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Abstract. We prove a 1966 conjecture of Tate concerning the Artin-Tate
pairing on the Brauer group of a surface over a finite field, which is the analogue
of the Cassels-Tate pairing. Tate asked if this pairing is always alternating
and we find an affirmative answer, which is somewhat surprising in view of
the work of Poonen-Stoll on the Cassels-Tate pairing. Our method is based
on studying a connection between the Artin-Tate pairing and (generalizations
of) Steenrod operations in étale cohomology. Inspired by an analogy to the
algebraic topology of manifolds, we develop tools allowing us to calculate the
relevant étale Steenrod operations in terms of characteristic classes.
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1. Introduction

1.1. Motivation. Let X be a smooth, projective, geometrically connected surface
over Fq, where char Fq = p. For every prime ` 6= p, M. Artin and Tate [Tat95]
defined a pairing

〈·, ·〉AT : Br(X)nd[`∞]× Br(X)nd[`∞]→ Q/Z (1.1.1)

where Br(X)nd denotes the quotient of the Brauer group Br(X) by its divisible part,
and Br(X)nd[`∞] denotes its `-power torsion subgroup. (Conjecturally the divisible
part vanishes, implying that Br(X)nd = Br(X).) We will review the definition of
(1.1.1) in §2.1; we henceforth call it the Artin-Tate pairing.

Artin and Tate’s investigation of Br(X) was motivated by a dictionary relating
the invariants ofX to those appearing in the Birch and Swinnerton-Dyer Conjecture
for abelian varieties over function fields. In particular, under this dictionary Br(X)
corresponds to X, and the Artin-Tate pairing corresponds to the Cassels-Tate
pairing.
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It is not difficult to show that the pairing 〈·, ·〉AT is skew-symmetric, but it is
much less clear if it is alternating. For clarity, we recall that skew-symmetric means
that

〈x, y〉AT + 〈y, x〉AT = 0 for all x, y ∈ Br(X)nd[`∞],

while alternating means the stronger condition that

〈x, x〉AT = 0 for all x ∈ Br(X)nd[`∞].

Since the distinction between skew-symmetric and alternating disappears for ` 6= 2,
the difficulty lies entirely in the case ` = 2. In Tate’s 1966 Bourbaki report on the
Artin-Tate Conjecture, he asks [Tat95, after Theorem 5.1] if the pairing (1.1.1) is
alternating, conjecturing that the answer is “yes”.

Conjecture 1.1 (Tate, 1966). The Artin-Tate pairing is alternating.

Tate’s motivation for making Conjecture 1.1 was Cassels’ result [Cas65] that
the analogous Cassels-Tate pairing is alternating for elliptic curves, which Tate had
generalized in [Tat63] to abelian varieties with principal polarization “arising from a
rational divisor”. Moreover, one can find at the end of [Tat95, §1] the claim that the
Cassels-Tate pairing is alternating for all Jacobians (with respect to their canonical
principal polarizations). But this is rather ironic in hindsight, as Poonen and
Stoll eventually demonstrated in [PS99] that the Cassels-Tate pairing actually need
not be alternating in general for abelian varieties with principal polarization not
satisfying the technical condition of “arising from a rational divisor”; in particular,
it need not be alternating for Jacobians. See the introduction and §1.2 of [She] for
a detailed explanation of these technical subtleties and amusing history.

The history of Conjecture 1.1 is perhaps even more tortuous than that of the
analogous question for the Cassels-Tate pairing. Recall that any finite abelian
group with a nondegenerate alternating pairing has order equal to a perfect square1

[PS99, §6], so Conjecture 1.1 implies that Br(X)nd[2∞] has square order. Manin
computed examples ([Man67], [Man86]) in which # Br(X)nd[2∞] was purportedly
Z/2Z, seemingly disproving Conjecture 1.1. However, in 1996 Urabe found mistakes
in Manin’s calculations that invalidated the counterexamples (see the introduction
to [Ura96]), and then proved that in characteristic p 6= 2, Br(X)nd[2∞] always does
have square order!

There has been some other partial progress on Conjecture 1.1 besides Urabe’s
theorem. We note in particular the following two results.

• Zarhin showed in [Zar89] that if X lifts to characteristic 0 and the Néron-
Severi group of X ×Fq

Fq has vanishing 2-primary part, then 〈·, ·〉AT is
alternating for X.2

• Liu-Lorenzini-Raynaud [LLR05] proved by that if Br(X) is finite, implying
that Br(X) = Br(X)nd, then # Br(X) is a perfect square. (We emphasize
that this applies even to the p-primary part!)3 Amusingly, the argument of

1This should be thought of as analogous to the fact that a vector space with a nondegenerate
alternating pairing has even dimension.

2We thank Yuri Zarhin for informing us about [Zar89], and for translating the statement of its
main theorem into English. Strictly speaking, the result is for a pairing discovered independently
in [Zar89], which should be the same as Artin-Tate’s, but no comparison with the Artin-Tate
pairing is made in [Zar89].

3Technically, the argument of [LLR05] uses an incorrect formula for # Br(X), with the er-
ror stemming entirely from the false [Gor79, Lemma 4.2]. This formula is corrected in [Gei].
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[LLR05] has nothing to do with the Artin-Tate pairing, but actually uses
the work of Poonen-Stoll quantifying the failure of #X to be a perfect
square.

1.2. Results. In this paper we answer Tate’s question in the affirmative, finally
bringing closure to this eventful drama.

Theorem 1.2. Conjecture 1.1 is true.

In fact, we deduce Theorem 1.2 from a more general result that we now describe.
In [Jah15] Jahn defined a generalization of the Artin-Tate pairing to higher Brauer
groups. Briefly, if X is a smooth projective variety of even dimension 2d over Fq,
then its higher Brauer group is

Brd(X) := H2d+1
L (X;Z(d)),

where HL denotes Lichtenbaum cohomology [Jah15, §2]. The importance of this
group lies in its relation to the (other) Tate Conjecture concerning algebraic cycles
in X. A completely analogous construction to Artin-Tate’s, which we will describe
in §2.1, gives a non-degenerate skew-symmetric pairing for ` 6= p

〈·, ·〉AT : Brd(X)nd[`∞]× Brd(X)nd[`∞]→ Q/Z.

One wants to know if 〈·, ·〉AT is alternating; again the issue is for ` = 2. In
particular, this would imply that # Brd(X)nd[2∞] is a perfect square. Jahn gener-
alized Urabe’s method to show that # Brd(X)nd[2∞] is indeed a perfect square if
char Fq = p > 2 [Jah15, Theorem 1]. We prove the stronger statement that 〈·, ·〉AT

is alternating for any such X, which of course recovers Theorem 1.2 when X is
specialized to have dimension 2.

Theorem 1.3. Let X be a smooth, projective, geometrically connected variety of
dimension 2d over Fq with char Fq = p 6= 2. The pairing 〈·, ·〉AT on Brd(X)nd[2∞]
is alternating.

In the course of proving Theorem 1.3, we establish several results which may
be of independent interest and utility, as our work involves developing algebro-
geometric versions of techniques of fundamental importance in algebraic topology.
Let us briefly summarize the idea, which will be elaborated upon in §1.3. The skew-
symmetry of 〈·, ·〉AT implies that the assignment x 7→ 〈x, x〉AT is a homomorphism.
Tautologically, 〈·, ·〉AT is alternating if and only if this homomorphism is 0. The
strategy is to rewrite this homomorphism in terms of canonical cohomology oper-
ations called the Steenrod squares. Motivated by classical results on the algebraic
topology of manifolds, we then develop a theory of “Stiefel-Whitney classes” in étale
cohomology of algebraic varieties which facilitates the calculation of the relevant
Steenrod squares.

Remark 1.4. Our approach is guided by an analogy between the Artin-Tate pair-
ing and the linking form on a closed manifold of odd dimension. (See §2.2 for an
explanation of this analogy.) Our method applies equally well to the topological
situation, and it gives a necessary and sufficient criterion for the linking form to

The correction is by a factor which is a perfect square, and so preserves the conclusion that
# Br(X)[`∞] is a perfect square. Liu-Lorenzini-Raynaud have prepared a corrigendum [LLR18]
that corrects or completes several more arguments in [Gor79], and amends the statements of
[LLR05] correspondingly.
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be alternating (see §7.3), which to our knowledge does not already exist in the
topology literature.

1.3. Overview of the proof. We now give a more detailed outline of our proof
of Theorem 1.3.

Step 1: Reduction to an auxiliary pairing. In §2 we explain that there is a surjection

H2d
ét (X;Z/2nZ(d)) � Br(X)nd[2n],

so it suffices to prove that the pulled-back pairing on H2
ét(X;Z/2nZ(d)), which

we denote 〈·, ·〉n, is alternating for all n. (Here Z/2nZ(d) is the constant sheaf
Z/2nZ with an order d Tate twist.) One reason the pairing 〈·, ·〉n is more tractable
to study is that the coefficients Z/2nZ carry a ring structure, unlike Q2/Z2. As a
consequence, the cohomology groups are enhanced with the structure of cohomology
operations, which we exploit in the next step.

Step 2: Expression in terms of cohomology operations. We would like to under-
stand the canonical linear functional x 7→ 〈x, x〉n on H2d

ét (X;Z/2nZ(d)). The key
observation is that it can be expressed in terms of certain cohomology operations.
To convey the spirit of this, we illustrate the flavor of the cohomology operations
involved.

One is the Bockstein operation β, which is the boundary map

β : H2d
ét (X;Z/2nZ(d))→ H2d+1

ét (X;Z/2nZ(d))

induced by the short exact sequence of sheaves

0→ Z/2nZ(d)→ Z/22nZ(d)→ Z/2nZ(d)→ 0.

The second operation is a Steenrod operation, which could thought of informally
as a kind of derived enhancement of the squaring operation. Concretely, the op-
eration in question can be described in the following way (but see §3 for a formal
definition). Let C∗ét(X) be “the” étale cochain complex computing H∗ét(X), which
has the cup product

C∗ét(X)⊗ C∗ét(X)
^−→ C∗ét(X)

Since the cup product on H∗ét(X) is graded commutative, we can find a chain
homotopy

cup1 : C∗ét(X)⊗ C∗ét(X)→ C∗−1
ét (X)

such that
dcup1(u⊗ v) + cup1(d(u⊗ v)) = u ^ v ∓ v ^ u.

If u ∈ Z2d+1
ét (X), then 2n−1cup1(u⊗ u) defines a cohomology class in H4d+1

ét (X), if
the coefficients are 2n-torsion. For n = 1, the map [u] 7→ [2n−1cup1(u ⊗ u)] is the

Steenrod square Sq2d. For larger n, it is a cohomology operation that we call S̃q
2d
.

These generalized Steenrod squares are carefully defined and studied in §3.
The key identity that we have referred to is the following (the precise statement

is Theorem 4.4):

Theorem 1.5. For all x ∈ H2d
ét (X;Z/2nZ(d)) we have

〈x, x〉n = S̃q
2d

(β(x)).
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The theorem is proved in §4 using cohomology operations that we call “higher
Bockstein operations”, which are those arising in the “Bockstein spectral sequence”
for Z/2nZ(2d). The argument is a little elaborate: we directly calculate the dif-
ference between the two sides as a differential in the spectral sequence. The game
is then to deduce indirectly that this differential must vanish, by using Poincaré
duality to infer information about the behavior of the E∞-page.

Step 3: Relation to characteristic classes. The previous step reduces us the problem
to that of understanding S̃q

2d
sufficiently well. A consequence of the structure of

the S̃q
2d

discussed in §3 is that we only need to calculate the effect of the classical
Steenrod square Sq2d, which operates on cohomology with Z/2Z-coefficients. For
this purpose we draw inspiration from a theorem for smooth manifolds due originally
to Wu (the precise version is explained in §6):

Theorem 1.6 (Wu). Let M be a closed smooth manifold of dimension d. For
x ∈ Hd−i(M ;Z/2Z), we have

Sqi x = P (w1, w2, . . .) ^ x

where P is some explicit polynomial and the wj are the Stiefel-Whitney classes of
TM .

Our goal in this step is to establish a version of Wu’s theorem for the étale
cohomology of smooth projective varieties over Fq. The first task is to define an
appropriate notion of Stiefel-Whitney classes, which is the subject of §5. Next, we
establish an étale-cohomological analogue of Wu’s theorem in §6. The overarching
meta-strategy of the proofs is to attempt to imitate the theory as developed in
algebraic topology. However there are a few possibly surprising subtleties, which
result in this being the most technical part of the paper. For example, our argument
employs the apparatus of relative étale homotopy theory developed by Harpaz-
Schlank [HS13] and Barnea-Schlank [BS16], following in the tradition of Artin-
Mazur and Friedlander. Hence our Theorem 1.2 is, in our humble opinion, a rather
compelling example of how this abstract theory can be used to understand very
concrete questions which have no apparent grounding in homotopy theory.

Step 4: Calculation of characteristic classes. The upshot of the preceding steps is
that we can express the obstruction for 〈·, ·〉AT to be alternating explicitly in terms
of our “étale Stiefel-Whitney classes”. We then need to show that this obstruction
actually vanishes. After some elementary manipulations, it becomes clear that
the key issue is whether or not a certain explicit polynomial in Stiefel-Whitney
classes, which is a cohomology class with coefficients mod 2, lifts to an integral
class. This calculation is carried out in §7. Motivated by an analogous fact for
complex manifolds, we prove a formula expressing our Stiefel-Whitney classes in
terms of Chern classes, and conclude that they lift because Chern classes do, which
establishes Theorem 1.3.

1.4. Comparison with earlier arguments. The idea to use Steenrod squares on
this problem goes back to Zarhin, who in [Zar89] studied the case when the surface
admits a lift to characteristic 0. Zarhin’s argument was pushed further by Urabe
in [Ura96] to show that # Br(X)nd[2∞] is a perfect square.

Our argument also uses Steenrod operations, although both the operations used
and the manner of use are quite different. The Steenrod operation at the focus
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of [Zar89] and [Ura96] is actually just the squaring operation on an element of
H2

ét(XFq
;Z/2Z). By contrast, our argument studies a deeper connection between

Tate’s pairing with subtler cohomology operations, as articulated in Theorem 4.4.
Our strategy to “compute” these operations is based on setting up an analogue

of Wu’s theorem, as in [Zar89] and [Ura96]. The content of §5, especially the idea
to lift Stiefel-Whitney classes to Chern classes, was inspired by [Ura96]. However,
the proof of such an analogue is significantly more difficult, because we work with
arithmetic (as opposed to geometric) étale cohomology. For example our arithmetic
version of Wu’s Theorem is no easier to prove in the case when X lifts to charac-
teristic 0, whereas Urabe’s geometric version follows immediately from the Artin
Comparison theorem and the classical Wu Theorem in topology.

1.5. Acknowledgements. This project was conceived after hearing a comment of
Akshay Venkatesh on the analogy between the Artin-Tate pairing and the linking
form on a 5-manifold. I thank Akshay for his inspirational remark, and also for
subsequent discussions on this work.

It is a pleasure to acknowledge Soren Galatius for teaching me much of the
topology which is employed here, for pointing me to several key references, and for
answering my questions patiently and thoroughly.

I also thank Levent Alpoge, Aravind Asok, Shachar Carmeli, Tom Church,
Christopher Deninger, Marc Hoyois, Arpon Raksit, Arnav Tripathy, and Kirsten
Wickelgren for conversations related to this paper. This document benefited enor-
mously from comments, corrections, and suggestions by Soren Galatius, Akshay
Venkatesh, and an anonymous referee. Finally, significant parts of this research
were carried out while I was a guest at the Institute for Advanced Study in 2017,
and supported by an NSF Graduate Fellowship.

2. Pairings for varieties over finite fields

2.1. The Artin-Tate pairing. We briefly summarize the definition of the gener-
alized pairing 〈·, ·〉AT from [Jah15, §2 and §3]. Let X be a geometrically connected,
smooth, projective variety of even dimension 2d over Fq. Jahn defines the higher
Brauer group

Brd(X) := H2d+1
L (X;Z(d))

where HL denotes Lichtenbaum cohomology. By [Jah15, Lemma 1] we have the
following interpretation of its non-divisible quotient for ` 6= p:

Brd(X)nd[`∞] ∼= H2d+1
ét (X;Z`(d))tors.

The pairing 〈·, ·〉AT on Brd(X)nd[`∞] is defined as follows. For any abelian group
G, let Gnd denote its non-divisible quotient (i.e. the quotient by the maximal
divisible subgroup). Let

δ̃ : H2d
ét (X;Q`/Z`(d))nd → H2d+1

ét (X;Z`(d))tors

be the boundary map induced by the short exact sequence

0→ Z`(d)→ Q`(d)→ Q`/Z`(d)→ 0.

The map δ̃ is an isomorphism, so it suffices to define a pairing onH2d
ét (X;Q`/Z`(d))nd.

Now the key point is that X has a Poincaré duality of dimension 4d+ 1, since XFq

has a Poincaré duality of dimension 4d and Spec Fq has a Poincaré duality of
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dimension 1. (This may be deduced directly from the Hochschild-Serre spectral se-
quence and the usual Poincaré duality for XFq

.) In particular, there is a canonical
isomorphism ∫

: H4d+1
ét (X;Q`/Z`(2d))

∼−→ Q`/Z`.

Definition 2.1. For x, y ∈ H2d
ét (X;Q`/Z`(d))nd, we define

〈x, y〉AT :=

∫
(x ^ δ̃y).

From Poincaré duality and the fact that δ̃ is an isomorphism, it is evident that
this pairing is non-degenerate. It is also skew-symmetric - this is proved in [Jah15,
§3], and it also follows from combining Proposition 2.3 and Proposition 2.5 below.

2.2. The analogy to the linking form. An analogous pairing exists on any
orientable manifold M of odd dimension 4d+ 1, and is called the linking form. Our
approach was inspired by ideas of Browder used to study a variant of the linking
form in [Bro62].

Actually, to make the analogy sharper it is better to work in a slightly more
general setup. We do not assume that M is orientable, but we do assume that the
orientation sheaf of M is given by the tensor square of a Z`-local system L. Then
there is a pairing on H2d(M ;Q`/Z` ⊗ L)nd

∼= H2d+1(M ;Z` ⊗ L)tors given by

〈x, y〉 :=

∫
x ^ δ̃y,

where δ̃ is the analogous boundary map to that in §2.1 and∫
: H4d+1(M ;Q`/Z` ⊗ L⊗2)nd

∼−→ Q`/Z`

is the isomorphism furnished by Poincaré duality. The same argument shows
that this pairing is skew-symmetric (this is why we require the dimension to be
1 mod 4). This pairing is called the linking form4.

We were informed by an anonymous referee that the linking form on an ori-
entable smooth 5-manifold should be alternating if and only if the manifold admits
a spinc-structure. We were not previously aware of this fact, nor have we have
been able to locate a proof in the literature, but after hearing it we realized that
our method yields a necessary and sufficient criterion for the linking form on any
odd-dimensional topological manifold (with orientation sheaf of the above form)
to be alternating, which recovers the aforementioned result for orientable smooth
5-manifolds. This will be explained in §7.3. Although our paper is phrased for étale
cohomology, the reader can check that every one of the results has a corresponding
statement for the singular cohomology of manifolds, which is either easier to prove
or already a known theorem.

2.3. An auxiliary pairing. We define an auxiliary pairing on the groupH2d
ét (X;Z/2nZ(d)).

As in §2.1 there is a Poincaré duality for H∗ét(X;Z/2nZ(∗)), which means in par-
ticular that there is a fundamental class inducing an isomorphism∫

: H4d+1
ét (X;Z/2nZ(2d))

∼−→ Z/2nZ.

4Strictly speaking, this is the `-primary part of the usual linking form.
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Definition 2.2. We have the short exact sequence of sheaves on X:

0→ Z/2nZ(d)→ Z/22nZ(d)→ Z/2nZ(d)→ 0

inducing a boundary map

β : Hi
ét(X;Z/2nZ(d))→ Hi+1

ét (X;Z/2nZ(d)).

We define the pairing

〈·, ·〉n : H2d
ét (X;Z/2nZ(d))×H2d

ét (X;Z/2nZ(d))→ Z/2nZ

by

〈x, y〉n :=

∫
x ^ βy.

Proposition 2.3. The pairing 〈·, ·〉n is skew-symmetric.

Proof. The assertion is equivalent to

x ^ βy + y ^ βx = 0.

Since β is a derivation, we have x ^ βy + y ^ βx = β(x ^ y). Then the result
follows from the next Lemma. �

Lemma 2.4. The boundary map β : H4d
ét (X;Z/2nZ(2d))→ H4d+1

ét (X;Z/2nZ(2d))
is 0.

Proof. By the obvious long exact sequence, the image is the kernel of

[2n] : H4d+1
ét (X;Z/2nZ(2d))→ H4d+1

ét (X;Z/22nZ(2d))

which is identified with the inclusion 2nZ/22nZ ↪→ Z/22nZ by Poincaré duality. �

Proposition 2.5. The boundary map H2d
ét (X;Z/2nZ(d)) → H2d+1

ét (X;Z2(d)) in-
duced by the short exact sequence

0→ Z2(d)
2n

−→ Z2(d)→ Z/2nZ(d)→ 0

surjects onto H2d+1
ét (X,Z2(d))[2n]. Moreover, it is compatible for the pairings 〈·, ·〉n

and 〈·, ·〉AT in the sense that the following diagram commutes

H2d
ét (X;Z/2nZ(d))

����

× H2d
ét (X;Z/2nZ(d))

����

〈·,·〉n // H4d+1
ét (X;Z/2nZ(d))

∼
��

H2d+1
ét (X,Z2(d))[2n] × H2d+1

ét (X;Z2(d))[2n]
〈·,·〉AT

// H4d+1
ét (X;Q2/Z2(d))[2n]

Proof. The first claim is immediate from the long exact sequence. For the second
claim, we will apply the following observation, which is an immediate consequence
of naturality for the cup product: given a map of short exact sequences of sheaves

0 A B C 0

0 A′ B′ C ′ 0

f g h
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and multiplications fitting into a commutative diagram

A⊗ C C

A′ ⊗ C ′ C ′

f⊗h h

then for a ∈ H∗(X;A), c ∈ H∗(X;C), we have h(a ^ c) = f(a) ^ h(c).
We apply this observation to each of the maps of short exact sequences in the

following commutative diagram of sheaves:

0 Z/2nZ(d) Z/22nZ(d) Z/2nZ(d) 0

0 Z2(d) Z2(d) Z/2nZ(d) 0

0 Z2(d) Q2(d) Q2/Z2(d) 0

2n

2n

1
2n

Denote by β̃ the boundary map in cohomology corresponding to the middle hori-
zontal sequence, recalling that β and δ̃ denote the boundary maps for the top and
bottom horizontal sequences, respectively. The observation applied to the upper
map of sequences shows that for x, y ∈ H∗ét(X;Z/2nZ(d)) we have

x ^ β(y) = x ^ β̃(y).

The observation applied to the lower map of sequences shows that

x ^ β̃(y) 7→ [
1

2n
]∗(x) ^ δ̃(y).

Combining these equations yields the desired conclusion. �

Proposition 2.5 immediately implies:

Corollary 2.6. If the pairing 〈·, ·〉n on H2d
ét (X;Z/2nZ(d)) is alternating then so

is the pairing 〈·, ·〉AT on Brd(X)nd[2n].

Hence to prove Theorem 1.3 we are reduced to proving:

Theorem 2.7. The pairing 〈·, ·〉n is alternating for all n.

The proof of Theorem 2.7 will be the focus of the rest of the paper.

3. Steenrod squares

In this section we define the (generalized) Steenrod squares in étale cohomology
and establish the key facts about them. The perspective we adopt here is that we
can define our cohomology operations on topological spaces, and then transport
them to étale cohomology via étale homotopy theory.

Let us emphasize that our construction is certainly not original to this paper.
(We do introduce some generalized operations S̃q

i
that we have not seen defined

elsewhere, but they are minor variants of the Steenrod squares.) The earliest con-
struction of Steenrod squares which was general enough to apply to étale cohomol-
ogy occurs in work of Epstein [Eps66]. Our definition is perhaps closer to (a special
case of) Jardine’s construction in [Jar89].
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3.1. The Steenrod algebra in topology. We begin with a motivational pitch
about Steenrod operations in algebraic topology. An old and fundamental observa-
tion in algebraic topology is that the singular cohomology of any space with Z/2Z
coefficients carries a natural module structure over a ring called the Steenrod algebra,
and that it is fruitful to understand this additional structure. The Steenrod alge-
bra may be characterized abstractly as the algebra of stable cohomology operations
on H∗(−;Z/2Z), i.e. all natural transformations Hj(−;Z/2Z) → Hk(−;Z/2Z)
commuting with the suspension isomorphisms.

More concretely, one can exhibit a set of cohomology operations Sqi which gen-
erate the Steenrod algebra and which admit an explicit description in terms of
homotopies defined on the cochain complex of a topological space, whose existence
has to do with the failure of the cup product to be commutative at the level of
cochains. This will be explained in §3.3.

A key point in this paper is that we can and should ask about the analogous
structure for H∗(−;Z/2nZ) for every n. In particular, we need analogues of the
Sqi for Z/2nZ-coefficients. This leads to a construction of operations that we call
S̃q

i
. These turn out to all be induced by the Sqi, so they are not fundamentally

new operations. However, they do come up very directly in our calculations, so it
will be useful to spell them out explicitly.

3.2. Étale homotopy theory. Using étale homotopy theory, we will be able to
transport our definition of (singular) cohomology operations on topological spaces
to étale cohomology of algebraic varieties. Here we just summarize the facts that
we need.

To any locally noetherian scheme X there is attached a pro-object in simplicial
sets which is called its étale topological type5, and which we denote Ét(X). We refer
to [Fri82, Definition 4.4] for the definition of Ét(X). Given the awkwardness of the
expression “pro-(simplicial set)”, we will henceforth use the phrase “pro-space” to
denote a pro-object in simplicial sets (however, it will be important at certain points
that our “spaces” are really simplicial sets).

Definition 3.1. We define the category of local coefficient systems on a pro-space
{T i : i ∈ I} as follows.

• An object is a local coefficient system on some T j .
• A map between local coefficient systems, defined by L1 on T i and L2 on
T j , is a map between the pullbacks of L1 and L2 to T k for some k > i, j.

Remark 3.2. In Friedlander’s original definition [Fri82, §5, p. 48], a “local coeffi-
cient system” is an isomorphism class of objects in our definition.

Proposition 3.3 ([Fri82, Corollary 5.8]). There is an equivalence of categories
between locally constant sheaves on the étale site of X, and local coefficient systems
on the pro-space Ét(X).

Definition 3.4. We define the cochain complex of a pro-space {T i} with coeffi-
cients in a local coefficient system F to be the direct limit of the levelwise cochain

5For the construction of Ét(X) one also makes a choice of sufficiently many separably closed
fields so that every residue field of a point of X is contained in one of them, but we can ignore
this technicality.
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complexes:
C∗({T i};F) := lim−→

i

C∗(T i;F).

By the exactness of filtered colimits, we have

H∗(C∗({T i};F)) ∼= lim−→
i

H∗(C∗({T i};F)),

so this recovers the definition of the cohomology of a pro-space {T i} in [Fri82,
Definition 5.1] as the direct limit of the levelwise cohomology.

In particular, if Ét(X) = {U i : i ∈ I} then

C∗(Ét(X);F) := lim−→
i

C∗(U i;F) and H∗(Ét(X);F) := lim−→
i

H∗(U i;F).

Proposition 3.5 ([Fri82, Proposition 5.9]). If F is a locally constant sheaf on
X and Ét(F) is the corresponding local coefficient system on Ét(X) under the
equivalence of categories in Proposition 3.3, then there is a natural isomorphism

H∗ét(X;F) ∼= H∗(Ét(X); Ét(F)).

3.3. Steenrod’s cup-i product. Let X be a topological space. Let R be a lo-
cal coefficient system in commutative rings, and C∗(X;R) the singular cochain
complex. Steenrod defined sequence of maps

cupi : C
r(X;R)⊗ Cs(X;R)→ Cr+s−i(X;R)

u⊗ v 7→ u ^i v

called the “cup-i products”. We will give a high-level exposition; a reference for this
standard (in topology) material is [MT68, Chapter 2].

The cup product for X is induced at the level of chain complexes by the compo-
sition of the Alexander-Whitney map and the restriction to the diagonal:

C∗(X;R)← C∗(X ×X;R)
∼←− C∗(X;R)⊗ C∗(X;R). (3.3.1)

This composition is not S2-equivariant because the Alexander-Whitney map is not
S2-equivariant; it is only S2-equivariant up to homotopy. However, there is a way
to rectify it to be an S2-equivariant quasi-isomorphism, which we now describe.

Let ES2 be a contractible space with a free S2-action; in fact, let us take the
explicit model ES2 = S∞. We view C∗(ES2;R) as a cochain complex in non-
positive degrees, which provides a free resolution as S2-modules of the constant
sheaf R in degree 0. Then there is an S2-equivariant quasi-isomorphism

C∗(X ×X;R) ' C∗(X;R)⊗ C∗(X;R)⊗ C∗(ES2;R) (3.3.2)

where the S2 action on the right side is diagonal for the “swap” action on C∗(X;R)⊗
C∗(X;R) and the tautological action on ES2. Tensoring (3.3.2) with C∗(ES2;R)
and applying the evaluation pairing yields an S2-equivariant cochain map

C∗(X;R)⊗ C∗(ES2;R)← C∗(X;R)⊗ C∗(X;R) (3.3.3)

where the S2-action is via “swap” on the right hand side, and the tautological action
on C∗(ES2;R) on the left hand side.

Now we use the presentation of S∞ as a simplicial complex with two cells di
and Tdi in every dimension which are interchanged under the S2-action. In the
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chain complex C∗(ES2;R) we then have two corresponding generators ei ⊗ 1 and
Tei ⊗ 1 ∈ Ci(ES2;R). Contracting (3.3.3) with ei ⊗ 1 gives the cup-i product

Cr+s−i(X;R)← Cr(X;R)⊗ Cs(X;R) : cupi.

We will also use the notation

u ^i v := cupi(u⊗ v).

We have the coboundary formula [MT68, Chapter 2, p. 16]

d(u ^i v) = (−1)idu ^i v + (−1)i+ru ^i dv − (−1)iu ^i−1 v − (−1)rsv ^i−1 u,
(3.3.4)

where |u| = r, |v| = s. We can rewrite (3.3.4) as:

d(u ^i v)− (−1)icupi(d(u⊗ v)) = (−1)i−1u ^i−1 v − (−1)rsv ^i−1 u. (3.3.5)

It is the case i = 1 in (3.3.5) that will be most important for us. For concreteness,
let us spell out the informal meaning of (3.3.5). The cup-0 product is just the
multiplication on cochains. The cup-1 product furnishes a chain homotopy between
u ^0 v and ±v ^0 u “witnessing” the graded commutativity of the cup product.
The cup-2 product furnishes a chain homotopy between u ^1 v and ±v ^1 u, etc.

Remark 3.6. In order to bootstrap the cupi-product from simplicial sets to étale
topological type as in §3.2, we take a model for the cupi-product which is functorial
in maps of simplicial sets, whose existence is guaranteed by [Smi15, Appendix B].
(Although the cupi-product in [Smi15] is phrased with integral coefficients, it exists
for any local coefficient system of commutative rings, by base change.)

We now turn to the task of extracting cohomology operations out of the cup-i
product. The cup-i product does not preserve cocycles, except in characteristic 2,
so that is the simplest case in which we get cohomology operations, and we discuss
it first.

3.4. Classical Steenrod squares. If 2 = 0 in R, then it is easily checked from
(3.3.4) that the operation

u 7→ u ^i u

sends cocycles to cocycles and coboundaries to coboundaries, hence descends to a
cohomology operation

Sqi : H
r(X;R)→ H2r−i(X;R).

We then define the Steenrod square

Sqi := Sqr−i : H
r(X;R)→ Hr+i(X;R).

For R = Z/2Z, which is the case studied in [MT68] §2, this construction recovers
the classical Steenrod squares.

Properties of the Steenrod squares. We now recall the formal properties of these
classical Steenrod squares. (Proofs can be found in [MT68, §2,3].)

(1) (naturality) For any f : X ′ → X, we have

f∗ Sqi = Sqi f∗.
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(2) (cartan formula) We have

Sqi(x ^ y) =

i∑
j=0

Sqj(x) ^ Sqi−j(y).

If we define the total Steenrod operation Sq :=
∑
i Sqi, then the Cartan

formula can be neatly packaged as

Sq(x ^ y) = Sq(x) ^ Sq(y).

(3) (Adem relations) If 0 < i < 2j then

Sqi Sqj =

[i/2]∑
k=0

(
j − 1− k
i− 2k

)
Sqi+j−k Sqk .

(4) (special cases) For x ∈ Hj(X;Z/2Z) we have
• Sq0(x) = x,
• Sq1(x) = β(x) for β the connecting homomorphism Hj(X;Z/2Z)

β−→
Hj+1(X;Z/2Z) induced by the short exact sequence 0 → Z/2Z →
Z/4Z→ Z/2Z→ 0.
• Sqj(x) = x ^ x,
• For i > j, we have Sqi(x) = 0.

(5) (Stability) The Steenrod operations commute with the suspension iso-
morphisms

Hi(X;Z/2) ∼= Hi+1(ΣX;Z/2).

3.5. Generalized Steenrod squares. We now drop our assumption that 2 = 0
in R. If u is a cocycle, we see from (3.3.4) that

d(u ^i u) = [(−1)i − (−1)r
2

]u ^i−1 u. (3.5.1)

Suppose 2n = 0 in R. If r − i is even, then (3.5.1) implies that 2n−1u ^i u is a
cocycle. Furthermore, one can check that the operation u 7→ 2n−1u ^i u also takes
coboundaries to coboundaries, and therefore descends to a cohomology operation

S̃qi : H
r(X;R)→ H2r−i(X;R).

Definition 3.7. If i is even, we define

S̃q
i

:= S̃qr−i : H
r(X;R)→ Hr+i(X;R).

Lemma 3.8. Continue to assume that 2n = 0 in R. Let red2 : H∗(X;R) →
H∗(X;R/2R) be the reduction mod 2, and let [2n−1] : H∗(X;R/2R) → H∗(X;R)

be the map induced by R/2R 2n−1

−−−→ R. If i is even, then we have

S̃q
i

= [2n−1] ◦ Sqi ◦ red2 .

Proof. This is immediate upon unwinding the definitions. �

Next suppose that r − i is odd. In this case we do not assume a priori that
2n = 0 in R. (Although we do not need the operations where r − i is odd in this
paper, we construct them for the sake of completeness.) From (3.5.1) we see that
if r − i is odd, then u ^i u is a cocycle if u is a cocycle. Similarly one checks that



14 TONY FENG

u 7→ u ^i u sends coboundaries to coboundaries, hence descends to a cohomology
operation

S̃qi : H
r(X;R)→ H2r−i(X;R).

Definition 3.9. If i is odd, we define

S̃q
i

:= S̃qr−i : H
r(X;R)→ Hr+i(X;R).

Let us elucidate the relationship between the Steenrod squares constructed in
the two cases. If u is cocycle, then by (3.3.4) we have

u ^i u = (−1)i2d(u ^i+1 u).

Then the analogue of Lemma 3.8 is:

Lemma 3.10. Suppose that the complex

0→ R/2nR
2−→ R/2n+1R→ R/2R→ 0

is short exact. Let β2,2n : H∗(X;R/2R)→ H∗+1(X;R/2nR) be the induced bound-
ary map, and let red2 be as in Lemma 3.8. If i is odd, then we have

S̃q
i

= β2,2n ◦ Sqi−1 ◦ red2 .

Proof. This is immediate upon unwinding the definitions. �

3.6. Application to étale cohomology. Let R :=
⊕

j∈Z Z/2nZ(j), viewed as a
locally constant sheaf on X (where “(j)” denotes the Tate twist) valued in rings,
with multiplicative structure given by the isomorphisms

Z/2nZ(j)⊗ Z/2nZ(j′)
∼−→ Z/2nZ(j + j′).

Applying §3.2 and the construction of §3.5, we obtain operations

S̃q
i
: Hr

ét(X;Z/2nZ(j))→ Hr+i
ét (X;Z/2nZ(2j)).

For convenience of the reader, we summarize all the facts that we shall need about
the S̃q

i
below.

Example 3.11. If x ∈ Hi+1
ét (X;Z/2nZ(j)) then S̃q

i
(x) has the following descrip-

tion. Let C∗ét(X;Z/2nZ(j)) be the étale cochain complex for X, defined as in §3.2.
There is a chain homotopy

cup1 : Crét(X;Z/2nZ(j))⊗ Csét(X;Z/2nZ(j))→ Cr+s−1
ét (X;Z/2nZ(2j))

u⊗ v 7→ u ^1 v

such that (by the i = 1 case of (3.3.5))

d(cup1(u⊗ v)) + cup1(d(u⊗ v)) = u ^ v − (−1)rsv ^ u.

Let u ∈ Ci+1
ét (X;Z/2nZ(j)) be a representative for x. If i is even, then we have

S̃q
i
(x) = [2n−1u ^1 u].

Lemma 3.12. Let [2n−1] : H∗ét(X;Z/2Z(j)) → H∗ét(X;Z/2nZ(j)) be the map in-

duced by the inclusion of sheaves Z/2Z(j)
2n−1

−−−→ Z/2nZ(j). Let red2 be the reduction
mod 2. If i is even, then

S̃q
i

= [2n−1] ◦ Sqi ◦ red2 .
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Proof. This follows from combining Lemma 3.8, which implies the formula for all
simplicial complexes in particular, and §3.2, which transports the result to étale
cohomology. �

4. Bockstein operations

The goal of this section is to prove Theorem 4.4, which expresses the pairing of
Definition 2.2 in terms of cohomology operations. Our argument originated from
studying a generalized version of the Bockstein spectral sequence, and was moti-
vated by a calculation in [Bro61]. However, we have found it cleaner for expository
purposes to present a proof with the language of spectral sequences stripped out.

4.1. Higher Bockstein operations. The key technical ingredient in the proof
is the study of “higher Bockstein operations”. These form a family of cohomology
operations {βr} “growing off” of the Bockstein β in the following sense. We have

β1 := β : H∗ét(X;Z/2nZ(j))→ H∗+1
ét (X;Z/2nZ(j)).

The operation βr is only defined on the kernel of β1, . . . , βr−1, and its image is only
defined modulo the image of β1, . . . , βr−1. (These operations βr arise as differentials
in a spectral sequence, which explains this structure.) In fact we only need β1 and
β2 for our purposes.

Remark 4.1. We must now confront the technical subtlety that Z`-étale coho-
mology is not, as defined classically, the cohomology of a cochain complex with
Z`-coefficients, while the state of affairs is much more naturally reasoned about
and phrased in terms of “integral cochains”. It is straightforward to translate all
our statements into ones about compatible systems of `-adic sheaves; for example
the short exact sequence

0→ Z`(j)
`n−→ Z`(j)→ Z/`nZ(j)→ 0

should be replaced by the system of sequences

0→ Z/`NZ(j)
`n−→ Z/`N+nZ(j)→ Z/`nZ(j)→ 0

for all N � 0. We leave this translation to the reader so as not to complicate our
exposition. (It should be also be possible to deal with this problem more uniformly
using the pro-étale topology of Bhatt-Scholze [BS15].)

Recall that the Bockstein β is induced by the short exact sequence of sheaves

0→ Z/`nZ(j)
`n−→ Z/`2nZ(j)→ Z/`nZ(j)→ 0.

Thanks to the commutative diagram

C∗(X;Z`(j)) C∗(X;Z`(j)) C∗(X;Z/`nZ(j))

C∗(X;Z/`nZ(j)) C∗(X;Z/`2nZ(j)) C∗(X;Z/`nZ(j))

`n

it admits the following alternative description. For x ∈ H∗ét(X;Z/`nZ(j)) we let
x̃ ∈ C∗ét(X;Z/`nZ(j)) be a representative for x, and a a lift of x̃ in C∗ét(X;Z`(j)).
Since x̃ is a cocycle, da is divisible by `n within C∗+1

ét (X;Z`(j)), so we may define

β̃(x) :=

[
1

`n
da

]
∈ H∗+1

ét (X;Z`(j)).
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Then we define
β(x) := β̃(x) ∈ H∗+1

ét (X;Z/`nZ(j))

to be the reduction of β̃(x) mod `n. Note that β̃ is the boundary map for the short
exact sequence of sheaves

0→ Z`(j)
`n−→ Z`(j)→ Z/`nZ(j)→ 0.

Definition 4.2. We define operations

β̃2 : (kerβ1 ⊂ H∗ét(X;Z/`nZ(j)))→ H∗+1
ét (X;Z`(j))/ Im β̃1

β2 = β̃2 : (kerβ1 ⊂ H∗ét(X;Z/`nZ(j)))→ H∗+1
ét (X;Z/`nZ(j))/ Im β1

as follows. If x ∈ kerβ1, then (keeping the notation of the preceding paragraph)
we have

1

`n
da = dỹ for some ỹ ∈ C∗ét(X;Z/`nZ(j)),

where the overline means reduction mod `n. Hence we may and do choose a lift
b ∈ C∗ét(X;Z`(j)) of ỹ such that 1

`n da ≡ db mod `n, or in other words

da ≡ d(`nb) mod `2n.

Then we can form the cochain 1
`2n d(a− `nb) ∈ C∗ét(X;Z`(j)), which is evidently a

cocycle. Finally, we define

β̃2(x) :=

[
1

`2n
d(a− `nb)

]
∈ H∗+1

ét (X;Z`(j))/ Im β̃1,

β2(x) :=β̃2(x) ∈ H∗+1
ét (X;Z/`nZ(j))/ Im β1.

We leave it to the reader to check that this is indeed well-defined.

It is straightforward to define βr in a similar way for all r. Since we only need
β1 and β2, we do not spell out the explicit construction.

In what follows, we will focus on the operations introduced in Definition 4.2 for
` = 2.

Proposition 4.3. Let ` = 2 in Definition 4.2. For any x ∈ H2k
ét (X;Z/2nZ(j)), we

have the following identity:

β2(2n−1x2) = [x · β(x)− S̃q
2k

(β(x))] ∈ H2k+1
ét (X;Z/2nZ(2j))/ Im β.

Proof. Note that since β is a derivation, it indeed kills 2n−1x2, hence 2n−1x2 indeed
lives in kerβ so that β2(2n−1x2) is defined.

Let a be any integral cochain in C2k
ét (X;Z2(j)) lifting a representative for x. Let

y := β(x) ∈ H2k+1
ét (X;Z/2nZ(j)). Then by the definition of β, we have da = 2nb

where b ∈ C2k+1
ét (X;Z2(j)) lifts a representative for y.

According to the discussion in Definition 4.2, β2(2n−1x2) is calculated by finding
an integral cochain lifting a representative for 2n−1x2, whose boundary is divisible
by 22n. We check that 2n−1a2 + 22n−1(a ^1 b) is such an integral cochain, using
Example 3.11:

d(2n−1a2 + 22n−1(a ^1 b)) = 2n−1(a · 2nb+ 2nb · a− 22n(b ^1 b) + 2n(ab− ba))

= 2n−1(2n+1ab− 22n(b ^1 b))

= 22n(ab− 2n−1(b ^1 b)).
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Hence by Definition 4.2 we have

β2(2n−1x2) = [
1

22n
d(2n−1a2 − 22n−1(a ^1 b))]

= [ab− 2n−1(b ^1 b)]

= [xy − [2n−1(b ^1 b)]].

We then conclude by using Example 3.11 again to identify [2n−1(b ^1 b)] = S̃q
2k
y.
�

Theorem 4.4. Let X be a smooth projective variety over Fq of dimension 2d. For
x ∈ H2d

ét (X;Z/2nZ(d)), we have

x ^ β(x) = S̃q
2d

(β(x)) ∈ H4d+1
ét (X;Z/2nZ(2d)).

Proof. By Proposition 4.3, we have the identity

β2(2n−1x2) = [x · β(x)− S̃q
2k

(β(x))] ∈ H4d+1
ét (X;Z/2nZ(2d))/ Im β.

Therefore we will be done if we can show that the images of β and β2 inH4d+1
ét (X;Z/2nZ(2d))

are both 0. Since β and β2 are the reductions of β̃ and β̃2, it suffices to prove the
stronger statement that β̃ and β̃2 vanish in the appropriate degree, which is what
we shall do.

Note that the image of β̃ is automatically 2n-torsion. Similarly, from the def-
inition of β̃2 it is immediate that its image is 22n-torsion. Indeed, referring to
Definition 4.2 we see that `2nβ̃2(x) = [d(a − `nb)] is manifestly a coboundary. (In
general, Im (β̃r) is 2rn-torsion.) But by Poincaré duality we have

H4d+1
ét (X;Zn2 (2d)) ∼= Z2

is torsion-free, so the images of β̃ and β̃2 in H4d+1
ét (X;Z/2nZ(2d)) are necessarily

0. �

5. Stiefel-Whitney classes in étale cohomology

Theorem 4.4 recasts the pairing 〈·, ·〉n in terms of the (generalized) Steenrod
squares. But in order for this formula to be useful, we need some way to explic-
itly calculate the relevant Steenrod operations. In the classical theory of smooth
manifolds there is a formula, due originally to Wu, relating the action of certain
Steenrod operations as cupping with Stiefel-Whitney classes. This section and the
next are concerned with establishing an analogue of this formula in absolute étale
cohomology for smooth proper varieties over finite fields. The first task, which we
take up in this section, is to define an appropriate notion of Stiefel-Whitney classes.

Much of the material of this section was influenced by [Ura96]. The definition
of the classes wi already appears in [Ura96], though it is phrased in less generality
there. The idea to find lifts of the wi in terms of Chern classes was also inspired
by [Ura96], as is the proof of Theorem 5.10.
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5.1. Cohomology with supports. Let i : X ↪→ Y be a closed subscheme. We
recall the definition of the “cohomology of Y with supports in X” [FK88, §I.10].
Let j : U ↪→ Y denote the inclusion of the (open) complement of X in Y . Then
Hk
X(Y ;F) is defined to be the kth right derived functor of

F 7→ ker(F(Y ) 7→ j∗j
∗F(Y )).

We want to define Steenrod operations on Hk
X(Y ;F). Since we have been in the

habit of defining Steenrod operations via étale homotopy theory, we need to realize
the cohomology with supports in terms of étale homotopy theory, as the cohomology
of a certain pro-space. This is explained in [Fri82, §14]. The key features of this
construction are summarized below.

Definition 5.1. We define ÉtX(Y ) to be the mapping cylinder of Ét(U)→ Ét(Y )
in the sense of [Fri82, p. 140]. For any locally constant sheaf F on the étale
site of Y , we denote by Ét(F) the corresponding local coefficient system on Ét(Y )

as in §3.2, and also for its pullback to ÉtX(Y ) in the sense of [Fri82, p. 140].
Then we have a canonical identification H∗(ÉtX(Y ); Ét(F))

∼−→ H∗X(Y ;F) [Fri82,
Proposition 14.3, Corollary 14.5, Proposition 14.6], and we define the Steenrod
operations on H∗X(Y ;F) via this identification as in §3.

5.2. Construction of étale Stiefel-Whitney classes. Let k be a field of char-
acteristic not equal to 2. Let i : X ↪→ Y be a codimension r closed embedding of
smooth varieties over k. Then we have a cycle class sX/Y ∈ H2r

X (Y ;Z`(r)), which
can be described as the image of 1 under the Gysin isomorphism

φ : Hj(X;F)
∼−→ Hj+2r

X (Y ;F(r)), (5.2.1)

which holds for any locally constant constructible sheaf F on Y [FK88, §I.10].
We are going to apply this with Y being the total space of a vector bundle E

over X, and i : X ↪→ E being the zero section.

Definition 5.2. Let E be a vector bundle over X. We define the jth Stiefel-
Whitney class of E by

wj(E) = φ−1(Sqj sX/E). (5.2.2)

Define the total Stiefel-Whitney class to be w(E) :=
∑
wi(E). If no vector bundle

is mentioned, then by default we set wi := wi(TX) and w :=
∑
wi.

There is a possibly more intuitive way to phrase the equation (5.2.2), which we
will use later. The Gysin isomorphism (5.2.1) says that H∗X(E;Z/2Z) is a free rank
one module over H∗ét(E;Z/2Z), which can be identified with H∗ét(X;Z/2Z) via π∗
since E is a vector bundle over X. Under this identification (5.2.2) is equivalent to

Sqi(sX/E) = wi · sX/E . (5.2.3)

Remark 5.3. The reason that we call these “Stiefel-Whitney classes” is that Thom
observed in [Tho52] that an exactly analogous construction for manifolds produces
the usual Stiefel-Whitney classes.6 The construction goes as follows (a reference is
[MS74, §8]). Let M be a topological manifold and E be a vector bundle of rank r

6Unfortunately, this notation clashes with the established tradition of using the term “Stiefel-
Whitney classes” to denote the characteristic classes of quadratic bundles. The two definitions
coincide for smooth manifolds, but in general there is no relation between them.



ÉTALE STEENROD OPERATIONS AND THE ARTIN-TATE PAIRING 19

over M . Let i : M ↪→ E denote the inclusion of M as the zero section of E. Let
E0 = E − i(M). We have a Thom isomorphism

φ : Hi(M ;Z/2Z) ∼= Hi+2r(E,E0;Z/2Z),

and wi(E) = φ−1(Sqi φ(1)).

5.3. Steenrod squares of Stiefel-Whitney classes. The following technical
lemma is needed later in §7.1. The reader may safely skip this subsection for
now and refer back to it when necessary.

Lemma 5.4. For any i and j, Sqi(wj) can be expressed as a polynomial in the
Stiefel-Whitney classes {wl}.

Remark 5.5. The analogue of Lemma 5.4 for singular cohomology is immedi-
ate from the fact that the ring H∗(BO(R);Z/2Z) is generated by Stiefel-Whitney
classes. But because of the way that we have defined the classes wi in étale coho-
mology, Lemma 5.4 is not quite obvious.

Proof of Lemma 5.4. We will use the identities of Steenrod squares from §3.4. Note
that we may assume that i < j, since for i > j we have Sqi(wj) = 0 and for i = j

we have Sqi(wj) = w2
j .

We induct on j, and then (for fixed j) on i, with the base case j = 0 being
trivial, and the base cases i = 0 being trivial for any j since Sq0 = Id. Consider
the expression

Sqi Sqj(sX/TX).

On the one hand, we have by (5.2.3) that

Sqi Sqj(sX/TX) = Sqi(wj · sX/TX).

By the Cartan formula,

Sqi(wj · sX/TX) =
∑
k+`=i

Sqk(wj) Sq`(sX/TX)

=

(
Sqi(wj) +

∑
k<i

Sqk(wj)wi−k

)
sX/TX .

By the induction hypothesis, Sqk(wj) is a polynomial in the {wl} for each k < i,
so the upshot is that

Sqi Sqj(sX/TX) = (Sqi(wj) + Poly({wl}))sX/TX . (5.3.1)

From (5.3.1) it is clearly sufficient to show that Sqi Sqj(sX/TX) is a polynomial in
the {wl} times sX/TX . For this we use the Adem relations: for 0 < i < 2j we have

Sqi Sqj =

[i/2]∑
k=0

(
j − 1− k
i− 2k

)
Sqi+j−k Sqk,

hence

Sqi Sqj(sX/TX) =

[i/2]∑
k=0

(
j − 1− k
i− 2k

)
Sqi+j−k(wk · sX/TX).

Every index k in this sum is strictly less than j since we assumed i < j, so every
summand is a polynomial in the {wl} times sX/TX by the induction hypothesis,
which is what we wanted. �
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Remark 5.6. Since the preceding argument could have been carried out equally
well in singular cohomology, the proof makes it clear that our Sqi wj is given by
the same formula as in algebraic topology.

5.4. Properties of the Stiefel-Whitney classes. We now record that the Stiefel-
Whitney classes, as constructed in §5.2, enjoy the usual properties of topological
Stiefel-Whitney classes.

(1) We have wi(E) ∈ Hi(X;Z/2Z), with w0 = 1 and wi = 0 for i > 2 rankE.
(2) (naturality) If f : X ′ → X then

f∗wi(E) = wi(f
∗E).

(3) (Whitney product formula) We have

wi(E ⊕ E′) =

i∑
k=0

wk(E) ^ wi−k(E′).

If we set w =
∑
wi to be the total Stiefel-Whitney class, then this can be

written more succinctly as

w(E ⊕ E′) = w(E) · w(E′).

Proofs. It is well-known in the topological setting (cf. [MS74, §8]) that the char-
acteristic properties of Stiefel-Whitney classes can be formally derived from those
of the Steenrod squares. Since our étale Stiefel-Whitney classes are also based on
Steenrod operations, essentially the same proofs go through. Nonetheless, we spell
them out because they will be used in the proof of Theorem 5.10 below.

(1) Immediate from the fact that Sq0 = Id and Sqi vanishes on Hj if i > j.
(2) Immediate from the naturality of the Gysin map and Steenrod squares.
(3) We begin by considering a general setup. Suppose we have two closed

embeddings of smooth proper varieties

i : X ↪→ Y codimension r,

i′ : X ′ ↪→ Y codimension r′.

We consider the two corresponding Gysin maps obtained:

φ : H∗(X;Z/2Z) ∼= H∗+rX (Y ;Z/2Z),

φ′ : H∗(X ′;Z/2Z) ∼= H∗+rX′ (Y ′;Z/2Z).

These send φ(1) = sX/Y and φ′(1) = sX′/Y ′ . By the compatibility of the
Gysin map for products, we have that for the closed embedding X ×X ′ ↪→
Y × Y , the Gysin isomorphism

φ ^ φ′ : H∗(X ×X ′;Z/2Z) ∼= H∗+r+r
′

X×X′ (Y × Y ′;Z/2Z)

sends 1 7→ sX/Y ^ sX′/Y ′ . Now taking Y and Y ′ to be the total spaces
of E and E′, and applying the Cartan formula of Sq and the definition of
Stiefel-Whitney classes, we obtain

wX×X′ ^ (sX/Y ^ sX′/Y ′) = Sq(sX/Y ^ sX′/Y ′)

= Sq(sX/Y ) ^ Sq(sX′/Y ′)

= (wX ^ sX/Y ) ^ (wX′ ^ sX′/Y ′)

= (wX ^ wX′)sX/Y ^ sX′/Y ′ .
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Finally, pulling back via the diagonal ∆: X ↪→ X×X and using naturality
gives the result.

It is formal that the Whitney product formula for direct sums implies it for
extensions:

Lemma 5.7. If
0→ E′ → E → E′′ → 0

is a short exact sequence of vector bundles on X, then

w(E) = w(E′) ^ w(E′′).

Proof. The proof is the same as for [Ura96, Lemma 2.7].
�

5.5. Lifting Stiefel-Whitney classes to integral cohomology. We shall see
in §7 that it is crucial to know whether our Stiefel-Whitney classes lift to integral
cohomology. The goal of this subsection is to prove Theorem 5.10, which answers
this question.

Our first task is to address a technical subtlety that will come up in the proof of
Theorem 5.10. There are the two short exact sequences

0→ Z/2Z→ Z/4Z→ Z/2Z→ 0 (5.5.1)

and
0→ µ2 → µ4 → µ2 → 0. (5.5.2)

Since µ2 is canonically identified with Z/2Z, as we are not in characteristic 2, both
sequences induce Bockstein operations H∗ét(X;Z/2Z)→ H∗+1

ét (X;Z/2Z), but they
are not necessarily the same. In §3.4 we noted that the Bockstein operation for
(5.5.1) is Sq1. Let us denote by β(1) the Bockstein operation for (5.5.2). We need
to quantify the difference between these two operations. For this discussion, it will
help to maintain a psychological distinction between µ2 and Z/2Z.

Lemma 5.8. Let α be the image of 1 ∈ H0
ét(X;Z/2Z)

∼−→ H0
ét(X;µ2) under the

boundary map β(1). Then for all c ∈ H∗ét(X;Z/2Z)
∼−→ H∗ét(X;µ2) we have

β(1)(c) = Sq1(c) + α ^ c.

Proof. Since µ4 is a module over Z/4Z, the cohomology H∗ét(X;µ4) is a module
over H∗ét(X;Z/4Z). We similarly view H∗ét(X;µ2) as a module over H∗ét(X;Z/2Z).

The reduction map µ4 → µ2, viewed as part of the short exact sequence (5.5.2),
is compatible with the reduction map Z/4Z→ Z/2Z, viewed as part of (5.5.1), for
the respective module structures. Hence the induced maps on cohomology satisfy
the same compatibility: the reduction map

H∗ét(X;µ4)→ H∗ét(X;µ2)

is compatible as a map of modules with respect to the map of rings

H∗ét(X;Z/4Z)→ H∗ét(X;Z/2Z).

More precisely, let x ∈ Hi
ét(X;µ2) and r ∈ Hj

ét(X;Z/2Z), so that x is viewed as a
module element and r is viewed as a ring element. Then rx ∈ Hi+j

ét (X;µ2), and we
are saying that

β(1)(rx) = (Sq1 r)x+ rβ(1)(x). (5.5.3)
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This is seen immediately upon going back to the definition of the boundary map,
using that the coboundary map on cochains is a derivation.

The lemma then follows from taking r = c and x = 1 ∈ H0(X;µ2) in (5.5.3).
�

Remark 5.9. The element α ∈ H1
ét(X;µ2) is actually the pullback of a universal

α ∈ H1
ét(Spec Fq;µ2) which vanishes if and only if q ≡ 1 (mod 4). Indeed, (5.5.1)

and (5.5.2) are obviously the same for q ≡ 1 (mod 4). We also note for later use
that α lifts to H1

ét(X;Z2(1)), because β(1) is the reduction of the Bockstein for

0→ Z2(1)
2−→ Z2(1)→ µ2 → 0.

Theorem 5.10. Let X be a smooth variety over a finite field Fq of characteristic
not 2 and E a vector bundle on X of rank r. Let α be as in Lemma 5.8. Then we
have:

w(E) := 1 + w1 + w2 + . . .+ w2r =

{
(1 + α)ceven + codd r odd,
ceven + (1 + α)codd r even,

where

ceven = 1 + c2 + c4 + . . . ∈ H∗ét(X;
⊕
i∈Z

Z2(i))

codd = c1 + c3 + . . . ∈ H∗ét(X;
⊕
i∈Z

Z2(i))

and c means the reduction of c modulo 2.

Proof. Grothendieck showed [Gro58] that the definition of all characteristic classes
can be obtained from the axioms in §5.4 plus the definition of the characteristic
classes for arbitrary line bundles. Therefore, it suffices to check that the formula
above satisfies the properties in §5.4 and is correct for all line bundles.

The fact that it satisfies axiom (1) of §5.4 is evident from the definition. The fact
that it satisfies (2) is immediate from the observation that the Chern classes satisfy
the Whitney sum and naturality property. The fact that it satisfies (3) also follows
from the analogous property of Chern classes plus a case analysis of the formula.
For example, when summing two bundles E and E ′ of odd rank with Chern classes
c and c′, the product of the classes claimed in the formula is

((1 + α)ceven + codd)((1 + α)c′even + c′odd) = (cevenc′even + coddc′odd)

+ (1 + α)(cevenc′odd + coddc′even)

because (1 +α)2 = 1, and the Whitney sum formula for Chern classes implies that
the right hand side is indeed ceven(E ⊕ E ′) + (1 + α)codd(E ⊕ E ′).

Finally we must check the formula for line bundles. What makes this possible
is that we only have to verify the formula for w1 and w2, since the higher Stiefel-
Whitney classes vanish for degree reasons. Thus we only need to compute Sq1 and
Sq2, and we have “explicit” descriptions of the Steenrod operations on degree 2
elements in these cases (§3.4).

Let Y be the total space of a line bundle L on X. We view X as embedded in
Y via the zero section, and identify their étale cohomology groups via pullback for
the projection map π : Y → X.
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Calculation of w1. Recall from (5.2.3) that w1 is defined by

Sq1 sX/Y = w1 ^ sX/Y .

But the cycle class sX/Y lifts compatibly to H2
X(Y ;µ2j ) for all j, hence even to

H2
Y (X;Z2(1)) (cf. [FK88, §II.2]). In particular sX/Y lies in the image of the

reduction map Hi
X(Y ;µ4)→ Hi

X(Y ;µ2). The long exact sequence for (5.5.2) then
shows that β(1)(sX/Y ) = 0. We are really interested in the other boundary map
Sq1, but Lemma 5.8 tells us the difference between them:

Sq1(sX/Y ) = β(1)(sX/Y ) + α ^ sX/Y = α ^ sX/Y .

Hence α = w1, as required.

Calculation of w2. The argument is essentially the same as in the proof of [Ura96,
Lemma 2.6]. Again, (5.2.3) tells us that

Sq2 sX/Y = w2 ^ sX/Y ∈ H4
X(Y ;Z/2Z).

Since sX/Y ∈ H2
X(Y ;Z/2Z) we have that Sq2 sX/Y = sX/Y ^ sX/Y (using one of

the explicit “special cases” from §3.4).
We now need to recall a property of the cycle class, which is a special case of a

more general discussion to come in §6.3.2. If X ↪→ Y is a codimension 1 closed em-
bedding of smooth varieties, then we have a cycle class clY (X) ∈ H2(Y ;µ2) which
is the image of the line bundle OY (X) under the Chern class map H1(Y ;Gm) →
H2(Y ;µ2). This class clY (X) also coincides with the image of sX/Y under the
natural map H∗X(Y ) → H∗ét(Y ). (A reference is [FK88, Proposition II.2.2 and
Proposition II.2.6]7.)

Consider the commutative diagram

Pic(X) = H1
ét(X;Gm) //

π∗

��

H2
ét(X;Z/2Z)

π∗

��
Pic(Y ) = H1

ét(Y ;Gm) // H2
ét(Y ;Z/2Z)

An elementary calculation shows that the line bundle L on X whose total space is
Y pulls back to OY (X) on Y , i.e. the line bundle associated to the divisor of the
zero-section in Y . The upshot is that in H4

X(Y ;Z/2Z), we have

c1(OY (X)) ^ sX/Y = clY (X) ^ sX/Y = sX/Y ^ sX/Y = Sq2(sX/Y ),

which shows that w2 = c1(OY (X)) ∈ H2
ét(Y ;Z/2Z). Since we have already estab-

lished that L pulls back to OY (X) under the projection map π : Y → X, naturality
for Chern classes and the fact that π∗ induces an isomorphism on cohomology shows
that w2 = c1(L) ∈ H2

ét(X;Z/2Z). �

6. A Wu Theorem for étale cohomology

Now we relate the Stiefel-Whitney classes just constructed in §5 with Steen-
rod operations. In this section it is understood that all cohomology is with Z/2Z-
coefficients, so we may suppress it from our notation.

7The book [FK88] makes a blanket assumption that the ground field is separably closed, but
the proofs of these particular facts don’t require this assumption.
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6.1. Wu’s Theorem for smooth manifolds. We first explain the classical ver-
sion of Wu’s theorem. Let M be a closed smooth manifold of dimension n, so
that the cup product induces a perfect duality on H∗(M). Then for a cohomology
class x ∈ Hn−i(M ;Z/2Z) the map x 7→ Sqi x ∈ Hn(M ;Z/2Z) must, by Poincaré
duality, be represented by a class vi ∈ Hi(M ;Z/2Z), i.e.

vi ^ x = Sqi x for all x ∈ Hi(M ;Z/2Z).

This vi is called the ith Wu class.
Let v :=

∑
i vi be the total Wu class and w :=

∑
wi be the total Stiefel-Whitney

class of TM . Then Wu’s formula relates the two in the following way:

Theorem 6.1 (Wu). We have w = Sq v.

Remark 6.2. Note that Sq is invertible, so Wu’s Theorem completely describes v
in terms of w.

Example 6.3. We use Wu’s Theorem to calculate a few small examples. Equating
terms of degree 1, we deduce that

v1 = w1.

Equating terms of degree 2, we deduce that v2 + Sq1 v1 = w2, which we can rewrite
as

v2 = w2 + w2
1.

6.2. A Wu Theorem for varieties over finite fields. The aim of this section
is to prove a version of Wu’s Theorem in the setting of étale cohomology. For vari-
eties over separably closed fields, this is done in [Ura96, Theorem 0.5]. In that case
one can more or less transpose the usual proof for manifolds, essentially because
the `-adic cohomology of smooth varieties over separably closed fields behaves very
similarly to the singular cohomology of complex manifolds. In particular, for a
surface that lifts to characteristic 0, the classical version of Wu’s Theorem implies
the version for geometric `-adic cohomology. The main result of this section (The-
orem 6.5) is that the same formula also holds for absolute étale cohomology over
finite fields, with our definitions of the wi from §5. Because the ground field is not
separably closed there are some significant new difficulties; one indication of this is
that the proof requires étale homotopy theory.

Remark 6.4. The author has come to think about this philosophically as follows.
A major defect in the analogy between varieties over Fq and topological spaces
fibered over S1 is that in the latter situation one can forget the fibration and con-
sider the bare topological space, while there is no corresponding move for varieties
over Fq. Thus any operation performed in the category of varieties over Fq is really
a “relative” operation: the product of varieties over Fq corresponds to the fibered
product of manifolds over S1, the tangent bundle of a variety over Fq corresponds
to the relative tangent bundle over S1, etc. Because of this, there are some steps in
the proof of Wu’s Theorem that have no analogue in the category of varieties over
Fq. However, passing to étale homotopy type allows one to disassociate a variety
from this fibration, and thus acquire some of the additional flexibility enjoyed by
topological spaces.
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Theorem 6.5. Let X be a smooth, proper, geometrically connected variety over
Fq. Define the Wu class v ∈ H∗ét(X;Z/2Z) to be the unique cohomology class such
that ∫

Sqx =

∫
v ^ x for all x ∈ H∗ét(X;Z/2Z).

Then we have w = Sq v.

The reader is recommended to skip the proof on the first pass through the paper,
as it is quite lengthy and nothing but the statement of Theorem 6.5 will be used in
the sequel.

6.3. Proof of Theorem 6.5. Our proof of Theorem 6.5 proceeds in four steps.
Steps 2 and 3 are essentially a translation of the usual (topological) proof to al-
gebraic geometry. Step 1 performs a technical reduction to the case where the
topological argument begins, and is necessary because of the lack of “tubular neigh-
borhoods” in algebraic geometry. Finally, Step 4 bridges a new technical difficulty,
the spirit of which is discussed in Remark 6.4, that arises here because our ground
field is not separably closed.

6.3.1. Step 1. Recall from (5.2.3) that we defined the Stiefel-Whitney classes wi by

Sqi sX/TX = π∗(wi) ^ sX/TX

where π : TX → X is the projection. Recall also that the normal bundle of X in
X × X is isomorphic to TX. The purpose of this step is to prove the following
Lemma, which is motivated by the preceding considerations.

Lemma 6.6. Let sX/X×X ∈ H∗+2n
X (X ×X) be the image of 1 ∈ H0

ét(X) under the
Gysin isomorphism

H∗ét(X)
∼−→ H∗+2n

X (X ×X).

Then we have
Sqi sX/X×X = pr∗1(wi) ^ sX/X×X . (6.3.1)

where pr1 : X ×X → X denotes projection to the first factor.

From the definitions Lemma 6.6 is an immediate consequence of the following
Lemma.

Lemma 6.7. Let X ↪→ Y be a codimension n closed embedding of smooth varieties
(over any field) and let

φ1 : H∗(X)
∼−→ H∗+2n

X (NX/Y )φ2 : H∗(X)
∼−→ H∗+2n

X (Y )

be the two Gysin isomorphisms. Then

w(NX/Y ) := φ−1
1 (Sq sX/NX/Y

) = φ−1
2 (Sq sX/Y ).

Remark 6.8. If X were a smooth manifold, we could argue directly since we have
an isomorphism

H∗+2n
X (NX/Y ) ∼= H∗+2n(U,U \X)

where U is a tubular neighborhood of the zero-section in Y , and we have

H∗+2n(U,U \X) ∼= H∗+2n
X (Y ) := H∗+2n(Y, Y \X)

by excision. Since these isomorphisms are pullbacks induced by maps of spaces,
they commute with Steenrod squares. A referee has suggested that an analogue of
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this argument may be carried out in our setting using the Morel-Voevodsky Purity
Theorem.

Proof. The key fact is that if X ↪→ Y is a closed embedding, then there is a
flat family deforming the inclusion X ↪→ Y into the zero-section X ↪→ NX/Y
(“deformation to the normal cone”). This allows us to carry out the idea of Remark
6.8.

More precisely, there is a flat family Y → A1 which restricts to the trivial
family away from the origin, Y|A1−0

∼= Y × (A1 − 0), but such that Y|0 ∼= NX/Y .
Furthermore, there is a closed embedding X×A1 ↪→ Y which restricts to the given
embedding X ↪→ Y away from 0, and X ↪→ NX/Y at 0. For the construction and
proofs of the properties, see [Ful98, §5]. The situation is depicted in the diagram
below:

X X ×A1 X

NX/Y Y Y

0 A1 t

Applying the Gysin morphism to X ×A1 ↪→ Y, we have an isomorphism

H∗ét(X ×A1)
∼−→ H∗+2n

X×A1(Y)

sending 1 7→ sX×A1/Y . Note that X × A1 and Y (viewed as the fiber over t)
intersect transversely in Y, and similarly X × A1 and NX/Y . Hence from the
diagram above we obtain a diagram of maps in cohomology (where the vertical
maps are the respective Gysin isomorphisms):

H∗ét(X)

∼
��

H∗ét(X ×A1)oo

∼
��

// H∗ét(X)

∼
��

H∗+2n
X (NX/Y ) H∗+2n

X×A1(Y)oo // H∗+2n
X (Y )

Under this diagram the Thom classes are mapped as follows, by compatibility with
base change (cf. §2 of Deligne’s exposé “Cycle” in [Del70])

1

��

1oo

��

// 1

��
sX/NX/Y

sX×A1/Yoo // sX/Y

Since the horizontal maps in the bottom row are pullbacks they are compatible
with Sq, hence send

Sqi(sX/NX/Y
) Sqi(sX×A1/Y)oo // Sqi(sX/Y ).

By definition Sqi(sX/NX/Y
) = π∗(wi) ^ sX/NX/Y

, and since the maps

H∗+2n
X (NX/Y ) H∗+2n

X×A1(Y)oo // H∗+2n
X (Y )
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are isomorphisms of H∗ét(X) ∼= H∗ét(X ×A1)-modules, they send

Sqi(sX/NX/Y
) Sqi(sX×A1/Y)oo // Sqi(sX/Y )

pr∗1(wi) ^ sX/NX/Y
pr∗1(wi) ^ sX×A1/Yoo // π∗(wi) ^ sX/Y

as desired. �

6.3.2. Step 2. For a regular embedding X ↪→ Y , there is a attached cycle class
clY (X) ∈ H∗(Y ), which in topology would be the “Poincaré dual to the fundamental
class of X in homology”. The goal of this step is to prove the following lemma.

Lemma 6.9. Let ∆ := clX×X(X) ∈ H∗ét(X×X) be the cycle class for the diagonal
embedding of X. Then we have w = (pr1)∗(Sq ∆) ∈ H∗ét(X).

We first review the definition of the pushforward in cohomology for a map of
smooth proper varieties, and then the definition of the cycle class.

Definition 6.10 (Pushforwards in cohomology). If f : X → Y is a map of smooth
proper varieties over Fq of dimensions m and n respectively, then the pullback map

f∗ : H∗ét(Y )→ H∗ét(X)

induces an adjoint map on the Z/2Z-dual spaces:

(f∗)∨ : H∗ét(X)∨ → H∗ét(X)∨. (6.3.2)

We can identify H∗ét(X)∨ ∼= H2m+1−∗
ét (X) by Poincaré duality, obtaining from

(6.3.2) a map

f∗ : H∗ét(X)→ H∗+2n−2m
ét (Y ).

In particular, we define the cycle class of X in Y to be f∗(1) =: clY (X). Unwrap-
ping the definition, the class clY (X) is characterized by the identity∫

X

f∗γ =

∫
Y

clY (X) ^ γ for all γ ∈ H∗(Y ).

We recall some basic properties of this pushforward. The proofs are all immediate
from the definition except the last, which is [FK88, Proposition 2.7].

• It is functorial.
• We have the product formula

f∗(α ^ f∗β) = (f∗α) ^ β. (6.3.3)

• If X ↪→ Y is a closed embedding, then the map H∗X(Y ) → H∗ét(Y ) sends
sX/Y 7→ clY (X).

Proof of Lemma 6.9. We now apply the preceding discussion to the case Y = X ×
X, with f being the diagonal embedding. By Lemma 6.6 we have

Sqi sX/X×X = pr∗1(wi) ^ sX/X×X ∈ H2n+i
X (X ×X).
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Since the map H∗X(X × X) → H∗ét(X × X) is induced by a pullback (§5.1) it is
automatically compatible with Steenrod operations, so it sends

Sqi sX/X×X // Sqi clX×X(X)

pr∗1(wi) ^ sX/X×X // pr∗1(wi) ^ clX×X(X)

Hence by Definition 6.10 and (6.3.3) we have

(pr1)∗(pr∗1(wi) ^ clX×X(X)) = wi ^ (pr1)∗f∗1 = wi.

�

6.3.3. Step 3. At this point, the classical proof of Wu’s theorem proceeds by com-
puting (pr1)∗clX×X(X) in a second way which is predicated upon the Künneth
formula

H∗ét(X ×X) ∼= H∗ét(X)⊗H∗ét(X),

which unfortunately breaks down in our situation. To explain how to repair the
argument, we need to make some observations. Note that H∗ét(X × X) acts by
correspondences on H∗ét(X), inducing the map

H∗ét(X ×X)→ End(H∗ét(X)) (6.3.4)

given explicitly by sending x ∈ H∗ét(X ×X) to the endomorphism

γ 7→ (pr1)∗(x ^ pr∗2 γ). (6.3.5)

Lemma 6.11. Let ∆ := clX×X(X) ∈ H2 dimX
ét (X × X). Then the map (6.3.4)

sends ∆ 7→ Id.

Proof. Let f : X ↪→ X ×X denote the inclusion of the diagonal. Applying (6.3.5)
to x = ∆ yields the endomorphism

γ 7→ (pr1)∗(f∗(1) ^ p∗2γ) = (pr1)∗f∗(1 ^ f∗ pr∗2 γ).

But since pr1 ◦f = pr2 ◦f = Id, this last expression is just γ again. �

The map (6.3.4) can be interpreted as a “pushforward” in the following way.
The projection morphisms pr1,pr2 : X ×X → X induce maps pr∗1,pr∗2 : H∗ét(X)→
H∗ét(X ×X). From this we get a pullback map

H∗ét(X)⊗H∗ét(X)
pr∗1^pr∗2−−−−−−→ H∗ét(X ×X).

Therefore, we get a dual map in the opposite direction

H∗ét(X ×X)∨ → H∗ét(X)∨ ⊗H∗ét(X)∨.

Each of these groups is canonically self-dual via Poincaré duality, so we can identify
this with a map

ϕ∗ : H∗ét(X ×X)→ H∗ét(X)⊗H∗ét(X). (6.3.6)

Note that this map increases the total degree by 1. It is a straightforward exercise
in unraveling the definitions to see that this map is the same as (6.3.4), once one
makes the appropriate identifications.



ÉTALE STEENROD OPERATIONS AND THE ARTIN-TATE PAIRING 29

Let (p′1)∗ and (p′2)∗ denote the “pushforward” maps

H∗ét(X)⊗H∗ét(X)

H∗ét(X) H∗ét(X)

(p′1)∗ (p′2)∗

which are dual to the obvious “pullbacks”

H∗ét(X)⊗H∗ét(X)

H∗ét(X) H∗ét(X)

(p′1)∗ (p′2)∗

Remark 6.12. The maps (p′i)
∗ and (p′i)∗ are not induced by maps of varieties;

indeed H∗ét(X) ⊗ H∗ét(X) is not the cohomology of a variety over Fq. However,
H∗ét(X)⊗H∗ét(X) is the cohomology of the pro-space Ét(X)× Ét(X). This means,
for instance, that it is equipped with a natural cup product, which is just the tensor
product of the cup products on H∗ét(X). Now, (p′i)

∗ and (p′i)∗ are induced by maps
of pro-spaces, namely the obvious projection maps

p′i : Ét(X)× Ét(X)→ Ét(X).

This implies that (p′i)
∗ and (p′i)∗ share the nice formal properties that are enjoyed

by all pullbacks and pushforwards: for example, we will use that they satisfy the
projection formula, and that (p′i)

∗ commutes with Steenrod operations.
However, it is not really necessary to use étale homotopy theory to see all this.

We can just formally define the cup product on H∗ét(X)⊗H∗ét(X) to be the tensor
product of the cup products on H∗ét(X), and formally define Sq on H∗ét(X)⊗H∗ét(X)
to be the tensor product of Sq⊗Sq. It is an exercise in elementary algebra to check
that this induces a well-defined action of the Steenrod algebra, satisfying all the
axioms of §3.4. Similarly, the projection formula for (pi)∗ boils down to a tautology.

Lemma 6.13. Let X be a smooth proper variety over a finite field. Let {ei} be a
basis for H∗ét(X) and {fi} the dual basis under Poincaré duality. Then, letting ∆
be as in Lemma 6.11, we have

ϕ∗∆ =
∑
i

ei ⊗ fi (6.3.7)

where ϕ∗ is as in (6.3.6).

Proof. Lemma 6.11 says that the action of ∆ induced on H∗(X) by (6.3.5) is just
the identity map. Therefore, it suffices to show that the right hand side of (6.3.7)
acts as the identity on H∗(X), but this is just a straightforward linear algebra
exercise about dual bases. �

Since the pullback H∗ét(X)
pr∗1−−→ H∗ét(X ×X) obviously factors through

H∗ét(X)
(p′1)∗−−−→ H∗ét(X)⊗H∗ét(X)

pr∗1^pr∗2−−−−−−→ H∗ét(X ×X)

(morally, “pr1 = ϕ ◦ p′1”) we have

(p1)∗ = (p′1)∗ϕ∗. (6.3.8)
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Now, let us summarize where we are. Combining Lemma 6.9 and (6.3.8), we
know that

w = (p1)∗ Sq ∆ = (p′1)∗ϕ∗ Sq ∆. (6.3.9)

Lemma 6.13 gives us an expression for ϕ∗∆, hence also Sqϕ∗∆. If we could com-
mute ϕ∗ and Sq, then this would give us a formula for ϕ∗ Sq ∆. But although
Steenrod squares commute with pullbacks, they do not in general commute with
pushforwards. This is the key problem (note that the whole issue disappears when
one has the Künneth formula, as in classical algebraic topology or in algebraic ge-
ometry over separably closed fields). To address this issue, in the last step of the
proof, we will establish:

Proposition 6.14. Let X be a smooth proper variety over a finite field, and ϕ∗ be
as in (6.3.6). Then we have Sqϕ∗ = ϕ∗ Sq.

Assuming Proposition 6.14 for now (it will be shown in §6.3.4), we complete the
rest of the proof of Theorem 6.5. Let {ei} be a basis for H∗ét(X) and {fi} the dual
basis under Poincaré duality, as above. By (6.3.9), Proposition 6.14, and Lemma
6.13 we have

w = (p′1)∗ Sq

(∑
i

(p′1)∗ei ^ (p′2)∗fi

)
. (6.3.10)

By the Cartan formula and the projection formula (which hold by Remark 6.12),
we have

(p′1)∗ Sq

(∑
i

(p′1)∗ei ^ (p′2)∗fi

)
=
∑
i

(p′1)∗ ((p′1)∗ Sq ei ^ (p′2)∗ Sq fi)

=
∑
i

Sq ei ^ (p′1)∗(p
′
2)∗ Sq fi

=
∑
i

Sq ei ⊗ (p′1)∗(p
′
2)∗ Sq fi. (6.3.11)

Now, unraveling the definitions shows that

(p′1)∗(p
′
2)∗γ =

∫
γ for all γ ∈ H∗ét(X)

where the right hand side is viewed in Z/2Z ∼= H0
ét(X). (It is also easy to see

directly that this must be the case for degree reasons, since the left side can only
be non-zero for γ in top degree.) Combining this with (6.3.10) and (6.3.11), we find
that

w =
∑
i

Sq ei ·
∫

Sq fi =
∑
i

Sq ei ·
∫
v ^ fi = Sq

(∑
i

ei ·
∫
v ^ fi

)
= Sq v,

with the last equality using that {ei} and {fi} are dual bases. �

6.3.4. Step 4. This step is devoted to the proof of Proposition 6.14. As foreshad-
owed in Remark 6.12, the difficulty stems from the inability to realize H∗ét(X) ⊗
H∗ét(X) as the cohomology of an actual variety over Fq. For this reason it is useful
to pass to étale topological type, where we can interpret

H∗ét(X)⊗H∗ét(X) = H∗ét(Ét(X)× Ét(X)).
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The idea of the argument. The basic geometric idea is that the map

ϕ∗ : H∗ét(X ×X)→ H∗ét(X)⊗H∗ét(X) (6.3.12)

looks like a pushforward map on cohomology induced by a “homotopy quotient
by Ẑ” at the level of geometric objects. Proposition 6.14 is then motivated by
the well-known fact (which we prove below in Proposition 6.23) that Steenrod
operations commute with pushforward through a homotopy quotient by Z, and
that cohomologically (with finite coefficients) homotopy quotients by Z and by Ẑ
look the same.

To see why the “basic geometric idea” should be true, our heuristic is that for
any field k and Gk := Gal(k/k), we should have

“ Ét(X) = Ét(Xk)hGk
”. (6.3.13)

Here if a group G acts on a space Y then we write YhG := (Y × EG)/G for the
“homotopy quotient of Y by G”, where EG is some contractible space with a free
G action, and the quotient is for the (free) diagonal action. The heuristic (6.3.13)
then suggests that

Ét(X ×k X) ∼= Ét((X ×k X)k)hGk
∼= Ét(Xk ×k Xk)hGk

∼= (Ét(Xk)× Ét(Xk))hGk

where the quotient is for the action of the diagonal Gk (leaving a residual action of
Gk), while

Ét(X)× Ét(X) ∼= Ét(Xk)hGk
× Ét(Xk)hGk

∼= (Ét(Xk)× Ét(Xk))h(Gk×Gk).

Hence we would have a homotopy quotient

Ét(X ×k X)→ Ét(X ×k X)hGk
∼= Ét(X)× Ét(X)

whose induced pushforward on cohomology agrees recovers (6.3.12).
In a previous version of this paper, we used some complicated gymnastics in

cohomology as a substitute for the fact that we did not know how to rigorously
formulate (6.3.13). We are very grateful to an anonymous referee for informing us
that there already exists a framework to handle this sort of issue, namely the “rel-
ative étale homotopy theory” developed in [HS13], [BS16]. This formalism makes
the argument much more efficient and transparent, so we review it next.

Relative étale homotopy theory. If X is a variety over a field k and L/k is
a finite extension, then Ét(XL) is a pro-object in simplicial sets equipped with
an action of Gal(L/k) as a pro-object. However, it would be better to work with
an object that enjoys a level-wise action, rather than an action as a pro-object. In
[HS13] Harpaz-Schlank defined a refined variant of the étale homotopy type denoted
Ét/k(X), called the relative étale homotopy type [HS13, §9.2.3]8 of X, which is a
pro-object in the homotopy category of Gk-spaces (which means by definition that
every simplex has open stabilizer)9. The point is that Ét/k(X) is equipped with a
level-wise action of Gk. In [BS16] Barnea-Schlank lifted this construction to the
pro-category of Gk-spaces, and it is this refinement that we will use in this paper.
The improvement is analogous to Friedlander’s refinement of the Artin-Mazur étale
homotopy type, which is a pro-object in the homotopy category of spaces, to the

8Note that the ArXiv version of [HS13] is numbered differently from the published version.
9As in §3.2, we will refer to simplicial sets as “spaces” to make the exposition smoother.
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étale topological type discussed in §3.2, which is a pro-object in spaces, although
the methods of [BS16] are very different.

Here is a very brief summary of the difference between Ét/k(X) and Ét(X); see
[HS13, §9.2.3] and [BS16, §8] for the details. The basic idea is that the usual defi-
nition of Ét(X) attaches to each hypercovering U. of X the simplicial set π0(U.) of
its connected components. On the other hand, Ét/k(X) assigns to U. the simplicial
set π0(U. ×k k), which is equipped with an obvious Gk-action.

Definition 6.15 ([HS13, §9.6.2]). Given a Gk-space Y , we define the homotopy
quotient YhGk

to be the pro-space

YhGk
:= {(Y × E(Gk/H))/Gk}H

where the index set runs over i and open normal subgroups H / Gk.
Given a pro-Gk-space {Yi}i, we define the homotopy quotient ({Yi}i)hGk

to be
the pro-space

({Yi}i)hGk
:= {(Yi × E(Gk/H))/Gk}i,H .

where the index set runs over open normal subgroup H / Gk.

Remark 6.16. Note that (Y × E(Gk/H))/Gk = (Y/H)h(Gk/H). In particular, if
H acts trivially on Y then (Y × E(Gk/H))/Gk = Yh(Gk/H).

We next begin discussing the key properties of Ét/k(X). Actually, we replace
Ét/k(X) by its Postnikov truncation denoted Ét/k(X)] in [HS13], which does not
alter the cohomology. This is a technical device to guarantee certain finiteness
conditions levelwise; for simplicity of notation we will omit the ].

(1) By [HS13, Proposition 9.82], we have a homotopy equivalence

Ét/k(X)hGk

∼−→ Ét(X).

(2) By the cofinality of the diagonal in the product of a left filtered index
category with itself, [HS13, Proposition 9.82] also implies that we have a
homotopy equivalence

(Ét/k(X)× Ét/k(X))hGk×hGk

∼−→ Ét(X)× Ét(X).

(3) Finally, [HS13, Proposition 9.19] asserts that the underlying pro-space of
Ét/k(X) (obtained by forgetting the Gk-action) is homotopy equivalent to
Ét(Xk). Denote this forgetful functor by Oblv.

Now, Ét/k(X)×Ét/k(X) is naturally a pro-Gk×Gk-space. Taking the homotopy
quotient for the diagonal Gk-action leaves a residual Gk-action, making (Ét/k(X)×
Ét/k(X))hGk

a pro-Gk-space, so that we can take the homotopy quotient again.
Putting the facts (1)-(3) together, we realize the homotopy quotient map (6.3.13)
as the vertical map between pro-spaces in the diagram below:

Oblv((Ét/k(X)× Ét/k(X))hGk
) (Ét/k(X ×k X))hGk

Ét(X ×k X)

(Ét/k(X)× Ét/k(X))h(Gk×Gk) Ét(X)× Ét(X)

/hGk

∼ ∼

∼

(6.3.14)
Comparing homotopy quotients by Z and Ẑ. Let Y := {Yi}i be any pro-Ẑ-
space. We can restrict the Ẑ-action to a Z-action, and then form YhZ. By Definition
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6.15 and Remark 6.16, we have YhZ = {(Yi)hZ}i while YhẐ = {(Yi/nZ)h(Z/nZ)}i,n.
Thus there is a canonical map of pro-Gk-spaces:

YhZ → YhẐ. (6.3.15)

Our next goal is to show that if Y = Ét/k(X) arises as the relative homotopy type
of a variety X/Fq, then (6.3.15) induces an isomorphism on cohomology.

Lemma 6.17. Let X be a variety over Fq. Then the natural map

H∗(Ét/k(X)hZ;Z/2Z)← H∗(Ét/k(X)hẐ;Z/2Z)

is an isomorphism.

Proof. We consider the pro Gk-space Y = (Yi) := Ét/k(X). The map on cohomol-
ogy induced by (6.3.15) is

lim−→
i

H∗((Yi)hZ)← lim−→
i

lim−→
n

H∗((Yi)h(Z/nZ)).

Therefore it will certainly suffice to prove that

H∗((Yi)hZ)
∼←− lim−→

n

H∗((Yi/nZ)h(Z/nZ)) (6.3.16)

individually for each i. Moreover, since we assume that Y = Ét/k(X) we can
take Yi to be excellent, i.e. we can assume that the Ẑ-action on Yi already factors
through a finite quotient [HS13, §9.2.3, p.296-297]. Hence, by restricting to a cofinal
subcategory of the indexing category, and renaming Yi to Y , we may assume that Y
is a Ẑ-space (as opposed to pro-space) on which the action factors through Z/nZ.
Then, obviously, for any n | N we have

(Y/NZ)h(Z/NZ) = Yh(Z/NZ).

The identity map Y → Y is obviously equivariant for the group homomorphism
Z→ Z/NZ, and induces the map of spectral sequences

Hr(Z;Hs(Y )) +3 Hr+s(YhZ)

Hr(Z/NZ;Hs(Y )) +3

OO

Hr+s(Yh(Z/NZ))

OO
(6.3.17)

This map of spectral sequences is not necessarily an isomorphism for any fixed
N , but after taking the direct limit as N runs over all positive multiples of n, it
becomes an isomorphism by the well-known comparison of group cohomology for
Ẑ and Z with finite coefficients:

Hr(Z;Hs(Y )) Hr(Z;Hs(Y )) Hr+s(YhZ)

Hr(Ẑ;Hs(Y )) lim−→n|N H
r(Z/NZ;Hs(Y )) Hr+s(YhẐ)

∼ ∼ (6.3.18)

Now (6.3.18) implies that the natural map in (6.3.16) induces an isomorphism on
associated gradeds, hence an isomorphism. �
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More on pushforwards in cohomology. We now turn towards studying the
pushforward on cohomology. We begin by formalizing the construction of the push-
forward in §6.3.2. To help distinguish varieties from pro-spaces, we will use boldface
letters to denote pro-spaces in this part.

Definition 6.18. We say that a pro-space Y has Poincaré duality if there exists an
n and an isomorphism

∫
: Hn(Y;Z/2Z) ∼= Z/2Z such that the cup product induces

a perfect pairing

Hi(Y;Z/2Z)×Hn−i(Y;Z/2Z)
^−→ Hn(Y;Z/2Z)

∫
−→ Z/2Z.

(This uniquely determines n.) We denote the non-zero element in Hn(Y;Z/2Z) by
µY, and call it the fundamental class of Y. From

∫
we obtain a functional

H∗(Y;Z/2Z)
project−−−−→ Hn(Y;Z/2Z)

∫
−→ Z/2Z

which we will also denote by
∫
.

Definition 6.19. Let f : W → Y be a map of pro-spaces with Poincaré duality,
with fundamental classes µW ∈ Hm(W) and µY ∈ Hn(Y). Then we have a
pullback map on cohomology

f∗ : H∗(Y)→ H∗(W)

which induces a dual map

(f∗)∨ : H∗(W)∨ → H∗(Y)∨.

We define the pushforward on cohomology

f∗ : Hi(W)→ Hi+n−m(Y)

to be the map (f∗)∨, where the identifications

Hi(W) = Hm−i(W)∨ and Hi+n−m(Y) = Hm−i(Y)∨

are induced by Poincaré duality. It is easily checked that f∗ takes µW 7→ µY.

In particular, if W = Ét(X) for some smooth proper variety X over Fq or ksep,
then W inherits Poincaré duality from X. If the map f : W → Y arises from a
map of varieties X → V , then the pushforward f∗ tautologically agrees, under the
identifications H∗(W) = H∗ét(X) and H∗(Y) = H∗ét(V ), with the pushforward we
defined in §6.3.2. In addition, Ét(X)× Ét(X) has Poincaré duality by the Künneth
theorem. Hence, by the horizontal homotopy equivalences in (6.3.14) we find that
(Ét/k(X)× Ét/k(X))hGk

and (Ét/k(X)× Ét/k(X))h(Gk×Gk) have Poincaré duality.
It is tautological that the diagram

H∗(Ét(X ×Fq
X)) H∗(Ét(X)× Ét(X))oo

H∗ét(X ×Fq
X) H∗ét(X)⊗H∗ét(X)oo

commutes, and dualizing it shows the following Lemma.
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Lemma 6.20. Let X be smooth and proper over Fq. Then the map

ϕ∗ : H∗ét(X ⊗Fq
X)→ H∗ét(X)⊗H∗ét(X)

defined in §6.3.2 coincides with the pushforward in cohomology (as defined in Def-
inition 6.19) induced by the vertical map in (6.3.14)

H∗(Oblv(Ét/Fq
(X)× Ét/Fq

(X))hẐ)→ H∗((Ét/Fq
(X)× Ét/Fq

(X))h(Ẑ×Ẑ))

under the identifications obtained by §3.2 and the horizontal equivalences in (6.3.14):

H∗(Oblv(Ét/Fq
(X)× Ét/Fq

(X))hẐ) = H∗ét(X ×Fq
X),

H∗((Ét/Fq
(X)× Ét/Fq

(X))h(Ẑ×Ẑ)) = H∗ét(X)⊗H∗ét(X).

There are other constructions of the pushforward in cohomology which are more
useful for studying the interaction with Steenrod operations, so we prove a general
criterion for recognizing when a map on cohomology coincides with the pushforward
as we have defined it.

Lemma 6.21. Suppose f : W→ Y is a map of (pro-)spaces with Poincaré duality
so that f∗ is defined as in Definition 6.19. Keeping the notation of Definition 6.19,
suppose f ′∗ : H∗(W)→ H∗+n−m(Y) is another map satisfying:

(1) f ′∗(µW) = µY, and
(2) f ′∗(x ^ f∗γ) = f ′∗x ^ γ for all x ∈ H∗(W) and γ ∈ H∗(Y).

Then f ′∗ = f∗.

Remark 6.22. In other words, Condition (2) is saying that f ′∗ is a module homo-
morphism for H∗(Y), for its natural action on H∗(Y) and its action on H∗(W)
via f∗.

Proof. By Poincaré duality on Y, it suffices to show that∫
Y

f ′∗x ^ γ =

∫
Y

f∗x ^ γ for all x ∈ H∗(W), γ ∈ H∗(Y). (6.3.19)

By definition (Definition 6.19), we have∫
Y

f∗x ^ γ =

∫
W

x ^ f∗γ, (6.3.20)

Substituting (6.3.20) into (6.3.19) and using condition (2), we see that we need to
show that ∫

Y

f ′∗(x ^ f∗γ) =

∫
W

x ^ f∗γ. (6.3.21)

By the definition of the fundamental class, we can write

x ^ f∗γ =

(∫
W

x ^ f∗γ

)
µW + (lower degree terms),

hence condition (1) of the Lemam implies that

f ′∗(x ^ f∗γ) =

(∫
W

x ^ f∗γ

)
µY + (lower degree terms). (6.3.22)

Substituting (6.3.22) into (6.3.21), we have∫
Y

f ′∗(x ^ f∗γ) =

(∫
W

x ^ f∗γ

)
·
(∫

Y

f ′∗µW

)
=

∫
W

x ^ f∗γ
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where the last equality follows from condition (1) that f ′∗µW = µY and the fact
that the lower degree terms “integrate” to 0 by definition. �

We use this discussion to study the pushforward in cohomology induced by a
homotopy quotient of spaces M → MhZ. The following proposition is presumably
well-known, but we have included a proof since we could not find a reference.

Proposition 6.23. Let M be any simplicial set with Z-action. If

f : M →MhZ

denotes the homotopy quotient map, then we can define a pushforward map

f∗ : Hi(M)→ Hi+1(MhZ).

If M has Poincaré duality, then so does MhZ and f∗ agrees with the pushforward
defined in Definition 6.19.

Moreover, for all x ∈ H∗(M) we have

Sq ◦f∗(x) = f∗ ◦ Sq(x).

Proof. We can take R = EZ as a model for EZ, so that a model for MhZ is
(M ×R)/Z. (The map M → (M ×R)/Z is what might classically be called the
“inclusion of a fiber into the mapping torus”.) With this model there is an evident
homeomorphism

((M ×R)/Z,M) ∼= (S1 ∧ (M+),pt)

where the left side means the pointed space obtained from (M×R)/Z by collapsing
M × {0} to a point.

We always have a pushforward map H∗(M)→ H∗+1(MhZ) defined as the com-
position

H∗(M) H∗+1(MhZ)

H∗+1(S1 ∧ (M+))

a
∼ b (6.3.23)

IfM has Poincaré duality then so doesMhZ by the same reasoning as in §2.1, so we
have fundamental classes µM and µMhZ

and Definition 6.19 supplies another notion
of pushforward H∗(M) → H∗+1(MhZ). In this case, the alternate pushforward
(6.3.23) evidently takes µM 7→ µMhZ

, and is an H∗(MhZ)-module homomorphism
since b is induced by a map of spaces MhZ → S1 ∧ (M+). Therefore, Lemma 6.21
shows that the two notions of pushforward coincide.

Finally, the homomorphism b commutes with Steenrod operations because it is
induced by the map of spaces, and the map a commutes with Steenrod operations
because it is a suspension isomorphism, and Steenrod operations always commute
with suspension (§3.4). �

The punchline. We now finally complete the proof of Proposition 6.14. We
transfer the Poincaré duality structure

from H∗(Ét(X ×Fq
X)) to H∗((Ét/k(X)× Ét/k(X))hZ)

and
from H∗(Ét(X)× Ét(X)) to H∗((Ét/k(X)× Ét/k(X))h(Z×Z))
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using the horizontal isomorphisms in (6.3.14) plus Lemma 6.17. Then Definition
6.19 furnishes a notion of pushforward

H∗((Ét/k(X)× Ét/k(X))hZ)→ H∗((Ét/k(X)× Ét/k(X))h(Z×Z)) (6.3.24)

which by Lemma 6.20 is compatible the map in Proposition 6.14 in the sense that
the following diagram commutes:

H∗((Ét/k(X)× Ét/k(X))hZ) // H∗((Ét/k(X)× Ét/k(X))h(Z×Z))

H∗ét(X ×Fq
X)

ϕ∗
// H∗ét(X)⊗H∗ét(X)

On the other hand, we may write (Ét/k(X)× Ét/k(X))hZ = {Ui}i, with each Ui
being a Z-space. Then by Lemma 6.21 the map (6.3.24) agrees with the colimit of
the levelwise pushforwards

H∗(Ui)→ H∗((Ui)hZ),

each of which commutes with Steenrod operations by Lemma 6.23. �

7. The obstruction to being alternating

7.1. Lifting Wu classes to integral cohomology. The goal of this subsection
is to prove that Wu classes lift to integral cohomology, which will turn out to be
important later.

Lemma 7.1. Every Wu class vs can be expressed as a polynomial in the Stiefel-
Whitney classes {wk}.

Proof. We induct on s. The base case is v0 = w0 = 1. Consider the equation

Sq v = w

from Theorem 6.5. Equating terms in cohomological degree s, we have

vs + Sq1 vs−1 + . . . = ws.

By the induction hypothesis each term vs−i is a polynomial in the Stiefel-Whitney
classes, so by the Cartan formula for Steenrod squares (§3.4) and Lemma 5.4,
each Sqi vs−i is a polynomial in the Stiefel-Whitney classes. Then solving for vs
completes the induction. �

Corollary 7.2. The Wu class vs ∈ Hs
ét(X;Z/2Z) is the reduction of a class in

Hs
ét(X;Z2(ds/2e)).

Proof. By Lemma 7.1 we can express vs as a polynomial Ps({wi}) in just the
Stiefel-Whitney classes. Using Theorem 5.10, rewrite Ps({wi}) as a polynomial in
the (reductions of) Chern classes and α.

Note that the Chern classes all live in even cohomological degree while α has
degree 1 and α2 = 0. Therefore, if s = 2k is even then this polynomial can be
written without α, while if s = 2k + 1 is odd then it can be written in the form
αP ′s({ci}). In any case, Theorem 5.10 tells us that the Chern classes lift to integral
cohomology, and so does α by Remark 5.9. �
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7.2. Proof of the main theorem. We now combine the preceding ingredients to
prove Theorem 2.7, which as already noted implies Theorem 1.3. We wish to show
that

x ^ β(x) = 0 for all x ∈ H2d
ét (X;Z/2nZ(d)).

Theorem 4.4 tells us that

x ^ β(x) = S̃q
2d

(β(x)). (7.2.1)

Then Lemma 3.12 implies that

S̃q
2d

(β(x)) = [2n−1] ◦ Sq2d(β(x)), (7.2.2)

where β(x) denotes the reduction of β(x) mod 2, and the notation [2n−1] is as in
Lemma 3.12.

By the definition of the Wu classes in Theorem 6.5, we have

S̃q
2d

(β(x)) = [2n−1](v2d ^ β(x)). (7.2.3)

It is immediate from the definition of [2n−1] that

[2n−1](v2d ^ β(x)) = ([2n−1]v2d) ^ β(x). (7.2.4)

Next, since β is a derivation we have

([2n−1]v2d) ^ β(x) = β([2n−1]v2d ^ x)− β([2n−1]v2d) ^ x. (7.2.5)

Stringing together (7.2.1), (7.2.2), (7.2.3), and (7.2.4), it suffices to show that (7.2.5)
is 0 for all x.

Lemma 7.3. We have β([2n−1]v2d) = β2,2n(v2d) where β2,2n is the boundary map
for

0→ Z/2nZ(d)
2−→ Z/2n+1Z(d)→ Z/2Z(d)→ 0.

Proof. This follows immediately from the commutative diagram:

0 Z/2nZ(d) Z/2n+1Z(d), Z/2Z(d) 0

0 Z/2nZ(d) Z/22nZ(d) Z/2nZ(d) 0

2

2n−1 2n−1

2n

�

Referring to (7.2.5), we have β([2n−1]v2d ^ x) = 0 for all x by Lemma 2.4. But
we also have β2,2n(v2d) = 0 as this is the obstruction to lifting v2d toH2d

ét (X;Z/2n+1Z(d)),
and v even lifts to v2d ∈ H2d

ét (X;Z2(d)) by Corollary 7.2. By Lemma 7.3 we also
get β([2n−1]v2d) = 0, so the expression in (7.2.5) vanishes for all x, which completes
the proof. �

7.3. A criterion for the alternation of the linking form. The argument of
§7.2, and the ingredients going into it, can be adapted in a straightforward manner
to study linking form of an odd-dimensional manifold (§2.2). It yields the following
conclusion, which we state in the orientable case for simplicity.

Theorem 7.4. Let M be an orientable closed manifold of dimension 4d+ 1. Then
the linking form on M is alternating if and only if v2d lifts to H2d(M ;Z), i.e. if
and only if β̃(v2d) = 0 where β̃ is the boundary map for the short exact sequence

0→ Z
2−→ Z→ Z/2Z→ 0.
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Proof. The argument in §7.2, with the appropriate adaptations of its ingredients
to singular cohomology, shows that the linking form is alternating if and only if
β2,2n(v2d) = 0 for all n. Since H2d+1(M ;Z) is finitely generated, the reduction
maps induce an injection

H2d+1(M ;Z) ↪→ lim←−
n

H2d+1(M ;Z/2nZ),

which implies that ker β̃ =
⋂
n kerβ2,2n . �

Remark 7.5. The statement of Theorem 7.4 is still true for a non-orientable man-
ifold as in §2.2, if the short exact sequence is replaced with its twist by L. More-
over, our theory shows that the condition can be reformulated in terms of (twisted)
Stiefel-Whitney classes defined analogously to those in §5.2.

Example 7.6. Let us specialize Theorem 7.4 to recover the known criterion, which
was stated in §2.2, for the linking form on an orientable 5-manifold to be alternating.
Assume thatM is a smooth, orientable 5-manifold. Then Theorem 7.4 tells us that
the linking form is alternating if and only if v2 lifts to integral cohomology. By
Example 6.3, noting that w1 = 0 since M is orientable, we have v2 = w2(M) ∈
H2(M ;Z/2Z). Finally, it is well-known (see for example [LM89, Theorem D.2])
that M is spinc if and only if w2(M) lifts to integral cohomology.
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