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1. Cuspidal automorphic forms

1.1. Goal. Let X/k be a curve over a finite field and F = k(X). Let A = AF and
O =

∏
x∈|X|Ox, where Ox is the completed local ring of X at x.

Let G = GLd and Z be the center of G. Let G(O) be the maximal compact
subgroup of G(A).
Definition 1.1. A function f : G(F )\G(A) → C is smooth if it factors through
G(F )\G(A)/K for some open subgroup K of G(A). It is cuspidal if for any proper
standard parabolic P ⊂ G, with unipotent N , the constant term

ϕP (g) =

∫
N(F )\N(A)

ϕ(ng) dn

vanishes.
The main goal of the talk is to prove:

Theorem 1.2 (Harder). For any compact open K ⊂ G(A), all cuspidal functions
ϕ acting on G(F )\G(A)/K → C have support uniformly finite modulo Z(A).

1.2. Automorphic representations.
Definition 1.3. A smooth function ϕ : G(F )\G(A) → C is called automorphic if
its space spanned by right translations G(A) of ϕ is admissible. (A smooth repre-
sentation is admissible if the fixed vectors under any compact subgroup are finite
dimensional.)
Definition 1.4. A function ϕ : G(A) → C has central character χ if χ(zg) =
χ(z)ϕ(g) for all z ∈ Z(A).
Remark 1.5. If ϕ is cuspidal automorphic form with a central character, after
twisting by µ ◦ det for some idele character µ, we may view ϕ as a function on
G(F )\G(A)/KaZ, where a ∈ Z(A) = A× has deg a = 1.

Harder’s theorem implies that Acusp(G(F )\G(A)/KaZ) is of finite dimension.
Definition 1.6. We define AG,cusp,χ to be the space of automorphic cuspidal forms
of central character χ. This has an action G(A) by right translation.

Theorem 1.7. For any χ ∈ χG, A|G,cusp,χ is an admissible representation of G(A).
Moreover, it has a countable direct sum decomposition

AG,cusp,χ =
⊕

π∈ΠG,cusp,χ

π.
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Here ΠG,cusp,χ is the set of equivalence classes of irreducible automorphic cuspidal
representations of central character χ.

What is the content of this statement? It’s obvious that π occurs as a subquotient.
The theorem says that it actually occur as an honest subrepresentation, and also
asserts a multiplicity one statement.

Proof. Admissibility follows from Harder.
Semisimplicity: after twisting AG,cusp,χ ⊗ (µ ◦ det), we can assume that is χ is

unitary. Then

〈ϕ1, ϕ2〉 :=

∫
G(F )Z(A)\G(A)

ϕ1ϕ2 dg

defines a G(A)-invariant positive definite Hermitian scalar product on AG,cusp,χ.
Since G(A) has a countable open basis at e, this implies

AG,cusp,χ =
⊕

πm(π)

with m(π) = dim HomG(A)(π,A) ≥ 1.
To see that m(π) = 1, we use that the Whittaker spaces are 1-dimensional. If

ψ : F\AF → C× is a non-trivial unitary character, and U is the unipotent radical
of the Borel, then we have

HomU(A)(π, ψ) = HomG(A)(π, Ind
G(A)
U(A) ψ)

The latter is one-dimensional, which we can prove by passing to the local Whittaker
model.

If ξ : π ↪→ AG,cusp,χ then we get a map π →Wξ, sending

ϕ 7→Wξ(ϕ)(g) :=

∫
U(F )\U(A)

ξ(ϕ)(ng)ψ(n)−1dn.

From this we can "recover"

ξ(ϕ)(g) =
∑

γ∈Ud−1(F )\Gd−1(F )

Wξ(ϕ)[

(
γ

1

)
g]

so the 1-dimensionality of the Whittaker model for π implies m(π) = 1. �

2. Reduction theory on BunG

Definition 2.1. The slope of E is defined to be µ(E) := deg E
rank E . We have deg E =

deg det E .
By Riemann-Roch,

χ(E) = deg E + rank E(1− gX).

Definition 2.2. A (non-zero) vector bundle E over X is said to be semistable if for
all sub-bundles

0 ( F ( E ,
we have µ(F) ≤ µ(G). There is an equivalent formulation in terms of quotients.
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Definition 2.3. A filtration of a vector bundle E on X

0 = F0E ⊂ F1E ⊂ . . . ⊂ FsE = E

is a Harder-Narasimhan (HN) filtration if FjE/Fj−1E are semistable with slopes µj
satisfying

µ1 > µ2 > . . . > µj .

Example 2.4. Let X = P1/k. Then E =
⊕s

i=1O(ni)
ri with n1 > n2 > . . . > ns

integers. Then the HN filtration is

0 ⊂ O(n1)r1 ⊂ O(n1)r1 ⊕O(n2)r2 ⊂ . . . ⊂

Theorem 2.5 (Harder-Narasimhan). Any non-zero vector bundle over X admits a
unique HN filtration.

Proof. Let µ1 be the maximal slope of a sub-bundle F ⊂ E . By Riemann-Roch,
we know this to be < ∞. We claim that in any HN filtration, F1E is the maximal
subbundle E1 with µ(E1) = µ1. (The result would then follow by induction.)

To see that E1 exists, suppose you have E ′1, E ′′1 which both have r1 with slope µ1.
Consider F := 〈E ′1 + E ′′1 〉, the saturation of the subsheaf of E spanned by E ′1 and E ′′1 .
Then

degF ≥ 2r1µ1 − deg(E ′1 ∩ E ′′1 )

(the inequality comes from the saturation) while

rankF = 2r1 − rank(E ′1 ∩ E ′′1 ) > r1.

So µ(F) ≥ µ1 and dominates both E ′1 and E ′′1 .
To see that F1E , must be defined in this way, note that the definition of E1 forces

it to be semistable. Therefore, its image in FiE/Fi+1E has slope at least µ(E1) ≥ µ1,
so this image must be 0.

�

Write B = TU . By Weil’s adelic uniformization, we can interpret

B(F )\B(A)/B(O)↔ isomorphism classes of flags of rank (1, . . . , 1).

Let ∆ be the set of simple roots of G.

Theorem 2.6 (Siegel Domain). Let c2 ≥ 2g be an integer. Then

G(A) = G(F )U(A)T (A)∆
c2G(O)

where T (A)∆
c2 = {t ∈ T (A) : degα(t) ≤ c2∀α ∈ ∆}. In other words (by Iwasawa

decomposition), for every E of rank d over X, there is at least one flag

0 ⊂ E0 ⊂ E1 ⊂ . . . ⊂ Ed = E

such that deg(Ej+1/Ej)− deg(Ej/Ej−1) ≤ c2 for all j.

Proof. Take a subline bundle L ⊂ E with E1 = 〈L〉 (the saturation) such that

1 ≤ deg E − ddegL+ d(1− g) ≤ d. (2.1)
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Why is this possible? The lower bound comes from Riemann-Roch applied toH0(E⊗
L∨), which is non-zero as soon as there exists L ↪→ E . The upper bound comes from
the inequality

deg E1 ≥ detL ≥ deg E
d
− g

which comes from the non-existence of extensions with too large separation of degree
(by Serre duality).

By induction, we can lift a filtration with this property E/E1. The only question
is to check the desired inequality for i = 1. If E is semistable we can conclude as
follows: the analog of (2.1) holds to tell us that

E2 − d deg E1 + 2(1− g) ≤ 2

so

deg E2/E1 − deg E1 = deg E2 − 2 deg E1

≤ 2− 2(1− g) = 2g.

If E is not semistable, take an HN filtration, whose associated subquotients are
semistable by definition. We apply the conclusion from the semistable case to each
subquotient. The only issue is to check that the inequality still holds at the end-
points. The desired inequalities end up following from the semistability.

�

Theorem 2.7. Let K ⊂ G(O) be a compact open subgroup. There exists an open
subset CK ⊂ G(A) satisfying

(1) Z(A)G(F )CK = CK , i.e. CK is invariant under Z(A)G(F ), and
(2) Z(A)G(F )\CK/K is finite.

Moreover, suppϕ ⊂ CK for all cuspidal ϕ.
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