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Again, this is a slides talk so I’'m just jotting down some impressions.

1 Overview

1.1 Rubin’s formula

Rubin proved a formula for CM elliptic curves, basically stating that if L(E,1) = O then
there is a global point P such that some Katz p-adic L-function equals a period times the
square of the logarithm of P.

1.2 Perrin-Riou’s conjecture

Perrin-Riou conjectured a generalization to all elliptic curves over Q.

One key ingredient is a Perrin-Riou L-function, which is a p-adic L-function valued in
de Rham cohomology (which is viewed as the Dieudonne module of the Galois representa-
tion).

1.3 Compare and contrast
e both formulas involve the square of the logarithm of a class,

e Rubin’s formula involves a value whereas Perrin-Riou’s formula involves a derivative

e Rubin’s formula involves a value outside the classical range of interpolation, whereas
Perrin-Riou’s formula involves a derivative at a point in the classical range of inter-
pretation.

The goals are

1. clarify the relationship between Rubin’s original formula and Perrin-Riou’s formula,

2. use the ideas emerging from this comparison to prove Perrin-Riou’s formula in spe-
cial cases.
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Recap
There is a Beilinson-Kato class kzx(E, x1, x2) € H'(Q, Vo(E)(x1)).

There is a Perrin-Riou L-function LIIjR (E, x1,x2) and a PR-Garret-Rankin L-function
LER(f.g.h).

The pair (y1,x2) gives rise to a genus character i, from which we get a Hida family
of theta series specializing to 6.

There is a Beilinson-Flach (cohomology) class kgr(E, 6y).

We are trying to relate
d
aﬁgR(f,Xl 2X2)

to the square of the p-adic logarithm of some point. Perrin-Riou relates it to the BK
logarithm of kuc(f, X1, x2)-

AlSO thel‘e iS a fOI‘mula I‘elatlng
10g KBF (f 610 E (1 )) & d LPR(I 9 8(1 ))
) s s L] ’X ds p s 2 ,X .

There is also a A-adic Siegel-Weil formula relating Eisenstein series and the theta
function. From this one recovers a relation between the Kato and BF classes:

log, kpk (f,x1,x2) = 10g 2kpr(f, Oy, E1(1, x)).

Why is this useful? Because the data of (K, ) gives rise to a Heegner point.

The BF class and the Heegner point can be compared; that is the subject of today’s talk.
The comparison proceeds via two different “Rubin-style formulas”.

2 A broader setting: generalized Kato classes

What are the objects that play the role, for LI},)R (f.g,h) of

the Coates-Wiles classes kcw (i) for Lllf“tz(w,l/)?

the BK classes «px (f, x1,x2) for LII,)R(f,Xl x2)?

The generalized Kato classes are a natural extension suitable for studying £,(f, g, h)
for arbitrary Hida families g and 4.
These come in three “flavors”.



2.1 Setup

Let f be a modular form on I'g(N) with trivial nebentypus, and g, # modular forms with the

same weight k but opposite nebentypus. Let V¢, V,, V), be the representations attached and

Vren the Kummer self-dual Tate twist of the tensor product. We can associate a class kygp.
Let’s do the example k = 2. Let ¢ € [1,3] be the number of cuspidal forms among

{f 8, hl
Fact: we can construct an element y(f, g, h) € Hét“(X 1(N)°, Q,(2)) associated to (f, g, h).

Important preliminary remark: if g is an Eisenstein series of weight 2, then there is a

: 3k
modular unit u, € OY1 ™) such that

dlogu, = g.
e If c = 1 and g, h are Eisenstein then we consider the 6 from Kummer theory and
Y(f. 8 1) = 6(ug) U 6(up).
e If ¢ = 2 and & is Eisenstein, then we have i: H;(N) < Y;(N)? and
i Hy(Yi(N), Qp(1) — HG(Y1(N)?, Qp(2))

and y(f, g, h) = i.(6(up)).

e If ¢ = 3, then A € CH*(X;(N)?) be the diagonal and y(f, g, h) is the class of A.

In all cases there is a simple modification of these classes yielding a class in the coho-
mology of the completed curve.

The Serre spectral sequence from geometric to absolute cohomology gives a map from
etale cohomology to H (0, Hy) and we consider the image of y(f, g,h). Then there is a
formula which looks like tensoring with the representations corresponding to the cuspidal
terms.

Assemble these classes into a A-class «(f, g, ). Then specialize to weight k = 1.

2.2 A general theme

Coates-Wiles says that if the L-function doesn’t vanish, then the CW class is crystalline.
Kato and BDR proved analogous statements for the Kato and generalized Heegner
classes.
From this, we get analogues of the Coates-Wiles results on “BSD in analytic rank 0”.
One can use Euler systems to strengthen this to a bound on Selmer groups, hence I11.
This was done by Karl Rubin in the Coates-Wiles setting, in the BK setting (¢ = 1) by Kato,
and in the Beilinson-Flach (¢ = 2) by Zerbes et al.



2.3 Importance of p-stabilizations

From f, g, h we get four classes
K(f, 8a/p: harjp)

where the «, 8 are distinct roots of some Hecke relation for g, /.
So we also get four logarithms, to the four summands of

H'(Qp, Vi ® V) = @ H'(Qp, Vy ® Voypasp-

3 Results

Theorem 3.1. For all (f, 8 h) specializing to (f, ga, ha) in weights (2,1, 1)
1. 10844 k(f> 8arha) = 0,
2. logﬁﬁ k(f, ga»ha) ~ %(Lp(f, 8 h))s=1 modulo Fil’. (This generalizes PR’s formula.)
We also need a Perrin-Riou style formula.

Theorem 3.2 (Lauder, Rotger, D). For all (f,g,h) specializing to (f,gq,ha) in weight
2,1,1) -

1. If g is cuspidal, then logaﬁ k(f, ga»ha) ~ Lf," (f, 8a>ha)
2. Analogous for h.

There are more formulas. We need a formula of Waldspurger, which is for something
like L(f ® 6y, 1 + 1) where ¢ is a Hecke character.

2
L(f®6y,1+1) ~ (Z k()5 ! f(a)] :

Using Waldspurger’s formula one gets a Rubin-style Gross-Zagier formula.

Theorem 3.3.
L)(f ) ~ logh(Py).

The point is that the d~! f1P!(a) ~ log, Pgq because the LHS is the Coleman primitive.

4 Conclusion

The comparison involved two-different Rubin-style formulas.



