]

Thanks to Proposition 2.6, to prove Theorem 1.2 it suffices to show that 〈·, ·〉n is al-
ternating, which is what we’ll do. What makes 〈·, ·〉n better to work with than 〈·, ·〉AT?
Philosophically this seems to come down to the fact that Z/`nZ enjoys a ring structure
while Q`/Z` does not. The ring structure is (partly) responsible for extra structure on
H∗ét(X;Z/`nZ) that will play a crucial role in our argument.

To give a sample illustration of the significance of the ring structure, we’ll show how it
leads immediately to a proof of the skew-symmetry.

Proposition 2.7. The pairing 〈·, ·〉n is skew-symmetric.

Proof. The assertion is equivalent to

x ^ βy + y ^ βx = 0.

Since β is a derivation, we have x ^ βy + y ^ βx = β(x ^ y). But the boundary map

β : H4
ét(X;Z/`nZ(2))→ H5

ét(X;Z/`nZ(2))

vanishes because its image is the kernel of

[`n] : H5
ét(X;Z/`nZ(2))→ H5

ét(X;Z/`2nZ(2))

which is identified with the inclusion `nZ/`2nZ ↪→ Z/`2nZ by Poincaré duality. �

Corollary 2.8. The Artin-Tate pairing is skew-symmetric.

Remark 2.9. Note that the same argument cannot be made directly for 〈·, ·〉AT, since
Q`/Z` is not a ring.

Since we are interested in the distinction between skew-symmetric and alternating, we
may now set ` = 2. Next I’m going to describe the fuel that powers the argument, namely
the Steenrod squares. These are operators on H∗ét(X;Z/2Z) that are subtler consequences
of the ring structure on Z/2Z.

3. Steenrod squares

3.1. The Steenrod algebra. Let us momentarily place ourselves in the context of singular
cohomology. If M is a topological space, what algebraic structure does H∗(M ;Z/2Z) have?
One gets for free that it is a group. Furthermore, it acquires a (graded) commutative ring
structure thanks to the ring structure on Z/2Z. But that’s not all: topologists have known
for many years that it has the structure of a module over a very important algebra, named
the Steenrod algebra after its discoverer.

The Steenrod algebra has a very explicit presentation in terms of generators Sqi, i ≥ 0,
and relations. What this means is that there are canonical cohomology operations

Sqi : H∗(M ;Z/2Z)→ H∗+i(M ;Z/2Z)

which are universal in the sense of being functorial with respect to pullback.
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A reasonable slogan for Sqi is that it “comes from a derived enhancement of the Frobenius
map,” which at the prime 2 means the squaring map x 7→ x2.

Example 3.1. The operation Sqj : Hj(X;Z/2Z) → H2j(X;Z/2Z) is the squaring opera-
tion x 7→ x2. Notice that this is a homomorphism because we are in characteristic 2.

The operation Sqj : Hi(X;Z/2Z)→ Hi+j(X;Z/2Z) is 0 if j > i.
This operation Sq1 coincides with the boundary map for

0→ Z/2Z→ Z/4Z→ Z/2Z→ 0.

Example 3.1 pretty much covers all of the Steenrod squares that have explicit descriptions
in terms of other familiar operations. This is a good thing, since it tells us that the Steenrod
squares really bring something fundamentally new to the table!

One of the key points in our method is to ask for an analogous understanding on
H∗(M ;Z/2nZ) for all n. We’ll define operations

S̃q
i
: H∗(M ;Z/2nZ(a))→ H∗+i(M ;Z/2nZ(2a))

for all n, which specialize to Sqi when n = 1.

3.2. Étale homotopy theory. The theory of Steenrod operations extends to étale co-
homology. My favorite way of thinking about this is that one can embed the theory of
étale cohomology of algebraic varieties into the theory of singular cohomology of topological
spaces via étale homotopy theory. ♠♠♠ TONY: [probably don’t have time to really talk about
this?]

3.3. Construction of Steenrod squares. We’ll sketch the construction of Steenrod squares.
A general philosophy is that cohomology operations arise when two cohomology classes

are equal for “two different reasons”. In the case of Steenrod square, the two reasons come
from the tautological identity [u][v] = [u][v] and the graded-commutativity of cohomology:
[u][v] = [v][u]. (Note that there would usually be a sign, which we are free to ignore in
characteristic 2!) When we specialize [u] = [v], we get two relations, and this gives birth to
a cohomology operation.

Concretely, for u, v ∈ Zi ⊂ Ci(M), the fact that [uv] = [vu] implies that there exists a
cochain cup1(u, v) such that

dcup1(u, v) = uv ± vu.
If we take Z/2Z coefficients, then we don’t have to worry about the sign: dcup1(u, u) = 0
so that we get a cohomology class Sqi−1([u]) := [cup1(u, u)] ∈ H2i−1(M).

The point is that although the cup product on cohomology is graded commutative, the
cup product on cochains C∗(M)⊗C∗(M)→ C∗(M) is not commutative “on the nose”, but
only up to homotopy. One can “resolve” it to be S2-equivariant on the nose. As usual with
derived procedures, this introduces higher operations.

4. Plan of the proof

Now I’ll outline the plan for the proof of Theorem 1.2. By Proposition 2.6, it suffices to
show that

〈x, x〉n = 0 for all x ∈ H2
ét(X;Z/2nZ(1)).

Since 〈, 〉n is skew-symmetric the assignment x 7→ 〈x, x〉n is actually a homomorphism. For
simplicity we’ll restrict our attention to n = 1. The structure of the argument is the same
for all n, although it took a while to phrase it in a way that generalized well; the use of the
operations S̃q

n
is actually one of the key innovations.
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The first phase of the plan is to rewrite this homomorphism in terms of Steenrod opera-
tions, and more precisely to prove the following theorem:

Theorem 4.1. For x ∈ H2
ét(X;Z/2Z), we have

x ^ (βx) = Sq2(βx).

Remark 4.2. Theorem 4.1 applies also to (compact orientable) manifolds, and leads to a
criterion for the linking form to be alternating which was previously unknown in topology.

Thanks to Theorem 4.1, we are reduced to showing that

0 = Sq2(βx).

Note that Sq2 : H3
ét(X;Z/2Z)→ H5

ét(X;Z/2Z) must, by Poincaré duality, be represented
by a class v2 ∈ H2

ét(X;Z/2Z).
Tautologically Sq2(βx) = v2(βx). Hence it suffices to show that 0 = v2(βx). Since β is a

derivation, we can rewrite this as

β(v2x)− β(v2)x.

As discussed in the proof of Proposition 2.7, β is 0 on H4
ét(X;Z/2Z), so the obstruction

comes down β(v2). By the long exact sequence this is the obstruction to lifting v2 to an
integral class. The proof is then completed by the following theorem.

Theorem 4.3. The class v2 ∈ H2
ét(X;Z/2Z) lifts to ṽ2 ∈ H2

ét(X;Z2(1)).

5. Characteristic classes

5.1. Wu’s formula. To get some ideas for how to compute Steenrod squares, we begin by
looking around in the literature on algebraic topology. Let M be a closed smooth manifold
of dimension m. By Poincaré duality, the operation

Sqi : Hm−i(M ;Z/2Z)→ Hm(M ;Z/2Z) ∼= Z/2Z

must coincide with cupping with a unique class vi ∈ Hi(M ;Z/2Z). What can we say about
this canonical cohomology class? (Note that this is exactly the situation of Theorem 4.1.)

This question was answered long ago by Wu, who proved the following theorem:

Theorem 5.1 (Wu). Let M be a closed smooth manifold. Write

Sq = 1 + Sq1 +Sq2 + . . .

v = v1 + v2 + . . .

w = w1 + w2 + . . .

where the wi are the Stiefel-Whitney classes of TM . Then we have Sq v = w.

Example 5.2. Let’s unpack Theorem 5.1 to find a formula for v2. It says

(1 + Sq1 +Sq2 + . . .)(1 + v1 + v2 + . . .) = 1 + w1 + w2 + . . . .

Now, matching terms by cohomological degree we find that v1 = w1 and v2 + Sq1 v1 = w2,
so v2 = w2 + w2

1.
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5.2. Wu’s theorem in étale cohomology. We’d like to have an analogue of Theorem 5.1
in étale cohomology. For that to begin to make sense, we would need a definition of étale
Stiefel-Whitney classes.

The idea is to try to take Thom’s formula (??) as a definition of wi. To do this, we
need to find for a vector bundle E → X an embedding X ↪→ Y such that E is isomorphic
normal bundle of X and Y . A canonical choice exists: take Y to be the total space of E,
and the embedding to be the zero section. Then the cycle class [X] ∈ H∗ét(Y ;Z/2Z) has the
property that Sqi[X] = π∗(wi)^ [X] for some wi ∈ H∗ét(X;Z/2Z), where π : E → X is the
projection, and we define wi(E) to be this wi.

Theorem 5.3 (F). Let X be a smooth projective variety over Fq. Then we have Sq v = w.

The fact that Theorem 5.3 looks exactly like Theorem 5.1 is a bit deceptive, thanks to
the failure of absolute cohomology to behave like geometric cohomology in some important
aspects. The proof does begin by trying to imitate the proof of the classical theorem.
However, there is one technical point which presents a serious new difficulty, which ends up
requiring étale homotopy theory to resolve.

5.3. Relation to Chern classes. The inspiration for Theorem 4.3 comes from the follow-
ing fact: for a complex manifold M , the Stiefel-Whitney classes are the reductions mod 2 of
the Chern classes (and in particular admit integral lifts). Our more precise heuristic is that
a variety over a finite field looks like a complex surface fibration over S1, and in particular
has the same characteristic classes as the complex surface.

Theorem 5.4 (F). The class w2(TX) ∈ H2
ét(X;Z/2Z) is the reduction of c1(TX) ∈

H2
ét(X;Z2(1)) modulo 2.

If E is a vector bundle over X, then there is an explicit expression for wi(E) in terms of
{cj(E)} by a universal polynomial depending on the parity of rankE. However, the formula
is not as simple as one might guess from our earlier heuristic.
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