Beilinson-Kato and Beilinson-Flach elements in *p*-adic families II

Notes by Tony Feng for a talk by Henri Darmon

June 16, 2016

Again, this is a slides talk so I'm just jotting down some impressions.

1 Overview

1.1 Rubin's formula

Rubin proved a formula for CM elliptic curves, basically stating that if L(E, 1) = 0 then there is a global point P such that some Katz p-adic L-function equals a period times the square of the logarithm of P.

1.2 Perrin-Riou's conjecture

Perrin-Riou conjectured a generalization to all elliptic curves over \mathbb{Q} .

One key ingredient is a *Perrin-Riou L-function*, which is a *p*-adic *L*-function valued in de Rham cohomology (which is viewed as the Dieudonne module of the Galois representation).

1.3 Compare and contrast

- both formulas involve the square of the logarithm of a class,
- Rubin's formula involves a value whereas Perrin-Riou's formula involves a derivative
- Rubin's formula involves a value outside the classical range of interpolation, whereas Perrin-Riou's formula involves a derivative at a point in the classical range of interpretation.

The goals are

- 1. clarify the relationship between Rubin's original formula and Perrin-Riou's formula,
- 2. use the ideas emerging from this comparison to prove Perrin-Riou's formula in special cases.

1.4 Recap

- There is a Beilinson-Kato class $\kappa_{BK}(E, \chi_1, \chi_2) \in H^1(\mathbb{Q}, V_p(E)(\chi_1))$.
- There is a Perrin-Riou *L*-function $\mathcal{L}_p^{PR}(E,\chi_1,\chi_2)$ and a PR-Garret-Rankin L-function $\mathcal{L}_p^{PR}(f,g,\underline{h})$.
- The pair (χ_1, χ_2) gives rise to a genus character ψ , from which we get a Hida family of theta series specializing to θ_{ψ} .
- There is a Beilinson-Flach (cohomology) class $\kappa_{BF}(E, \theta_{\psi})$.
- We are trying to relate

$$\frac{d}{ds}\mathcal{L}_p^{PR}(f,\chi_1,\chi_2)$$

to the square of the *p*-adic logarithm of some point. Perrin-Riou relates it to the BK logarithm of $\kappa_{bk}(f, \chi_1, \chi_2)$.

• Also there is a formula relating

$$\log_p \kappa_{BF}(f, \theta_{\psi}, E_1(1, \chi)) \leftrightarrow \frac{d}{ds} \mathcal{L}_p^{PR}(F, \underline{\theta}_{\psi}, \mathcal{E}(1, \chi)).$$

• There is also a A-adic Siegel-Weil formula relating Eisenstein series and the theta function. From this one recovers a relation between the Kato and BF classes:

$$\log_p \kappa_{BK}(f,\chi_1,\chi_2) = \log 2\kappa_{BF}(f,\theta_{\psi},E_1(1,\chi)).$$

Why is this useful? Because the data of (K, ψ) gives rise to a Heegner point.

The BF class and the Heegner point can be compared; that is the subject of today's talk. The comparison proceeds via two *different* "Rubin-style formulas".

2 A broader setting: generalized Kato classes

What are the objects that play the role, for $\mathcal{L}_p^{PR}(f, g, \underline{h})$ of

- the Coates-Wiles classes $\kappa_{CW}(\psi)$ for $\mathcal{L}_p^{Katz}(\psi)$?
- the BK classes $\kappa_{BK}(f,\chi_1,\chi_2)$ for $\mathcal{L}_p^{PR}(f,\chi_1,\chi_2)$?

The generalized Kato classes are a natural extension suitable for studying $\mathcal{L}_p(f, \underline{g}, \underline{h})$ for arbitrary Hida families g and \underline{h} .

These come in three "flavors".

2.1 Setup

Let f be a modular form on $\Gamma_0(N)$ with trivial nebentypus, and g, h modular forms with the same weight k but opposite nebentypus. Let V_f , V_g , V_h be the representations attached and V_{fgh} the Kummer self-dual Tate twist of the tensor product. We can associate a class κ_{fgh} .

Let's do the example k = 2. Let $c \in [1,3]$ be the number of cuspidal forms among $\{f, g, h\}$.

Fact: we can construct an element $\gamma(f, g, h) \in H^{1+c}_{\acute{e}t}(X_1(N)^c, \mathbb{Q}_p(2))$ associated to (f, g, h).

Important preliminary remark: if g is an Eisenstein series of weight 2, then there is a modular unit $u_g \in O^*_{Y_1(N)}$ such that

$$d\log u_g = g$$

• If c = 1 and g, h are Eisenstein then we consider the δ from Kummer theory and

$$\gamma(f, g, h) = \delta(u_g) \cup \delta(u_h).$$

• If c = 2 and h is Eisenstein, then we have $i: H_1(N) \hookrightarrow Y_1(N)^2$ and

$$i_* \colon H^1_{\mathrm{\acute{e}t}}(Y_1(N), \mathbb{Q}_p(1)) \to H^3_{\mathrm{\acute{e}t}}(Y_1(N)^2, \mathbb{Q}_p(2))$$

and $\gamma(f, g, h) = i_*(\delta(u_h))$.

• If c = 3, then $\Delta \in CH^2(X_1(N)^3)$ be the diagonal and $\gamma(f, g, h)$ is the class of Δ .

In all cases there is a simple modification of these classes yielding a class in the cohomology of the completed curve.

The Serre spectral sequence from geometric to absolute cohomology gives a map from etale cohomology to $H^1(Q, H_{\text{ét}})$ and we consider the image of $\gamma(f, g, h)$. Then there is a formula which looks like tensoring with the representations corresponding to the cuspidal terms.

Assemble these classes into a Λ -class $\underline{\kappa}(f, g, \underline{h})$. Then specialize to weight k = 1.

2.2 A general theme

Coates-Wiles says that if the L-function doesn't vanish, then the CW class is crystalline.

Kato and BDR proved analogous statements for the Kato and generalized Heegner classes.

From this, we get analogues of the Coates-Wiles results on "BSD in analytic rank 0".

One can use Euler systems to strengthen this to a bound on Selmer groups, hence III. This was done by Karl Rubin in the Coates-Wiles setting, in the BK setting (c = 1) by Kato, and in the Beilinson-Flach (c = 2) by Zerbes et al.

2.3 Importance of *p*-stabilizations

From f, g, h we get four classes

 $\kappa(f, g_{\alpha/\beta}, h_{\alpha/\beta})$

where the α , β are distinct roots of some Hecke relation for g, h.

So we also get four logarithms, to the four summands of

$$H^{1}(\mathbb{Q}_{p}, V_{f} \otimes V_{gh}) = \bigoplus H^{1}(\mathbb{Q}_{p}, V_{f} \otimes V_{\alpha/\beta, \alpha/\beta})$$

3 Results

Theorem 3.1. For all (f, g, \underline{h}) specializing to $(f, g_{\alpha}, h_{\alpha})$ in weights (2, 1, 1)

- 1. $\log_{\alpha\alpha} \kappa(f, g_{\alpha}, h_{\alpha}) = 0$,
- 2. $\log_{\beta\beta}\kappa(f,g_{\alpha},h_{\alpha}) \sim \frac{d}{ds}(\mathcal{L}_{p}(f,\underline{g},\underline{h}))_{s=1} \text{ modulo Fil}^{0}$. (This generalizes PR's formula.)

We also need a Perrin-Riou style formula.

Theorem 3.2 (Lauder, Rotger, D). For all $(f, \underline{g}, \underline{h})$ specializing to $(f, g_{\alpha}, h_{\alpha})$ in weight (2, 1, 1)

- 1. If g is cuspidal, then $\log_{\alpha\beta} \kappa(f, g_{\alpha}, h_{\alpha}) \sim \mathcal{L}_{p}^{g_{\alpha}}(f, g_{\alpha}, h_{\alpha})$
- 2. Analogous for h.

There are more formulas. We need a formula of Waldspurger, which is for something like $L(f \otimes \theta_{\psi}, 1 + t)$ where ψ is a Hecke character.

$$L(f \otimes \theta_{\psi}, 1+t) \sim \left(\sum_{\mathfrak{a}} \psi^{-1} \kappa(\mathfrak{a}) \delta^{t-1} f(\mathfrak{a})\right)^2.$$

Using Waldspurger's formula one gets a Rubin-style Gross-Zagier formula.

Theorem 3.3.

$$\mathcal{L}_p^{Wald}(f,\psi) \sim \log_p^2(P_{\psi}).$$

The point is that the $d^{-1}f^{[p]}(\mathfrak{a}) \sim \log_p P_{E,\mathfrak{a}}$ because the LHS is the Coleman primitive.

4 Conclusion

The comparison involved two-different Rubin-style formulas.