
ANALYTIC RTF: GEOMETRIC SIDE

JINGWEI XIAO

1. The big picture

Yesterday we defined a certain “geometric” quantity Ir(f). Today we will define
an “analytic” quantity Jr(f). Both of these have two expansion:∑

u∈P1(F )−0 Iγ(u, f) Ir(f)
∑

π Ir(π, f). (1.1)

and ∑
u∈P1(F )−0 Jγ(u, f) Jr(f)

∑
π Jr(π, f). (1.2)

The left sides of (1.1), (1.2) are expansions in terms of orbital integrals. The right
side are the quantities that we want to compare: Jr(π, f) ∼ L(r)(πF , 1/2), and
Ir(π, f) = 〈[ShtT ]π, f ∗ [ShtT ]π〉. The functions f are “test functions” which provide
the flexibility to isolate the terms of interest.

2. The relative trace formula

Let F be a global field, the function field of X for X/Fq. Let G/F be a reductive
group, and H1, H2 ↪→ G subgroups over F . We’ll write [G] := G(F )\G(A), and
similarly for Hi.

2.1. The kernel. Let A = AF , [G] = G(F )\G(A). For f ∈ C∞c (G(A)), we define
the kernel function

Kf (g1, g2) :=
∑

γ∈G(F )

f(g−11 γg2).

The point is that G(A) acts on C∞(G(F )\G(A)), and for φ ∈ C∞(G(F )\G(A)) we
have

π(f) · φ =

∫
G(F )\G(A)

Kf (g1, g2)φ(g2) dg2. (2.1)

The relative trace formula involves the quantity∫
[H1]×[H2]

Kf (h1, h2) dh1dh2 (2.2)
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2.2. The geometric expansion. The geometric expansion of (2.2) is∫
[H1]×[H2]

∑
γ∈G(F )

f(h−11 γh2) dh1dh2

=
∑

γ∈H1(F )\G(F )/H2(F )

∫
[H1]×[H2]

∑
δ∈H1(F )γH2(F )

f(h−11 δh2) dh1dh2

Rearranging, one rewrites this as

=
∑

γ∈H1(F )\G(F )/H2(F )

∫
(H1×H2)γ(F )\H1(A)×H2(A)

f(h−11 γh2).

Here γ denotes the stabilizer of γ:

(H1 ×H2)γ := {(h1, h2) : h−11 γh2 = γ}.

2.3. The spectral expansion. Now we rewrite (2.1) in a different way. The idea
is to decompose

Kf ≈
∑

π cuspidal

∑
φ

π(f)φ⊗ φ

where φ runs over orthogonal basis of π. This is a bit of lie, as one also needs to
consider the residual and Eisenstein parts, but it roughly works. Using this, we can
rewrite

(2.1) =
∑
π

∑
φ

∫
[H1]

π(f)φdh1 ·
∫
[H2]

φdh2

Here the term
∫
[H1]

π(f)φ is a “period” PH1(π(f)φ).

2.4. The split subtorus. For G = PGL2, set H1 = H2 = A to be the diagonal
torus of G. For f ∈ C∞c (G(A)) we get a kernel function Kf . We consider the integral∫

[A]×[A]
Kf (h1, h2)|h1h2|sη(h2)

where if h =

(
x

y

)
then |h| = |x/y|, and η : A×F → {±1} is the character corre-

sponding by class field theory to F ′/F .
There’s an issue with this integral. Since A ∼= Gm/F , [A] := F×\A×F is not

compact, since
[A]/

∏
x

O×x = Pic(X).

This has infinitely many connected components, which are finite since they are iso-
morphic to Pic0(X). To regularize the integral, define

[A]n =

{(
x

y

)
: v(x/y) = n

}
.

We have a map
v : A×F /

∏
O×x → Z
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sending v(πx) = logq(qx) for any x ∈ |X|.
The [An] are compact, so we can talk about∫

[A]n1×[A]n2
K(h1, h2)|h1h2|sη(s) ds.

This is actually a polynomial in qs.

Proposition 2.1. For each f , there exists N such that |n1|+ |n2| ≥ N implies∫
[A]n1×[A]n2

Kf (h1, h2)η(h2)|h1h2|s = 0.

Assuming this claim, we can define the regularized integral∫ reg

[A1]×[A2]
:=
∑
n1,n2

∫
[A]n1×[A]n2

3. Spectral expansion

The goal of this section is to establish the identity

Jr(f) =
∑

u∈P1(F )−0

Jγ(u, f).

3.1. The invariant map. We have seen that in the RTF, we care about the double
coset space

H1(F )\G(F )/H2(F ).

For G = PGL2, H1 = H2 = A we can define an invariant map

A(F )\PGL2(F )/A(F )→ P1 − {1}

by (
a b
c d

)
7→ bc

ad
.

Proposition 3.1. For x ∈ P1(F )− {1}, we have

inv−1(x) =



single orbit x 6= 0,∞(
1

1 1

)
,

(
1 1

1

)
,

(
1

1

)
x = 0(

1

1 1

)
,

(
1 1

1

)
,

(
1

1

)
x =∞

Also, γ is regular semisimple iff inv(γ) 6= 0,∞.
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3.2. Expansion. This lets us write

J(f, s) =
∑

γ∈A(F )\G(F )/A(F )

J(γ, f, s)

where

J(γ, f, s) =

∫
[A]×[A]

Kf,γ(h1, h2)|h1h2|sη(h2) dh2

and
Kf,γ(h1, h2) =

∑
δ∈A(F )γA(F )

f(h−11 δh−12 ).

For u ∈ P1(F )− {1}, we define

J(u, f, s) =
∑

γ∈A(F )\G(F )/A(F )
inv(γ)=u

J(γ, f, s).

3.3. Higher derivatives. Now we define

Jr(f) =
(
d

ds

)r
J(f, s)|s=0.

Similarly, we have a decomposition

Jr(u, f) =
(
d

ds

)r
J(u, f, s)|s=0.

Also
Jr(f) =

∑
u∈P1(F )−{1}

Jr(u, f).

4. The case r = 0

The goal is to establish the identity∑
u∈P1(F )−0

Iγ(u, f) = Ir(f).

Yesterday we defined
I0(f) := 〈Sht0T , f ∗ Sht0T 〉.

Let F ′/F be a quadratic extension. Define T = ResF ′/F Gm,F ′/Gm,F . It turns
out that we also have an equality

I0(f) =
∫
[T ]×[T ]

Kf (h1, h2).

The Waldspurger formula can be reinterpreted in these terms:∑
γ∈A(F )\G(F )/A(F )

J0(γ, f) = J0(f) ∼ L(π, 0).
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While ∑
γ∈T (F )\G(F )/T (F )

I0(γ, f) = I0(f) ∼
∫
[T ]
φπ.

5. The equality I0(f) = J0(f)

The strategy to relate the things is to relate the orbital integrals. So we first need
to relate the orbits.

5.1. Matching double cosets. Let G = PGL2 orD×/F×, whereD is a quaternion
algebra over F (with an embedding F ′ ↪→ D).

Theorem 5.1. We have

A(F )\PGL2(F )
rss/A(F ) =

∐
G=PGL2 or D×/F×

T (F )\G(F )rss/T (F ).

Proof. We consider G = PGL2 or D×. Let H =M2(F ) or D, so G = H×. We have
an embedding F ′ ↪→ H.

There exists ε ∈ H(F ) such that εxε−1 = x for x ∈ F ′. The choice of ε is unique up
to multiplication by (F ′)×. By computation, ε2 ∈ Z(H) = F , so [ε2] ∈ F×/Nm(F ′)×

is well-defined.

Proposition 5.2. The element [ε2] ∈ F×/Nm(F ′)× determines H.

We have an invariant map

T (F )\H×/T (F ) inv−−→ P1(F )− {1}
sending

h1 + εh2 7→
h2h2

h1h1
ε2.

The image lands in ε2 ·Nm((F ′)×), and is equal in the regular semisimple case since
this is equivalent to h1h2 6= 0. �

5.2. Matching orbital integrals. Now that we’ve matched up the double cosets,
we turn to showing that I0(f) = J0(f) for f =

∏
v∈|X| fv ∈ HG a bi-K-invariant

function. Writing out the expansion, this comes down to∑
u

I0(u, f) =
∑
u

J0(u, f)

This becomes a fundamental lemma type statement.
Consider F ′v/Fv a quadratic extension. Let f ∈ C∞(PGL2(Fv)) be bi-K-invariant.

We have

A(Fv)\PGL2(F )/A(Fv) = T (Fv)\PGL2(Fv)/T (Fv)
∐

T (Fv)\D×/T (Fv)

By Theorem 5.1, each γ on the left side matches up with a γ1 ∈ T (Fv)\PGL2(Fv)/T (Fv)
or γ2 ∈ T (Fv)\D×/T (Fv). One can then compute by hand that the corresponding
orbital integrals are equal.
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• If γ ↔ γ1 ∈ T (Fv)\PGL2(Fv)/T (Fv), then

±
∫
A(F )×A(F )

f(h−11 γh2)η(h2) =

∫
T (F )×T (F )

f(h−11 γh2)

so I0(u, f) = J0(u, f).
• If γ ↔ γ2 ∈ T (Fv)\D×/T (Fv), then∫

A(F )×A(F )
f(h−11 γh2)η(h2) dh2 = 0

so the extra double cosets do not contribute.
This shows that

I0(f) = J0(f).
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