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The goals of this talk are to:

1. Define the relative curves Yy and Xg = Yg/ th for any S € Perfpp. (To recover Y
and X from before, put S = Spa C?,.) These will be adic spaces over SpaQ,, :=
Spa(Qp, Zy).

2. Describe the relation to untilting and the diamond formula

“Ys¢ =8 xSpaQ,”.

1 Construction of the relative curves Y5 and X

1.1 The affinoid perfectoid case

Suppose now that S = Spa(R,R") € Perfy, is affinoid perfectoid of characteristisc p. Fix
once and for all a pseudo-uniformizer @ € R. We define the ring

A(= Agr) = W(R) 3 p, (@]

with the (p, [@])-adic topology.
Definition 1.1. We define

YR g+ := Spa(A, A) \ V(plw]).

This is, at the moment, a pre-adic space (i.e. the structure presheaf is not yet known to be a
sheaf) over Spa Q,,.

The points of this are continuous valuations
I|-1I: A>T uU{0}
such that

o |la| < 1forallacA,



¢ llpl=lll # 0.

Definition 1.2. (1) Given (||-||,T') € Y(r r+), its maximal generalization is the rank-one point
(I - llmax> Rs0) € Y& gr+) given by the rule

lallmax 1= p~ SuPr/s€Qz0: M@l =lal’)

This is the “closest point to ||a|| in the line of I" generated by ||[w]]||”.

(2) The radius of (|| - ||,I') is then (| - |) := ||pllmax € (0, 1) (the value in in [0, 1]
by definition, and cannot be either endpoint because p is topologically nilpotent and not
killed). This defines a continuous radius function

o: Y(R,R*) d (0, 1)
(3) Given a closed interval I C (0, 1), the associated annulus is

; ) ) -1 open
Yig g+ = interiorof 6~ (1) C Yrr+).

Lemma 1.3. (i) We have
1
Y(R,R*’) = U Y(R,R*)'

1c(0,1)
(i) If I = [p"/s,p"'/sl] withr,s,r’,s’ €N, then Y(IR’R+) is the rational subdomain
[w.]r ps’
Spa(A, A ,——) C Yrr».
pa(A, A) > o] ) C YRR
Proof. With I as in (ii), it follows from the definitions (modulo interior issues) that
Yiere, = (I-11: lIpll € 1 < T)
which is the claimed rational subdomain. (Note that here we are normalizing || - || so that
Il = p~") O



Theorem 1.4. Y g+) is an adic space (i.e. the presheaf is sheafy).

Idea of proof. Pick some perfectoid field E > Q, and check that Y, (’R R+) XSpaQ, SpaFE is
affinoid perfectoid. (Although we have used finite extensions of Q, for our E, references
in the literature allow the field E to be perfectoid precisely to deal with this issue.) By
definition, this is saying that Y(IR’ RY) is pre-perfectoid. That implies the sheaf property by
results of Scholze, or Kedlaya-Liu. O

Remark 1.5. Descent of the sheafiness is not hard, but proving that the base change is
affinoid perfectoid requires work (to show that the ring of power-bounded elements is
bounded), and the original result that affinoid perfectoid spaces are sheafy is hard.

1.2 Forming the quotient

We have an action ¢ on W(R) inducing an action of ¢ on Y g+ such that

S(e(y)) = s

Note that in the unit disk picture, this is expanding towards the boundary. Therefore the
action of ¢ on Y(g g+) is properly continuous, so we can define

X(R,R+) = Y(R’R+)/(pz

as an adic space over Spa Q,,.

Remark 1.6. Suppose I = [a,b] C (0,1) such that b’ < a < b < a'/P, so that the interval
is translated to a disjoint interval under x > x!/7. Then Y(’R, g+ Maps isomorphically to an
open subset of Xz g+).

1.3 The map 6

Suppose that (R, R*) = (B, B*") for some Spa(B, B*) € Perf over Spa Q,(e.g. S =Spa Ci’,).
Then Fontaine’s map
0: W(B*") = A — B*

induces a closed immersion
0: Spa(B, B") < Yrg+). (1)
Lemma 1.7. The composition
Spa(B, B") < Ygrg+) » X®R")
is a closed immersion.

Proof sketch. Explicitly check that 8 has image in an annulus which is small enough so that
it maps isomorphically down to the Fargues-Fontaine curve. O



1.4 Construction for general S € Perfy,

One checks that the process (R, R") Y(’R R (for any I c (0, 1)) behaves well under taking

rational subdomains. Then it’s easy to glue to define Ys and Xg = Yg/¢” (as adic spaces
over SpaQ,,) for any S € Perfg,.
One has an obvious analogue of 9 if S is a tilt. That is, if § = (S #)> then we get a closed
embedding
9: % < vg

by gluing.

2 Diamonds and untilting

2.1 Diamonds parametrize untilts

Definition 2.1. For X an analytic adic space (i.e. covered by adic spectra of Tate rings) over
SpaZ,, we define
X°: Perfr, — Sets

by
T +— {Untilts over X of T}

T# € Perf
_ # N, X
_{(T,L).L:T#bET}.

Lemma 2.2. If X is perfectoid then X° = Hom(—, X").

Therefore the formation of diamonds can be thought of as an extension of tilting to adic
spaces.

Proof. Let’s check that the functors of points agree. For a test space T', X°(T) is an untilt
over X of T. Given such an untilt, we can tilt to obtain a map T — X".

In the other direction, given a map T — X”, the equivalence between perfectoid spaces
over X” and X produces an untilt over X of 7. O

In particular, if X € Perfg, (viewed as an analytic space over SpaZ,), then X° =
Hom(—, X), which is just X viewed as a (representable) sheaf.

Lemma 2.3. X° is a sheaf for the pro-étale topology on Perfg,, and even a diamond.

Proofidea. Pick a perfectoid cover of X. To each element in the cover you apply the
construction (—)°; this produces diamonds since they are representable. Then you check
that anything pro-étale covered by diamonds is itself a diamond. O

Example 2.4. (SpaQ;;)° — Spa Q5 is a pro-étale Zj-torsor.
Remark 2.5. For many purposes it suffices only to remember that diamonds are a full sub-
category of pro-€tale sheaves on Perfp, .



2.2 The diamond equation for the curve

Proposition 2.6. Ler S € Perfy,. Then
Yg = 5°xSpaQ),

(in the category of diamonds or l;e‘rlf]Fp’pro.émle ).
Remark 2.7. Ys is an analytic adic space because the annuli are Tate algebras.
Proof. Let’s compare the functors of points. We have to show that for 7' € Perfp, there is a
bijection
{untilts / Y5 of T} & Hom(T, S) X {untilts / SpaQ, of T'}.
Suppose we have a pair (f, (T*#, 1)) on the right side. We can send this to (7%, 1):
(T*,0) « (f.(T*,0).

At first this seems like it’s forgotten f, but that is built into the meaning of 7%, because we
need to specify the structure of T# as a space over Y. This structure is via

0
T# < Yo = Yr i) Ys.
(The embedding 6 is (I))). In the other direction we send
(T 0 (T =T - 5,(T*0)

where the map T% — § is defined is follows. Reduce to the affinoid case S = Spa(R, RY).
Then we can compose the map 7% — Y5 to get T# — Y5 — Spa(W(R™), W(R")), at which
point the universal property of the Witt vectors gives

" > Spa(R,R").

(At the level of rings formation of Witt vectors is left adjoint to tilting, so at the level of
spaces it is right adjoint.) O

Proposition 2.8. The following are in canonical bijection with each other.
1. Sections of Y{ — S°.
2. Maps S° — Spa(Q,)°.
3. Untilts over SpaQ, of S.

4. Closed subsets of Ys defined locally by a “degree 1 primitive element” (i.e. a ¢ €
W(R™) of the form [w] + pu where @ € R is a pseudo-uniformizer and u € W(R*)").



Proof. By proposition[2.6] (1) is the same as sections of
SpaQ, — S§°
which are the same as maps S° — SpaQ°?, which is (2).

The set (2) is

Homr;;ﬁFp (§° = Hom(-,S),SpaQ})

which by Yoneda is Spa Q;(S ), which is (3).

Finally, the identification (3) = (4) is a generalization of the final Lemma from the
Peter’s discussion yesterday, the idea being that ker 6 is always generated by a degree 1
primitive element. O
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