ANALYTIC RTF: GEOMETRIC SIDE

JINGWEI XIAO

1. THE BIG PICTURE

Yesterday we defined a certain “geometric” quantity I.(f). Today we will define
an “analytic” quantity J,(f). Both of these have two expansion:

> ouepi(p)-0 1y (U, f) == L(f) == > I:(7, f). (1.1)

and
> uepi(p)—o (U, [) == S (f) == >_; Jn(m, [). (1.2)

The left sides of (L.1)), are expansions in terms of orbital integrals. The right
side are the quantities that we want to compare: J.(m, f) ~ L) (7p,1/2), and
L. (m, f) = ([Shtr]x, f * [Shtr]). The functions f are “test functions” which provide
the flexibility to isolate the terms of interest.

2. THE RELATIVE TRACE FORMULA

Let F' be a global field, the function field of X for X/F,. Let G/F be a reductive
group, and Hj, Hy — G subgroups over F. We'll write [G] := G(F)\G(A), and
similarly for H;.

2.1. The kernel. Let A = Ap, [G] = G(F)\G(A). For f € C°(G(A)), we define
the kernel function

o g2) = > flgr vg2).

YEG(F)

The point is that G(A) acts on C*°(G(F)\G(A)), and for ¢ € C*°(G(F)\G(A)) we
have

7(f)- 6 = / K (g1, 92)6(g2) dga. (2.1)
(FO\G(A)

The relative trace formula involves the quantity

/ K¢ (hy, ha) dhydhs (2.2)
[H1]x [Ha)]
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2.2. The geometric expansion. The geometric expansion of (2.2)) is

/ S F(hT yhe) dhidhy
[H1]x[Hz2] yeG(F)

_ 3 / S F(h76hs) dhadhs
yeH (P\G(F)/ Ha(F) ” HIXIH2] s b, (P oy, ()

Rearranging, one rewrites this as

F(hT yhs).

yeH (F)\G(F)/H3(F) /(Hl X H2)~(F)\H1(A)x H2(A)

Here -, denotes the stabilizer of v:
(Hi X Hz)y = {(h1, ho): by tyhe = 7).
2.3. The spectral expansion. Now we rewrite in a different way. The idea
is to decompose
Kpn Y, ) n(f)oed

7 cuspidal ¢
where ¢ runs over orthogonal basis of 7. This is a bit of lie, as one also needs to
consider the residual and Eisenstein parts, but it roughly works. Using this, we can

rewrite
(2.1) =ZZ/ m(f)p dhy -
T ¢ [Hl]

Here the term f[H1] w(f)¢ is a “period” P, (7(f)p).

2.4. The split subtorus. For G = PGLy, set H; = Hs = A to be the diagonal
torus of G. For f € C2°(G(A)) we get a kernel function Ky. We consider the integral

/ Ky (h1, ha)|h1he|*n(hs)
[A]x[A]

¢ dhs
[H2]

T

where if h = then |h| = |z/y|, and n: A} — {£1} is the character corre-

sponding by class field theory to F'/F.
There’s an issue with this integral. Since A = G,,/F, [A] := F*\A} is not
compact, since

[A]/ ] o5 = Pic(x).

This has infinitely many connected components, which are finite since they are iso-
morphic to Pic®(X). To regularize the integral, define

A ={ (") s vtam =n}.

vi AR/ []or = 2

We have a map
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sending v(m;) = log,(q.) for any = € |X]|.
The [A,,] are compact, so we can talk about

/ K(hl, h2)|h1h2|sn(s) ds.
[Aln; x[Aln,

This is actually a polynomial in ¢°.

Proposition 2.1. For each f, there exists N such that |ni| + |n2| > N implies
/ K (ha, ha)ij(hs)|hal® = 0.
[Alny x[A]ny

Assuming this claim, we can define the regularized integral

L=
[Ar]x[A2] [Alny X [Alny

ni,n2

3. SPECTRAL EXPANSION
The goal of this section is to establish the identity

J-(f) = Z Jy(u, f).

ueP1(F)—0

3.1. The invariant map. We have seen that in the RTF, we care about the double
coset space

Hi(F)\G(F)/H(F).
For G = PGLy, H; = Hy, = A we can define an invariant map
A(F)\ PGLy(F)/A(F) — P! — {1}

a b be
c d H@

Proposition 3.1. For z € P1(F) — {1}, we have

by

( single orbit x # 0,00
1 1 1 1
.1 ) ) x=0
inv " (z) = 11 1 1
1 11 1
’ 5 r = 00
11 1 1

Also, v is reqular semisimple iff inv(y) # 0, cc.
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3.2. Expansion. This lets us write

J(f,s) = > J(7, f.9)
YEA(F)\G(F)/A(F)
where
Ty fos) = / K (R, ho) [ al*n(ha) dha
[A]x[4]
and
Kiqy(hiho) = > f(hy'ohyh).
dE€A(F)YA(F)

For u € P1(F) — {1}, we define
J(u, f,5) = > J(v, £, 9)-

YEA(FN\G(F)/A(F)
inv(y)=u

3.3. Higher derivatives. Now we define

50 = (5) Il

Similarly, we have a decomposition

i) = () S £l

Also
L(H= >, I

uePl(F)—{1}
4. THE CASEr =0
The goal is to establish the identity
Z I’Y(u)f) :Hr(f)
ueP1(F)—0

Yesterday we defined
Io(f) := (Sht{, f * Sht7.).

Let F'/F be a quadratic extension. Define T' = Respr /g G,/ /G p- It turns
out that we also have an equality

Io(f) = /[TMT] K (h1, h).

The Waldspurger formula can be reinterpreted in these terms:

S Do f) = To(f) ~ L(w,0).

YEA(FN\G(F)/A(F)
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While

> Io(v, f) =Lo(f / Pr.

YET(F)\G(F)/T(F)

5. THE EQUALITY Io(f) = Jo(f)

The strategy to relate the things is to relate the orbital integrals. So we first need
to relate the orbits.

5.1. Matching double cosets. Let G = PGLg or D*/F* where D is a quaternion
algebra over F' (with an embedding F’ < D).

Theorem 5.1. We have
A(F)\PGLa(F)™/A(F) = 11 T(F\G(F)™/T(F).

G=PGLy or DX /FX

Proof. We consider G = PGLg or D*. Let H = My(F') or D, so G = H*. We have
an embedding F' — H.

There exists € € H(F) such that exe ™! = T for € F’. The choice of € is unique up
to multiplication by (F")*. By computation, €2 € Z(H) = F, so [¢?] € F*/Nm(F')*
is well-defined.

Proposition 5.2. The element [¢2] € F*/Nm(F')* determines H.

We have an invariant map

T(F)\H*/T(F) =% P'(F) {1}

sending
hahsy
hi + €ho 272 2.
hihs
The image lands in €2 - Nm((£”)*), and is equal in the regular semisimple case since
this is equivalent to hihs # 0. O

5.2. Matching orbital integrals. Now that we've matched up the double cosets,
we turn to showing that Io(f) = Jo(f) for f = [],¢x| fo € He a bi-K-invariant
function. Writing out the expansion, this comes down to

> To(u, f) =Y Jo(u, f)

This becomes a fundamental lemma type statement.
Consider F /F, a quadratic extension. Let f € C°°(PGLsy(F,)) be bi-K-invariant.
We have

A(F,)\PGLy(F)/A(F,) = T(F,)\ PGLy(F,)/T(F,) [ [ T(F,)\D*/T(F,)

By Theorem [5.1] each ~ on the left side matches up with ay; € T'(F,)\ PGLy(F,)/T(F))
or v2 € T(F,)\D*/T(F,). One can then compute by hand that the corresponding
orbital integrals are equal.
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o If vy & v € T(F,)\ PGLa(F,) /T (Fy), then

+ / Fhy yho)n(ha) = / F(h1yh)
A(F)x A(F) T(F)xT(F)

so Io(u, f) = Jo(u, f).
o If v ¢5 75 € T(F,)\D* /T(F,), then

/ F(h7 yha)(ha) dhy = O
A(F)x A(F)

so the extra double cosets do not contribute.
This shows that
Io(f) = Jo(f)-
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