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1. Geometric expansion

This is is a talk about “geometrization of the geometric side of the analytic RTF”.
Yesterday we introduced J(f, s). This has a geometric expansion and a spectral
expansion; we will focus on the geometric expansion:

J(f, s) =
∑

u∈P1(F )−{1}

J(u, f, s).

1.1. Orbital integrals. The regular semisimple orbital integrals correspond to u 6=
0,∞:

J(u, f, s) = J(γ, f, s) =

∫
A(A)×A(A)

f(h−1
1 γh2)|h1h2|sη(h2) dh1dh2

where inv(γ) = u. For these γ, there are no convergence issues because the conjugacy
class is closed in G(A), and f has compact support in G(A). So no regularization
is needed in this case.

We can restrict our attention to Hecke functions of the form f = hD, for D an
effective divisor.

1.2. Observation. We can compute the orbital integral on GL2, as follows. If γ̃ is
a lift of γ, and D =

∑
nxx, we can define

h̃ :=
⊗
x

h̃nx,x ∈ Hx(GL2)

where
h̃nx,x = 1Mat2(Ox)val(det)=nx

∈ Hx(GL2).

Remark 1.1. The h̃D is not a pullback of hD; rather, it is a lift.

Lemma 1.2. We have

J(γ, hD, s) =

∫
∆(Z(A))\(Ã×Ã)(A)

h̃D(h−1
1 γ̃h2)|α(h1)α(h2)|sη(α(h2)) dh1dh2.

Here Ã is the diagonal torus in GL2, and α :

(
a

d

)
7→ a/d.

Proof. Clear. �
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1.3. Geometrization. Note that h̃D(h−1
1 γ̃h2) only depends on the value of h1 and

h2 in Ã(A)/Ã(O). Since Ã ∼= G2
m, we have

Ã(A)/Ã(O) ∼= (Gm(A)/Gm(O))2 = (DivX)2.

The condition that h̃D = 1 defines a subset of ∆(DivX)\(DivX)4. We’ll first
describe the subset in (DivX)4 before quotienting by center. It will be denoted
Definition 1.3. We define ÑD,γ̃ ⊂ (DivX)4 to be the set of (E1, E2, E

′
1, E

′
2) ∈

Div(X)4 which are all effective, such that the rational map O2 γ̃−→ O2 induces a
holomorphic map

O2 O2

O(−E1)⊕O(−E2) O(−E′1)⊕O(−E′2)

γ̃

φγ̃

such that Divϕγ̃ = D. Finally, we define

Nγ̃,D := Ñγ̃,D/∆(DivX).

The upshot is

J(γ, hD, s) =
∑

E1,E2,E′
1,E

′
2∈Nγ̃,D

q− deg(E1−E2+E′
1−E′

2)sη(E1)η(E2)

Since η is a quadratic character, we can rewrite this as

J(γ, hD, s) =
∑

E1,E2,E′
1,E

′
2∈Nγ̃,D

q− deg(E1−E2+E′
1−E′

2)sη(E1 − E′1)η(E2 − E′1) (1.1)

Here h1 ↔ (E′1, E
′
2) and h2 ↔ (E1, E2).

The idea of geometrization is that the formula (1.1) should be expressible as the
sum, over k-points of a scheme, of the value at that point of the function associated
to a sheaf on the scheme. Through this we can relate the formula to Lefschetz
cohomology.

2. The moduli spaces

Definition 2.1. Let X̂d → PicdX be the moduli space of sections, i.e.

X̂d(S) =

{
(L, s) :

L = degree d line bundle on X × S
s ∈ H0(X × S,L)

}
.

Let Xd = SymdX = Xd//Sd. This is a scheme, with a natural embedding
Xd ↪→ X̂d sending

(t1, . . . , td) 7→ (O(t1 + . . .+ td), 1).

This is an isomorphism onto the open subscheme of Xd where the section is not the
zero section.
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Note that X̂d \Xd
∼−→ PicdX . The composition

Xd ↪→ X̂d → PicdX

is the Abel-Jacobi map.
Definition 2.2. For d = degD, let

Σd =

{(
d11 d12

d21 d22

)
| dij ∈ Z≥0, d11 + d22 = d12 + d21 = d

}
Given d ∈ Σd, we define the moduli space Ñd classifying

• four line bundles K1,K2,K
′
1,K

′
2 such that

degK ′i − degKj = dij .

• A map ϕ : K1 ⊕K2 → K ′1 ⊕K ′2, which we can write as

ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
with ϕij : Ki → K ′j , satisfying some technical conditions. One example is if
d11 < d22, d12 < d21

ϕ11 6= 0, ϕ12 6= 0 (2.1)
and ϕ21, ϕ22 are not both 0.

There is an obvious action of PicX on Ñd, and we define

Nd = Ñd/PicX .

Definition 2.3. We define the moduli space Ad classifying (∆, a, b) where
• ∆ ∈ PicdX and
• a, b ∈ H0(X,∆) are global sections not vanishing simultaneously.

Remark 2.4. The scheme Ad is covered by two pieces

Xd ×PicdX
X̂d

and
X̂d ×Picd Xd.

The morphism Xd → PicdX is representable, the fibers being vector spaces, hence Ad
is a scheme.
Definition 2.5. We define a map

fd : Nd → Ad
sending

(K1,K2,K
′
1,K

′
2) 7→ (K ′1 ⊗K ′2 ⊗K∨1 ⊗K∨2 , ϕ11 ⊗ ϕ22, ϕ12 ⊗ ϕ21).

Proposition 2.6. Nd enjoys the following properties.
(1) Nd is a geometrically connected scheme over k.
(2) If d ≥ 4g − 3, Nd is smooth of dimension 2d− g + 1.
(3) The morphism fd is proper.
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Proof. Use the non-vanishing conditions to find a covering of Nd analogous to the
covering of Ad discussed above. This imnplies (1) + (3). (Properness reduces to
properness of Xdij .) For (2), by Riemann-Roch the map X̂dij → Pic

dij
X is smooth

of relative dimension 1− g + dij if dij is large. If d is large then at least one of the
relevant dij is large, and you use that one to run this argument. �

3. Geometrization of the analytic RTF

We now define a crucial local system Ld on Nd. By geometric class field theory
there is a rank 1 local system on the Picard scheme of X corresponding to the
quadratic character η. We first define a local system Ld on X̂d as the pullback of
this local system via the map X̂d → PicX → Piccoarse

X .
There is an open embedding

Nd ↪→ (X̂d11 × X̂d22)×PicdX
(X̂d12 × X̂d21) (3.1)

given by the universal ϕij ’s. Finally, we define the rank 1 local system Ld on Nd to
be the restriction of the local system

Ld11 �Q` � Ld12 �Q` on (X̂d11 × X̂d22)×PicdX
(X̂d12 × X̂d21)

to Nd via (3.1).
Definition 3.1. We define

δ : Ad → X̂d

to be the morphism sending

(∆, a, b) 7→ (∆, a− b).
We also define

AD := δ−1(O(D), 1) ∼= Γ(X,OX(D)).

and the invariant map
invD : AD(k)→ P1(F )− {1}

sending a 7→ 1− a−1, viewing a as a rational function in F .

Proposition 3.2. Assume u 6= 0,∞.
(1) If u /∈ Im invD, then J(u, hD, s) = 0.
(2) If u = invD(a) for a ∈ AD(k), then

J(u, hD, s) =
∑
d∈Σd

q(2d12−d)s Tr(Froba, Rfd,∗Ld)a

Proof. (2) We have a bijection

ND,γ̃
∼−→ Na(k)

where Na(k) =
⊔
d∈Σd

f−1
d (a) sending

(E1, E2, E
′
1, E

′
2) 7→ (O(−E1),O(−E2),O(−E′1),O(−E′2), ϕγ̃).

Use (1.1) and the definition of Ld. �
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