Properties of Compatible Systems

Notes by Tony Feng for a talk by Andrew Wiles

June 15, 2016

1 Introduction

Let *F*, *E* be number fields. We will consider Galois representations of $G_F = \text{Gal}(\overline{F}/F)$. Let *S* be a finite set of places of *F* and Σ a set of places of *E*. Let *n* be an integer.

A *compatible system* is a set of representations $\{\rho_v\}_{v \in \Sigma}$ where each

$$
\rho_v\colon G_F\to\operatorname{GL}_n(E_v)
$$

such that

• For $w \notin S$ with residue characteristic distinct from that of v , then the characteristic polynomial of $Frob_w$ has coefficients in *E* and is independent of *v*.

This notion was introduced by Serre. For simplicity, we assume that $E = \mathbb{Q}$ for the rest of the talk.

- Geometrically, such systems show up in $H^i_{\text{\'et}}(X, \mathbb{Q}_p)$.
- Examples which do not come from geometry show up by interpolating GL_2 /*F* where *F* is real or imaginary quadratic.

Theorem 1.1 (Serre 1972). *If E is an elliptic curve without CM, then* ρ_ℓ *has image an open subgroup of* $GL_2(\mathbb{Z}_\ell)$ *for all* ℓ *, and is actually isomorphic to* $GL_2(\mathbb{Z}_\ell)$ *for all but finitely* $many\,prime\,prime\,$ *nany primes* ℓ *.*

Remark 1.2. In terms of above notation, $\ell \leftrightarrow \nu$.

Conjecture 1.3. Let g_ℓ be the ℓ -adic Lie algebra of Im ρ_ℓ . Then there exists $g_\mathbb{Q}$ such that $g_{\mathbb{Q}} \otimes \mathbb{Q}_\ell = g_\ell$ *for all* ℓ *.*

Remark 1.4. This reflects a sense in which ρ is "independent of ℓ ". One can describe this $g_{\mathbb{Q}}$ in terms of the Mumford-Tate group.

Conjecture 1.5. *If* ρ_{ℓ} *is irreducible at one* ℓ *, then it is at all* ℓ *.*

Larsen and Pink have written much on these conjectures.

Theorem 1.6 (Serre). If A is an abelian variety with dim A odd, and $\text{End}_{\overline{k}}(A) = \mathbb{Z}$ then $g_{\ell} = \mathfrak{sp}_{2d} \oplus \mathbb{Q}_{\ell} \cdot 1d.$

Theorem 1.7 (Zarhin '1985). End_k(*A*) \otimes Z/ $\ell\mathbb{Z}$ = End_k(*A*[ℓ]).

This uses Faltings's results, but it requires some consideration of polarizations. In particular, this implies that if $\text{End}_{\overline{k}}(A) = \mathbb{Z}$ then the Galois representation on $A[\ell]$ is irreducible for all but finitely many ℓ for all but finitely many ℓ .

This irreducibility property is crucial for modularity lifting theorems.

2 Statement of Results

Theorem 2.1 (Snowden-W). Let F be a number field. Let Σ be a set of primes of (Dirichlet) *density one, and for each* $\ell \in \Sigma$ *a (continuous) Galois representation*

$$
\rho_{\ell}\colon G_F\to \mathrm{GL}_n(\mathbb{Q}_{\ell}).
$$

Assume that they form a compatible system and that they have the property that they remain irreducible over any finite extension (=Lie irreducible). Then there is a subset Σ' ⊂ Σ of $density$ 1 such that $\overline{\rho}_{\ell}$ remain irreducible.

Remark 2.2*.* Taylor-Yoshida proved this kind of Lie irreducibility for representations which are automorphic, which are Steinberg at one place and coming from a unitary group. The point is that there are many conditions for which this hypothesis holds.

Remark 2.3. Patrikis showed that every irreducible ℓ -adic representation $\rho_{\ell} \colon G_F \to \text{GL}_n(\overline{\mathbb{Q}}_{\ell})$ is of the form

$$
\rho_{\ell} = \mathrm{Ind}_{K}^{F}(\rho'_{\ell} \otimes \Psi)
$$

where Ψ is an Artin representation and ρ'_t is Lie irreducible. This suggests that given a
compatible system as one should try to show that o' and Ψ also form a compatible system. compatible system ρ_{ℓ} , one should try to show that ρ'_{ℓ} and Ψ also form a compatible system, and thus break the problem into the Artin case and the Lie-irreducible case. However, we don't know how to show this.

Assume also that

• If $w \notin S$ is a place of F with residue characteristic equal to $\ell \in \Sigma$, then ρ_{ℓ} is crystalline at *w* with Hodge-Tate weights independent of ℓ .

Theorem 2.4 (Patrikis, Snowden, W). Let $\{\rho_\ell\}_{\ell \in \Sigma}$ *be a compatible system with* Σ *of density* $one.$ Assume ρ'_{ℓ} s are semisimple and let

$$
\rho_{\ell} \otimes \overline{\mathbb{Q}}_{\ell} = \bigoplus_{i=1}^r \rho_{\ell,i}^{m_{\ell,i}}
$$

Then there exists a density one subset $\Sigma' \subset \Sigma$ *such that* $\overline{\rho}_{\ell} = \bigoplus \overline{\rho}_{\ell,i}^{m_{\ell},i}$
distinct and irreducible $\sum_{\ell,i}^{m_{\ell},i}$ with each $\overline{\rho}_{\ell,i}$ still *distinct and irreducible.*

In [BLGGT] there is a similar theorem, but which assumes that the Hodge-Tate weights are regular, but this excludes many geometric cases of interest.

Remark 2.5*.* We can strengthen the Snowden-Wiles theorem. Assuming Lie irreducibility, we can show that for any integer *d* there exists a subset Σ_d of density one such that for all $\ell \in \Sigma_d$, $\overline{\rho}_{\ell}|_{G_L}$ remains irreducible for all extensions L/F with $[L : F] \leq d$.

3 Proofs

This subject is a little counterintuitive; what ought to be hard is easy and what ought to be easy is hard.

Look at $G_\ell :=$ the Zariski closure of Im ρ_ℓ . Assume ρ_ℓ is semisimple; otherwise you need to divide by a radical. The connected component $G_\ell \supset G_\ell^0$ is of finite index, and we have a short exact sequence

$$
1 \to G_{\ell}^{\text{der}} \to G_{\ell}^{0} \to G_{\ell}^{\text{tor}} \to 1.
$$

Theorem 3.1 (Serre). *The index* $[G_\ell : G_\ell^0]$ *is independent of* ℓ *.*

It is hard to find the proof; I eventually tracked it down in a letter to Ribet in 1981. It is fairly elementary; the idea is that the index has to do with roots of unity, which you can detect in a compatible system.

Theorem 3.2 (Larsen). *On a set of density one* Im $\rho_\ell \cap G_\ell^{\text{der}}$ *is "large"*.

By "large" we mean the analogue of Serre's theorem on elliptic curves. However, the methods cannot handle the toric part. This is quite hard, and uses group theory (of algebraic groups, *p*-adic groups, and also finite groups) extensively.