
ARTHUR PACKETS

LECTURES BY WEE TECK GAN,
NOTES BY TONY FENG

These are notes for two lectures by Wee Teck Gan on Arthur packets for SO(n+1),
which formed a segment of a course by Wee Teck Gan and Hiraku Atobe.

1. Questions about multiplicity

Let F be a local field and WF its Weil group.
We’ll focus our discussion on G = SO(2n + 1), so Ĝ = Sp2n(C). However, much

of what we’ll say goes through for classical groups in general.
Let ψ : WDF ×SL2(C) → Ĝ be an Arthur parameter. Arthur attaches an A-

packet
ΠAr
ψ = {πη : η ∈ Irr(Aψ)}.

However, various basic questions about Πψ are not answered:
(1) Is πη multiplicity-free?
(2) Is ⊕ηπη multiplicity-free?

Why would one care about these questions? Local A-packets are local components
of summands in Adisc(G/k). If the answer to question (2) is “yes”, then Multiplicity
One holds for Adisc(G/k).

Theorem 1.1 (Moeglin-Renard). If F is p-adic, then
⊕

η πη is multiplicity-free.

This is a very difficult theorem, but see the exposition by Bin Xu.
In today’s lectures, we will focus on the case F = R or C.

Theorem 1.2 (Moeglin-Renard).
(1) If F = C, then multiplicity freeness holds.
(2) If F = R, then multiplicity freeness almost holds.

We’ll see later what the word “almost” means here.
The proof is not conceptual. They construct A-packets in an independent way,

and verify that this agree with Arthur’s by checking the endoscopic character rela-
tions. From the explicit construction, one verifies by inspection that the packets are
multiplicity-free.

We’ll restrict our attention to the case where F is archimedean.

2. Initial steps

Let ψ : WF × SL2(C)→ Sp2n(C) be an Arthur parameter. We compose with the
standard representation Sp2n(C) ↪→ GL2n(C); call the composite parameter ψGL.
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Viewing ψ as a representation of WF ×SL2(C), we decompose it into irreducibles
as

ψ =
⊕
i∈I

ψi.

For each i ∈ I, the irreducibility implies that ψi has the form

ψi = ρi ⊗ Sdi
where ρi is an irreducible representation ofWF and Sdi is an irreducible di-dimensional
representation of SL2. In the Archimedean case, the irreducible representations of
WF are 1-dimensional if F = C, and 1 or 2-dimensional if F = R. The 2-dimensional
representations correspond to discrete series of GL2(R).

The upshot is that dim ρi = 1 or 2, so by the local Langlands correspondence, ρi
gives rise to an irreducible representation τρi of GL1(F ) or GL2(F ). Furthermore, it
is part of the definition of Arthur parameters that ψ(WF ) is bounded. Hence ψ(WF )
corresponds to a tempered representation.

Set τψi to be the Langlands quotient of

τρi | · |
di−1

2 × τρi | · |
di−3

2 × . . .× τρi | · |
1−di

2

This is called a Speh representation. (The × notation means parabolic induction.)
Finally, define

τψ = ×i∈Iτψi . (2.1)
This is an irreducible unitary representation of G(F ).

3. Twisted endoscopic character identities

The Arthur packets are uniquely specified by the twisted endoscopic character
identities. We will briefly indicate the flavor of what these are.

The first condition is:
(Stability) Let sψ = ψ(− IdSL2) ∈ Sp2n(C). If Θπη is the Harish-
Chandra character of the representation πη, then we demand that
the sum

Θψ(sψ) :=
∑
η

η(sψ)Θπη

is a stably invariant distribution. (Here we write η(sψ) for the trace of
sψ under the representation η of Aψ.) The adjective “stably” means
invariant under conjugation by G(C), which is stronger than just
conjugation by G(R) (which is automatically satisfied).

Before we can explain the second condition, we need some background. Langlands-
Shelstad defined a transfer map from

Trans : Iθ(GL2n)→ SI(G)

where
• I(G) is the space of (regular semisimple) orbital integrals on G(R), which is
regarded as a space of distributions on C∞c (G), and SI(G) is the analogous
space of stable orbital integrals.
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• θ is the space of twisted orbital integrals with respect to θ ∈ GL2n, given by
θ(g) = w(tg−1)w−1 where

w =


1

−1
1

−1


Recall the definition of τψ from (2.1). Now we can state another condition.

Regarding Θψ as a function on SI(G), we demand that Trans∗(Θψ)
is the “θ-twisted trace of τψ”.

What is the θ-twisted trace? The representation τψ is θ-invariant, so we can
extend it to GL2n(F ) o θ. Then its “θ-twisted trace” is g 7→ |Tr(πψ(g, θ)|.

When sψ is trivial, we get the sum of θπη . If we can plug in more values of sψ, we
can isolate each Θπη .

For the other values, we need the “usual endoscopic character identities”. That is,
for all s ∈ Aψ we consider

Θψ(s) :=
∑

η(s)Θπη .

For s 6= sψ, Θψ(s) can be described as “endoscopic transfer of stable characters on
endoscopic groups of G”. In the case of G = SO(2n + 1), these endoscopic groups
are

Ha,b = SO(2a+ 1)× SO(2b+ 1)

with a+ b = n, ab 6= 0.
Why is this any better? We pretend we understand GL2n. The Ha,b would be

covered by induction. So we have reduced a question about SO(2n+1) to a question
about “simpler” groups.

4. Stratification of parameters

4.1. Reduction to good parity.

Lemma 4.1. Given ψ ∈ Ψ(G), we can write

ψ = ρ⊕ ψbp ⊕ ρ∨ : WF × SL2 → GL2n .

Let’s explain how we get this. Since ψ is self-dual, any summand ρ which is
not self-dual has to have ρ∨ appear as well. The self-dual representations preserve
a bilinear form which could be symplectic or orthogonal. Orthogonal summands
cannot occur in isolation, because an invariant summand has to have a symplectic
form, and Schur’s Lemma prohibits an irreducible summand from having both a
symplectic form and an orthogonal form. So such a thing occurs an even number
of types, which we group into ρ ⊕ ρ∨ again. Finally, the symplectic irreducible
summands are lumped together into ψbp.

Conclusion: ρ is the sum of non-self-dual summands or self-dual summands of
orthogonal type, and ψbp is the sum of self-dual summands of symplectic type.

The reasoning for writing things in this way is that

Aψ = Aψbp
.



4 LECTURES BY WEE TECK GAN

We let Ψbp ⊂ Ψ(G) be the subset of parameters ψ such that ψ = ψbp. They will be
called the A-parameters of good parity (“bon parity”).

We can reduce to understanding Ψbp:

Theorem 4.2. Let ψ ∈ Ψ(G), and write

ψ = ρ⊕ ψbp ⊕ ρ∨.
Let the Arthur packet of ψbp be

Πψbp
= {πbp,η : η ∈ Irr(Aψbp

)}.
Then:

• The representation πη := τGL
ρ o πbp,η of G is irreducible.

• Πψ = {πη : η ∈ Irr(Aψ) = Irr(Aψbp
)}.

The proof (of the second part) is based on the principle that “endoscopic transfer
commutes with parabolic induction”. (The same holds for Jacquet modules, which
are left adjoint to parabolic induction.)

Thus we have reduced to the “good parity part”.

4.1.1. Good parameters for F = C. For F = C, any A-parameter is of the form

ψ =
⊕
i∈I

χki,ti ⊗ Sdi

where χk,t is the irreducible character of WC = C× given by

z 7→
(
z

|z|

)k
(zz)t

Then the condition that ψ = ψbp forces χki,ti = 1 and di to be even.
Conclusion: in this situation, a “good parity” A-parameter necessarily has the

form
ψ =

⊕
i∈I

Sdi , di even.

Definition 4.3. Let F = R or C. Then ψ is unipotent if ψ|WC
= 1. We regard

WC ⊂WR as
1→WC →WR → Gal(C/R)→ 1.

If F = C, then Ψbp(G) = Ψunip(G). For ψ ∈ Ψbp(G), Barbasch-Vogan ’85 have
defined a packet

ΠBV
ψ .

Let ψ : SL2(C)→ Sp2n(C) = Ĝ. Then we get

dψ : sl2(C)→ ĝ = Lie(Ĝ).

Set λψ := 1
2dψ

(
1
−1

)
∈ ĥ ⊂ ĝ. We canonically identify ĥ ∼= h∗. Really, λψ is

really only well-defined modulo W , so we have a canonical element λψ ∈ h∗/W . We
then consider the infinitesimal character (λψ, λψ) ∈ h∗×h∗/W×W for G(C). (Some
doubling happened because we pass from real to complex groups.)
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Now, ψ also gives

dψ

(
0 1
0 0

)
∈ ĝ

a nilpotent conjugacy class in ĝ. The even-ness of di forces this conjugacy class to
be special in the sense of Lusztig.

Then there is a bijection (Lusztig-Spaltenstein) between special nilpotent orbits
on g and special nilpotent orbits on ĝ, denoted Oψ ↔ Ôψ.
Definition 4.4. We define

ΠBV
ψ = {π ∈ Irr(G) : inf(π) = (λψ, λψ),WF(π) = Oψ}.

Here WF is the “wavefront variety” that gives some measure of π, e.g. if π is generic
then WF(π) is regular nilpotent; if π is trivial then it’s the 0 orbit.

They showed:
• Every π ∈ ΠBV

ψ is unitary.

• There is a natural bijection ΠBV
ψ ↔ Irr(A

L
ψ), Lustzig’s quotient of Aψ. (Re-

ally they work on the group side, and use that there is an identification
Irr(A

L
ψ) = Irr(A(Oψ)

L

ψ).
• They verified the endoscopic relations. The input was writing down the
characters of ΠBV

ψ as parabolic inductions.

Theorem 4.5 (Moeglin-Renard). ΠBV
ψ = ΠAr

ψ .

Barbasch [2016, Howe’s 70th birthday proceedings] showed: ΠBV
ψ can be con-

structed by “iterated theta liftings”.

4.2. F = R. Next we turn to the case F = R. We know that irreducible represen-
tations of WR are 1 or 2-dimensional. We break into these parts:

ψ =

⊕
i∈I

ρki︸︷︷︸
2−dim

⊗Sdi

⊕
⊕
j∈J

χj︸︷︷︸
1−dim

⊗Sbj


For the 1-dimensional part, we need bi even, χ2

j = 1. The 2-dimensional part is more
complicated – the parity of ki determines whether ρki is orthogonal or symplectic,
and then di needs to have the opposite parity.

We will define consider chains of containments

Ψ(G) ⊃ Ψbp(G) ⊃ Ψvreg(G) ⊃ Ψunip(G).

What is Ψvreg(G)? It means k1 � k2 � k3 � . . .� kr � 0.
By definition, ψ ∈ Ψunip(G) ⇐⇒ ψ|WC

= 1, which happens iff I = ∅.
We also have ΨAJ(G) ⊂ Ψvreg(G), for “Adams-Johnson”, which is cut out by the

condition that |J | ≤ 1. (Morally J is as small as possible.)
We’ve seen that the study of Ψ(G) reduces to that of Ψbp(G) by parabolic induc-

tion. We’d like to similarly reduce to the lower echelons.
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4.2.1. Unipotent parameters. This case was explained by Moeglin. She showed that
for ψ ∈ Ψunip(G), ΠAr

ψ can be constructed by “iterated theta lifting”. Roughly it
goes like this. Peel off the largest piece of the parameter, thus getting a parameter
for a smaller group. By induction, you get a packet for the smaller group. Moeglin
shows that you can get the packet for the larger group by theta lifting. Thus you
reduce to the case of 1-dimensional representations, which are easy.

How do you check the endoscopic character identities? In principle things would be
OK if the endoscopic character identities behave well under the theta correspondence.
How then can you check the endoscopic character relations? Answer: use global
methods. We can globalize the parameter just by finding a global quadratic character
that restricts to the right local quadratic character. For these very degenerate global
parameters, Moeglin established (independently of the trace formula) the global
correspondence. Knowing the compatibility with the global correspondence amounts
to the endoscopic character relations.

The 1-dimensional characters lie inside Ψunip and ΨAJ.

4.2.2. Bootstrapping from unipotent to very regular. We take a hint from the special
case of Adams-Johnson parameters of the form

ψ =
⊕
i∈I

ρki ⊗ Sdi ⊕ signδ ⊗ Sb.

Then

ψ|WC×SL2 =
⊕

((χki + χ−1ki )⊗ Sdi)⊕ (1⊗ S2b).

This factors through the Levi∏
i∈I

GL(di,C)× Sp(2b,C).

and sends SL2 into the principal SL2 of each Levi, and WC to the center of each
Levi.

We’re missing information about ψ(j), where j ∈ WR/WC. It’s an element of
order 4 whose image normalizes this Levi. On each GL it acts as an outer automor-
phism, and does nothing on Sp(2b,C).

Now, L̂o 〈j〉 is the L-group of some twisted Levi L ⊂ G. Indeed, the Langlands
parameter lands in the normalizer by an outer automorphism of GL(di), so it looks
like the L-group of a unitary group. Conclusion: the twisted Levi has the form∏
i∈I U(di)× SO(2b+ 1).
The parameter ψ factors through

ψ : WR × SL2 → L̂o 〈j〉 ⊂ Ĝ.

Hence we can think of ψ as an A-parameter for L, such that ψ|SL2 is the principal
SL2 of L̂. This is the A-parameter of a 1-dimensional character, so ΠL

ψ is a set of
1-dimensional characters χψ of L.
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4.2.3. Adams-Johnson theory. For each w ∈ W (GR, TR)\W (GC, TC)/W (LC, TC)
we have a twisted Levi Lw ⊂ G of the form

∏
i∈I U(pi, qi) × SO(2b + 1). On each

Lw(R), we have χw,ψ : Lw(R)→ C×.
If these were actually Levis instead of twisted Levis, we do parabolic induction.

As a replacement, we use “cohomological induction”. Set πw(ψ) := Aqw(χw,ψ) where
qw is a θ-stable parabolic algebra of gC. Here θ is the Cartan involution.

(Think of this as the analogue of Deligne-Lusztig induction, which goes from
twisted Levis e.g. anisotropic tori. Cohomological induction is a real analogue of
Deligne-Lusztig induction. Morally, J.K. Yu’s construction of p-adic supercuspidals
is a p-adic “cohomological induction”.)

Set
ΠAJ
ψ = {πw(ψ) : w ∈ . . .W (GR, TR)\W (GC, TC)/W (LC, TC)}.

They defined ΠAJ
ψ → Irr(Aψ) and verified the usual endoscopic character relations.

Theorem 4.1 (Adams-Moeglin-Renard). ΠAJ
ψ = ΠAr

ψ .

What remains is to verify the twisted endoscopic relations. The proof is based
on a principle. What is it? We’re building the packets from very simple packets
by cohomological induction. So the heart of the proof comes down to showing that
endoscopic transfer commutes with cohomological induction.

In a more general case where |J | > 1, we have 1-dimensional characters on the GL-
part and unipotent parameters on the classical part. We do cohomological induction.

Why the restriction to “very regular”? The issue is with the construction πw(ψ) :=
Aqw(χw,ψ). The regularity lets you control this cohomological induction, e.g. it’s
irreducible.

To go from “very regular” to “good parity”, you use “Zuckerman’s translation
functor”. The principle at use is “translation functor commutes with endoscopic
transfer”. But the translation functor is not an equivalence, so it collapses some
things. This is in why we only “almost” know multiplicity-freeness: at the step of
applying Zuckerman’s translation functor, some representations could be collapsed.
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