Banach-Colmez Spaces

Notes by Tony Feng for a talk by Arthur-Cesar Le Bras

April 5, 2016

We fix *C* to be the completion of an algebraic closure of \mathbb{Q}_p .

1 Definition of Banach-Colmez Spaces

Definition 1.1. A *Banach sheaf* is a contravariant functor \mathcal{F} from Perf_{*C*} to topological \mathbb{Q}_p -vector spaces such that

- 1. if $X \in \text{Perf}_C$ is affinoid perfectoid then $\mathcal{F}(X)$ is a Banach space
- 2. \mathcal{F} is a sheaf on Perf_{*C*,pro-étale}.

Morphisms are morphisms of functors (i.e. natural transformations).

A sequence of Banach sheaves is exact if it is exact as a sequence of sheaves on $\operatorname{Perf}_{C, \operatorname{pro-\acute{e}tale}}$.

Example 1.2. Let *V* be a finite-dimensional \mathbb{Q}_p vector space. Then we have a constant Banach sheaf <u>V</u>. This is represented by Spa(Funct(*V*, *C*), Funct(*V*, *O_C*)). The sections can be described explicitly as $\mathcal{F}(X) = \text{Funct}(|X|, V)$.

Example 1.3. Let W be a finite-dimensional C-vector space. We can form $\mathcal{F} = W \otimes O$, which is representable by $W \otimes \mathbb{G}_a$ (but this is not a perfectoid space).

Definition 1.4. An effective Banach-Colmez space is a Banach sheaf which is an extension

$$0 \to V \to \mathcal{F} \to W \otimes \mathcal{O} \to 0.$$

Where *W* is a *C*-vector space and *V* is a \mathbb{Q}_p -vector space.

Definition 1.5. A *Banach-Colmez space* is a Banach sheaf \mathcal{F} which is a quotient of an effective Banach-Colmez space by a \mathbb{Q}_p -vector space:

$$0 \to \underline{V}' \to \underbrace{\mathcal{F}'}_{\text{effective}} \to \mathcal{F} \to 0$$

The category of such is denoted \mathcal{BC} . If \mathcal{F} is a BC and V, W, V' are as before we call dim_C W the *dimension* of the presentation of \mathcal{F} and we call dim_{Q_p} $V - \dim_{Q_p} V'$ the *height* of the presentation.

Example 1.6. We have dim $\mathbb{Q}_p = 0$ and ht $\mathbb{Q}_p = 1$; while dim O = 1 and ht O = 0.

Theorem 1.7 (Colmez). *BC* is an abelian category. The functor $\mathcal{F} \mapsto \mathcal{F}(C)$ is exact and conservative. Moreover, the dimension and the height do not depend on the presentation. Objects of *BC* have a Harder-Narasimhan filtration for the slope function $\mu = -\frac{ht}{dim}$.

2 Examples as universal covers of *p*-divisible groups

2.1 Universal cover of a *p*-divisible group

Let G be a p-divisible group over O_C . We can take G to be the formal completion of G along its unit section, which is a formal group scheme over Spf O_C . We can then take the generic fiber

$$\mathcal{G}_{\eta}^{\mathrm{ad}} := \mathcal{G}^{\mathrm{ad}} \times_{\mathrm{Spa}(C,O_C)} \mathrm{Spa}(O_C,O_C).$$

There is an exact sequence of étale sheaves on the big étale site of Spa(C)

$$0 \to \underline{\mathcal{G}_{\eta}^{\mathrm{ad}}[p^{\infty}]} \to \mathcal{G}_{\eta}^{\mathrm{ad}} \xrightarrow{\mathrm{log}} \mathrm{Lie}\, G[1/p] \otimes \mathbb{G}_{a} \to 0.$$

Here $\mathcal{G}_{\eta}^{\mathrm{ad}}[p^{\infty}] = \mathbb{Q}_p/\mathbb{Z}_p \otimes T_p(G)$. Taking the inverse limit of this sequence along the *p*th power map, we get a short exact sequence

$$0 \to \underline{T_p(G)[p^{-1}]} \to \widetilde{\mathcal{G}_{\eta}^{\mathrm{ad}}} := \lim_{x \mapsto px} \mathcal{G}_{\eta}^{\mathrm{ad}} \to \mathrm{Lie}(G)[1/p] \otimes \mathbb{G}_a \to 0.$$

Definition 2.1. This $\widetilde{\mathcal{G}_{\eta}^{\text{ad}}}$ is called the *universal cover* of the *p*-divisible group *G*.

Example 2.2. For $G = \widehat{\mathbb{G}_m}^d$, if *R* is an affinoid perfectoid *C*-algebra then

$$\widetilde{\mathcal{G}}_{\eta}^{\mathrm{ad}}(R) \cong \varprojlim_{p} (R^{00})^{d} \cong (R^{\flat,00})^{d}.$$

For any G, the universal cover $\widetilde{\mathcal{G}}_{\eta}^{\mathrm{ad}}$ is an effective BC space.

Example 2.3. For $G = \mu_{p^{\infty}}$ we have $T_p(G) = \mathbb{Z}_p$ (no Galois action since we're over C) and

$$\widetilde{\mu_{p^{\infty}}}(R) = \varprojlim_{p} 1 + R^{00} \xrightarrow{\log} R$$

sending $(x_n) \mapsto \log x_0$.

Remark 2.4. The sheaf $\widetilde{\mathcal{G}}_{\eta}^{\text{ad}}$ is always representable by a perfectoid open ball. It is a Banach-Colmez space with height and dimension equal to those of *G*.

2.2 *p*-divisible groups parametrize all Banach-Colmez spaces

Definition 2.5. Define $\mathcal{B}C_{p-div}^+$ to be the full subcategory of $\mathcal{B}C$ consisting of universal covers of *p*-divisible group. Define $\mathcal{B}C_{p-div}$ to be the full subcategory of $\mathcal{B}C$ obtained as a quotient of an object of $\mathcal{B}C_{p-div}^+$ by a \mathbb{Q}_p -vector space.

Proposition 2.6. We have $\mathcal{B}C_{p-div} \cong \mathcal{B}C$.

Proof. We need to show that every BC space is in $\mathcal{B}C_{p-div}$, i.e. any extension of $W \otimes O$ by V can be recovered as a quotient of a universal cover of a p-divisible group by a \mathbb{Q}_p -vector space.

One important input we need is that $\operatorname{Ext}^{1}_{\mathcal{B}C}(W \otimes O, V) \cong \operatorname{Hom}_{C}(W, V \otimes C)$. What does this even mean? It is saying that any extension

$$0 \to V \to \mathcal{F} \to W \otimes \mathcal{O} \to 0$$

fits into a diagram

A result of Fargues, Scholze-Weinstein then says that for all $(W, V, f: W \to V \otimes C)$ there exists a *p*-divisible group *G* over O_C such that $\widetilde{\mathcal{G}}_{\eta}^{ad} = \mathcal{F}$. (They take $V = T_p(G)[1/p]$, W = Lie(G)[1/p], and *f* is the transpose of the Hodge-Tate map of G^D). Since the fact about $\text{Ext}_{\mathcal{B}C}^1$ tells us that \mathcal{F} is of this form, we are done.

Example 2.7. Let $G = \mu_{p^{\infty}}$. Then

$$\widetilde{\mathcal{G}}^{\mathrm{ad}}_{\eta}(R) = B^+_{\mathrm{cris}}(R^0/p)^{\varphi=p} = B(R)^{\varphi=p}$$

Corollary 2.8. Banach-Colmez spaces are diamonds over C^{\flat} .

Now we want to describe more explicitly the objects of $\mathcal{B}C^+ = \mathcal{B}C^+_{p-div}$. Fix a section $\overline{\mathbb{F}}_p \hookrightarrow O_C/p$. Given a *p*-divisible group *G* over O_C , there exists a *p*-divisible group *H* over $\overline{\mathbb{F}}_p$ and an isogeny

$$H \otimes_{\overline{\mathbb{F}}_p} O_C / p \cong G \otimes_{O_C} O_C / p$$

Theorem 2.9 (Scholze-Weinstein). Let R be a C-perfectoid algebra. Then

$$\widetilde{\mathcal{G}}^{\mathrm{ad}}_{\eta}(R) = \widetilde{H}^{\mathrm{ad}}_{\eta}(R^0/p) = \mathrm{Hom}_{R^0/p}(\mathbb{Q}_p/\mathbb{Z}_p, H)[1/p] = D(H)(R^0/p)[1/p]^{\varphi=p}$$

Evaluating the associated Banach-Colmez space on C gives

$$0 \to \underline{\mathbb{Q}_p} \to (B^+_{\mathrm{cris}})^{\varphi=p} \xrightarrow{\theta} C \to 0.$$

3 Banach-Colmez Spaces and the Fargues-Fontaine curve

3.1 A *t*-structure

Let $X = X_{\mathbb{Q}_p, C^{\flat}}$. We have the abelian category Coh_X on *X*. *Definition* 3.1. We define an abelian category.

$$\operatorname{Coh}_{X}^{0,-} = \begin{cases} H^{i}(\mathcal{F}) = 0 \forall i \neq -1, 0\\ \mathcal{F} \in D^{b}(X) \colon \mu(H^{0}(\mathcal{F})) \geq 0\\ \mu(H^{-1}(\mathcal{F})) < 0 \end{cases}$$

The point is that we can think of coherent sheaves with positive/negative slopes as a torsion pair, since the classification theorem tells us that $\operatorname{Hom}(\mathcal{E}, \mathcal{E}') = 0$ and $\operatorname{Ext}^1(\mathcal{E}', \mathcal{E}) = 0$ if $\mu(\mathcal{E}) > \mu(\mathcal{E}')$. Therefore, one (admittedly convoluted) way of describing $\mathcal{F} \in \operatorname{Coh}_X$ is as a pair $(\mathcal{F}', \mathcal{F}'')$ with $\mu(\mathcal{F}') < 0$ and $\mu(\mathcal{F}'') \ge 0$ plus an element of $\operatorname{Ext}^1_{\operatorname{Coh}(X)}(\mathcal{F}', \mathcal{F}'') = 0$.

Analogously, we can think to an object of $\operatorname{Coh}_X^{0,-}$ as a pair $(\mathcal{F}', \mathcal{F}'')$ where $\mu(\mathcal{F}') < 0$ and $\mu(\mathcal{F}'') \ge 0$, plus an element of

$$\operatorname{Ext}^{1}_{\operatorname{Coh}^{0,-}_{X}}(\mathcal{F}'',\mathcal{F}[1]) = \operatorname{Ext}^{2}_{\operatorname{Coh}_{X}}(\mathcal{F}'',\mathcal{F}') = 0.$$

Remark 3.2. We can extend additively rank, deg to $D^b(X)$. We can define deg^{0,-} = - rank and rank $^{0,-}$ = deg. If $\mu^{0,-} = \frac{\deg^{0,-}}{\operatorname{rank}^{0,-}}$ then objects of $\operatorname{Coh}_X^{0,-}$ have an HN filtration for this slope function.

Theorem 3.3. $\operatorname{Coh}_X^{0,-} \cong \mathcal{B}C.$

3.2 Connection to the Fargues-Fontaine curve

Let *S* be a perfectoid space over C^{\flat} . Then one can define a relative Fargues-Fontaine curve X_S , which you can think of as a family of the usual curves $(X_{k(s)})_{s \in S}$.

Warning 3.4. There is no map $X_S \rightarrow S$. This is already the case over a field.

- The association $S \rightsquigarrow X_S$ is functorial,
- If $S' \to S$ is pro-étale (surjective) then $X_{S'} \to X_S$ is also.

This allows us to define a morphism of sites

 τ : (big pro-étale site of *X*) \rightarrow (sheaves on Perf_{C^b,pro-étale})

by

$$\mathcal{F} \mapsto \tau_* \mathcal{F}(S) = H^0(X, \mathcal{F}_S := \mathcal{F}|_{X_S}).$$

Proposition 3.5. Let $\mathcal{F} \in \operatorname{Coh}_X$. If $\mu(\mathcal{F}) \ge 0$ then $R^i \tau_* \mathcal{F} = 0$ for all $i \ne 0$. If $\mu(\mathcal{F}) < 0$ then $R^i \tau_* \mathcal{F} = 0$ for all $i \ne 1$.

Corollary 3.6. We have

$$\operatorname{Coh}_{X}^{0,-} \cong \left\{ \begin{split} & H^{i}(\mathcal{F}) = 0 \text{ if } i \neq -1, 0 \\ & \mathcal{F} \in D^{b}(X) \colon \quad R^{0}\tau_{*}H^{-1}(\mathcal{F}) = 0, \\ & R^{1}\tau_{*}H^{0}(\mathcal{F}) = 0 \end{split} \right\}.$$

In other words, the functor $\mathbb{R}^0 \tau_* \colon \operatorname{Coh}_X^{0,-} \to \widetilde{\operatorname{Perf}}_{C^{\flat}, pro-\acute{e}tale}$ (where tilde means the category of sheaves) is exact.

This induces an equivalence $\operatorname{Coh}_X^{0,-} \cong \mathcal{B}C$, implicitly using Scholze to identify sheaves on the proétale sites of *C* and C^{\flat} .

Example 3.7. We have

$$R^0 \tau_* O_X(S) = H^0(X_S, O_{X_S}) = B^+(R)^{\varphi=1} = \mathbb{Q}_p.$$

where S = Spa(R). Also

$$R^0 \tau_* \iota_{\infty*} C = O.$$

By playing with the sequence

$$O_X(-1) \to O_X \to i_{\infty*}C$$

which can be tilted (in the sense of torsion pairs)

$$O_X \to i_{\infty*}C \to O_X(-1)[1].$$

we can show that the category depends only on C^{\flat} , and that the curve can be reconstructed from the BC category.