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1 General introduction to Euler systems

Definition 1.1. Let V be a p-adic representation of Gal(Q/Q), unramified outside Σ 3 p. An
Euler System for V is a collection of cohomology classes (zm)m≥1 with zm ∈ H1(Q(µm),V∗(1))
such that

• zm takes values in a GQ-stable lattice T ⊂ V∗(1) which is independent of m.

• (Norm relations)

coresQ(µm`)
Q(µm) zm` =

zm ` | m, ` ∈ Σ

P`(σ−1
` )zm otherwise

where
P`(x) = det(1 − σ−1

` X|V )

where σ−1
` is the arithmetic Frobenius.

Remark 1.2. A similar definition can be made over number fields. In that case one needs
classes for all abelian extensions, not just the cyclotomic ones.

Here are the known Euler systems over Q:

1. cyclotomic units (V = Qp)

2. Kato’s Euler system (V = VpE or Vp f , with f a modular form of weight ≥ 2)

3. Rankin-Selberg Euler system (LLZ, KLZ): these are comprised of Beilinson-Flach
elements (BF( f ,g; j)

m )m where f , g are modular forms of weights k + 2, k′ + 2 ≥ 2. Here
V = Vp f ⊗ Vpg(1 + j).
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When we first constructed the Rankin-Selberg Euler system we were afraid that it might
be 0. However, we know that is not the case because of:

Theorem 1.3 (BDR, KLZ). If p doesn’t divide the levels of f and g, then

log(BF( f ,g; j)
1 = (∗)Lp( f , g, 1 + j)

where the explicit constant (∗) can be computed in examples.

2 The Rankin-Selberg Euler system

2.1 Variants

In [LLZ] we construct an Euler system for Vp f (take one form to be CM).
Lamplugh studied the case when both forms have CM.

2.2 Outline of the construction

Fix N ≥ 1 and m ≥ 1. The geometric input is a Siegel unit

g1/m2N ∈ O(Y1(m2N))∗ = H1
mot(Y1(m2N),Q(1)).

We then consider an embedding

Y1(m2N)→ Y1(N)2

by z 7→ (z, z + 1/m).
The idea is then to push forward the Siegel unit along this embedding. On motivic

cohomology we have

H1
mot(Y1(m2N),Q(1))

im,N
−−−→ H3

mot(Y1(N)2 × µ0
M,Q(2))

Motivic cohomology has a regulator map to etale cohomology, and then we use Hoschild-
Serre to get a map to H1(Q(µm),H2

ét(Y1(N)
2
,Qp(2)).

The Galois representation Vp( f )⊗Vp(g)(1+ j) appears as a quotient of H2
ét(Y1(N)

2
,Qp(2),

so we can take a projector to H1(Q(µm),V∗f ⊗ V∗g ).

3 New Euler systems

What were the important ingredients? The key thing is obviously the embedding im,N . What
are the important properties of it?

• it has the right relative dimension.

• Also, it’s important that it “picks up” Q(µm).
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Note that im,N is a perturbation of the diagonal embedding Y1(N) ↪→ Y1(N)2 which
corresponds to GL2 ↪→ GL2 ×GL2. Can we replace this with another group?

We can apply this strategy in the following cases.

1. GL2 ↪→ ResF
QGL2. (F a real quadratic field)

2. GL2 ×GL2 ↪→ GS P4.

3. GL2 ↪→ U(2, 1)

In all of these cases we can repeat the strategy to obtain new Euler systems.

3.1 Euler system for Hilbert modular forms

This corresponds to the first case above.
Let F be a real quadratic field of narrow class number 1. Let G = ResF

QGL2.
Let σ1, σ2 : F ↪→ R be the two embeddings and GL(Z) act on H × H through the two

embeddings.

Definition 3.1. Let N be a non-zero ideal of OF . Let

U1(N) =

{
γ ∈ GL2(OF) | γ =

(
∗ ∗

1

)
mod N

}
.

Let F be a Hilbert cuspidal eigenform of level µ1(M) and parallel weight 2.

Theorem 3.2 (Blasius, Rogawski, Taylor). There exists a 2-dimensional p-adic represen-
tation VF of GF attached to F .

We want a representation of GQ, so we take the tensor induction. Call this VAsai
F

. This
is a 4-dimensional representation of GQ, with the property that

VAsai
F
|GF = VF ⊗ VF σ .

We define LAsai to be the associated L-function.

Theorem 3.3 (Brylinski-Labesse). VAsai,∗
F

appears as a quotient of H2
ét(Y1(N),Qp(2)).

Here Y1(N) is the Hilbert modular surface attached to U1(N). (For instance, its com-
plex points are H × H/U1(N).)

Let N = N ∩ Z. Then we get Y1(N) → Y1(N). The perturbation of it is as folows. Let
a be a generator of OF/Z. Then we take

im,N : Y1(m2N)→ Y1(N) × µ0
m

by

z 7→
(
z +

σ1(a)
m

, z +
σ2(a)

m

)
.
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Again, we have induced maps on motivic cohomology, then the étale regulator, then the
Hochschild-Serre spectral sequence to get a class in

H1(Q(µm),H2
ét(Y1(N),Qp(2))

and finally we use the Brylinski-Labesse theorem to project to H1(Q(µm),VAsai,∗
F

).

Theorem 3.4 (LLZ). The zFm form an Euler system.

Is this question the trivial Euler system?
The Asai-Flach element (the thing in H3

mot(Y(N),Q(2))) is non-zero. To show this, we
evaluate under Deligne’s regulator to Deligne cohomology (?). What she wrote down is
(Fil1 H2

dR(X/C))∨.
If we pair with a suitable element then we’ll get an L-value; the challenge is then to

show that this is non-zero.
Let η ∈ O∗F be a norm-1 element with σ1(η) < 0 and σ2(η) > 0. Let ωF be a differ-

ential on Y1(N) such that its pullback to H × H is a certain thing in Fil1 H2
dR, then it is a

theorem of Kings that the pairing is some explicit constant times L′Asai(F , 1). In particular,
the punchline is that we can show that the image under the Deligne regulator is non-zero by
showing that a certain L-value is non-zero.

So does the image of the Asai-Flach element vanish in étale cohomology? It is conjec-
tured that the etale regulator is not injective, but we do not know it. So we do not know in
general that zF1 is non-zero. The expectation is that the Bloch-Kato logarithm of the class
should be related to a non-critical value of a p-adic Asai L-function. But this is not known
to exist! The construction of this p-adic L-function, and the verification of non-vanishing
for the Euler system, is ongoing work with Loeffler/Skinner.

However, we do know in an explicit example that the Euler system is non-zero. Let F
be a Hilbert modular form defined over Q(

√
37) of weight (4, 2) and level 1. We computed

that logBK(zF1 ) , 0.

3.2 An Euler system for GSp4

Let J =

(
0 I2
−I2 0

)
. Then

GSp4(R) = {g ∈ GL4(R) : gt Jg = µJ}.

We have a map i : GL2 ×GL2 → GSp4 via

(
a b
c a

) (
a′ b′

c′ d′

)
7→


a b

a′ b′

c d
c′ d′
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Let

Γ̃1(N) =

{
g ∈ GSp4(Z) : g ≡

(
∗ ∗

0 I2

)
mod N

}
s

Let Ỹ1(N) be the associated Siegel 3-fold. Then we get

i : Y1(N) × Y1(N)→ Ỹ1(N).

We need a perturbation:

im,N : Y1(m2N)2 ↪→ ˜Y1(m2N)


1 1/m

1 1/m
1

1


−−−−−−−−−−−−→ Ỹ1(N) × µ0

m.

As before, take g1/m2N ∪ g1/m2N and push forward to motivic cohomology, then take an
étale regulator and Hochschild-Serre spectral sequence.

Let F be a Siegel cuspidal eigenform of weight (3, 3) and level Γ̃1(N). There is an
associated spin representation which is a quotient of the relevant étale cohomology group.

Theorem 3.5 (LSZ). The classes zFm form an Euler system.

Again, the issue is that we cannot construct spin p-adic L-functions.

Remark 3.6. Let me record something that David Loeffler told me afterwards when I asked
what these perturbations were. The point is that you perturb by something in the Borel of
the bigger group which is not in the Borel in the smaller group. In fact, you can view it as
the image of 1/m under a coroot for the bigger group which doesn’t come from a coroot of
the smaller group.

As for why this is necessary, the perturbation matches the translations which are in-
volved in expressing twists of the L-values in terms of modular symbols, as in Mazur-Tate-
Teitelbaum.
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