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1 Preliminaries on the Fargues-Fontaine curve

Let E be a local ring with residue field Fq. (We can imagine E = Qp or Fq((t)).) Let F be an
algebraically closed perfectoid extension of Fq. (In terms of the notation of Colmez’s talk,
F = C[.)

We form the adic curve Xad := Yad/ϕZ. This has a map to the scheme-theoretic Fargues-
Fontaine curve X := Proj P, where

P =
⊕
d≥0

Bϕ=$d

where B = O(Yad) is a Fréchet algebra.

Theorem 1.1. X is a regular noetherian scheme of dimension 1.

If we fixed∞ ∈ |X| (corresponding to an untilt C) then

X \ {∞} = Spec Be

where Be = B[1/t]ϕ=1.

Theorem 1.2 (Fargues-Fontaine). The ring Be is a PID.

We want to discuss the classification of vector bundles on the Fargues-Fontaine curve.
Thanks to the following theorem, we can think interchangeably about the analytic or alge-
braic curve for this purpose.

Theorem 1.3 (Fargues-Fontaine, Hartl-Pink, Kedlaya-Liu). GAGA for X: the map Xad → X
induces an equivalence of categories

BunX � BunXad .
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2 Constructing vector bundles

2.1 Line bundles

We already know about the line bundles O(d) for d ∈ Z. Are these all of them?

The answer is yes: Pic X
∼
−→ Z by d 7→ [O(d)]. This is saying that the curve has a

well-defined notion of degree. This is extremely non-trivial: the usual theory of degree
does not apply, because the curve X lives over Qp but its residue fields are generally huge
(infinite-dimensional over Qp).

What we are saying here is that if one redefines the degree of a point in an appropriate
way then it is a theorem that the divisor of any function has degree 0, and that allows us to
define a coherent notion of degree.

2.2 Higher rank vector bundles

We give an analytic construction of vector bundles on Xad. The key point is that Yad lives
over Spa L where L = Ĕ := Êunr. So one can pull back ϕ-equivariant bundles on Spa L to
Yad to get a functor

(ϕ-bundles on Spa(L,OL))→ (ϕ-bundles on Yad),

which then descend to bundles on Xad. By GAGA (Theorem 1.3) this is the same as bundles
on X.

This construction gives a functor

(ϕ − bundles on Spa(L,OL))→ BunX .

But of course ϕ−bundles on Spa(L,OL) are simply classical L-isocrystals: finite-dimensional
L-vector spaces equipped with bijective semi-linear “Frobenius” endomorphism ϕ.

This can be made concrete. For D ∈ ϕ −ModL we get a graded P-module

E(D) :=
⊕
d≥0

(D ⊗L B)ϕ=$d
.

One then takes the associated quasicoherent sheaf on X. (But it is not clear from this
description that this is a vector bundle.)

Warning 2.1. O(1) depends on the choice of $.

3 Geometric properties of E(D)

If D is simple of slope −λ (λ ∈ Q) then we get a vector bundles E(D) =: OX(λ). The
Dieudonné-Manin theorem gives a classification of irreducible isocrystals in terms of the
slope.
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What is OX(λ) concretely? If λ ∈ Z then it is easy to show that

OX(λ) = P̃[λ]

and this is a line bundle since P is degenerated in degree 1. In general, if λ = d
h in reduced

form then let Eh/E be the unramified extension of degree h. Then we get a curve XEh,F �

X ⊗E Eh which is a finite étale covering of X with Galois group Z/h. At the level of adic
spaces the covering can be described simply as

Yad/ϕhZ → Yad/ϕZ.

Then OX(λ) := πh∗OXh(d). Why? This comes from an understanding of the irreducible
isocrystals.

Consequences:

1. OX(λ) ∈ BunX (since it’s the pushforward of a line bundle via a finite étale map).

2. rank OX(λ) = h and degOX(λ) = d, so the slope of OX(λ) is λ.

3. OX(λ) is semistable. (This can be checked after pulling back to the finite étale cover
YEh , where it becomes a direct sum of copies of line bundles of degree d.) In fact it is
even stable, by the classification theorem.

4 Classification of vector bundles

4.1 The classification theorem

Theorem 4.1 (Fargues-Fontaine). The functor

ϕ −ModL → BunX

sending D 7→ E(D) is essentially surjective. In other words, any vector bundle is isomorphic
to a direct sum of OX(λ):

E � OX(λ1) ⊕ . . . ⊕ OX(λn) for some λ1 ≥ . . . ≥ λn ∈ Q.

This expression is unique.

Warning 4.2. This is not true over non-algebraically-closed fields.
Remark 4.3. An important consequence of the classification is that if E ∈ BunX is non-zero
then

degE ≥ 0 =⇒ H0(E) , 0.

This is really hard. To give an example, there is a huge space of extensions

0→ O(−1)→ E → O(1)→ 0.

The classification implies that for any such extension H0(E) , 0. This is difficult; proving
it is basically tantamount to proving the theorem.
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We also have
O(λ)∨ = O(−λ)

and
O(λ) ⊗ O(µ) = O(λ + µ)⊕?

which is the best that one can hope for in consideration of the ranks.

4.2 Cohomology and consequences

We have
Hom(O(λ),O(µ)) = 0 if µ < λ.

On the other hand,
Ext1(O(λ),O(µ)) = 0 if µ > 0.

These cohomology groups are really big; for instance

H0(O(1)) = Hom(O,O(1)) = Bϕ=$

and
H1(O(−1)) � C/E,

which in particular is infinite-dimensional over E.
The “fundamental exact sequence”

0→ E → Be → BdR/B+
dR → 0

is equivalent to the statements H0(O) = E and H1(O) = 0.

Corollary 4.4. We have π1(X) � Gal(E/E).

Proof. We have an obvious functor from finite extensions of E to finite étale covers of X,
which on fields is E′ 7→ X ⊗E E′. We want to show that this induces an equivalence of
categories.

For f : Y → X with Y connected, we want to show that f∗OY is trivial vector bundle,
because then we can try to recover E′ as its global sections (it will be a finite-dimensional
E-vector space with an E-algebra structure).

Using that that E has an algebra structure, the classification theorem implies that all
slopes of E are ≤ 0 because if it has some component with positive slope λ, then

O(λ) ⊗ O(λ)→ E

must be zero since the description of cohomology tells us that a vector bundle on the
Fargues-Fontaine curve cannot admit a non-zero map to a vector bundle of smaller slope.
Since E is self-dual we also get that all slopes are non-negative, so all slopes are 0. The
classification theorem then implies that the bundle is trivial. �
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5 Link with p-divisible groups

Let E = Qp for simplicity. Fix ∞ ∈ |X| with residue field C (an algebraically closed and
complete extension of E). We can then form BdR, etc. (see Colmez’s lecture).

5.1 Miniscule modifications

For H a p-divisible group over Fp, there is an associated covariant Dieudonné isocrystal
D, giving a bundle E = E(D) ⊗ O(1). (The twisting by 1 is an artifact of the definition
of duality for isocrystals, which is normalized to send an isocrystal with slope in [0, 1] to
another isocrystal with slope in [0, 1].)

Definition 5.1. A degree n ∈ [0, ht H] miniscule modification of E is a vector bundle F
fitting into a short exact sequence

0→ F → E → i∗W → 0

where i : {∞} ↪→ X and dimC W = n.

The key idea is that one can make many modifications trivial using periods of p-divisible
groups. The mechanism for this is the period morphism, which we now explain.

5.2 The period morphism

To H we can attach a Rapoport-Zink space, which is rigid spaceM/L classifying deforma-
tions for p-divisible groups, but where we take deformations not by isomorphisms but by
quasi-isogenies. There exists an étale period map

M→ Fl

where Fl is the flag variety of n-dimensional quotients of D, with n = dim H. The period
map is

G 7→ LieG[1/p].

The key fact is that i∗E � D ⊗ C. Granting this fact, the map from Fl(C) to the set of
degree n miniscule modifications can be described as

x = [D ⊗C � W] 7→ E(x) := ker[E → i∗i∗E � i∗(D ⊗C)� i∗W].

Theorem 5.2. If x is in the image of the period map, then E(x) is trivial. (So E(x) =

Vp(G) ⊗ OX).

Remark 5.3. This is a “sheafy” version of the p-adic comparison theorem for p-divisible
groups, whose proof is an easy consequence of the usual version.

There are essentially two cases in which the period map is surjective.

1. If we choose H to be a 1-dimensional height h formal group over Fp then Fl � Ph−1

(Gross-Hopkins, Laffaille).
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2. If we choose H to be a special formal module in the sense of Drinfeld.

Therefore, in these cases p-divisible groups give us many modifications with F be
trivial.

6 Sample of ideas in the proof of the classification

The main technical results are that for all n ≥ 1:

1. all degree 1 modifications of O(1/n) are trivial (this is a trivial consequence of the
theorem statement, but a significant step in the proof).

2. O(−1/n) is the only degree 1 modification of O⊕n without global sections.

Let’s sketch how these facts are used in an example. We’ll prove that any E fitting into
an extension

0→ O(−1)→ E → O(1)→ 0

has global sections. (This is a special case of Remark 4.3.) Suppose otherwise. There is a
map O(1) → i∗C. Consider the composite E → ι∗C and define F := ker(E → i∗C). So F
is an extension

0→ O(−1)→ F → O → 0.

By the construction of F we also have an extension

0→ F → E → i∗C → 0.

Now for a trick: pick an embedding O(−1) ↪→ O and consider the pushout

0 // O(−1)

��

// F

��

// O // 0

0 // O // F ′ // O // 0

Then F ′ � O2 because H1(O) = 0. So F is a degree 1 modification of O2 but it has no
global sections because E doesn’t and F ↪→ E, so by fact (2) above F � O(−1/2).

Now dualize the sequence

0→ O(−1/2)→ E → i∗C → 0

to get
0→ E∨ → O(1/2)→ i∗C → 0.

But this is trivial by (1), so E∨ is trivial, hence E is trivial, contradicting the assumption that
E has no global sections.
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