THE WORK OF DRINFELD

ARTHUR CESAR LE BRAS

1. NOTATION

Let $k = \mathbf{F}_q$, X/k a smooth projective, geometrically connected curve over k. Let $F = k(X)$. Chooose a point $\infty \in |X|$, and assume for simplicity that deg $\infty = 1$. Let $F = k(X)$, F_{∞} be the completion of F at ∞ . Let \mathbb{C}_{∞} be the completion of a

separable closure of F_{∞} , and $A = H^0(X \setminus {\{\infty\}}, \mathcal{O})$.

2. Elliptic modules

2.1. Definition. The seed of shtukas were Drinfeld's "elliptic modules". Let G_a be the additive group, and K a characteristic p field. We set $K\{\tau\} = K \otimes_{\mathbf{Z}} \mathbf{Z}[\tau]$, with multiplication given by

$$
(a\otimes \tau^i)(b\otimes \tau^j)=ab^{p^i}\otimes \tau^{i+j}.
$$

We have an isomorphism $K\{\tau\} \cong \text{End}_K(\mathbf{G}_a)$ sending

$$
\sum_{i=0}^{m} a_i \otimes \tau^i \mapsto \left(X \mapsto \sum_{i=0}^{m} a_i X^{p^i}\right).
$$

If a_m is the largest non-zero coefficient, then the *degree* of $\sum_{i=0}^{m} a_i \in K\{\tau\}$ is defined to be p^m . The *derivative* is defined to be the constant term a_0 .

Definition 2.1. Let $r > 0$ be an integer and K a characteristic p field. An *elliptic* A-module of rank r is a ring homomorphism

$$
\phi \colon A \to K\{\tau\}
$$

such that for all non-zero $a \in A$, $\deg \phi(a) = |a|_{\infty}^r$.

We can also make a relative version of this definition.

Definition 2.2. Let S be a scheme of characteristic p. An elliptic A-module of rank r over S is a \mathbf{G}_a -torsor \mathcal{L}/S , with a morphism of rings $\phi: A \to \text{End}_{S}(\mathcal{L})$ such that for all points s: Spec $K \to S$, the fiber \mathcal{L}_s is an elliptic A-module of rank r.

Remark 2.3. The function $a \mapsto \phi(a)'$ (the latter meaning the derivative of $\phi(a)$) defines a morphism of rings $i: A \to \mathcal{O}_S$, i.e. a morphism $\theta: S \to \text{Spec } A$.

2 ARTHUR CESAR LE BRAS

2.2. Level structure. Let I be an ideal of A. Let (\mathcal{L}, ϕ) be an elliptic module over S. Assume that S is an $A[I^{-1}]$ -scheme, i.e. the map θ factors through $\theta: S \to$ Spec $A \setminus V(I)$.

Let \mathcal{L}_I be the group scheme defined by the equation $\phi(a)(x) = 0$ for all $a \in I$. This is an étale group scheme over S with rank $\#(A/I)^r$. An I-level structure on (\mathcal{L}, φ) is an A-linear isomorphism

$$
\alpha\colon (I^{-1}/A)_S^r\xrightarrow{\sim} \mathcal{L}_I.
$$

Choose $0 \subsetneq I \subsetneq A$. We have a functor

$$
F_I^r\colon A[I^{-1}]-{\bf Sch}\to{\bf Sets}
$$

sending S to the set of isomorphism classes of elliptic A -modules of rank r with I-level structure, with θ being the structure morphism.

Theorem 2.4 (Drinfeld). F_I^r is representable by a smooth affine scheme M_I^r over $A[I^{-1}].$

3. Analytic theory of elliptic modules

3.1. Description in terms of lattices. Let Γ be an A-lattice in \mathbb{C}_{∞} . (This means a discrete additive subgroup of C_{∞} which is an A-module.) Then we define

$$
e_{\Gamma}(x) = x \prod_{x \in \Gamma - 0} (1 - x/\gamma).
$$

Drinfeld proved that this is well-defined for all $x \in \mathbb{C}_{\infty}$, and induces an additive surjection:

$$
e_{\Gamma} \colon \mathbf{C}_{\infty}/\Gamma \xrightarrow{\sim} \mathbf{C}_{\infty}.
$$

Given Γ , we define a function

$$
\phi_{\Gamma} \colon A \to \text{End}_{\mathbf{C}_{\infty}}(\mathbf{G}_a)
$$

by the following rule. For $a \in A$, there exists $\phi_{\Gamma}(a)$ such that

$$
\phi_{\Gamma}(a)e_{\Gamma}(x) = e_{\Gamma}(ax)
$$
 for all $x \in \mathbb{C}_{\infty}$.

If Γ is replaced by $\lambda \Gamma$, for $\lambda \in \mathbb{C}_{\infty}^*$, then ϕ_{Γ} doesn't change. Therefore, ϕ_{Γ} is a function on homothety classes of A-lattices.

Theorem 3.1 (Drinfeld). The function $\Gamma \mapsto \phi^{\Gamma}$ induces a bijection between

$$
\left\{\begin{array}{c}\n\text{rank } r \text{ projective } A\text{-lattices} \\
\text{in } \mathbf{C}_{\infty}/homothety\n\end{array}\right\} \leftrightarrow \left\{\begin{array}{c}\n\text{rank } r \text{ elliptic } A\text{-modules} \\
\text{over } \mathbf{C}_{\infty} \text{ such that } \phi(a)' = a \\
\text{isomorphism}\n\end{array}\right\}
$$

Remark 3.2. Under this bijection, an *I*-level structure equivalent to an *A*-linear isomorphism $(A/I)^r \cong \Gamma/I\Gamma$ for the lattices.

3.2. Uniformization. We now try to parametrize the objects on the left hand side of (3.1) . First we parametrize the isomorphism classes. Let Y be a projective Amodule of rank r . Then we have a bijection

 \int homothety classes of A-lattices in \mathbb{C}_{∞} \rightarrow $\mathbb{C}_{\infty}^{\times}$ \Inj($F_{\infty} \otimes_A Y$, \mathbb{C}_{∞})/ $GL_A(Y)$.
isomorphic to Y as A-modules

Next we observe that there is a bijection

$$
\mathbf{C}_{\infty}^{\times}\backslash\mathrm{Inj}(F_{\infty}\otimes_{A}Y,\mathbf{C}_{\infty})\leftrightarrow\mathbf{P}^{r-1}(\mathbf{C}_{\infty})\setminus\bigcup(F_{\infty}\text{-rational hyperplanes}),
$$

given by sending $u \in Inj(F_{\infty} \otimes_A Y, \mathbb{C}_{\infty})$ to $[u(e_1), \ldots, u(e_r)].$ This is called the Drinfeld upper half plane Ω^{r-1} .

As Spec $A = X \setminus \infty$, a projective A-module of rank r is the same as a vector bundle of rank r on $X \setminus \infty$. We saw yesterday that there is an isomorphism (Weil's uniformization)

$$
\left\{\n\begin{array}{c}\n\text{rank } r \text{ vector bundles on } X \setminus \infty \\
\text{plus generic trivialization}\n\end{array}\n\right\}\n/\text{isom.} \leftrightarrow \text{GL}_r(\mathbf{A}_F^\infty)/\prod_{v \neq \infty} \text{GL}_r(\mathcal{O}_v).
$$

Set $\mathrm{GL}_r(A) := \prod_{v \neq \infty} \mathrm{GL}_r(\mathcal{O}_v)$, and

$$
\operatorname{GL}_r(\widehat{A}, I) := \ker \left(\operatorname{GL}_r(\widehat{A}) \to \operatorname{GL}_r(\widehat{A}/I) \right).
$$

In conclusion, there is a natural bijection

$$
M_I^r(\mathbf{C}_{\infty}) \cong \mathrm{GL}_r(F) \setminus (\mathrm{GL}_r(\mathbf{A}_F^{\infty}) / \mathrm{GL}_r(\widehat{A}, I) \times \Omega^r(\mathbf{C}_{\infty}))
$$

This can be upgraded into an isomorphism of rigid analytic spaces:

Theorem 3.3 (Drinfeld). We have an isomorphism of rigid analytic spaces over F_{∞} :

$$
(M_I^r)^{\text{an}} = \operatorname{GL}_r(F) \setminus (\operatorname{GL}_r(\mathbf{A}_F^\infty) / \operatorname{GL}_r(\widehat{A}, I) \times \Omega^r(\mathbf{C}_\infty)).
$$

4. COHOMOLOGY OF M_I^2 and global Langlands for GL_2

4.1. Cohomology of the Drinfeld upper half plane. We now outline Drinfeld's proof of global Langlands for GL_2 using the moduli space of elliptic modules. Set $r = 2$, and $\Omega := \Omega^2$. Then one has

$$
\Omega(\mathbf{C}_{\infty}) = \mathbf{P}^{1}(\mathbf{C}_{\infty}) \backslash \mathbf{P}^{1}(F_{\infty}).
$$

There is a map λ from $\Omega(\mathbf{C}_{\infty})$ to the Bruhat-Tits tree, sending (z_0, z_1) to the homothety class of the norm on F_{∞}^2 defined by

$$
(a_0, a_1) \in F_\infty^2 \mapsto |a_0 z_0 + a_1 z_1|.
$$

The pre-image of a vertex is \mathbf{P}^1 minus $q+1$ open unit disks, and the pre-image of an open edge is an annulus (which can be thought of as \mathbf{P}^1 minus 2 open disks). There is an admissible covering of Ω given by $\{U_e := \lambda^{-1}(e)\}\$ as e runs over the closed edges. We have an exact sequence

$$
H^1(\Omega, \mathbf{Z}/n) \to \prod_{e \in E} H^1(U_e, \mathbf{Z}/n) \to \prod_{v \in V} H^1(U_v, \mathbf{Z}/n)
$$

and using this, we get that for $\ell \neq p$, the vector space $H^1_{\text{\'et}}(\Omega,\overline{\mathbf{Q}}_\ell)$ is naturally the space of harmonic cochains on the Bruhat-Tits tree, which is the set of functions c from oriented edges to $\overline{\mathbf{Q}}_{\ell}$ satisfying

(1) $c(-e) = -c(e)$ and (2) $\sum_{e \in E(v)} c(e) = 0.$

Any such harmonic cochain defines a (\overline{Q}_ℓ -valued) measure on $\partial\Omega = P^1(F_\infty)$. In other words, we have

$$
H^1_{\text{\'et}}(\Omega, \overline{\mathbf{Q}}_\ell) = (C^\infty(\mathbf{P}^1(F_\infty), \overline{\mathbf{Q}}_\ell) / \overline{\mathbf{Q}}_\ell)^* \cong \text{St}^*.
$$

The isomorphism is $GL_2(F_\infty)$ -invariant.

4.2. Cohomology of M_I^2 . Now we use the uniformization of M_I^2 . We can rewrite it as follows:

$$
M_I^{2,\text{an}} = \left(\Omega \times \text{GL}_2(F) \backslash \text{GL}_2(\mathbf{A}_F) / \text{GL}_2(\widehat{A}, I) \right) / \text{GL}_2(F_\infty).
$$

(Some elementary trickery is required to go from the previous formulation to the one above.) Now you use the Hochschild-Serre spectral sequence for $Y \to Y/\Gamma$ to get a long exact sequence

$$
0 \to H^1(\Gamma, H^0(Y, \overline{\mathbf{Q}}_\ell)) \to H^1(Y/\Gamma, \overline{\mathbf{Q}}_\ell) \to H^1(X, \overline{\mathbf{Q}}_\ell)^\Gamma \to \dots
$$

From this we deduce

$$
H^1_{\text{\'et}}(M_I^2 \otimes_F \overline{F}, \overline{\mathbf{Q}}_\ell) \cong \text{Hom}_{\text{GL}_2(F_\infty)}(\text{St}, C^\infty(\text{GL}_2(F) \backslash \text{GL}_2(\mathbf{A}_F) / \text{GL}_2(\widehat{A}, I)) \otimes \text{sp}
$$

where sp is a 2-dimensional representation of $Gal(\overline{F}_{\infty}/F_{\infty})$, which should be the Galois representation corresponding to Steinberg. This isomorphism is compatible for the action of $GL_2(\mathbf{A}_F) \times Gal(F_{\infty}/F_{\infty}).$

Remark 4.1. This is cheating a little; we really need to work with a compactification of M_I^2 instead.

Drinfeld shows that

$$
\varinjlim_{I} H^{1}(\overline{M}^{2}_{I}\otimes_{F}\overline{F}, \overline{\mathbf{Q}}_{\ell}) = \bigoplus_{\pi} \pi^{\infty}\otimes \sigma(\pi)
$$

where π runs over cuspidal automorphic representations of $GL_2(A_F)$ with $\pi_{\infty} \cong$ St. Here $\sigma(\pi)$ is a Gal(\overline{F}/F) representation. Moreover, Drinfeld shows that at unramified places, π_v and $\sigma(\pi_v)$ correspond by local Langlands.

4.3. The local Langlands correspondence. Using this, one can construct the local Langlands correspondence for GL_2 over K , a characteristic p local field. Indeed, let π be a supercuspidal representation of $GL_2(K)$. Write $K = F_v$ for a global F. Choose a global automorphic representation Π such that $\Pi_v \cong \pi$ and $\Pi_{\infty} \cong$ St. By the work of Drinfeld, we get $\sigma(\Pi)$ and we know that Π_w and $\sigma(\Pi)_w$ have the same ϵ -factors and *L*-functions at all w outside some finite set *S*. Then for any global Hecke character χ , we have

$$
\prod_w L_w(\Pi_w \otimes \chi_w) = \prod_w \epsilon_w(\Pi_w \otimes \chi_w) \prod_w L_w(\Pi_w^{\vee} \otimes \chi_w^{-1} \otimes \omega_{\Pi_w})
$$

and similarly for $\sigma(\Pi)$. We can divide these two equalities by the product for $w \notin S$, getting an equality of two finite products

$$
\prod_{w \in S} \epsilon'_w (\Pi_w \otimes \chi_w) = \prod_{w \in S} \epsilon'_w (\sigma(\Pi)_w \otimes \chi_w)
$$

where $\epsilon'_w(\tau) = \epsilon_w(\tau) \frac{L(\tau^{\vee} \otimes \omega_{\tau})}{L(\tau)}$ $\frac{\tau^+\otimes \omega_\tau^-}{L(\tau)}$.

Now for a trick: we can choose χ such that $\chi_v = 1$ and χ_w is very ramified for all other $w \in S - v$, thus forcing the L-factors at those w to be 1. Then $\epsilon'_w(\Pi_w \otimes \chi_w) = \epsilon(\Pi_w \otimes \chi_w)$ only depends on χ_w . In this way one can isolate an equality for the ϵ and L-factors of $\Pi_v = \pi$.

5. Elliptic sheaves

(This material is from a discussion session.) We will explain the connection between elliptic modules and shtukas. The relation passes through an intermediate object called an "elliptic sheaf".

Definition 5.1. An *elliptic sheaf of rank r* > 0 *with pole at* ∞ is a diagram

(here as usual $\tau^* \mathcal{F} = (\text{Id}_X \times \text{Frob}_S)^* \mathcal{F}$) with \mathcal{F}_i bundles of rank r, such that j and t are $\mathcal{O}_{X\times S}$ -linear maps satisfying

- (1) $\mathcal{F}_{i+r} = \mathcal{F}_i(\infty)$ and $j_{i+r} \circ \dots \circ j_{i+1}$ is the natural map $\mathcal{F}_i \hookrightarrow \mathcal{F}_i(\infty)$.
- (2) $\mathcal{F}_i/j(\mathcal{F}_{i-1})$ is an invertible sheaf along Γ_{∞} .
- (3) For all *i*, $\mathcal{F}_i/t_i(\tau^*\mathcal{F}_{i-1}) =$ is an invertible sheaf along Γ_z for some $z: S \to$ $X \setminus \infty$ (independent of i).
- (4) For all geometric points \bar{s} of S, the Euler characteristic $\chi(\mathcal{F}_0|_{X_{\bar{s}}})=0$.

Definition 5.2. Let $J \subset A$ be an ideal cutting out the closed subset $I \subset$ Spec X. An I-level structure on an elliptic sheaf is a diagram

Theorem 5.3. Let $z: S \to \text{Spec } A \setminus I$. Then there exists a bijection, functorial in S,

We'll define the map for $S = \text{Spec } K$. Let (\mathcal{F}_i, j, t) be an elliptic sheaf. Define $M_i = H^0(X \otimes_k K, \mathcal{F}_i)$, and

$$
M = \varinjlim M_i = H^0((X - \infty) \otimes K, \mathcal{F}_i).
$$

This is a module over $A \otimes_k K$.

The t induce a map $t: M \to M$ which satisfies

- $t(am) = at(m)$, for $a \in A$
- $t(\lambda m) = \lambda^q t(m)$, for $\lambda \in K$.

This t makes M a module over $K\{\tau\}$. Furthermore:

τ

• Because the zero and pole are distinct, t induces an injection

$$
(\mathcal{F}_i/j(\mathcal{F}_{i-1})) \to \mathcal{F}_{i+1}/j(\mathcal{F}_i).
$$

This implies that $\tau: M_i/M_{i-1} \to M_{i+1}/M_i$ is injective.

- We claim that $M_0 = 0$. Otherwise, we would have for some $i < 0$ a nonzero x in $M_i \setminus M_{i-1}$. The previous bullet point implies that for all $m \geq 0$, we have $t^m x \in M_{i+m} \setminus M_{i+m-1}$, so $\dim M_m \geq m+1$ because there are independent vectors $(x, tx, ..., t^m x)$. For really large m, we would then have $\chi(\mathcal{F}_m) = m = \dim M_m \geq m + 1$, a contradiction to $\chi(\mathcal{F}_0) = 0$.
- For all i, M_i/M_{i-1} is 1-dimensional by similar estimates as in the previous bullet point. Finally, if u is a non-zero element of M_1 , we have $M \cong K{\tau}u$.

The action of A gives a ring homomorphism $A \xrightarrow{\phi} \text{End}_{K\{\tau\}}(M) = K\{\tau\}.$

• The action of A on $M/K\tau(M) \cong M_1$ being in the fiber of \mathcal{F}_1 at z implies $\phi(a)' = z(a).$

One can show that if (\mathcal{F}_i, t, j) is an elliptic sheaf, then for all i

$$
t(\tau^* \mathcal{F}_{i-1}) = \mathcal{F}_i \cap t(\tau^* \mathcal{F}_i)
$$
 as subsheaves of \mathcal{F}_{i+1} .

You can actually reconstruct the entire elliptic sheaf from the triangle

$$
\mathcal{F}_0 \xrightarrow{j} \mathcal{F}_1
$$

$$
\xrightarrow{t} \nearrow
$$

$$
\tau_{\mathcal{F}_i}
$$

which is just a shtuka!

You can't go in the other direction - shtukas are more general. (You need to impose special conditions, namely "supersingular", on shtukas to construct elliptic sheaves.)