Banach-Colmez Spaces

Notes by Tony Feng for a talk by Arthur-Cesar Le Bras

April 5, 2016

We fix *C* to be the completion of an algebraic closure of \mathbb{Q}_p .

1 Definition of Banach-Colmez Spaces

Definition 1.1. A *Banach sheaf* is a contravariant functor $\mathcal F$ from Perf_{*C*} to topological \mathbb{Q}_p vector spaces such that

- 1. if $X \in \text{Perf}_C$ is affinoid perfectoid then $\mathcal{F}(X)$ is a Banach space
- 2. $\mathcal F$ is a sheaf on Perf_{*C*,pro-étale}.

Morphisms are morphisms of functors (i.e. natural transformations).

A sequence of Banach sheaves is exact if it is is exact as a sequence of sheaves on Perf*C*,pro-étale.

Example 1.2. Let *V* be a finite-dimensional \mathbb{Q}_p vector space. Then we have a constant Banach sheaf *V*. This is represented by $Spa(Funct(V, C), Funct(V, O_C))$. The sections can be described explicitly as $\mathcal{F}(X) = \text{Funct}(|X|, V)$.

Example 1.3. Let *W* be a finite-dimensional *C*-vector space. We can form $\mathcal{F} = W \otimes O$, which is representable by $W \otimes \mathbb{G}_a$ (but this is not a perfectoid space).

Definition 1.4*.* An *e*ff*ective Banach-Colmez space* is a Banach sheaf which is an extension

$$
0 \to \underline{V} \to \mathcal{F} \to W \otimes O \to 0.
$$

Where *W* is a *C*-vector space and *V* is a \mathbb{Q}_p -vector space.

Definition 1.5. A *Banach-Colmez space* is a Banach sheaf $\mathcal F$ which is a quotient of an effective Banach-Colmez space by a Q*p*-vector space:

$$
0 \to \underline{V}' \to \underbrace{\mathcal{F}'}_{\text{effective}} \to \mathcal{F} \to 0
$$

The category of such is denoted BC. If F is a BC and *V*, *W*, *V'* are as before we call dim_{*C*} *W* the dimension of the presentation of F and we call dimension *V'* the height of the the *dimension* of the presentation of $\mathcal F$ and we call $\dim_{\mathbb Q_p} V - \dim_{\mathbb Q_p} V'$ the *height* of the presentation.

Example 1.6. We have dim $\mathbb{Q}_p = 0$ and ht $\mathbb{Q}_p = 1$; while dim $O = 1$ and ht $O = 0$.

Theorem 1.7 (Colmez). BC *is an abelian category. The functor* $\mathcal{F} \mapsto \mathcal{F}(C)$ *is exact and conservative. Moreover, the dimension and the height do not depend on the presentation. Objects of BC have a Harder-Narasimhan filtration for the slope function* $\mu = -\frac{ht}{\text{dim}}$.

2 Examples as universal covers of *p*-divisible groups

2.1 Universal cover of a *p*-divisible group

Let *G* be a *p*-divisible group over O_C . We can take *G* to be the formal completion of *G* along its unit section, which is a formal group scheme over $Spf O_C$. We can then take the generic fiber

$$
\mathcal{G}_{\eta}^{\text{ad}} := \mathcal{G}^{\text{ad}} \times_{\text{Spa}(C, O_C)} \text{Spa}(O_C, O_C).
$$

There is an exact sequence of étale sheaves on the big étale site of Spa(*C*)

$$
0 \to \underline{\mathcal{G}}_{\eta}^{\text{ad}}[p^{\infty}] \to \mathcal{G}_{\eta}^{\text{ad}} \xrightarrow{\log} \text{Lie } G[1/p] \otimes \mathbb{G}_a \to 0.
$$

Here $G_{\eta}^{\text{ad}}[p^{\infty}] = \mathbb{Q}_p/\mathbb{Z}_p \otimes T_p(G)$. Taking the inverse limit of this sequence along the *p*th power map, we get a short exact sequence power map, we get a short exact sequence

$$
0 \to \underline{T_p(G)[p^{-1}]} \to \widehat{\mathcal{G}_\eta^{\text{ad}}} := \varprojlim_{x \mapsto px} \mathcal{G}_\eta^{\text{ad}} \to \mathrm{Lie}(G)[1/p] \otimes \mathbb{G}_a \to 0.
$$

Definition 2.1. This G_{η}^{ad} is called the *universal cover* of the *p*-divisible group *G*. η *Example* 2.2. For $G = \widehat{\mathbb{G}_m}^d$, if *R* is an affinoid perfectoid *C*-algebra then

$$
\widetilde{\mathcal{G}}^\text{ad}_{\eta}(R) \cong \varprojlim_{p}(R^{00})^{d} \cong (R^{\flat,00})^{d}.
$$

For any *G*, the universal cover $\widetilde{\mathcal{G}}_{\eta}^{\text{ad}}$ is an effective BC space.

Example 2.3. For $G = \mu_{p^{\infty}}$ we have $T_p(G) = \mathbb{Z}_p$ (no Galois action since we're over *C*) and

$$
\widetilde{\mu_{p^{\infty}}}(R) = \varprojlim_{p} 1 + R^{00} \xrightarrow{\log} R
$$

sending $(x_n) \mapsto \log x_0$.

Remark 2.4. The sheaf $\tilde{\mathcal{G}}_{\eta}^{\text{ad}}$ is always representable by a perfectoid open ball. It is a Banach-Colmez space with height and dimension equal to those of *G*.

2.2 *p*-divisible groups parametrize all Banach-Colmez spaces

Definition 2.5. Define BC_{p-div}^+ to be the full subcategory of BC consisting of universal covers of *p*-divisible group. Define BC*p*−*div* to be the full subcategory of BC obtained as a quotient of an object of $\mathcal{B}C_{p-div}^{+}$ by a \mathbb{Q}_{p} -vector space.

Proposition 2.6. We have $BC_{p-div} \cong BC$.

Proof. We need to show that every BC space is in BC_{p-div} , i.e. any extension of *W* ⊗ *O* by *V* can be recovered as a quotient of a universal cover of a *p*-divisible group by a \mathbb{Q}_p -vector space.

One important input we need is that $Ext_{BC}^1(W \otimes O, V) \cong Hom_C(W, V \otimes C)$. What does this even mean? It is saying that any extension

$$
0 \to \underline{V} \to \mathcal{F} \to W \otimes O \to 0
$$

fits into a diagram

A result of Fargues, Scholze-Weinstein then says that for all $(W, V, f: W \rightarrow V \otimes C)$ there exists a *p*-divisible group *G* over O_C such that $\tilde{G}_q^{\text{ad}} = \mathcal{F}$. (They take $V = T_p(G)[1/p]$, $W = \text{Lie}(G)[1/p]$, and *f* is the transpose of the Hodge Tate map of G^D). Since the fact $W = \text{Lie}(G)[1/p]$, and *f* is the transpose of the Hodge-Tate map of G^D). Since the fact about Ext¹ tells us that F is of this form, we are done. about Ext_{BC}^1 tells us that $\mathcal F$ is of this form, we are done.

$$
\Box
$$

Example 2.7. Let $G = \mu_{p^{\infty}}$. Then

$$
\widetilde{\mathcal{G}}_{\eta}^{\text{ad}}(R) = B_{\text{cris}}^{+}(R^{0}/p)^{\varphi=p} = B(R)^{\varphi=p}
$$

Corollary 2.8. *Banach-Colmez spaces are diamonds over C*[*.*

Now we want to describe more explicitly the objects of $BC^+ = BC_{p-div}^+$. Fix a section $\overline{\mathbb{F}}_p \hookrightarrow O_C/p$. Given a *p*-divisible group *G* over O_C , there exists a *p*-divisible group *H* over $\overline{\mathbb{F}}_p$ and an isogeny

$$
H \otimes_{\overline{\mathbb{F}}_p} O_C/p \cong G \otimes_{O_C} O_C/p
$$

Theorem 2.9 (Scholze-Weinstein). *Let R be a C-perfectoid algebra. Then*

$$
\widetilde{\mathcal{G}}_{\eta}^{\text{ad}}(R) = \widetilde{H}_{\eta}^{\text{ad}}(R^{0}/p) = \text{Hom}_{R^{0}/p}(\mathbb{Q}_{p}/\mathbb{Z}_{p}, H)[1/p] = D(H)(R^{0}/p)[1/p]^{\varphi=p}
$$

Evaluating the associated Banach-Colmez space on *C* gives

$$
0 \to \underline{\mathbb{Q}_p} \to (B^+_{\text{cris}})^{\varphi=p} \xrightarrow{\theta} C \to 0.
$$

3 Banach-Colmez Spaces and the Fargues-Fontaine curve

3.1 A *t*-structure

Let $X = X_{\mathbb{Q}_p, C^{\flat}}$. We have the abelian category Coh_X on X. *Definition* 3.1*.* We define an abelian category.

$$
\mathrm{Coh}_X^{0,-} = \left\{ \mathcal{F} \in D^b(X) : \begin{array}{c} H^i(\mathcal{F}) = 0 \forall i \neq -1, 0 \\ \mu(H^0(\mathcal{F})) \ge 0 \\ \mu(H^{-1}(\mathcal{F})) < 0 \end{array} \right\}
$$

The point is that we can think of coherent sheaves with positive/negative slopes as a torsion pair, since the classification theorem tells us that $Hom(E, E') = 0$ and $Ext^1(E', E) = 0$ if $\mu(E) > \mu(E')$. Therefore, one (admittedly convoluted) way of describing $\mathcal{F} \in Coh$ is 0 if μ (*E*) > μ (*E'*). Therefore, one (admittedly convoluted) way of describing *F* ∈ Coh_{*X*} is
as a pair (*F' F''*) with μ (*F'*) < 0 and μ (*F''*) > 0 plus an element of Fx¹ (*F' F''*) − 0 as a pair $(\mathcal{F}', \mathcal{F}'')$ with $\mu(\mathcal{F}') < 0$ and $\mu(\mathcal{F}'') \ge 0$ plus an element of $\text{Ext}^1_{\text{Coh}(X)}(\mathcal{F}', \mathcal{F}'') = 0$.

Analogously, we can think to an object of $\text{Coh}_{X}^{0,-}$ as a pair $(\mathcal{F}', \mathcal{F}'')$ where $\mu(\mathcal{F}') < 0$
 $\mu(\mathcal{F}'') > 0$, plus an element of and $\mu(\mathcal{F}^{"}) \geq 0$, plus an element of

$$
\text{Ext}^1_{\text{Coh}^{0,-}_X}(\mathcal{F}'',\mathcal{F}[1])=\text{Ext}^2_{\text{Coh}_X}(\mathcal{F}'',\mathcal{F}')=0.
$$

Remark 3.2. We can extend additively rank, deg to $D^b(X)$. We can define deg^{0,−} = − rank and rank $^{0,-}$ = deg. If $\mu^{0,-}$ = $\frac{\text{deg}^{0,-}}{\text{rank}^{0,-}}$ $\frac{\text{deg}^{0,-}}{\text{rank}^{0,-}}$ then objects of Coh_X⁰ have an HN filtration for this slope function.

Theorem 3.3. Coh^{$0,−$} ≅ *BC*.

3.2 Connection to the Fargues-Fontaine curve

Let *S* be a perfectoid space over C^{\flat} . Then one can define a relative Fargues-Fontaine curve *X*_{*S*} , which you can think of as a family of the usual curves $(X_{k(s)})_{s \in S}$.

Warning 3.4. There is no map $X_S \rightarrow S$. This is already the case over a field.

- The association $S \rightsquigarrow X_S$ is functorial,
- If $S' \to S$ is pro-étale (surjective) then $X_{S'} \to X_S$ is also.

This allows us to define a morphism of sites

 τ : (big pro-étale site of *X*) \rightarrow (sheaves on Perf_{*C*^b, pro-étale})

by

$$
\mathcal{F} \mapsto \tau_*\mathcal{F}(S) = H^0(X, \mathcal{F}_S := \mathcal{F}|_{X_S}).
$$

Proposition 3.5. *Let* $\mathcal{F} \in \text{Coh}_X$ *. If* $\mu(\mathcal{F}) \ge 0$ *then* $R^i \tau_* \mathcal{F} = 0$ *for all i* $\ne 0$ *. If* $\mu(\mathcal{F}) < 0$ *then* $R^i \tau_* \mathcal{F} = 0$ *for all i* $\ne 1$ $R^i \tau_* \mathcal{F} = 0$ *for all i* $\neq 1$ *.*

Corollary 3.6. *We have*

$$
\mathrm{Coh}_X^{0,-} \cong \left\{ \mathcal{F} \in D^b(X) : \begin{array}{c} H^i(\mathcal{F}) = 0 \text{ if } i \neq -1,0 \\ R^0 \tau_* H^{-1}(\mathcal{F}) = 0, \\ R^1 \tau_* H^0(\mathcal{F}) = 0 \end{array} \right\}.
$$

In other words, the functor $R^0\tau_*$: $\text{Coh}_{X}^{0,-} \to \widetilde{\text{Perf}}_{C^{\flat},pro\text{-\'etale}}$ (where tilde means the category of sheaves) is exact.

This induces an equivalence $\text{Coh}_X^{0,-} \cong \mathcal{BC}$, implicitly using Scholze to identify sheaves on the proétale sites of *C* and C^{\flat} .

Example 3.7*.* We have

$$
R^{0}\tau_{*}O_{X}(S) = H^{0}(X_{S}, O_{X_{S}}) = B^{+}(R)^{\varphi=1} = \underline{\mathbb{Q}_{p}}.
$$

where $S = \text{Spa}(R)$. Also

$$
R^0\tau_*\iota_{\infty*}C=O.
$$

By playing with the sequence

$$
O_X(-1) \to O_X \to i_{\infty *}C
$$

which can be tilted (in the sense of torsion pairs)

$$
O_X \to i_{\infty *} C \to O_X(-1)[1].
$$

we can show that the category depends only on C^{\flat} , and that the curve can be reconstructed from the BC category.