ARITHMETIC FUNDAMENTAL LEMMA

WEI ZHANG,
NOTES BY TONY FENG

Contents

1. Global motivation 1
2. Arithmetic fundamental lemma 2
3. The proof

1. Global motivation

1.1. BSD Conjecture. An early formulation of the BSD conjecture (not the one we use nowadays) said: let E / \mathbf{Q} be an elliptic curve.

$$
\prod_{p} \frac{\# E\left(\mathbf{F}_{p}\right)}{p}=\infty \Longleftrightarrow \# E(\mathbf{Q})=\infty
$$

One could view this as a local-global statement. The LHS has to do with points over finite fields, which is a purely local quantity, while the RHS is global.
1.2. Beilinson-Bloch Conjecture. A higher dimensional generalization was introduced by Beilinson and Bloch. Let X be a variety over a number field F.

$$
\operatorname{ord}_{s=0} L\left(H^{2 i-1}(X)(i), s\right)=\operatorname{rank} \mathrm{CH}^{i}(X)_{0}
$$

where $\mathrm{CH}^{i}(X)_{0}$ is the cohomologically trivial subgroup of the Chow group of codimension i cycles. This generalizes the "rank equality" aspect of BSD.

Remark 1.1. There is a p-adic variant, where you replace the Hasse-Weil L-function by a p-adic L-function. The algebraic object of relevance is the Bloch-Kato Selmer group.
1.3. Arithmetic Gan-Gross-Prasad. Now we will take X to be a Shimura variety. There is an "arithmetic Gan-Gross-Prasad Conjecture" for unitary Shimura varieties. To set it up, let $F / F_{0}=\mathbf{Q}$ be a quadratic imaginary extension, and $n \geq 1$. We define

$$
\mathcal{M}_{n}:=\left\{\left.(A, \iota, \lambda)\right|_{\iota: \mathcal{O}_{F} \rightarrow}(A, \lambda)=\operatorname{PPAD}(A) \quad \operatorname{sign}=(n-1,1)\right\} .
$$

Then $\mathcal{M}_{n}(\mathbf{C})$ is a finite disjoint union of ball quotients $\mathbb{D}_{n-1} / \Gamma$. There is a forgetful map $\mathcal{M}_{n} \rightarrow \mathcal{A}_{g=n}$.

There's a map $\mathcal{A}_{1} \times \mathcal{A}_{g-1} \rightarrow \mathcal{A}_{g}$. Let $\widetilde{\mathcal{M}}_{n}=\mathcal{M}_{1}^{*} \times \mathcal{M}_{n}$ where $*$ means the analogous definition for signature $(1,0)$ instead of $(0,1)$. Then there is the variant for \mathcal{M},

$$
\widetilde{\mathcal{M}}_{n-1}=\mathcal{M}_{1}^{*} \times \mathcal{M}_{n-1} \rightarrow \widetilde{\mathcal{M}}_{n}
$$

Date: September 18, 2019.

We consider the diagonal embedding

$$
\mathcal{M}_{n-1} \xrightarrow{\Delta} \widetilde{\mathcal{M}}_{n-1} \times \widetilde{\mathcal{M}}_{n}=: \mathcal{M}_{n, n-1}
$$

Conjecture 1.2. Let π be a generic automorphic representation, appearing in $H^{\mathrm{mid}}(X)$. Then:
(1) If $\operatorname{ord}_{s=\text { center }} L\left(H^{\text {mid }}(X)[\pi], s\right)=1$, then $\operatorname{rank} \mathrm{CH}^{n-i}(X)_{0}[\pi]=1$.
(2) We have $\left\langle\Delta_{\pi}, \Delta_{\pi}\right\rangle_{B B}=L^{\prime}(\pi, s=$ center $)$.

Remark 1.3. For $n=2$, this conjecture is essentially the Gross-Zagier formula.
For f in a suitable Hecke algebra, one can consider

$$
\langle f * \Delta, \Delta\rangle_{G S}
$$

where $\langle\cdot, \cdot\rangle_{G S}$ is the Gillet-Soulé pairing on arithmetic Chow groups (defined unconditionally). Here Δ is viewed in the arithmetic Chow group $\widehat{\mathrm{CH}}\left(\widetilde{M}_{n, n-1}\right)$.
Conjecture 1.4 ("Arithmetic intersection conjecture" - Z, Rapoport-Smithling-Z). We have

$$
\langle f * \Delta, \Delta\rangle_{G S}=" \partial \mathbb{J}(f) "=" \sum_{\pi} L^{\prime}(\pi, 1 / 2) \lambda_{\pi}(f) . "
$$

This statement for all f allows one to separate the π.
For "nice" f, one can show that this can be expanded into local quantities,

$$
\begin{equation*}
\sum_{v} \operatorname{Int}_{v}(f)=\sum_{v} \partial \mathbb{J}_{v}(f) \tag{1.1}
\end{equation*}
$$

where if v is a p-adic place, then $\operatorname{Int}_{v}(f) \in \mathbf{Q} \log q_{v}$.
Theorem $1.5(\mathrm{Z}, 2019)$. If v is inert in $F / F_{0}, f_{v}$ is a unit in the unramified Hecke algebra, then

$$
\operatorname{Int}_{v}(f)=\partial \mathbb{J}_{v}(f)
$$

Remark 1.6. When v is split, both sides are easily shown to be 0 . One still has to handle the ramified and archimedean places.

2. Arithmetic fundamental lemma

We will describe the local objects appearing in 1.1). Now let F / F_{0} be an unramified quadratic extension of p-adic fields.

We introduce the unitary Rapoport-Zink spaces \mathcal{N}_{n}. These are used to uniformize a formal neighborhood of the supersingular locus in $\left.\mathcal{M}_{n}\right|_{F_{v}}$. The formal neighborhood of the supersingular locus can be expressed as $\coprod_{\Gamma_{i}} \mathcal{N}_{n} / \Gamma_{i}$, in analogy to the complex uniformization of $\mathcal{M}_{n}(\mathbf{C})$.

$$
\begin{aligned}
\mathcal{M}_{n}^{\mathrm{ss}} & =\bigcup \mathcal{N}_{n} / \Gamma_{i} \\
\mathcal{M}_{n}(\mathbf{C}) & =\bigcup \mathbb{D}_{n-1} / \Gamma_{i}^{\prime} .
\end{aligned}
$$

An embedding $V^{b} \hookrightarrow V$ induces $\delta_{n}: \mathcal{N}_{n-1} \rightarrow \mathcal{N}_{n}$, and $\Delta: \mathcal{N}_{n-1} \rightarrow \mathcal{N}_{n} \times \mathcal{N}_{n-1}$, as before. There's an action of $U(V)$ on \mathcal{N}_{n} and $G=U(V) \times U\left(V^{b}\right)$ on $\mathcal{N}_{n} \times \mathcal{N}_{n-1}$.

For $g \in G\left(F_{0}\right)$, we can define

$$
\operatorname{Int}(g)="(g \Delta) \cap \Delta "=\chi\left(\mathcal{N}_{n, n-1}, \mathcal{O}_{\Delta} \otimes^{\mathbb{L}} \mathcal{O}_{g \Delta}\right)
$$

This explains one side.

The other side is expressed in terms of orbital integrals. Consider $\mathrm{GL}_{n-1} \hookrightarrow \mathrm{GL}_{n}$ over F_{0}. We can consider the conjugation action of the subgroup.

$$
\operatorname{Orb}\left(\gamma, \mathbb{1}_{\mathrm{GL}_{n}\left(\mathcal{O}_{F_{0}}\right)}\right)=\int_{\mathrm{GL}_{n-1}\left(F_{0}\right)} \mathbb{1}_{\mathrm{GL}_{n}\left(\mathcal{O}_{F_{0}}\right)}\left(h^{-1} \gamma h\right)(-1)^{\text {val det } h}|h|^{s} d h
$$

Theorem 2.1 (Z '2019, The Arithmetic Fundamental Lemma). Let $F_{0}=\mathbf{Q}_{p}$. For $p>n$, we have

$$
\operatorname{Int}(g)=\left.\frac{d}{d s}\right|_{s=0} \operatorname{Orb}\left(\gamma, \mathbb{1}_{\mathrm{GL}_{n}\left(\mathcal{O}_{F_{0}}\right)}, s\right)
$$

3. The proof

The proof is based on an induction. A key step for this induction comes from global ingredients. To explain this, we consider an alternative intersection question. There is an intersection product

$$
\widehat{\mathrm{CH}}^{1}\left(\mathcal{M}_{n}\right)_{\mathbf{Q}} \times Z_{1}\left(\mathcal{M}_{n}\right)_{\mathbf{Q}} \rightarrow \mathbb{R}
$$

(Right now we pretend the \mathcal{M}_{n} is proper, for simplicity.) We define two families of cycles:

- Kudla-Rapoport divisors, denoted $Z(m)$.
- (derived) CM cycles, denoted ${ }^{\mathbb{L}} \mathrm{CM}(a)$.

We will explain the definition of CM cycles for Siegel modular varieties \mathcal{A}_{g}; the versions for \mathcal{M}_{n} are defined by pullback.

Naively, pick $a \in \mathbf{Q}[T]$ of degree $2 g$, and consider

$$
\operatorname{CM}(a):=\left\{\left(A, \lambda, \varphi \in \operatorname{End}^{0}(A)\right): \operatorname{char}(\varphi)=a\right\}
$$

Suppose a is irreducible. Then the generic fiber of $\operatorname{CM}(a)$ will be 0 -dimensional, but the special fibers may be positive-dimensional, depending on how far $\mathbf{Z}[a] \subset \mathbf{Q}[a]$ is from being a maximal order (which measures the non-flatness).

Consider the diagonal embedding

This diagram induces a virtual fundamental cycle ${ }^{\mathbb{L}} \mathrm{CM}(a) \in \mathrm{CH}_{1}(\mathrm{CM}(a))$. The pairing doesn't factor through rational equivalence. However it factors through a partial quotient, where you kill rationally trivial 1-cycles supported in a special fiber.

The global incarnation has to do with intersection numbers $Z(m) \cdot{ }^{L} \mathrm{CM}(a)$. What gives some traction is the fact that $\sum_{m \geq 0} Z(m) q^{m} \in \widehat{\mathrm{CH}}^{1}\left(\mathrm{CM}_{n}\right)[[q]]$ is actually a modular form [BHKRY].

