ANALYTIC RTF: SPECTRAL SIDE

ILYA KHAYUTIN

1. DECOMPOSITION OF THE KERNEL

Recall that we defined
J(f,S) _/ K¢ (h1, ha)|hiha|*n(he) dhidhs.
[A]x[A]

We have an action of G(A), and hence C°(G(A)), on the space of automorphic
functions LZ([G]). We are going to try to decompose the kernel functions into three
parts:

Kf(l‘l, 732) = Kf,cusp + Kf,sp + Kf,Eis
corresponding to cuspidal, "special", and Eisenstein. This idea is essentially due to

Selberg.
1.1. The cuspidal part. We have

K¢ cusp = Z Kyx
s

where

Kpr(z,y) =Y 7(f)o(x)d(y).
¢
where ¢ runs over an orthonormal basis.

1.2. The special part. Using the determinant map, we have a map
x: [G] — FX\AX/(AX)2 — {£1}.
Then

Kfspo(@,y) = 7(f)x(2)x ().

This is the same expression as for the cuspidal part, actually - it just looks much
simpler because it is 1-dimensional.

1.3. The Eisenstein part. The Eisenstein part will be defined later.

1.4. Goals:

(1) Identify f € H such that K¢ gis = 0.
(2) For such f, show that
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2. SATAKE ISOMORPHISM

Let Hg be the spherical Hecke algebra of GG. By definition,
/
Ha = ® H.
z€| X|

For A C G the split torus, we have A = G,;,. Then H4 = ®/ Haz, and the local
Hecke algebras are all isomorphic to

HA,Q: = Q[FxX/O;] = Q[t;17t$]

where t, = 1w;105.
The Weyl group action is, in this normalization,

Le(ty) = qmtgl.
The Satake homomorphism
Saty: He = Hag

sends hy +— t; + qot, . In fact Sat, is an isomorphism onto the subgroup of Weyl
invariants.
The local Satake homomorphisms extend to a global one:

Sat: H — H.

3. EISENSTEIN IDEAL

3.1. Definition of Eisenstein ideal. We can identify A*/O* = Div(X). There
is a map Div(X) — Pic(X). Now, H4 = Q[Div(X)] — Q[Pic(X)].
The Weyl involution descends to tp;. on Q[Pic(X)],

1, — qd8L1,.

Thus we have a map
apis: H 2 MYy — QIPic(X)]".
Definition 3.1. We define the Eisenstein ideal to be Zg;s := ker ags.
Theorem 3.2. For f € Iy,
Ky gis(z,y) = 0.

Before we can prove this, we need to say what Ky gis is. And before that, we need
to define the Eisenstein series.
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3.2. Eisenstein series. The Eisenstein representations are induced from A, so we
should first parametrize the representations of A, which are necessarily characters.
Note that

A(A) = AX = Al x o2
for some choice of & € A with |a| = ¢. For a character
x: FX\A! = C~
we can extend to a character
Xo: F*\A — C*

by sending y(a) = 1.
More generally, for any © € C we get a character

Xu: FX\Al = C~
sending xu(a) = xo(a)|al".
For B=AxU and U = (1 :16), we define the modular character

5p: B(A) = A%

5p (“ Z) — a/d.

¢: B(A) —» C*

Finally, we define

by b — xo(a/d).
Definition 3.3. We define the induced (Fisenstein) representation V, ,, by

Viu = {p € C®(G(A)) | p(bg) = x(b)[5(b)[V/*o(g)¥b € B(A)}.
3.3. The Eisenstein kernel. Take ¢; orthogonal basis of V. Then

Kf,Eis(x7 y) = Z Kf,Eis,X (.7?, y)
X

and

(Px%‘a Wl)E(iL‘? @i, U, X)E(ya Pj, U, ZE) du

log q 0+2mi/ logq
K Eisx (7, y) = /
0

21 ;
+0i i.j
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3.4. Proof of Theorem Any f € H is unramified, so f,, is periodic under

U U+ égiq- If x is unramified, then

271

logq [Tosq
K Bisx = 27”/0 (oxu(f)lK, 1K) - .. du.

It is a property of the Satake transform that

Tr(pyulf)) = Xut1/2(Sat(f)) (3.1)

Inflate the character x,41/9: F”\A*/O* — C* to xy41/2: A*¥/O* — C*. Thus
we get a character of H4. Then (3.1]) reads

Tr(ﬂx,u(f)) = Xu+1/2(aEis(f)) =0.

d
4. RELATION TO L-FUNCTIONS
4.1. Normalization of L-function. We have
L(npr,s) = L(m,s)L(m ®n, s).
The functional equation reads
L(7TF/, 8) = 6<7T, S)L(WF/, 1-— 8)
where
e(m,s) = ¢ Bl D=1/2)
Definition 4.1. We define the normalized L-function
_ L(?TF/ 8)
E / = / 1/277.
<7TF 78) 6(7I-F 78> L(ﬂ', Ad7 1)
We write
I(fo8) = Inlf,s)
e (1), 8)Py(B.5)
P(r(f)e,s)Py(p,s
Jr fa S)=
(:9) %: (v, 9)
for ¢ € m%. Here for any character y,
h s
Pl = [ o (")) xe an
[A]
If we write
h o
o) = [ o (") xme2an (4.)
FX\AX

and $(g) = ¢(*g~'), then we have a functional equation

I(&@vX) 21(1_57&57)()'
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4.2. Whittaker model. To relate J,(f) with derivatives of L-functions, we use
“Whittaker models”, which are automorphic variants of Fourier coefficients.
Let ¢ € V;. Then we get
p: UF)\UA) —» C

as follows. Note that U =2 G, since

U:<1 ;).

Since U(F)\U(A) = F\A for a character ¢: F\A — C* we can identify

(F\A) ={y(yz) |z € A,y e F}.

Then we can define a Whittaker function

Weu,(9) = /F\A 2 ((1 Tf) g> Y~ (yh) dn (4.2)

Now we use a trick: by a change of variables, (4.2)) is equal to

=Lt (C ) D)0 0)e)erma

Call this W, ;,(vg). Then we have a “Fourier expansion”

= Weu(rg).

YEF
Since f is cuspidal, the Oth Fourier coefficient vanishes. Also we have the identity

W (ng) = 1(n)We(g).
In fact, this whole discussion applies locally, and we can define the local Whittaker
function W, 4 . The Whittaker function decomposes locally:

W%w = H W%’ﬂl},r'
z€|X|

If we write (4.1) as
h .
.00 = [ % Wota) (") I A (hyan
FOAX

:/xww(h 1)...dh.

Here we have used that since we are integrating over F*\A* a sum over F'* | we
just get an integral over A* of something that decomposes locally as a product of
local integrals. That’s basically what an L-function is, so it is not surprising that
the result is related to an L-function. However, there’s an issue of test vectors. For
almost all places, you get the right local factor. But at the finitely many bad places,
you need to calculate a constant factor.
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