Properties of Compatible Systems

Notes by Tony Feng for a talk by Andrew Wiles

June 15, 2016

1 Introduction

Let *F*, *E* be number fields. We will consider Galois representations of $G_F = \text{Gal}(\overline{F}/F)$. Let *S* be a finite set of places of *F* and Σ a set of places of *E*. Let *n* be an integer.

A *compatible system* is a set of representations $\{\rho_v\}_{v\in\Sigma}$ where each

$$\rho_{v}: G_{F} \to \operatorname{GL}_{n}(E_{v})$$

such that

• For $w \notin S$ with residue characteristic distinct from that of v, then the characteristic polynomial of Frob_w has coefficients in E and is independent of v.

This notion was introduced by Serre. For simplicity, we assume that $E = \mathbb{Q}$ for the rest of the talk.

- Geometrically, such systems show up in $H^i_{\acute{e}t}(X, \mathbb{Q}_p)$.
- Examples which do not come from geometry show up by interpolating GL_2 / F where *F* is real or imaginary quadratic.

Theorem 1.1 (Serre 1972). If *E* is an elliptic curve without *CM*, then ρ_{ℓ} has image an open subgroup of $\operatorname{GL}_2(\mathbb{Z}_{\ell})$ for all ℓ , and is actually isomorphic to $\operatorname{GL}_2(\mathbb{Z}_{\ell})$ for all but finitely many primes ℓ .

Remark 1.2. In terms of above notation, $\ell \leftrightarrow v$.

Conjecture 1.3. Let \mathfrak{g}_{ℓ} be the ℓ -adic Lie algebra of Im ρ_{ℓ} . Then there exists $\mathfrak{g}_{\mathbb{Q}}$ such that $\mathfrak{g}_{\mathbb{Q}} \otimes \mathbb{Q}_{\ell} = \mathfrak{g}_{\ell}$ for all ℓ .

Remark 1.4. This reflects a sense in which ρ is "independent of ℓ ". One can describe this $g_{\mathbb{Q}}$ in terms of the Mumford-Tate group.

Conjecture 1.5. If ρ_{ℓ} is irreducible at one ℓ , then it is at all ℓ .

Larsen and Pink have written much on these conjectures.

Theorem 1.6 (Serre). If A is an abelian variety with dim A odd, and $\operatorname{End}_{\overline{k}}(A) = \mathbb{Z}$ then $\mathfrak{g}_{\ell} = \mathfrak{sp}_{2d} \oplus \mathbb{Q}_{\ell} \cdot 1d$.

Theorem 1.7 (Zarhin '1985). $\operatorname{End}_k(A) \otimes \mathbb{Z}/\ell\mathbb{Z} = \operatorname{End}_k(A[\ell])$.

This uses Faltings's results, but it requires some consideration of polarizations. In particular, this implies that if $\operatorname{End}_{\overline{k}}(A) = \mathbb{Z}$ then the Galois representation on $A[\ell]$ is irreducible for all but finitely many ℓ .

This irreducibility property is crucial for modularity lifting theorems.

2 Statement of Results

Theorem 2.1 (Snowden-W). Let *F* be a number field. Let Σ be a set of primes of (Dirichlet) density one, and for each $\ell \in \Sigma$ a (continuous) Galois representation

$$\rho_{\ell} \colon G_F \to \operatorname{GL}_n(\mathbb{Q}_{\ell}).$$

Assume that they form a compatible system and that they have the property that they remain irreducible over any finite extension (=Lie irreducible). Then there is a subset $\Sigma' \subset \Sigma$ of density 1 such that $\overline{\rho}_{\ell}$ remain irreducible.

Remark 2.2. Taylor-Yoshida proved this kind of Lie irreducibility for representations which are automorphic, which are Steinberg at one place and coming from a unitary group. The point is that there are many conditions for which this hypothesis holds.

Remark 2.3. Patrikis showed that every irreducible ℓ -adic representation $\rho_{\ell} \colon G_F \to \operatorname{GL}_n(\mathbb{Q}_{\ell})$ is of the form

$$\rho_{\ell} = \operatorname{Ind}_{K}^{F}(\rho_{\ell}^{\prime} \otimes \Psi)$$

where Ψ is an Artin representation and ρ'_{ℓ} is Lie irreducible. This suggests that given a compatible system ρ_{ℓ} , one should try to show that ρ'_{ℓ} and Ψ also form a compatible system, and thus break the problem into the Artin case and the Lie-irreducible case. However, we don't know how to show this.

Assume also that

 If w ∉ S is a place of F with residue characteristic equal to ℓ ∈ Σ, then ρℓ is crystalline at w with Hodge-Tate weights independent of ℓ.

Theorem 2.4 (Patrikis, Snowden, W). Let $\{\rho_\ell\}_{\ell \in \Sigma}$ be a compatible system with Σ of density one. Assume $\rho'_{\ell}s$ are semisimple and let

$$\rho_{\ell} \otimes \overline{\mathbb{Q}}_{\ell} = \bigoplus_{i=1}^{r} \rho_{\ell,i}^{m_{\ell,i}}$$

Then there exists a density one subset $\Sigma' \subset \Sigma$ such that $\overline{\rho}_{\ell} = \bigoplus \overline{\rho}_{\ell,i}^{m_{\ell},i}$ with each $\overline{\rho}_{\ell,i}$ still distinct and irreducible.

In [BLGGT] there is a similar theorem, but which assumes that the Hodge-Tate weights are regular, but this excludes many geometric cases of interest.

Remark 2.5. We can strengthen the Snowden-Wiles theorem. Assuming Lie irreducibility, we can show that for any integer *d* there exists a subset Σ_d of density one such that for all $\ell \in \Sigma_d, \overline{\rho}_\ell|_{G_L}$ remains irreducible for all extensions L/F with $[L:F] \leq d$.

3 Proofs

This subject is a little counterintuitive; what ought to be hard is easy and what ought to be easy is hard.

Look at G_{ℓ} := the Zariski closure of Im ρ_{ℓ} . Assume ρ_{ℓ} is semisimple; otherwise you need to divide by a radical. The connected component $G_{\ell} \supset G_{\ell}^0$ is of finite index, and we have a short exact sequence

$$1 \to G_{\ell}^{\mathrm{der}} \to G_{\ell}^0 \to G_{\ell}^{\mathrm{tor}} \to 1.$$

Theorem 3.1 (Serre). *The index* $[G_{\ell} : G_{\ell}^0]$ *is independent of* ℓ .

It is hard to find the proof; I eventually tracked it down in a letter to Ribet in 1981. It is fairly elementary; the idea is that the index has to do with roots of unity, which you can detect in a compatible system.

Theorem 3.2 (Larsen). On a set of density one Im $\rho_{\ell} \cap G_{\ell}^{\text{der}}$ is "large".

By "large" we mean the analogue of Serre's theorem on elliptic curves. However, the methods cannot handle the toric part. This is quite hard, and uses group theory (of algebraic groups, *p*-adic groups, and also finite groups) extensively.