
ANALYTIC RTF: SPECTRAL SIDE

ILYA KHAYUTIN

1. Decomposition of the kernel

Recall that we defined

J(f, S) =
∫
[A]×[A]

Kf (h1, h2)|h1h2|sη(h2) dh1dh2.

We have an action of G(A), and hence C∞c (G(A)), on the space of automorphic
functions L2

0([G]). We are going to try to decompose the kernel functions into three
parts:

Kf (x1, x2) = Kf,cusp +Kf,sp +Kf,Eis

corresponding to cuspidal, "special", and Eisenstein. This idea is essentially due to
Selberg.

1.1. The cuspidal part. We have

Kf,cusp =
∑
π

Kf,π

where
Kf,π(x, y) =

∑
φ

π(f)φ(x)φ(y).

where φ runs over an orthonormal basis.

1.2. The special part. Using the determinant map, we have a map

χ : [G]→ F×\A×/(A×)2 → {±1}.
Then

Kf,sp,χ(x, y) = π(f)χ(x)χ(y).

This is the same expression as for the cuspidal part, actually - it just looks much
simpler because it is 1-dimensional.

1.3. The Eisenstein part. The Eisenstein part will be defined later.

1.4. Goals:
(1) Identify f ∈ H such that Kf,Eis = 0.
(2) For such f , show that

Jπ(f) =
∑
φ

P(π(f)ϕ)Pη(ϕ)
〈ϕ,ϕ〉

.
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2. Satake isomorphism

Let HG be the spherical Hecke algebra of G. By definition,

HG =

′⊗
x∈|X|

Hx.

For A ⊂ G the split torus, we have A ∼= Gm. Then HA =
⊗′HA,x, and the local

Hecke algebras are all isomorphic to

HA,x ∼= Q[F×x /O×x ] ∼= Q[t−1x , tx]

where tx = 1$−1
x O×x .

The Weyl group action is, in this normalization,

ιx(tx) = qxt
−1
x .

The Satake homomorphism

Satx : Hx → HA,x

sends hx 7→ tx + qxt
−1
x . In fact Satx is an isomorphism onto the subgroup of Weyl

invariants.
The local Satake homomorphisms extend to a global one:

Sat : H → HιA.

3. Eisenstein ideal

3.1. Definition of Eisenstein ideal. We can identify A×/O× ∼= Div(X). There
is a map Div(X)→ Pic(X). Now, HA ∼= Q[Div(X)]→ Q[Pic(X)].

The Weyl involution descends to ιPic on Q[Pic(X)],

1L 7→ qdegL1L−1 .

Thus we have a map

aEis : H
Sat−−→ HιA → Q[Pic(X)]ι.

Definition 3.1. We define the Eisenstein ideal to be IEis := ker aEis.

Theorem 3.2. For f ∈ IEis,

Kf,Eis(x, y) = 0.

Before we can prove this, we need to say what Kf,Eis is. And before that, we need
to define the Eisenstein series.
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3.2. Eisenstein series. The Eisenstein representations are induced from A, so we
should first parametrize the representations of A, which are necessarily characters.
Note that

A(A) = A× ∼= A1 × αZ

for some choice of α ∈ A with |α| = q. For a character

χ : F×\A1 → C×

we can extend to a character

χ0 : F
×\A→ C×

by sending χ(α) = 1.
More generally, for any u ∈ C we get a character

χu : F
×\A1 → C×

sending χu(a) = χ0(a)|a|u.

For B = An U and U =

(
1 x

1

)
, we define the modular character

δB : B(A)→ A×

by

δB

(
a b

d

)
= a/d.

Finally, we define

φ : B(A)→ C×

by b 7→ χ0(a/d).
Definition 3.3. We define the induced (Eisenstein) representation Vχ,u by

Vχ,u = {ϕ ∈ C∞(G(A)) | ϕ(bg) = χ(b)|δB(b)|1/2+uϕ(g)∀b ∈ B(A)}.

3.3. The Eisenstein kernel. Take ϕi orthogonal basis of Vχ. Then

Kf,Eis(x, y) =
∑
χ

Kf,Eis,χ(x, y)

and

Kf,Eis,χ(x, y) =
log q

2πi

∫ 0+2πi/ log q

0+0i

∑
i,j

(ρχϕj , ϕi)E(x, ϕi, u, χ)E(y, ϕj , u, x) du
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3.4. Proof of Theorem 3.2. Any f ∈ H is unramified, so fχ,u is periodic under
u 7→ u+ 2πi

log q . If χ is unramified, then

Kf,Eis,χ =
log q

2πi

∫ 2πi
log q

0
(ρχ,u(f)1K ,1K) . . . du.

It is a property of the Satake transform that

Tr(ρχ,u(f)) = χu+1/2(Sat(f)) (3.1)

Inflate the character χu+1/2 : F
×\A×/O× → C× to χu+1/2 : A

×/O× → C×. Thus
we get a character of HA. Then (3.1) reads

Tr(ρχ,u(f)) = χu+1/2(aEis(f)) = 0.

�

4. Relation to L-functions

4.1. Normalization of L-function. We have

L(πF ′ , s) = L(π, s)L(π ⊗ η, s).

The functional equation reads

L(πF ′ , s) = ε(π, s)L(πF ′ , 1− s)

where
ε(π, s) = q−8(q−1)(s−1/2).

Definition 4.1. We define the normalized L-function

L(πF ′ , s) = ε(πF ′ , s)
−1/2 L(πF ′ , s)

L(π,Ad, 1)
.

We write
J(f, s) =

∑
π

Jπ(f, s)

where

Jπ(f, s) =
∑
ϕ

P(π(f)ϕ, s)Pη(ϕ, s)
〈ϕ,ϕ〉

for ϕ ∈ πK . Here for any character χ,

Pχ(ϕ, s) =
∫
[A]
ϕ

(
h

1

)
χ(h)|h|s dh

If we write

I(s, ϕ, χ) =

∫
F×\A×

ϕ

(
h

1

)
χ(h)|h|s−1/2 dh (4.1)

and ϕ̃(g) = ϕ(tg−1), then we have a functional equation

I(s, ϕ, χ) = I(1− s, ϕ̃, χ).
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4.2. Whittaker model. To relate Jr(f) with derivatives of L-functions, we use
“Whittaker models”, which are automorphic variants of Fourier coefficients.

Let ϕ ∈ Vπ. Then we get

ϕ : U(F )\U(A)→ C

as follows. Note that U ∼= Ga, since

U =

(
1 ∗

1

)
.

Since U(F )\U(A) = F\A for a character ψ : F\A→ C× we can identify

(̂F\A) ∼= {ψ(γx) | x ∈ A, γ ∈ F}.
Then we can define a Whittaker function

Wϕ,ψγ (g) =

∫
F\A

ϕ

((
1 n

1

)
g

)
ψ−1(γh) dn (4.2)

Now we use a trick: by a change of variables, (4.2) is equal to

=

∫
F\A

ϕ

((
γ−1

1

)(
1 n

1

)(
γ

1

)
g

)
ϕψ−1(n) dn

Call this Wϕ,ψ(γg). Then we have a “Fourier expansion”

ϕ =
∑
γ∈F

Wϕ,ψ(γg).

Since f is cuspidal, the 0th Fourier coefficient vanishes. Also we have the identity

Wϕ,ψ(ng) = ψ(n)Wϕ(g).

In fact, this whole discussion applies locally, and we can define the local Whittaker
function Wϕ,ψ,x. The Whittaker function decomposes locally:

Wϕ,ψ =
∏
x∈|X|

Wϕ,ψ,x.

If we write (4.1) as

I(s, ϕ, χ) =
∫
F×\A×

∑
γ∈F×

Wϕ(γg)

(
h

1

)
|h|s−1/2χ(h)dh

=

∫
A×

Wϕ

(
h

1

)
. . . dh.

Here we have used that since we are integrating over F×\A× a sum over F×, we
just get an integral over A× of something that decomposes locally as a product of
local integrals. That’s basically what an L-function is, so it is not surprising that
the result is related to an L-function. However, there’s an issue of test vectors. For
almost all places, you get the right local factor. But at the finitely many bad places,
you need to calculate a constant factor.
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