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The goals of this talk are to:

1. Define the relative curves YS and XS = YS /ϕ
Z for any S ∈ PerfFp . (To recover Yad

and Xad from before, put S = SpaC[p.) These will be adic spaces over SpaQp :=
Spa(Qp,Zp).

2. Describe the relation to untilting and the diamond formula

“YS = S × SpaQp”.

1 Construction of the relative curves YS and XS

1.1 The affinoid perfectoid case

Suppose now that S = Spa(R,R+) ∈ PerfFp is affinoid perfectoid of characteristisc p. Fix
once and for all a pseudo-uniformizer $ ∈ R. We define the ring

A(= AR+) = W(R+) 3 p, [$]

with the (p, [$])-adic topology.

Definition 1.1. We define

Y(R,R+) := Spa(A,A) \ V(p[$]).

This is, at the moment, a pre-adic space (i.e. the structure presheaf is not yet known to be a
sheaf) over SpaQp.

The points of this are continuous valuations

|| · || : A→ Γ ∪ {0}

such that

• ||a|| ≤ 1 for all a ∈ A,
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• ||p[$]|| , 0.

Definition 1.2. (1) Given (|| · ||,Γ) ∈ Y(R,R+), its maximal generalization is the rank-one point
(|| · ||max,R≥0) ∈ Y(R,R+) given by the rule

||a||max := p− sup{r/s∈Q≥0 : ||[$]||r≥||a||s}.

This is the “closest point to ||a|| in the line of Γ generated by ||[$]||”.
(2) The radius of (|| · ||,Γ) is then δ(|| · ||) := ||p||max ∈ (0, 1) (the value in in [0, 1]

by definition, and cannot be either endpoint because p is topologically nilpotent and not
killed). This defines a continuous radius function

δ : Y(R,R+) → (0, 1).

(3) Given a closed interval I ⊂ (0, 1), the associated annulus is

Y I
(R,R+) := interior of δ−1(I)

open
⊂ Y(R,R+).

Lemma 1.3. (i) We have
Y(R,R+) =

⋃
I⊂(0,1)

Y I
(R,R+).

(ii) If I = [p−r/s, p−r′/s′] with r, s, r′, s′ ∈ N, then Y I
(R,R+) is the rational subdomain

Spa(A,A)〈
[$]r

ps ,
ps′

[$]r′ 〉 ⊂ Y(R,R′).

Proof. With I as in (ii), it follows from the definitions (modulo interior issues) that

Y I
(R,R+) = {|| · || : ||p|| ∈ I ⊂ Γ}

which is the claimed rational subdomain. (Note that here we are normalizing || · || so that
||[$]|| = p−1.) �
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Theorem 1.4. Y(R,R+) is an adic space (i.e. the presheaf is sheafy).

Idea of proof. Pick some perfectoid field E ⊃ Qp and check that Y I
(R,R+) ×SpaQp Spa E is

affinoid perfectoid. (Although we have used finite extensions of Qp for our E, references
in the literature allow the field E to be perfectoid precisely to deal with this issue.) By
definition, this is saying that Y I

(R,R+) is pre-perfectoid. That implies the sheaf property by
results of Scholze, or Kedlaya-Liu. �

Remark 1.5. Descent of the sheafiness is not hard, but proving that the base change is
affinoid perfectoid requires work (to show that the ring of power-bounded elements is
bounded), and the original result that affinoid perfectoid spaces are sheafy is hard.

1.2 Forming the quotient

We have an action ϕ on W(R) inducing an action of ϕ on Y(R,R+) such that

δ(ϕ(y)) = δ(y)1/p.

Note that in the unit disk picture, this is expanding towards the boundary. Therefore the
action of ϕ on Y(R,R+) is properly continuous, so we can define

X(R,R+) := Y(R,R+)/ϕ
Z

as an adic space over SpaQp.

Remark 1.6. Suppose I = [a, b] ⊂ (0, 1) such that bp < a ≤ b < a1/p, so that the interval
is translated to a disjoint interval under x 7→ x1/p. Then Y I

(R,R+) maps isomorphically to an
open subset of X(R,R+).

1.3 The map θ

Suppose that (R,R+) = (B[, B+[) for some Spa(B, B+) ∈ Perf over SpaQp (e.g. S = SpaC[p).
Then Fontaine’s map

θ : W(B+[) = A→ B+

induces a closed immersion

θ : Spa(B, B+) ↪→ Y(R,R+). (1)

Lemma 1.7. The composition

Spa(B, B+) ↪→ Y(R,R+) � X(R,R+)

is a closed immersion.

Proof sketch. Explicitly check that θ has image in an annulus which is small enough so that
it maps isomorphically down to the Fargues-Fontaine curve. �
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1.4 Construction for general S ∈ PerfFp

One checks that the process (R,R+) 7→ Y I
(R,R+) (for any I ⊂ (0, 1)) behaves well under taking

rational subdomains. Then it’s easy to glue to define YS and XS = YS /ϕ
Z (as adic spaces

over SpaQp) for any S ∈ PerfFp .
One has an obvious analogue of θ if S is a tilt. That is, if S = (S #)[ then we get a closed

embedding
θ : S # ↪→ YS

by gluing.

2 Diamonds and untilting

2.1 Diamonds parametrize untilts

Definition 2.1. For X an analytic adic space (i.e. covered by adic spectra of Tate rings) over
SpaZp, we define

X� : PerfFp → Sets

by

T 7→ {Untilts over X of T }

=

{
(T #, ι) :

T # ∈ PerfX

ι : T #[ � T

}
.

Lemma 2.2. If X is perfectoid then X� = Hom(−, X[).

Therefore the formation of diamonds can be thought of as an extension of tilting to adic
spaces.

Proof. Let’s check that the functors of points agree. For a test space T , X�(T ) is an untilt
over X of T . Given such an untilt, we can tilt to obtain a map T → X[.

In the other direction, given a map T → X[, the equivalence between perfectoid spaces
over X[ and X produces an untilt over X of T . �

In particular, if X ∈ PerfFp (viewed as an analytic space over SpaZp), then X� =

Hom(−, X), which is just X viewed as a (representable) sheaf.

Lemma 2.3. X� is a sheaf for the pro-étale topology on PerfFp , and even a diamond.

Proof idea. Pick a perfectoid cover of X. To each element in the cover you apply the
construction (−)�; this produces diamonds since they are representable. Then you check
that anything pro-étale covered by diamonds is itself a diamond. �

Example 2.4. (SpaQcyc
p )� → SpaQ�p is a pro-étale Z∗p-torsor.

Remark 2.5. For many purposes it suffices only to remember that diamonds are a full sub-
category of pro-étale sheaves on PerfFp .
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2.2 The diamond equation for the curve

Proposition 2.6. Let S ∈ PerfFp . Then

Y�S � S � × SpaQ�p

(in the category of diamonds or P̃erfFp,pro-étale).

Remark 2.7. YS is an analytic adic space because the annuli are Tate algebras.

Proof. Let’s compare the functors of points. We have to show that for T ∈ PerfFp there is a
bijection

{untilts / YS of T } ↔ Hom(T, S ) × {untilts /SpaQp of T }.

Suppose we have a pair ( f , (T #, ι)) on the right side. We can send this to (T #, ι):

(T #, ι)← ( f , (T #, ι)).

At first this seems like it’s forgotten f , but that is built into the meaning of T #, because we
need to specify the structure of T # as a space over YS . This structure is via

T # θ
↪→ YT #[

ι
� YT

f
−→ YS .

(The embedding θ is (1)). In the other direction we send

(T #, ι) 7→ (T
ι
� T #[ → S , (T #, ι))

where the map T #[ → S is defined is follows. Reduce to the affinoid case S = Spa(R,R+).
Then we can compose the map T # → YS to get T # → YS → Spa(W(R+),W(R+)), at which
point the universal property of the Witt vectors gives

T #[ → Spa(R,R+).

(At the level of rings formation of Witt vectors is left adjoint to tilting, so at the level of
spaces it is right adjoint.) �

Proposition 2.8. The following are in canonical bijection with each other.

1. Sections of Y�S → S �.

2. Maps S � → Spa(Qp)�.

3. Untilts over SpaQp of S .

4. Closed subsets of YS defined locally by a “degree 1 primitive element” (i.e. a ξ ∈
W(R+) of the form [$] + pu where $ ∈ R is a pseudo-uniformizer and u ∈ W(R+)∗).
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Proof. By proposition 2.6, (1) is the same as sections of

SpaQ�p → S �

which are the same as maps S � → SpaQ�p, which is (2).

The set (2) is
HomP̃erfFp

(S � = Hom(−, S ),SpaQ�p)

which by Yoneda is SpaQ�p(S ), which is (3).

Finally, the identification (3) = (4) is a generalization of the final Lemma from the
Peter’s discussion yesterday, the idea being that ker θ is always generated by a degree 1
primitive element. �
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