The Relative Fargues-Fontaine Curve

Notes by Tony Feng for a talk by Matthew Morrow

April 6, 2016

The goals of this talk are to:

- 1. Define the relative curves Y_S and $X_S = Y_S / \varphi^{\mathbb{Z}}$ for any $S \in \operatorname{Perf}_{\mathbb{F}_p}$. (To recover Y^{ad} and X^{ad} from before, put $S = \operatorname{Spa} \mathbb{C}_p^{\operatorname{b}}$.) These will be adic spaces over $\operatorname{Spa} \mathbb{Q}_p := \operatorname{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$.
- 2. Describe the relation to untilting and the diamond formula

"
$$Y_S = S \times \operatorname{Spa} \mathbb{Q}_p$$
".

1 Construction of the relative curves Y_S and X_S

1.1 The affinoid perfectoid case

Suppose now that $S = \text{Spa}(R, R^+) \in \text{Perf}_{\mathbb{F}_p}$ is affinoid perfectoid of characteristisc p. Fix once and for all a pseudo-uniformizer $\varpi \in R$. We define the ring

$$\mathbb{A}(=\mathbb{A}_{R^+}) = W(R^+) \ni p, [\varpi]$$

with the $(p, [\varpi])$ -adic topology.

Definition 1.1. We define

$$Y_{(R,R^+)} := \operatorname{Spa}(\mathbb{A},\mathbb{A}) \setminus V(p[\varpi]).$$

This is, at the moment, a pre-adic space (i.e. the structure presheaf is not yet known to be a sheaf) over $\operatorname{Spa} \mathbb{Q}_p$.

The points of this are continuous valuations

$$\|\cdot\|:A\to\Gamma\cup\{0\}$$

such that

• $||a|| \le 1$ for all $a \in A$,

• $||p[\varpi]|| \neq 0.$

Definition 1.2. (1) Given $(\|\cdot\|, \Gamma) \in Y_{(R,R^+)}$, its maximal generalization is the rank-one point $(\|\cdot\|_{\max}, \mathbb{R}_{\geq 0}) \in Y_{(R,R^+)}$ given by the rule

$$||a||_{\max} := p^{-\sup\{r/s \in \mathbb{Q}_{\geq 0} : \|[\varpi]\|^r \ge \|a\|^s\}}$$

This is the "closest point to ||a|| in the line of Γ generated by $||[\varpi]||$ ".

(2) The *radius* of $(|| \cdot ||, \Gamma)$ is then $\delta(|| \cdot ||) := ||p||_{\max} \in (0, 1)$ (the value in in [0, 1] by definition, and cannot be either endpoint because p is topologically nilpotent and not killed). This defines a continuous radius function

$$\delta\colon Y_{(R,R^+)}\to (0,1).$$

(3) Given a closed interval $I \subset (0, 1)$, the associated *annulus* is

$$Y_{(R,R^+)}^I := \text{interior of } \delta^{-1}(I) \stackrel{\text{open}}{\subset} Y_{(R,R^+)}.$$

Lemma 1.3. (i) We have

$$Y_{(R,R^+)} = \bigcup_{I \subset (0,1)} Y^I_{(R,R^+)}.$$

(ii) If $I = [p^{-r/s}, p^{-r'/s'}]$ with $r, s, r', s' \in \mathbb{N}$, then $Y_{(R,R^+)}^I$ is the rational subdomain

$$\operatorname{Spa}(\mathbb{A},\mathbb{A})\langle \frac{[\varpi]^r}{p^s}, \frac{p^{s'}}{[\varpi]^{r'}}\rangle \subset Y_{(R,R')}.$$

Proof. With I as in (ii), it follows from the definitions (modulo interior issues) that

$$Y_{(R,R^+)}^I = \{ \| \cdot \| \colon \|p\| \in I \subset \Gamma \}$$

which is the claimed rational subdomain. (Note that here we are normalizing $\|\cdot\|$ so that $\|[\boldsymbol{\omega}]\| = p^{-1}$.)

Theorem 1.4. $Y_{(R,R^+)}$ is an adic space (i.e. the presheaf is sheafy).

Idea of proof. Pick some perfectoid field $E \supset \mathbb{Q}_p$ and check that $Y_{(R,R^+)}^I \times_{\operatorname{Spa}\mathbb{Q}_p} \operatorname{Spa} E$ is affinoid perfectoid. (Although we have used finite extensions of \mathbb{Q}_p for our E, references in the literature allow the field E to be perfectoid precisely to deal with this issue.) By definition, this is saying that $Y_{(R,R^+)}^I$ is *pre-perfectoid*. That implies the sheaf property by results of Scholze, or Kedlaya-Liu.

Remark 1.5. Descent of the sheafiness is not hard, but proving that the base change is affinoid perfectoid requires work (to show that the ring of power-bounded elements is bounded), and the original result that affinoid perfectoid spaces are sheafy is hard.

1.2 Forming the quotient

We have an action φ on W(R) inducing an action of φ on $Y_{(R,R^+)}$ such that

$$\delta(\varphi(\mathbf{y})) = \delta(\mathbf{y})^{1/p}.$$

Note that in the unit disk picture, this is expanding towards the boundary. Therefore the action of φ on $Y_{(R,R^+)}$ is properly continuous, so we can define

$$X_{(R,R^+)} := Y_{(R,R^+)}/\varphi^{\mathbb{Z}}$$

as an adic space over $\operatorname{Spa} \mathbb{Q}_p$.

Remark 1.6. Suppose $I = [a, b] \subset (0, 1)$ such that $b^p < a \le b < a^{1/p}$, so that the interval is translated to a disjoint interval under $x \mapsto x^{1/p}$. Then $Y^{I}_{(R,R^+)}$ maps isomorphically to an open subset of $X_{(R,R^+)}$.

1.3 The map θ

Suppose that $(R, R^+) = (B^{\flat}, B^{+\flat})$ for some $\operatorname{Spa}(B, B^+) \in \operatorname{Perf}$ over $\operatorname{Spa} \mathbb{Q}_p$ (e.g. $S = \operatorname{Spa} \mathbb{C}_p^{\flat}$). Then Fontaine's map

$$\theta \colon W(B^{+\flat}) = \mathbb{A} \to B^+$$

induces a closed immersion

$$\theta: \operatorname{Spa}(B, B^+) \hookrightarrow Y_{(R,R^+)}.$$
(1)

Lemma 1.7. The composition

$$\operatorname{Spa}(B, B^+) \hookrightarrow Y_{(R,R^+)} \twoheadrightarrow X_{(R,R^+)}$$

is a closed immersion.

Proof sketch. Explicitly check that θ has image in an annulus which is small enough so that it maps isomorphically down to the Fargues-Fontaine curve.

1.4 Construction for general $S \in \operatorname{Perf}_{\mathbb{F}_n}$

One checks that the process $(R, R^+) \mapsto Y^I_{(R,R^+)}$ (for any $I \subset (0, 1)$) behaves well under taking rational subdomains. Then it's easy to glue to define Y_S and $X_S = Y_S / \varphi^{\mathbb{Z}}$ (as adic spaces over $\operatorname{Spa} \mathbb{Q}_p$) for any $S \in \operatorname{Perf}_{\mathbb{F}_p}$.

One has an obvious analogue of θ if S is a tilt. That is, if $S = (S^{\#})^{\flat}$ then we get a closed embedding

$$\theta \colon S^{\#} \hookrightarrow Y_S$$

by gluing.

2 Diamonds and untilting

2.1 Diamonds parametrize untilts

Definition 2.1. For X an analytic adic space (i.e. covered by adic spectra of Tate rings) over Spa \mathbb{Z}_p , we define

$$X^{\diamond}$$
: Perf _{\mathbb{F}_n} \rightarrow Sets

by

$$T \mapsto \{ \text{Untilts over } X \text{ of } T \}$$
$$= \left\{ (T^{\#}, \iota) \colon \frac{T^{\#} \in \text{Perf}_X}{\iota \colon T^{\#_b} \cong T} \right\}.$$

Lemma 2.2. If X is perfectoid then $X^{\diamond} = \text{Hom}(-, X^{\flat})$.

Therefore the formation of diamonds can be thought of as an extension of tilting to adic spaces.

Proof. Let's check that the functors of points agree. For a test space T, $X^{\diamond}(T)$ is an untilt over X of T. Given such an untilt, we can tilt to obtain a map $T \to X^{\flat}$.

In the other direction, given a map $T \to X^{b}$, the equivalence between perfectoid spaces over X^{b} and X produces an until over X of T.

In particular, if $X \in \text{Perf}_{\mathbb{F}_p}$ (viewed as an analytic space over $\text{Spa}\mathbb{Z}_p$), then $X^{\diamond} = \text{Hom}(-, X)$, which is just X viewed as a (representable) sheaf.

Lemma 2.3. X^{\diamond} is a sheaf for the pro-étale topology on $\operatorname{Perf}_{\mathbb{F}_p}$, and even a diamond.

Proof idea. Pick a perfectoid cover of X. To each element in the cover you apply the construction $(-)^{\diamond}$; this produces diamonds since they are representable. Then you check that anything pro-étale covered by diamonds is itself a diamond.

Example 2.4. $(\operatorname{Spa} \mathbb{Q}_p^{\operatorname{cyc}})^\diamond \to \operatorname{Spa} \mathbb{Q}_p^\diamond$ is a pro-étale \mathbb{Z}_p^* -torsor.

Remark 2.5. For many purposes it suffices only to remember that diamonds are a full subcategory of pro-étale sheaves on $\operatorname{Perf}_{\mathbb{F}_n}$.

2.2 The diamond equation for the curve

Proposition 2.6. Let $S \in \text{Perf}_{\mathbb{F}_n}$. Then

$$Y_S^\diamond \cong S^\diamond \times \operatorname{Spa} \mathbb{Q}_p^\diamond$$

(in the category of diamonds or $\widetilde{\operatorname{Perf}}_{\mathbb{F}_n, pro-\acute{e}tale}$).

Remark 2.7. Y_S is an analytic adic space because the annuli are Tate algebras.

Proof. Let's compare the functors of points. We have to show that for $T \in \operatorname{Perf}_{\mathbb{F}_p}$ there is a bijection

{untilts /
$$Y_S$$
 of T } \leftrightarrow Hom $(T, S) \times$ {untilts / Spa \mathbb{Q}_p of T }

Suppose we have a pair $(f, (T^{\#}, \iota))$ on the right side. We can send this to $(T^{\#}, \iota)$:

$$(T^{\#},\iota) \leftarrow (f,(T^{\#},\iota)).$$

At first this seems like it's forgotten f, but that is built into the meaning of $T^{\#}$, because we need to specify the structure of $T^{\#}$ as a space over Y_S . This structure is via

$$T^{\#} \stackrel{\theta}{\hookrightarrow} Y_{T^{\#\flat}} \stackrel{\iota}{\cong} Y_T \stackrel{f}{\to} Y_S.$$

(The embedding θ is (1)). In the other direction we send

$$(T^{\#}, \iota) \mapsto (T \stackrel{\iota}{\cong} T^{\#\flat} \to S, (T^{\#}, \iota))$$

where the map $T^{\#_b} \to S$ is defined is follows. Reduce to the affinoid case $S = \text{Spa}(R, R^+)$. Then we can compose the map $T^{\#} \to Y_S$ to get $T^{\#} \to Y_S \to \text{Spa}(W(R^+), W(R^+))$, at which point the universal property of the Witt vectors gives

$$T^{\#\flat} \rightarrow \operatorname{Spa}(R, R^+).$$

(At the level of rings formation of Witt vectors is left adjoint to tilting, so at the level of spaces it is right adjoint.) \Box

Proposition 2.8. *The following are in canonical bijection with each other.*

- 1. Sections of $Y_S^{\diamond} \to S^{\diamond}$.
- 2. Maps $S^{\diamond} \to \operatorname{Spa}(\mathbb{Q}_p)^{\diamond}$.
- *3.* Untilts over $\operatorname{Spa} \mathbb{Q}_p$ of *S*.
- 4. Closed subsets of Y_S defined locally by a "degree 1 primitive element" (i.e. $a \xi \in W(R^+)$ of the form $[\varpi] + pu$ where $\varpi \in R$ is a pseudo-uniformizer and $u \in W(R^+)^*$).

Proof. By proposition 2.6, (1) is the same as sections of

$$\operatorname{Spa} \mathbb{Q}_n^{\diamond} \to S^{\diamond}$$

which are the same as maps $S^{\diamond} \to \operatorname{Spa} \mathbb{Q}_p^{\diamond}$, which is (2).

The set (2) is

$$\operatorname{Hom}_{\widetilde{\operatorname{Perf}}_{\mathbb{F}_p}}(S^{\diamond} = \operatorname{Hom}(-, S), \operatorname{Spa} \mathbb{Q}_p^{\diamond})$$

which by Yoneda is Spa $\mathbb{Q}_p^{\diamond}(S)$, which is (3).

Finally, the identification (3) = (4) is a generalization of the final Lemma from the Peter's discussion yesterday, the idea being that ker θ is always generated by a degree 1 primitive element.