MODULI OF SHTUKAS I

DOUG ULMER

1. Hecke stacks

Let X be a (smooth, projective, geometrically connected) curve over \mathbf{F}_q . Let $F = \mathbf{F}_q(X)$. Fix integers $n \ge 1$ and $r \ge 0$. Let $\mu = (\mu_1, \ldots, \mu_r)$ with each $\mu_i = \pm 1$. Usually we require that r is even, and moreover that $\sum \mu_i = 0$.

In the previous talk we met the Hecke stack $\operatorname{Hk}_{n}^{\mu}$, parametrizing the stack of modifications of type μ of rank n vector bundles. If S is an \mathbf{F}_{q} -scheme, then $\operatorname{Hk}_{n}^{\mu}(S)$ is the groupoid of

- vector bundles $(\mathcal{E}_0, \ldots, \mathcal{E}_r)$ on $X \times S$.
- If $\mu_i = +1$, a map $\phi_i \colon \mathcal{E}_{i-1} \hookrightarrow \mathcal{E}_i$ with cokernel an invertible sheaf supported on Γ_{x_i} . If $\mu_i = -1$, a map $\phi_i \colon \mathcal{E}_i \hookrightarrow \mathcal{E}_{i-1}$ with cokernel an invertible sheaf supported on Γ_{x_i} .

Example 1.1. If $\mu_i = +1$, demanding a map

$$\mathcal{E}_{i-1} \hookrightarrow \mathcal{E}_i \hookrightarrow \mathcal{E}_{i-1} \otimes \mathcal{O}(\Gamma_{x_i}).$$

amounts to specifying a line in an n-dimensional vector space.

We have a map

$$\operatorname{Hk}_{n}^{\mu} \to \operatorname{Bun}_{n} \times X^{r}$$

sending

$$(\underline{\mathcal{E}}, \underline{x}, \phi) \to (\mathcal{E}_0, \underline{x})$$

This map is smooth of fiber dimension r(n-1), so Hk_n^{μ} is smooth of dimension $n^2(g-1) + nr$.

2. Moduli of shtukas for GL_n

2.1. **Definition.**

Definition 2.1. A shtuka of type μ and rank n is a "Hecke modification" plus a Frobenius structure. More precisely, $\operatorname{Sht}_{n}^{\mu}(S) = \{(\underline{\mathcal{E}}, \underline{x}, \underline{\phi})\}$ together with an isomorphism $\mathcal{E}_{r} \cong {}^{\tau}\mathcal{E}_{0} := (\operatorname{Id}_{X} \times \operatorname{Frob}_{S})^{*}\mathcal{E}_{0}.$

We have a cartesian diagram

DOUG ULMER

Example 2.2. For n = 1, the choice of points x_i determines the higher \mathcal{E}_i from \mathcal{E}_0 , namely $\mathcal{E}_i = \mathcal{E}_{i-1} \otimes \mathcal{O}(x_i)$. So $\operatorname{Hk}_1^{\mu} \cong \operatorname{Pic}_X \times X^r$.

For a point of H_1^{μ} to be an element of $\operatorname{Sht}_1^{\mu}$, we also need $\mathcal{E}_r \cong {}^{\tau}\mathcal{E}_0$, i.e.

$$^{\tau}\mathcal{E}_0\otimes\mathcal{E}_0^{-1}\cong\mathcal{O}(\sum\mu_i x_i).$$

Thus $\operatorname{Sht}_{1}^{\mu}$ is a familiar object, classically known as a "Lang torsor". It is a fiber of the Lang isogeny $\operatorname{Pic}_{X} \to \operatorname{Pic}_{X}$, hence a torsor for $\operatorname{Bun}_{1}(\mathbf{F}_{q})$.

Example 2.3. For r = 0, $\operatorname{Sht}_{n}^{\mu}(S)$ is a vector bundle \mathcal{E} on $X \times S$ and an isomorphism $\mathcal{E} \cong {}^{\tau}\mathcal{E}$. This looks like part of a descent datum. If $S = \operatorname{Spec} \overline{\mathbf{F}}_{q}$, then such \mathcal{E} come from \mathcal{E} on X itself via pullback.

More generally, in this case

$$\operatorname{Sht}_n^{\mu} = \coprod_{\mathcal{E}} [\operatorname{Spec} \, \mathbf{F}_q / \operatorname{Aut} \mathcal{E}].$$

What exactly does this mean? Concretely, an element of $\operatorname{Sht}_n^{\mu}$ is an $\operatorname{Aut}(\mathcal{E})$ -torsor on S, which we can think of as a twisted form of $p_X^*(\mathcal{E})$ on $X \times S$.

2.2. Basic geometric facts about Sht_n^{μ} .

- (1) $\operatorname{Sht}_{n}^{\mu}$ is a Deligne-Mumford stack, smooth and locally of finite type.
- (2) There is a morphism

$$\operatorname{Sht}_n^\mu \to X^r$$

which is separated, smooth, and of relative dimension r(n-1).

2.3. Level structure.

Definition 2.4. Let $D \subset X$ be a finite closed subscheme (in this case, just a finite collection of points with multiplicities). A *level* D structure on $(\underline{\mathcal{E}}, \underline{x}, \underline{\phi})$ is an isomorphism

$$\mathcal{E}_0|_{D \times S} \xrightarrow{\sim} \mathcal{O}_{D \times S}^{\oplus n}$$

such that $|D| \cap \{x_1, \ldots, x_r\} = \emptyset$, which is compatible with Frobenius in the sense that the following diagram commutes:

$$\begin{array}{cccc} \mathcal{E}_0|_{D\times S} & \stackrel{\sim}{\longrightarrow} & \mathcal{O}_{D\times S}^{\oplus n} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Note that there is an action of $\operatorname{GL}_n(\mathcal{O}_D)$ on the set of level structures.

In practice, we'll introduce level structure in order to rigidify the objects.

2.4. Stability conditions. The components of Bun_n are indexed by Z, via

 $\mathcal{E} \mapsto \deg \det \mathcal{E}.$

We need to fix this to get something of finite type. But that still won't be enough, since we have things like $\mathcal{O}(ap) \oplus \mathcal{O}(-ap)$. For a vector bundle \mathcal{E} , let

$$M(\mathcal{E}) := \max\{\deg \mathcal{L} \mid \mathcal{L} \hookrightarrow \mathcal{E}\}.$$

This is enough to cut down to something of finite type.

Definition 2.5. Define $\operatorname{Sht}_{n,D,d,m}^{\mu}$ to be the stack whose S-points are

- $(\underline{\mathcal{E}}, \underline{x}, \underline{\phi}), \ \mathcal{E}_r \xrightarrow{\sim} {}^{\tau} \mathcal{E}_0$
- A level D structure.
- $\deg(\det \mathcal{E}_i) = d, \ M(\mathcal{E}_0) \le m.$

Facts:

- (1) If $D \gg 0$ (with respect to n, m, d) then $\operatorname{Sht}_{n,D,d,m}^{\mu}$ is represented by a quasiprojective variety.
- (2) The map $[\operatorname{Sht}_{n,D,d,m}^{\mu} / \operatorname{GL}_n(\mathcal{O}_D)] \hookrightarrow \operatorname{Sht}_n^{\mu}$ is an open embedding.
- (3) $\operatorname{Sht}_n^{\mu}$ is the union of these substacks for varying d, m.

This is enough to check that Sht_n^μ is a DM stack locally of finite type over \mathbf{F}_q .

2.5. Smoothness. Recall the cartesian square

Note that $d \operatorname{Frob} = \operatorname{Frob}_* = 0$, and $\operatorname{Id}_* = \operatorname{Id}$. On the other hand, p_{0*} and p_{r*} are both surjections.

Corollary 2.6. The maps (Frob, Id): $\operatorname{Bun}_n \to \operatorname{Bun}_n \times \operatorname{Bun}_n$ and (p_0, p_r) : $\operatorname{Hk}_n^{\mu} \to \operatorname{Bun}_n \times \operatorname{Bun}_n$ are transverse.

Corollary 2.7. The map $\operatorname{Sht}_n^{\mu} \to X^r$ is smooth, and so has relative dimension (n-1)r.

2.6. **Summary.** $\operatorname{Sht}_{G}^{r}$ is a DM stack locally of finite type, with a smooth separated morphism $\operatorname{Sht}_{G}^{r} \to X^{r}$ of relative dimension r.

3. Moduli of Shtukas for PGL_2

Let $G = \text{PGL}_2 = \text{GL}_2 / \mathbf{G}_m$, and let Bun_G be the stack of *G*-torsors on *X*, which is isomorphic to $\text{Bun}_2 / \text{Bun}_1$, with the action being \otimes . This action lifts to Hk_2^{μ} , by

$$(\underline{\mathcal{E}}, \underline{x}, \underline{f}) \mapsto (\underline{\mathcal{E}} \otimes \mathcal{L}, \underline{x}, \underline{f} \otimes \mathrm{Id}).$$

DOUG ULMER

This action doesn't restrict to $\operatorname{Sht}_2^{\mu}$ unless $\mathcal{L} \cong {}^{\tau}\mathcal{L}$. Therefore, only the subgroup $\operatorname{Pic}_X(k)$ acts on $\operatorname{Sht}_2^{\mu}$. We have cartesian diagrams

and

$$\begin{array}{cccc}
\operatorname{Sht}_{n}^{\mu} & \longrightarrow & \operatorname{Hk}_{n}^{\mu} \\
\downarrow & & \downarrow_{p_{0} \times p_{r}} \\
\operatorname{Bun}_{n} & \xrightarrow{\operatorname{Frob} \times \operatorname{Id}} & \operatorname{Bun}_{n} \times \operatorname{Bun}_{n}
\end{array} (3.2)$$

and the objects for $G = PGL_2$ are obtained by quotienting the second diagram (3.2) by the action of the corresponding groups in the first diagram (3.1).

3.1. Independence of signs when n = 2. If μ, μ' are *r*-tuples of signs and n = 2, then there is a canonical isomorphism $\operatorname{Sht}_{G}^{\mu} \xrightarrow{\sim} \operatorname{Sht}_{G}^{\mu'}$. We'll show this by giving an explicit isomorphism between $\operatorname{Sht}_{G}^{\mu}$, for any μ , and $\operatorname{Sht}^{\mu'}$ where $\mu' = (+1, \ldots, +1)$.

Suppose we are given $(\underline{\mathcal{E}}, \underline{x}, \underline{\phi}, \iota) \in \text{Sht}_G^{\mu}$. The key idea is that we can transform an injection $\mathcal{E}_{i-1} \leftrightarrow \mathcal{E}_i$ with deg 1 cokernel into $\mathcal{E}_{i-1} \hookrightarrow \mathcal{E}_i \otimes \mathcal{O}(x_i)$. So we take every instance of $\mathcal{E}_{i-1} \leftarrow \mathcal{E}_i$, which is a modification of type μ_- , into $\mathcal{E}_{i-1} \hookrightarrow \mathcal{E}_i \otimes \mathcal{O}(x_i)$, which is a modification of type μ_+ . Given $(\underline{\mathcal{E}}, \underline{x}, \phi)$ let

$$D_i := \sum_{\substack{1 \le j \le i \\ \mu_j = \mu_-}} \Gamma_{x_i}.$$

Let $\mathcal{E}'_i = \mathcal{E}_i \otimes \mathcal{O}_{X \times S}(D)$, and note that

$$\mathcal{E}'_0 \hookrightarrow \mathcal{E}'_1 \hookrightarrow \ldots \hookrightarrow \mathcal{E}'_r$$

is an element of $\operatorname{Sht}_{G}^{\mu'}$.

4