THE WORK OF DRINFELD

ARTHUR CESAR LE BRAS

1. NOTATION

Let $k = \mathbf{F}_q$, X/k a smooth projective, geometrically connected curve over k. Let F = k(X). Chooose a point $\infty \in |X|$, and assume for simplicity that deg $\infty = 1$. Let F = k(X). F he the completion of F at as . Let \mathbf{C} he the completion of a

Let F = k(X), F_{∞} be the completion of F at ∞ . Let \mathbf{C}_{∞} be the completion of a separable closure of F_{∞} , and $A = H^0(X \setminus \{\infty\}, \mathcal{O})$.

2. Elliptic modules

2.1. **Definition.** The seed of shtukas were Drinfeld's "elliptic modules". Let \mathbf{G}_a be the additive group, and K a characteristic p field. We set $K\{\tau\} = K \otimes_{\mathbf{Z}} \mathbf{Z}[\tau]$, with multiplication given by

$$(a \otimes \tau^i)(b \otimes \tau^j) = ab^{p^i} \otimes \tau^{i+j}.$$

We have an isomorphism $K\{\tau\} \cong \operatorname{End}_K(\mathbf{G}_a)$ sending

$$\sum_{i=0}^{m} a_i \otimes \tau^i \mapsto \left(X \mapsto \sum_{i=0}^{m} a_i X^{p^i} \right).$$

If a_m is the largest non-zero coefficient, then the *degree* of $\sum_{i=0}^m a_i \in K\{\tau\}$ is defined to be p^m . The *derivative* is defined to be the constant term a_0 .

Definition 2.1. Let r > 0 be an integer and K a characteristic p field. An *elliptic* A-module of rank r is a ring homomorphism

$$\phi \colon A \to K\{\tau\}$$

such that for all non-zero $a \in A$, deg $\phi(a) = |a|_{\infty}^{r}$.

We can also make a relative version of this definition.

Definition 2.2. Let S be a scheme of characteristic p. An *elliptic A-module of rank* r over S is a \mathbf{G}_a -torsor \mathcal{L}/S , with a morphism of rings $\phi: A \to \operatorname{End}_S(\mathcal{L})$ such that for all points s: Spec $K \to S$, the fiber \mathcal{L}_s is an elliptic A-module of rank r.

Remark 2.3. The function $a \mapsto \phi(a)'$ (the latter meaning the derivative of $\phi(a)$) defines a morphism of rings $i: A \to \mathcal{O}_S$, i.e. a morphism $\theta: S \to \text{Spec } A$.

ARTHUR CESAR LE BRAS

2.2. Level structure. Let I be an ideal of A. Let (\mathcal{L}, ϕ) be an elliptic module over S. Assume that S is an $A[I^{-1}]$ -scheme, i.e. the map θ factors through $\theta: S \to$ Spec $A \setminus V(I)$.

Let \mathcal{L}_I be the group scheme defined by the equation $\phi(a)(x) = 0$ for all $a \in I$. This is an étale group scheme over S with rank $\#(A/I)^r$. An *I*-level structure on (\mathcal{L}, φ) is an *A*-linear isomorphism

$$\alpha \colon (I^{-1}/A)_S^r \xrightarrow{\sim} \mathcal{L}_I.$$

Choose $0 \subsetneq I \subsetneq A$. We have a functor

$$F_I^r \colon A[I^{-1}] - \mathbf{Sch} \to \mathbf{Sets}$$

sending S to the set of isomorphism classes of elliptic A-modules of rank r with I-level structure, with θ being the structure morphism.

Theorem 2.4 (Drinfeld). F_I^r is representable by a smooth affine scheme M_I^r over $A[I^{-1}]$.

3. Analytic theory of elliptic modules

3.1. Description in terms of lattices. Let Γ be an A-lattice in \mathbb{C}_{∞} . (This means a discrete additive subgroup of \mathbb{C}_{∞} which is an A-module.) Then we define

$$e_{\Gamma}(x) = x \prod_{x \in \Gamma - 0} (1 - x/\gamma)$$

Drinfeld proved that this is well-defined for all $x \in \mathbf{C}_{\infty}$, and induces an additive surjection:

$$e_{\Gamma} \colon \mathbf{C}_{\infty} / \Gamma \xrightarrow{\sim} \mathbf{C}_{\infty}.$$

Given Γ , we define a function

$$\phi_{\Gamma} \colon A \to \operatorname{End}_{\mathbf{C}_{\infty}}(\mathbf{G}_a)$$

by the following rule. For $a \in A$, there exists $\phi_{\Gamma}(a)$ such that

$$\phi_{\Gamma}(a)e_{\Gamma}(x) = e_{\Gamma}(ax)$$
 for all $x \in \mathbf{C}_{\infty}$.

If Γ is replaced by $\lambda\Gamma$, for $\lambda \in \mathbf{C}_{\infty}^*$, then ϕ_{Γ} doesn't change. Therefore, ϕ_{Γ} is a function on homothety classes of A-lattices.

Theorem 3.1 (Drinfeld). The function $\Gamma \mapsto \phi^{\Gamma}$ induces a bijection between

$$\left\{\begin{array}{c} \operatorname{rank} r \ \operatorname{projective} \ A\text{-lattices} \\ \operatorname{in} \ \mathbf{C}_{\infty}/\operatorname{homothety} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} \operatorname{rank} r \ elliptic \ A\text{-modules} \\ \operatorname{over} \ \mathbf{C}_{\infty} \ such \ that \ \phi(a)' = a \\ /isomorphism \end{array}\right\}$$

Remark 3.2. Under this bijection, an *I*-level structure equivalent to an *A*-linear isomorphism $(A/I)^r \cong \Gamma/I\Gamma$ for the lattices.

3.2. Uniformization. We now try to parametrize the objects on the left hand side of (3.1). First we parametrize the isomorphism classes. Let Y be a projective A-module of rank r. Then we have a bijection

 $\left\{\begin{array}{l} \text{homothety classes of } A\text{-lattices in } \mathbf{C}_{\infty} \\ \text{isomorphic to } Y \text{ as } A\text{-modules} \end{array}\right\} \leftrightarrow \mathbf{C}_{\infty}^{\times} \backslash \mathrm{Inj}(F_{\infty} \otimes_{A} Y, \mathbf{C}_{\infty}) / \mathrm{GL}_{A}(Y).$

Next we observe that there is a bijection

$$\mathbf{C}_{\infty}^{\times} \setminus \operatorname{Inj}(F_{\infty} \otimes_{A} Y, \mathbf{C}_{\infty}) \leftrightarrow \mathbf{P}^{r-1}(\mathbf{C}_{\infty}) \setminus \bigcup (F_{\infty} \text{-rational hyperplanes}),$$

given by sending $u \in \text{Inj}(F_{\infty} \otimes_A Y, \mathbf{C}_{\infty})$ to $[u(e_1), \ldots, u(e_r)]$. This is called the *Drinfeld upper half plane* Ω^{r-1} .

As Spec $A = X \setminus \infty$, a projective A-module of rank r is the same as a vector bundle of rank r on $X \setminus \infty$. We saw yesterday that there is an isomorphism (Weil's uniformization)

$$\left\{ \begin{array}{c} \operatorname{rank} r \text{ vector bundles on } X \setminus \infty \\ \operatorname{plus generic trivialization} \end{array} \right\} / \operatorname{isom.} \leftrightarrow \operatorname{GL}_r(\mathbf{A}_F^\infty) / \prod_{v \neq \infty} \operatorname{GL}_r(\mathcal{O}_v).$$

Set $\operatorname{GL}_r(\widehat{A}) := \prod_{v \neq \infty} \operatorname{GL}_r(\mathcal{O}_v)$, and

$$\operatorname{GL}_r(\widehat{A}, I) := \ker \left(\operatorname{GL}_r(\widehat{A}) \to \operatorname{GL}_r(\widehat{A}/I) \right).$$

In conclusion, there is a natural bijection

$$M_I^r(\mathbf{C}_{\infty}) \cong \operatorname{GL}_r(F) \setminus (\operatorname{GL}_r(\mathbf{A}_F^{\infty}) / \operatorname{GL}_r(\widehat{A}, I) \times \Omega^r(\mathbf{C}_{\infty}))$$

This can be upgraded into an isomorphism of rigid analytic spaces:

Theorem 3.3 (Drinfeld). We have an isomorphism of rigid analytic spaces over F_{∞} :

$$(M_I^r)^{\mathrm{an}} = \mathrm{GL}_r(F) \setminus (\mathrm{GL}_r(\mathbf{A}_F^\infty) / \mathrm{GL}_r(\widehat{A}, I) \times \Omega^r(\mathbf{C}_\infty)).$$

4. Cohomology of M_I^2 and global Langlands for GL_2

4.1. Cohomology of the Drinfeld upper half plane. We now outline Drinfeld's proof of global Langlands for GL₂ using the moduli space of elliptic modules. Set r = 2, and $\Omega := \Omega^2$. Then one has

$$\Omega(\mathbf{C}_{\infty}) = \mathbf{P}^1(\mathbf{C}_{\infty}) \setminus \mathbf{P}^1(F_{\infty}).$$

There is a map λ from $\Omega(\mathbf{C}_{\infty})$ to the Bruhat-Tits tree, sending (z_0, z_1) to the homothety class of the norm on F_{∞}^2 defined by

$$(a_0, a_1) \in F_{\infty}^2 \mapsto |a_0 z_0 + a_1 z_1|.$$

The pre-image of a vertex is \mathbf{P}^1 minus q+1 open unit disks, and the pre-image of an open edge is an annulus (which can be thought of as \mathbf{P}^1 minus 2 open disks). There is an admissible covering of Ω given by $\{U_e := \lambda^{-1}(e)\}$ as e runs over the closed edges. We have an exact sequence

$$H^1(\Omega, \mathbf{Z}/n) \to \prod_{e \in E} H^1(U_e, \mathbf{Z}/n) \to \prod_{v \in V} H^1(U_v, \mathbf{Z}/n)$$

and using this, we get that for $\ell \neq p$, the vector space $H^1_{\text{\acute{e}t}}(\Omega, \overline{\mathbf{Q}}_{\ell})$ is naturally the space of harmonic cochains on the Bruhat-Tits tree, which is the set of functions cfrom oriented edges to \mathbf{Q}_{ℓ} satisfying

- (1) c(-e) = -c(e) and (2) $\sum_{e \in E(v)} c(e) = 0.$

Any such harmonic cochain defines a $(\overline{\mathbf{Q}}_{\ell}$ -valued) measure on $\partial \Omega = \mathbf{P}^1(F_{\infty})$. In other words, we have

$$H^{1}_{\text{ét}}(\Omega, \overline{\mathbf{Q}}_{\ell}) = (C^{\infty}(\mathbf{P}^{1}(F_{\infty}), \overline{\mathbf{Q}}_{\ell}) / \overline{\mathbf{Q}}_{\ell})^{*} \cong \text{St}^{*}.$$

The isomorphism is $\operatorname{GL}_2(F_{\infty})$ -invariant.

4.2. Cohomology of M_I^2 . Now we use the uniformization of M_I^2 . We can rewrite it as follows:

$$M_I^{2,\mathrm{an}} = \left(\Omega \times \mathrm{GL}_2(F) \backslash \mathrm{GL}_2(\mathbf{A}_F) / \mathrm{GL}_2(\widehat{A}, I)\right) / \mathrm{GL}_2(F_\infty).$$

(Some elementary trickery is required to go from the previous formulation to the one above.) Now you use the Hochschild-Serre spectral sequence for $Y \to Y/\Gamma$ to get a long exact sequence

$$0 \to H^1(\Gamma, H^0(Y, \overline{\mathbf{Q}}_{\ell})) \to H^1(Y/\Gamma, \overline{\mathbf{Q}}_{\ell}) \to H^1(X, \overline{\mathbf{Q}}_{\ell})^{\Gamma} \to \dots$$

From this we deduce

$$H^{1}_{\text{ét}}(M^{2}_{I} \otimes_{F} \overline{F}, \overline{\mathbf{Q}}_{\ell}) \cong \operatorname{Hom}_{\operatorname{GL}_{2}(F_{\infty})}(\operatorname{St}, C^{\infty}(\operatorname{GL}_{2}(F) \setminus \operatorname{GL}_{2}(\mathbf{A}_{F}) / \operatorname{GL}_{2}(\widehat{A}, I)) \otimes \operatorname{sp}$$

where sp is a 2-dimensional representation of $\operatorname{Gal}(\overline{F}_{\infty}/F_{\infty})$, which should be the Galois representation corresponding to Steinberg. This isomorphism is compatible for the action of $\operatorname{GL}_2(\mathbf{A}_F) \times \operatorname{Gal}(F_{\infty}/F_{\infty})$.

Remark 4.1. This is cheating a little; we really need to work with a compactification of M_I^2 instead.

Drinfeld shows that

$$\varinjlim_{I} H^{1}(\overline{M}_{I}^{2} \otimes_{F} \overline{F}, \overline{\mathbf{Q}}_{\ell}) = \bigoplus_{\pi} \pi^{\infty} \otimes \sigma(\pi)$$

where π runs over cuspidal automorphic representations of $\operatorname{GL}_2(\mathbf{A}_F)$ with $\pi_{\infty} \cong$ St. Here $\sigma(\pi)$ is a $\operatorname{Gal}(\overline{F}/F)$ representation. Moreover, Drinfeld shows that at unramified places, π_v and $\sigma(\pi_v)$ correspond by local Langlands.

4.3. The local Langlands correspondence. Using this, one can construct the local Langlands correspondence for GL_2 over K, a characteristic p local field. Indeed, let π be a supercuspidal representation of $\operatorname{GL}_2(K)$. Write $K = F_v$ for a global F. Choose a global automorphic representation Π such that $\Pi_v \cong \pi$ and $\Pi_\infty \cong$ St. By the work of Drinfeld, we get $\sigma(\Pi)$ and we know that Π_w and $\sigma(\Pi)_w$ have the same ϵ -factors and L-functions at all w outside some finite set S. Then for any global Hecke character χ , we have

$$\prod_{w} L_w(\Pi_w \otimes \chi_w) = \prod_{w} \epsilon_w(\Pi_w \otimes \chi_w) \prod_{w} L_w(\Pi_w^{\vee} \otimes \chi_w^{-1} \otimes \omega_{\Pi_w})$$

and similarly for $\sigma(\Pi)$. We can divide these two equalities by the product for $w \notin S$, getting an equality of two finite products

$$\prod_{w\in S} \epsilon'_w(\Pi_w \otimes \chi_w) = \prod_{w\in S} \epsilon'_w(\sigma(\Pi)_w \otimes \chi_w)$$

where $\epsilon'_w(\tau) = \epsilon_w(\tau) \frac{L(\tau^{\vee} \otimes \omega_{\tau})}{L(\tau)}$. Now for a trick: we can choose χ such that $\chi_v = 1$ and χ_w is very ramified for all other $w \in S - v$, thus forcing the L-factors at those w to be 1. Then $\epsilon'_w(\Pi_w \otimes \chi_w) = \epsilon(\Pi_w \otimes \chi_w)$ only depends on χ_w . In this way one can isolate an equality for the ϵ and *L*-factors of $\Pi_v = \pi$.

5. Elliptic sheaves

(This material is from a discussion session.) We will explain the connection between elliptic modules and shtukas. The relation passes through an intermediate object called an "elliptic sheaf".

Definition 5.1. An elliptic sheaf of rank r > 0 with pole at ∞ is a diagram

(here as usual $\tau^* \mathcal{F} = (\mathrm{Id}_X \times \mathrm{Frob}_S)^* \mathcal{F}$) with \mathcal{F}_i bundles of rank r, such that j and t are $\mathcal{O}_{X \times S}$ -linear maps satisfying

- (1) $\mathcal{F}_{i+r} = \mathcal{F}_i(\infty)$ and $j_{i+r} \circ \ldots \circ j_{i+1}$ is the natural map $\mathcal{F}_i \hookrightarrow \mathcal{F}_i(\infty)$.
- (2) $\mathcal{F}_i/j(\mathcal{F}_{i-1})$ is an invertible sheaf along Γ_{∞} .
- (3) For all $i, \mathcal{F}_i/t_i(\tau^*\mathcal{F}_{i-1}) = is$ an invertible sheaf along Γ_z for some $z: S \to S$ $X \setminus \infty$ (independent of *i*).
- (4) For all geometric points \overline{s} of S, the Euler characteristic $\chi(\mathcal{F}_0|_{X_{\overline{s}}}) = 0$.

Definition 5.2. Let $J \subset A$ be an ideal cutting out the closed subset $I \subset \text{Spec } X$. An *I*-level structure on an elliptic sheaf is a diagram

Theorem 5.3. Let $z: S \to \text{Spec } A \setminus I$. Then there exists a bijection, functorial in S,

ſ	rank r elliptic A-modules		$\left(\begin{array}{c} rank \ r \ elliptic \ sheaves \ over \ S \end{array} \right)$)
ł	with J-level structure	$\langle isom. \leftrightarrow \langle$	with zero z	$\langle isom.$
l	such that $\phi(a)' = z(a)$	J	and I-level structure)

We'll define the map for S = Spec K. Let $(\mathcal{F}_i, j_., t_.)$ be an elliptic sheaf. Define $M_i = H^0(X \otimes_k K, \mathcal{F}_i)$, and

$$M = \varinjlim M_i = H^0((X - \infty) \otimes K, \mathcal{F}_i).$$

This is a module over $A \otimes_k K$.

The t_induce a map $t: M \to M$ which satisfies

- t(am) = at(m), for $a \in A$
- $t(\lambda m) = \lambda^q t(m)$, for $\lambda \in K$.

This t makes M a module over $K\{\tau\}$. Furthermore:

• Because the zero and pole are distinct, t induces an injection

$$(\mathcal{F}_i/j(\mathcal{F}_{i-1})) \to \mathcal{F}_{i+1}/j(\mathcal{F}_i).$$

This implies that $\tau: M_i/M_{i-1} \to M_{i+1}/M_i$ is injective.

- We claim that $M_0 = 0$. Otherwise, we would have for some i < 0 a nonzero x in $M_i \setminus M_{i-1}$. The previous bullet point implies that for all $m \ge 0$, we have $t^m x \in M_{i+m} \setminus M_{i+m-1}$, so dim $M_m \ge m+1$ because there are independent vectors $(x, tx, \ldots, t^m x)$. For really large m, we would then have $\chi(\mathcal{F}_m) = m = \dim M_m \ge m+1$, a contradiction to $\chi(\mathcal{F}_0) = 0$.
- For all i, M_i/M_{i-1} is 1-dimensional by similar estimates as in the previous bullet point. Finally, if u is a non-zero element of M_1 , we have $M \cong K\{\tau\}u$.

The action of A gives a ring homomorphism $A \xrightarrow{\phi} \operatorname{End}_{K\{\tau\}}(M) = K\{\tau\}.$

• The action of A on $M/K\tau(M) \cong M_1$ being in the fiber of \mathcal{F}_1 at z implies $\phi(a)' = z(a)$.

One can show that if (\mathcal{F}_i, t, j) is an elliptic sheaf, then for all i

$$t(\tau^* \mathcal{F}_{i-1}) = \mathcal{F}_i \cap t(\tau^* \mathcal{F}_i)$$
 as subsheaves of \mathcal{F}_{i+1} .

You can actually reconstruct the entire elliptic sheaf from the triangle

$$\begin{array}{c} \mathcal{F}_0 & \underbrace{\mathcal{I}}_t & \mathcal{F}_1 \\ & \underbrace{\mathcal{I}}_t & \\ & & \mathcal{F}_i \end{array}$$

which is just a shtuka!

You can't go in the other direction - shtukas are more general. (You need to impose special conditions, namely "supersingular", on shtukas to construct elliptic sheaves.)

6