The Fargues-Fontaine Curve

Notes by Tony Feng for a talk by Pierre Colmez

April 4, 2016

1 Preliminaries on Fontaine's Rings

1.1 Construction of C^{\flat}

We start with some (pre)historical remarks. We denote by *C* a complete algebraically closed field of characteristic 0; we can imagine $C = \mathbb{C}_p$. We associate to *C* the set

$$
C^{\flat} = \{ (x^{(n)}) \mid (x^{(n+1)})^p = x^{(n)} \text{ for all } n \}.
$$

We can define on this set multiplication and addition operations making it into a commutative ring:

$$
(x^{(n)})(y^{(n)}) := (x^{(n)}y^{(n)})
$$

and

$$
(x^{(n)}) + (y^{(n)}) := \left(\lim_{k \to \infty} (x^{(n+k)} + y^{(n+k)})^{p^k}\right).
$$

For $x \in C$, we get $x^b = (x, x^{1/p}, x^{1/p^2}, ...) \in C^b$ which is well-defined *up to* $\epsilon^{\mathbb{Z}_p}$ where $\epsilon = (1, \zeta_p, \zeta_{p^2}, \ldots)$. Then we denote

 $x^{\sharp} := x^{(0)}$

Theorem 1.1. C^{\flat} is an algebraically closed field of characteristic p, complete for the val*uation*

 $v_{C^{b}}(x) = v_{p}(x^{\sharp})$

and we have $k_{C^b} = k_C$.

1.2 Construction of *A*inf

Definition 1.2. Let $A_{\text{inf}} = W(O_{C^{\flat}})$. An element $x \in A_{\text{inf}}$ can be (uniquely) represented as

$$
x = \sum_{k \in \mathbb{N}} [x_k] p^k, \quad x_k \in O_{C^{\flat}}.
$$

We have a Frobenius endomorphism φ on A_{inf} by

$$
\varphi\left(\sum [x_k]p^k\right)=\sum [x_k^p]p^k.
$$

We also have a map

$$
\theta\colon A_{\inf}\twoheadrightarrow O_C
$$

sending

$$
\sum [x_k]p^k = \sum x_k^{\sharp}p^k.
$$

Proposition 1.3. θ *is a surjective ring homomorphism with kernel generated by p* − [*p*^b].
We have $Og = Ae$ $e^{f(n-1)p^{n}}$ *We have* $O_C = A_{\inf}/(p - [p^b]).$

1.3 Construction of B_{dR} and B_{cris}

Definition 1.4*.* We define

$$
B_{\mathrm{dR}}^+ := \varprojlim_k A_{\inf}[1/p]/(p - [p^{\flat}])^k
$$

and the subring

$$
A_{\text{cris}} := A_{\text{inf}} \left[\frac{(p - [p^{\flat}])^k}{k!}, k \in \mathbb{N} \right]^{\wedge}.
$$

The ring A_{cris} has an element $t := \log[\epsilon]$. It is easy to see that $\varphi(t) = pt$. Define $B_{\text{cris}} =$ $A_{\text{cris}}[1/t]$, which has an action of φ . We have $B_{\text{cris}} \subset B_{\text{dR}} := B_{\text{dR}}^+[1/t]$. Finally, we define $B_e = B_{\text{cris}}^{\varphi=1}$.

These rings are related by the "fundamental exact sequence"

$$
0 \to \mathbb{Q}_p \to B_e \to B_{\rm dR}/B_{\rm dR}^+ \to 0.
$$

Note that this implies

$$
\operatorname{Gr} B_e = \mathbb{Q}_p + \frac{1}{t} C[1/t].
$$

Surprisingly, B_e is a PID. This is the starting point for everything.

2 The Fargues-Fontaine curve

2.1 Informal description

The *p*-adic comparison theorems for crystalline/de Rham/étale cohomology lead one to consider the category of pairs (W_e, W_{dR}^+) where W_e is a free B_e -module and W_{dR}^+ is a free B^+ module such that B_{dR}^+ -module such that

$$
B_{\mathrm{dR}} \otimes_{B_e} W_e = B_{\mathrm{dR}} \otimes_{B_{\mathrm{dR}}^+} W_{\mathrm{dR}}^+.
$$

(In comparison theorems W_e is the crystalline cohomology, W_{dR}^+ is the de Rham cohomology, and the étale cohomology can be recovered from this setup.)

Fargues and Fontaine were looking for a geometric object that would explain why this category has good properties. Roughly speaking, they constructed a curve *X* from Spec *B^e*

completed by adding a point at ∞ (corresponding to the valuation given by the grading; in general you should imagine that you can add a "point at ∞ " whenever one has a filtered Dedekind domain).

So this curve *X* has the properties that $B_e = O(X - \{\infty\})$, and $B_{\text{dR}}^+ = O_{X,\infty}$. Then the fundamental exact sequence can be interpreted as follows. The fact that

$$
B_e \twoheadrightarrow B_{\rm dR}/B_{\rm dR}^+
$$

is a surjection is saying that we can find find a function which has any particular polar part at ∞ . The short exact sequence tells us that the global sections are \mathbb{Q}_p , which makes us imagine that the curve is "proper". (Note however that the residue field at ∞ is *C*, which is weird since it's infinite-dimensional over \mathbb{Q}_p .)

In these terms the category of pairs (W_e, W_{dR}^+) corresponds to the category of vector
dles over $X =$ Spec *R*, II (formal peighborhood around ∞) by the Beauville-Laszlo inbundles over *X* = Spec B_e \prod (formal neighborhood around ∞) by the Beauville-Laszlo interpretation. The comparison isomorphism is what you need to glue two vector bundles.

What is the meaning of $B_e = (B_{\text{cris}})^{\varphi=1}$? It suggests that our *X* should be obtained by taking the quotient of some bigger space by φ . Indeed, we have

$$
X^{\text{ad}} = Y^{\text{ad}}/\varphi^{\mathbb{Z}}
$$

where $Y^{ad} = \text{Spa}(A_{\text{inf}}) - (p[p^b]).$

Remark 2.1. One might wonder why we don't build *Y* using Spa(B_{cris}), in light of B_e = $(B_{\text{cris}})^{\varphi=1}$. This is bad because φ is not an automorphism of B_{cris} ; we should only quotient by automorphisms. If we were to replace B_{cris} by the largest subring on which φ is an by automorphisms. If we were to replace B_{cris} by the largest subring on which φ is an isomorphism, then one does indeed arrive at the same *Y*.

2.2 First construction

Definition 2.2. Let $[E: \mathbb{Q}_p] < \infty$. Define $A_{\inf,E} = O_E \otimes_{W(k_E)} A_{\inf}$ where ϖ is a uniformizer of *E*. For $x \in A_{\inf E}$ we can write

$$
x=\sum [x_k]\varpi^k
$$

which admits an action of $\varphi_E = 1 \otimes \varphi^f$ where $q = |k_E| = p^f$. Then

$$
\varphi_E(\sum [x_k] \varpi^k) = \sum [x_k^q] \varpi^k.
$$

The expression suggests that $A_{\text{inf},E}$ is similar to $O_C[[T]]$.

This suggests defining the Newton polygon

$$
NP_x := \text{convex hull } \{ (k, v_{C^b}(x_k) \}.
$$

Remark 2.3*.* The theory of Newton polygons is a little subtler than usual because there are infinitely many coefficients, but it is a theorem that things work out.

Theorem 2.4. *If* λ < 0 *is a slope of* NP_x *with multiplicity d then there exist* $a_1, \ldots, a_d \in O_{C^b}$ *such that* $\frac{v_{C^b}(a_i)}{v_{C^b}(a_i)}$ $\frac{\partial C^{(i)}(a_i)}{\partial P_{(i)}(b_i)} = -\lambda$ *for each i and*

$$
(\varpi - [a_1]) \dots (\varpi - [a_k]) \mid x.
$$

Remark 2.5*.* This is the result we would have expected if we were working instead with $\mathbb{C}[[t]]$. In the case $O_C[[T]]$ or $O_{C^b}[[T]]$ the a_i would be unique, but they are *not* unique here.

Corollary 2.6. *The closed prime ideals of A*inf,*^E are*

- (0), with residue field $\text{Frac}(A_{\text{inf }E})$,
- *maximal ideals, with residue fields* k_{C} = k_{C} *.*
- (ϖ) *, with residue field* C^{\flat} *.*
- (\$−[*a*])*, up to some equivalence relation, with residue field K^a which is algebraically closed and complete for* v_p *, and has* $K_a^{\flat} \cong C^{\flat}$ *.*
- $W(\mathfrak{m}_{C^{\flat}})^{\omega} = [\varpi^{\flat}]^{\omega}$ *with residue field is* $E := E \otimes W(k_{C^{\flat}})$ *.*

Now we define the curve $Y_{E,C}$ =: Y_E := Spec' $A_{\text{inf},E} - {\varpi[\varpi^{\flat}]} = 0$, where Spec' means that we take only the *closed* prime ideals.

Proposition 2.7. *The points of* Y_E *correspond to E-untilts of* C^{\flat} *.*

Proof. For $y \in Y_E$ of the form $y = (\varpi - [a])$ the residue field K_y is an "*E*-untilt" of C^{\flat} . An *E*-untilt is a pair $(K \supset E, \iota: K^{\flat} \cong C^{\flat})$. Given an *E*-untilt, we produce a point $(\pi - [\iota(\pi^{\flat})]) \in Y_{\Sigma}$. This shows: $(\varpi - [\iota(\varpi^{\flat})]) \in Y_E$. This shows:

2.3 Lubin-Tate theory

The description of the points of Y_E above has some problems; for instance there is no easy description for when $(\varpi - [a]) = (\varpi - [b])$. We can get a better parametrization of Y_E via Lubin-Tate theory. Associated to (E, ϖ) , for $\alpha \in O_E$ we have $\sigma_{\alpha} \in \alpha T + T^2 O_E[[T]]$ such that that

$$
\sigma_{\alpha}(X \oplus Y) = \sigma_{\alpha}(X) + \sigma_{\alpha}(Y)
$$

and $\sigma_{\varpi} \equiv T^q \mod \varpi$. Then we can define

$$
\sigma_{\alpha/\varpi^n}(T)=\sigma_{\alpha}(T^{q^{-n}}).
$$

This gives an action of *E* on m_{C^b} , with α acting by the reduction of σ_{α} modulo *p*.

Theorem 2.8. *If* $x \in \mathfrak{m}_{\mathbb{C}^{\mathfrak{b}}}$ *, then*

1. $[x]_{\varpi} := \lim_{n \to +\infty} \sigma_{\varpi^n}([x^{q^{-n}}])$ *is the unique lift of x in A*_{inf,*E such that*}

$$
\varphi_E([x]_\varpi) = \sigma_\varpi([x]_\varpi).
$$

- 2. *We have* $\sigma_{\alpha}([x]_{\varpi}) = [\sigma_a(x)]_{\varpi}$
- 3. *The map* $x \mapsto \xi_x := \frac{[x]_{\overline{\omega}}}{[x^{1/q}]_{\overline{\omega}}}$ gives a bijection between

$$
(\mathfrak{m}_{C^{\flat}} - \{0\})/O_E^* \cong Y_E.
$$

3 The analytic curve

3.1 Construction

As we have just seen, Y_E is "the punctured open ball over C^{\flat} modulo O_E^* E^* ^{*}. So we would like to say:

$$
Y_E = \widetilde{D}_{C^b}^*/O_E^* = \widetilde{D}_C^*/O_E^*
$$

where D is the open unit ball. To make sense of this we need diamonds; indeed, giving rigorous meaning to this expression was one of the motivations for Scholze's theory of diamonds.

The *adic Fargues-Fontaine curve* Y_E^{ad} is defined to be

$$
Y_E^{\text{ad}} := \text{Spa}(A_{\text{inf},E}) - \{\varpi[\varpi^{\flat}] = 0\}.
$$

We will eventually define

$$
X_E^{\operatorname{ad}}:=Y_E^{\operatorname{ad}}/\varphi^\mathbb{Z}
$$

after we show that this makes sense.

Remark 3.1. Proving that these really are adic spaces, i.e. the structure sheaves are sheafy, is quite nontrivial.

3.2 Some properties

For any $u \in \mathfrak{m}_{\mathbb{C}^{\flat}} - \{0\}$, we get

$$
O_{\widetilde{E}}[[T^{q^{-\infty}}]] \hookrightarrow A_{\text{inf},E}
$$

by sending $T \mapsto [u]$.

Theorem 3.2. $A_{\text{inf},E}$ *is the* (ϖ, T) *-completion of the maximal extension of* $O_{\widetilde{E}}[[T^{q^{-\infty}}]]$ *un*-
ramified outside $T = 0$ *ramified outside* $T = 0$ *.*

We have $O_{\widetilde{E}}[[T]] \to O_{\widetilde{E}}[[T^{q^{-\infty}}]] \to A_{\text{inf},E}$. Therefore, we can view $\text{Spa}(A_{\text{inf},E})$ as a cover of Spa $O_{\widetilde{E}}[[T]]$, which we can think of as a "unit disk".

That is, $Spa(A_{\text{inf},E})$ is a profinite covering ramified only over the point (*T*), with fiber $G_{k_C((T))}$ over all points except (T) , where it has fiber G_{k_C} .

There is a map δ : Spa $O_E[[T]] \rightarrow [0, \infty]$ defined by

$$
\delta(\overline{x}) := \frac{v_{\overline{x}}(\varpi)}{v_{\overline{x}}([\varpi^{\flat}])}.
$$

(In terms of absolute values, this would be the "radius function" on the unit disk.) Composing this with the map from Spa *^A*inf,*E*, we obtain a map

$$
\text{Spa}\,A_{\text{inf},E} \to [0,+\infty]
$$

which sends

 $v_x \mapsto v_{\overline{x}} \mapsto \delta(\overline{x})$

and $Y_E^{\text{ad}} = \delta^{-1}((0, \infty)) \subset \text{Spa} \, A_{\text{inf},E}$.

Definition 3.3. We define $Y_I := \delta^{-1}(I)$, with $O(Y_I)$ being $A_{\inf,E}[1/\varpi, 1/[\varpi^{\flat}]]$ completed with respect to the family of valuations y , for $r \in I$, where with respect to the family of valuations v_r for $r \in I$, where

$$
v_r(\sum [x_k]\varpi^k) = \begin{cases} \inf(v_{C^{\flat}}(x_k) + krv_p(\varpi)) & r \ge 1, \\ \inf(\frac{1}{r}v_{C^{\flat}}(x_k) + kv_p(\varpi)) & r \le 1. \end{cases}
$$

Proposition 3.4. *Y^I enjoys the following properties:*

- *1.* O(*YI*) *is a Fréchet algebra, and is Banach if I is compact.*
- *2. If* min $I \neq 0$ *then* $O(Y_I)$ *is Bézout, and is even a PID if I is compact.*

We have

$$
\delta(\varphi(x)) = \frac{1}{q}\delta(x),
$$

so φ acts properly on Y_E . This implies that $X_E^{\text{ad}} := Y_E^{\text{ad}}/\varphi^{\mathbb{Z}}$ is compact, since $Y_{[1,q]}$ covers it.

Theorem 3.5. $X_E^{\text{ad}} = (X_E)^{\text{ad}}$ *for some scheme* X_E *.*

If $[E':E] = +\infty$ then

$$
X_{E'}=E'\otimes_E X_E.
$$

The content here is that

$$
\mathcal{M}(Y_{E'}^{\mathrm{ad}})^{\varphi_{E'}=1}=E'\otimes_E \mathcal{M}(Y_E^{\mathrm{ad}})^{\varphi_E=1}.
$$

where M denotes meromorphic functions.

Theorem 3.6. All finite étale coverings of X_E are of this shape, so $\pi_1(X_E) = \text{Gal}(\overline{E}/E)$.