Limit linear series and distribution of Weierstrass points

Omid Amini Notes by Tony Feng

1 Statement of Main Theorem

First let me recall the meaning of equidistribution. Let *S* be a compact topological space and μ a measure on *S*. Suppose that for each *n*, we are given a multiset $W_n \subset S$ of finite size.

Definition 1.1. We say that W_n is equidistributed in (S, μ) if for any continuous function $f: S \to \mathbb{R}$,

$$\frac{1}{|W_n|} \sum_{x \in W_n} f(x) \to \int f_S \, d\mu.$$

Example 1.2. For $S = S^1$ with the Lebesgue measure, the "multiples" of an irrational α are equidistributed.

Let *L* be an ample line bundle of degree *d* and rank $r \ge 1$ on *X*. For $x \in X(\overline{K})$, you can consider the set

$$\operatorname{ord}_{x}(f) \mid f \in H^{0}(L) = \{a_{0}^{x} < a_{1}^{x} < \ldots < a_{r}^{x}\}.$$

We define the *Weierstrass multiplicity of x* to be

$$\omega(x) = \sum_{i=0}^{r} (a_i^x - i).$$

There is a formula for the number of Weierstrass points: (r + 1)d + r(r + 1)(g - 1). This is a good way to write the result because the points are the zeros of the Wronskian, which is a section of $L^{\otimes (r+1)} \otimes \omega_X^{r(r+1)/2}$.

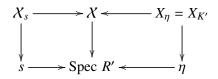
Theorem 1.3 (Amini). Let X/K be smooth proper urve and L an ample bundle on X. Let W_n be the set of Weierstrass points of $L^{\otimes n}$. Then W_n is equidistributed in the Berkovich analytic spectrum $X_{\overline{K}}^{an}$ with respect to the Zhang measure.

We will try to give another formulation of this theorem (and measure) which is more explicit. This is a non-archimedean version of a theorem proved by Mumford and Neeman for a Riemann surface.

2 **Reformulation**

2.1 Preliminaries

Let X/K be a smooth proper curve over a complete discrete valuation field. Possibly by passing to a finite extension K'/K, we can consider a semistable, regular integral model



The special fiber is nodal. We form the dual graph of the special fiber, which has a vertex for each component and an edge for each node. We define

$$\ell(\{u,v\}) = \frac{1}{[K':K]}.$$

This now a weighted graph. Let Γ be the associated metric graph, which is precisely the geometric realization of this simplicial complex. If you make a further field extension, then the metric graph may grow some edges but the *core* is well-defined and stable.

Let $x \in X(K')$. Then we get a section $s \in X(R')$. There exists some vertex v such that Im $(s) \in X_v^{\text{sm}}$, and we take the $\tau(x) := v$. This gives a map $\tau \colon X(\overline{K}) \to \Gamma$.

2.2 Zhang measure

We have a genus function $g: \Gamma \to \mathbb{Z}_{\geq 0}$, such that g(v) is the genus of X_v . The Zhang measure is the sum of a "discrete part" and a "continuous part."

$$\mu_{Zh} = \frac{1}{g(x)} \left(\sum_{x \in \Gamma} g(x) \delta_x + \sum_{e \text{ edge of } \Gamma} F(e) d\theta \right)$$

where $d\theta$ is the Lebesgue measure on the interval of length $\frac{1}{[K':K]}$.

Let's explain what is the meaning of F(e). Suppose $e = \{u, v\}$. Then F(e) is the probability of a random walk arriving at v starting at u, without going through the edge $\{u, v\}$. (This is something like the "resistance between u and v" after deleting the edge e.)

Corollary 2.1. We have

1

$$\frac{\#\{Weierstrass \ points \ x \ with \ \tau(x) \in X_v^{sm}\}}{\#W_n} \to \frac{g(v)}{g(X)}.$$
2.

$$\frac{\#\{Weierstrass\ points\ x\ with\ \tau(x)\in X_{\nu}\}}{\#W_n}\to \frac{g(\nu)}{g(X)}+\frac{1}{g(X)}\sum_{e\sim\nu}F(e).$$