
Beilinson-Kato and Beilinson-Flach elements in p-adic
families II

Notes by Tony Feng
for a talk by Henri Darmon

June 16, 2016

Again, this is a slides talk so I’m just jotting down some impressions.

1 Overview

1.1 Rubin’s formula

Rubin proved a formula for CM elliptic curves, basically stating that if L(E, 1) = 0 then
there is a global point P such that some Katz p-adic L-function equals a period times the
square of the logarithm of P.

1.2 Perrin-Riou’s conjecture

Perrin-Riou conjectured a generalization to all elliptic curves over Q.
One key ingredient is a Perrin-Riou L-function, which is a p-adic L-function valued in

de Rham cohomology (which is viewed as the Dieudonne module of the Galois representa-
tion).

1.3 Compare and contrast

• both formulas involve the square of the logarithm of a class,

• Rubin’s formula involves a value whereas Perrin-Riou’s formula involves a derivative

• Rubin’s formula involves a value outside the classical range of interpolation, whereas
Perrin-Riou’s formula involves a derivative at a point in the classical range of inter-
pretation.

The goals are

1. clarify the relationship between Rubin’s original formula and Perrin-Riou’s formula,

2. use the ideas emerging from this comparison to prove Perrin-Riou’s formula in spe-
cial cases.
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1.4 Recap

• There is a Beilinson-Kato class κBK(E, χ1, χ2) ∈ H1(Q,Vp(E)(χ1)).

• There is a Perrin-Riou L-function LPR
p (E, χ1, χ2) and a PR-Garret-Rankin L-function

LPR
p ( f , g, h).

• The pair (χ1, χ2) gives rise to a genus character ψ, from which we get a Hida family
of theta series specializing to θψ.

• There is a Beilinson-Flach (cohomology) class κBF(E, θψ).

• We are trying to relate
d
ds
LPR

p ( f , χ1, χ2)

to the square of the p-adic logarithm of some point. Perrin-Riou relates it to the BK
logarithm of κbk( f , χ1, χ2).

• Also there is a formula relating

logp κBF( f , θψ, E1(1, χ))↔
d
ds
LPR

p (F, θψ,E(1, χ)).

• There is also a Λ-adic Siegel-Weil formula relating Eisenstein series and the theta
function. From this one recovers a relation between the Kato and BF classes:

logp κBK( f , χ1, χ2) = log 2κBF( f , θψ, E1(1, χ)).

Why is this useful? Because the data of (K, ψ) gives rise to a Heegner point.

The BF class and the Heegner point can be compared; that is the subject of today’s talk.
The comparison proceeds via two different “Rubin-style formulas”.

2 A broader setting: generalized Kato classes

What are the objects that play the role, for LPR
p ( f , g, h) of

• the Coates-Wiles classes κCW(ψ) for LKatz
p (ψ)?

• the BK classes κBK( f , χ1, χ2) for LPR
p ( f , χ1, χ2)?

The generalized Kato classes are a natural extension suitable for studying Lp( f , g, h)
for arbitrary Hida families g and h.

These come in three “flavors”.
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2.1 Setup

Let f be a modular form on Γ0(N) with trivial nebentypus, and g, h modular forms with the
same weight k but opposite nebentypus. Let V f ,Vg,Vh be the representations attached and
V f gh the Kummer self-dual Tate twist of the tensor product. We can associate a class κ f gh.

Let’s do the example k = 2. Let c ∈ [1, 3] be the number of cuspidal forms among
{ f , g, h}.

Fact: we can construct an element γ( f , g, h) ∈ H1+c
ét (X1(N)c,Qp(2)) associated to ( f , g, h).

Important preliminary remark: if g is an Eisenstein series of weight 2, then there is a
modular unit ug ∈ O

∗
Y1(N) such that

d log ug = g.

• If c = 1 and g, h are Eisenstein then we consider the δ from Kummer theory and

γ( f , g, h) = δ(ug) ∪ δ(uh).

• If c = 2 and h is Eisenstein, then we have i : H1(N) ↪→ Y1(N)2 and

i∗ : H1
ét(Y1(N),Qp(1))→ H3

ét(Y1(N)2,Qp(2))

and γ( f , g, h) = i∗(δ(uh)).

• If c = 3, then ∆ ∈ CH2(X1(N)3) be the diagonal and γ( f , g, h) is the class of ∆.

In all cases there is a simple modification of these classes yielding a class in the coho-
mology of the completed curve.

The Serre spectral sequence from geometric to absolute cohomology gives a map from
etale cohomology to H1(Q,Hét) and we consider the image of γ( f , g, h). Then there is a
formula which looks like tensoring with the representations corresponding to the cuspidal
terms.

Assemble these classes into a Λ-class κ( f , g, h). Then specialize to weight k = 1.

2.2 A general theme

Coates-Wiles says that if the L-function doesn’t vanish, then the CW class is crystalline.
Kato and BDR proved analogous statements for the Kato and generalized Heegner

classes.
From this, we get analogues of the Coates-Wiles results on “BSD in analytic rank 0”.
One can use Euler systems to strengthen this to a bound on Selmer groups, hence X.

This was done by Karl Rubin in the Coates-Wiles setting, in the BK setting (c = 1) by Kato,
and in the Beilinson-Flach (c = 2) by Zerbes et al.
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2.3 Importance of p-stabilizations

From f , g, h we get four classes
κ( f , gα/β, hα/β)

where the α, β are distinct roots of some Hecke relation for g, h.
So we also get four logarithms, to the four summands of

H1(Qp,V f ⊗ Vgh) =
⊕

H1(Qp,V f ⊗ Vα/β,α/β.

3 Results

Theorem 3.1. For all ( f , g, h) specializing to ( f , gα, hα) in weights (2, 1, 1)

1. logαα κ( f , gα, hα) = 0,

2. logββ κ( f , gα, hα) ∼ d
ds (Lp( f , g, h))s=1 modulo Fil0. (This generalizes PR’s formula.)

We also need a Perrin-Riou style formula.

Theorem 3.2 (Lauder, Rotger, D). For all ( f , g, h) specializing to ( f , gα, hα) in weight
(2, 1, 1)

1. If g is cuspidal, then logαβ κ( f , gα, hα) ∼ Lgα
p ( f , gα, hα)

2. Analogous for h.

There are more formulas. We need a formula of Waldspurger, which is for something
like L( f ⊗ θψ, 1 + t) where ψ is a Hecke character.

L( f ⊗ θψ, 1 + t) ∼

∑
a

ψ−1κ(a)δt−1 f (a)

2 .
Using Waldspurger’s formula one gets a Rubin-style Gross-Zagier formula.

Theorem 3.3.
LWald

p ( f , ψ) ∼ log2
p(Pψ).

The point is that the d−1 f [p](a) ∼ logp PE,a because the LHS is the Coleman primitive.

4 Conclusion

The comparison involved two-different Rubin-style formulas.
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