
THE WORK OF DRINFELD

ARTHUR CESAR LE BRAS

1. Notation

Let k = Fq, X/k a smooth projective, geometrically connected curve over k. Let
F = k(X). Chooose a point ∞ ∈ |X|, and assume for simplicity that deg∞ = 1.

Let F = k(X), F∞ be the completion of F at ∞. Let C∞ be the completion of a
separable closure of F∞, and A = H0(X \ {∞},O).

2. Elliptic modules

2.1. Definition. The seed of shtukas were Drinfeld’s “elliptic modules”. Let Ga be
the additive group, and K a characteristic p field. We set K{τ} = K ⊗Z Z[τ ], with
multiplication given by

(a⊗ τ i)(b⊗ τ j) = abp
i ⊗ τ i+j .

We have an isomorphism K{τ} ∼= EndK(Ga) sending

m∑
i=0

ai ⊗ τ i 7→

(
X 7→

m∑
i=0

aiX
pi

)
.

If am is the largest non-zero coefficient, then the degree of
∑m

i=0 ai ∈ K{τ} is defined
to be pm. The derivative is defined to be the constant term a0.
Definition 2.1. Let r > 0 be an integer and K a characteristic p field. An elliptic
A-module of rank r is a ring homomorphism

φ : A→ K{τ}

such that for all non-zero a ∈ A, deg φ(a) = |a|r∞.
We can also make a relative version of this definition.

Definition 2.2. Let S be a scheme of characteristic p. An elliptic A-module of rank
r over S is a Ga-torsor L/S, with a morphism of rings φ : A → EndS(L) such that
for all points s : Spec K → S, the fiber Ls is an elliptic A-module of rank r.
Remark 2.3. The function a 7→ φ(a)′ (the latter meaning the derivative of φ(a))
defines a morphism of rings i : A→ OS , i.e. a morphism θ : S → Spec A.
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2.2. Level structure. Let I be an ideal of A. Let (L, φ) be an elliptic module over
S. Assume that S is an A[I−1]-scheme, i.e. the map θ factors through θ : S →
Spec A \ V (I).

Let LI be the group scheme defined by the equation φ(a)(x) = 0 for all a ∈ I.
This is an étale group scheme over S with rank #(A/I)r. An I-level structure on
(L, ϕ) is an A-linear isomorphism

α : (I−1/A)rS
∼−→ LI .

Choose 0 ( I ( A. We have a functor

F rI : A[I−1]− Sch→ Sets

sending S to the set of isomorphism classes of elliptic A-modules of rank r with
I-level structure, with θ being the structure morphism.

Theorem 2.4 (Drinfeld). F rI is representable by a smooth affine scheme M r
I over

A[I−1].

3. Analytic theory of elliptic modules

3.1. Description in terms of lattices. Let Γ be an A-lattice in C∞. (This means
a discrete additive subgroup of C∞ which is an A-module.) Then we define

eΓ(x) = x
∏

x∈Γ−0

(1− x/γ).

Drinfeld proved that this is well-defined for all x ∈ C∞, and induces an additive
surjection:

eΓ : C∞/Γ
∼−→ C∞.

Given Γ, we define a function

φΓ : A→ EndC∞(Ga)

by the following rule. For a ∈ A, there exists φΓ(a) such that

φΓ(a)eΓ(x) = eΓ(ax) for all x ∈ C∞.

If Γ is replaced by λΓ, for λ ∈ C∗∞, then φΓ doesn’t change. Therefore, φΓ is a
function on homothety classes of A-lattices.

Theorem 3.1 (Drinfeld). The function Γ 7→ φΓ induces a bijection between{
rank r projective A-lattices

in C∞/homothety

}
↔

 rank r elliptic A-modules
over C∞ such that φ(a)′ = a

/isomorphism


Remark 3.2. Under this bijection, an I-level structure equivalent to an A-linear
isomorphism (A/I)r ∼= Γ/IΓ for the lattices.
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3.2. Uniformization. We now try to parametrize the objects on the left hand side
of (3.1). First we parametrize the isomorphism classes. Let Y be a projective A-
module of rank r. Then we have a bijection{

homothety classes of A-lattices in C∞
isomorphic to Y as A-modules

}
↔ C×∞\Inj(F∞ ⊗A Y,C∞)/GLA(Y ).

Next we observe that there is a bijection

C×∞\Inj(F∞ ⊗A Y,C∞)↔ Pr−1(C∞) \
⋃

(F∞-rational hyperplanes),

given by sending u ∈ Inj(F∞ ⊗A Y,C∞) to [u(e1), . . . , u(er)]. This is called the
Drinfeld upper half plane Ωr−1.

As Spec A = X \ ∞, a projective A-module of rank r is the same as a vector
bundle of rank r on X \∞. We saw yesterday that there is an isomorphism (Weil’s
uniformization){

rank r vector bundles on X \∞
plus generic trivialization

}
/isom.↔ GLr(A

∞
F )/

∏
v 6=∞

GLr(Ov).

Set GLr(Â) :=
∏
v 6=∞GLr(Ov), and

GLr(Â, I) := ker
(

GLr(Â)→ GLr(Â/I)
)
.

In conclusion, there is a natural bijection

M r
I (C∞) ∼= GLr(F )\(GLr(A

∞
F )/GLr(Â, I)× Ωr(C∞))

This can be upgraded into an isomorphism of rigid analytic spaces:

Theorem 3.3 (Drinfeld). We have an isomorphism of rigid analytic spaces over
F∞:

(M r
I )an = GLr(F )\(GLr(A

∞
F )/GLr(Â, I)× Ωr(C∞)).

4. Cohomology of M2
I and global Langlands for GL2

4.1. Cohomology of the Drinfeld upper half plane. We now outline Drinfeld’s
proof of global Langlands for GL2 using the moduli space of elliptic modules. Set
r = 2, and Ω := Ω2. Then one has

Ω(C∞) = P1(C∞)\P1(F∞).

There is a map λ from Ω(C∞) to the Bruhat-Tits tree, sending (z0, z1) to the ho-
mothety class of the norm on F 2

∞ defined by

(a0, a1) ∈ F 2
∞ 7→ |a0z0 + a1z1|.

The pre-image of a vertex is P1 minus q+1 open unit disks, and the pre-image of an
open edge is an annulus (which can be thought of as P1 minus 2 open disks). There
is an admissible covering of Ω given by {Ue := λ−1(e)} as e runs over the closed
edges. We have an exact sequence

H1(Ω,Z/n)→
∏
e∈E

H1(Ue,Z/n)→
∏
v∈V

H1(Uv,Z/n)
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and using this, we get that for ` 6= p, the vector space H1
ét(Ω,Q`) is naturally the

space of harmonic cochains on the Bruhat-Tits tree, which is the set of functions c
from oriented edges to Q` satisfying

(1) c(−e) = −c(e) and
(2)

∑
e∈E(v) c(e) = 0.

Any such harmonic cochain defines a (Q`-valued) measure on ∂Ω = P1(F∞). In
other words, we have

H1
ét(Ω,Q`) = (C∞(P1(F∞),Q`)/Q`)

∗ ∼= St∗.

The isomorphism is GL2(F∞)-invariant.

4.2. Cohomology of M2
I . Now we use the uniformization of M2

I . We can rewrite
it as follows:

M2,an
I =

(
Ω×GL2(F )\GL2(AF )/GL2(Â, I)

)
/GL2(F∞).

(Some elementary trickery is required to go from the previous formulation to the one
above.) Now you use the Hochschild-Serre spectral sequence for Y → Y/Γ to get a
long exact sequence

0→ H1(Γ, H0(Y,Q`))→ H1(Y/Γ,Q`)→ H1(X,Q`)
Γ → . . . .

From this we deduce

H1
ét(M

2
I ⊗F F ,Q`)

∼= HomGL2(F∞)(St, C∞(GL2(F )\GL2(AF )/GL2(Â, I))⊗ sp

where sp is a 2-dimensional representation of Gal(F∞/F∞), which should be the
Galois representation corresponding to Steinberg. This isomorphism is compatible
for the action of GL2(AF )×Gal(F∞/F∞).
Remark 4.1. This is cheating a little; we really need to work with a compactification
of M2

I instead.
Drinfeld shows that

lim−→
I

H1(M
2
I ⊗F F ,Q`) =

⊕
π

π∞ ⊗ σ(π)

where π runs over cuspidal automorphic representations of GL2(AF ) with π∞ ∼=
St. Here σ(π) is a Gal(F/F ) representation. Moreover, Drinfeld shows that at
unramified places, πv and σ(πv) correspond by local Langlands.

4.3. The local Langlands correspondence. Using this, one can construct the
local Langlands correspondence for GL2 overK, a characteristic p local field. Indeed,
let π be a supercuspidal representation of GL2(K). Write K = Fv for a global F .
Choose a global automorphic representation Π such that Πv

∼= π and Π∞ ∼= St. By
the work of Drinfeld, we get σ(Π) and we know that Πw and σ(Π)w have the same
ε-factors and L-functions at all w outside some finite set S. Then for any global
Hecke character χ, we have∏

w

Lw(Πw ⊗ χw) =
∏
w

εw(Πw ⊗ χw)
∏
w

Lw(Π∨w ⊗ χ−1
w ⊗ ωΠw)
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and similarly for σ(Π). We can divide these two equalities by the product for w /∈ S,
getting an equality of two finite products∏

w∈S
ε′w(Πw ⊗ χw) =

∏
w∈S

ε′w(σ(Π)w ⊗ χw)

where ε′w(τ) = εw(τ)L(τ∨⊗ωτ )
L(τ) .

Now for a trick: we can choose χ such that χv = 1 and χw is very ramified
for all other w ∈ S − v, thus forcing the L-factors at those w to be 1. Then
ε′w(Πw ⊗ χw) = ε(Πw ⊗ χw) only depends on χw. In this way one can isolate an
equality for the ε and L-factors of Πv = π.

5. Elliptic sheaves

(This material is from a discussion session.) We will explain the connection be-
tween elliptic modules and shtukas. The relation passes through an intermediate
object called an “elliptic sheaf”.
Definition 5.1. An elliptic sheaf of rank r > 0 with pole at ∞ is a diagram

. . . Fi−1 Fi Fi+1 . . .

. . . τFi−1
τFi τFi+1 . . .

ji ji+1

τ ji

ti

τ ji+1

ti+1

(here as usual τ∗F = (IdX ×FrobS)∗F) with Fi bundles of rank r, such that j and
t are OX×S-linear maps satisfying

(1) Fi+r = Fi(∞) and ji+r ◦ . . . ◦ ji+1 is the natural map Fi ↪→ Fi(∞).
(2) Fi/j(Fi−1 is an invertible sheaf along Γ∞.
(3) For all i, Fi/ti(τ∗Fi−1) = is an invertible sheaf along Γz for some z : S →

X \∞ (independent of i).
(4) For all geometric points s of S, the Euler characteristic χ(F0|Xs) = 0.

Definition 5.2. Let J ⊂ A be an ideal cutting out the closed subset I ⊂ Spec X.
An I-level structure on an elliptic sheaf is a diagram

F0|I×S

OrI×S

τF0|I×S

∼
f

∼
τf

Theorem 5.3. Let z : S → Spec A \ I. Then there exists a bijection, functorial in
S, rank r elliptic A-modules

with J-level structure
such that φ(a)′ = z(a)

 /isom.↔

 rank r elliptic sheaves over S
with zero z

and I-level structure

 /isom.
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We’ll define the map for S = Spec K. Let (Fi, j., t.) be an elliptic sheaf. Define
Mi = H0(X ⊗k K,Fi), and

M = lim−→Mi = H0((X −∞)⊗K,Fi).
This is a module over A⊗k K.

The t. induce a map t : M →M which satisfies
• t(am) = at(m), for a ∈ A
• t(λm) = λqt(m), for λ ∈ K.

This t makes M a module over K{τ}. Furthermore:
• Because the zero and pole are distinct, t induces an injection

τ (Fi/j(Fi−1))→ Fi+1/j(Fi).
This implies that τ : Mi/Mi−1 →Mi+1/Mi is injective.
• We claim that M0 = 0. Otherwise, we would have for some i < 0 a non-
zero x in Mi \Mi−1. The previous bullet point implies that for all m ≥ 0,
we have tmx ∈ Mi+m \ Mi+m−1, so dimMm ≥ m + 1 because there are
independent vectors (x, tx, . . . , tmx). For really large m, we would then have
χ(Fm) = m = dimMm ≥ m+ 1, a contradiction to χ(F0) = 0.
• For all i, Mi/Mi−1 is 1-dimensional by similar estimates as in the previous
bullet point. Finally, if u is a non-zero element of M1, we have M ∼= K{τ}u.

The action of A gives a ring homomorphism A
φ−→ EndK{τ}(M) = K{τ}.

• The action of A on M/Kτ(M) ∼= M1 being in the fiber of F1 at z implies
φ(a)′ = z(a).

One can show that if (Fi, t, j) is an elliptic sheaf, then for all i

t(τ∗Fi−1) = Fi ∩ t(τ∗Fi)as subsheaves of Fi+1.

You can actually reconstruct the entire elliptic sheaf from the triangle

F0 F1

τFi

j

t

which is just a shtuka!
You can’t go in the other direction - shtukas are more general. (You need to

impose special conditions, namely “supersingular”, on shtukas to construct elliptic
sheaves.)
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