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1 Preliminaries on Fontaine’s Rings

1.1 Construction of C’

We start with some (pre)historical remarks. We denote by C a complete algebraically closed
field of characteristic 0; we can imagine C = C,. We associate to C the set

C? = {(xX™) | DY = ™ for all n}.

We can define on this set multiplication and addition operations making it into a commuta-
tive ring:
(x(n))(y(n)) = (x(n)y(n))

and .
(x(n)) + (y(n)) = (lim (x(n+k) + y(n+k))p )
For x € C, we get X = = (x,x'/7, x 1/p? L) E C" which is well-defined up to € Zp where
= (1,{p, {2, .. ). Then we denote

xf = O,

Theorem 1.1. C’ is an algebraically closed field of characteristic p, complete for the val-
uation
ver(x) = vp(xﬁ)

and we have k¢ = kc.

1.2 Construction of A;,;

Definition 1.2. Let Aipr = W(O»). An element x € Ajy can be (uniquely) represented as

x= Z[xk]pk, Xk € Och.

keN

We have a Frobenius endomorphism ¢ on Aj,r by

e (D alpt) = > 1d1pt.



We also have a map
0: Ajpr > OC

Z[xk]pk = Z szk-

Proposition 1.3. 6 is a surjective ring homomorphism with kernel generated by p — [p"].
We have Oc = Aint/(p = [P"]).

sending

1.3 Construction of Bsr and B,

Definition 1.4. We define

By := lim Aine[1/p1/(p — [P"D)
k
and the subring
(p = P"D!
k!

The ring A has an element ¢ := log[e]. It is easy to see that ¢(f) = pt. Define Bes =
Acris[1/1], which has an action of ¢. We have Bis C Bar := Bj[1/1]. Finally, we define
B, = B*..
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A
Acris 1= Ainf |: , ke N} .

These rings are related by the “fundamental exact sequence”
0— Q, = B, = Bar/Bj — 0.
Note that this implies
1
GrB, =Q, + ?C[l/t].

Surprisingly, B, is a PID. This is the starting point for everything.

2 The Fargues-Fontaine curve

2.1 Informal description

The p-adic comparison theorems for crystalline/de Rham/étale cohomology lead one to
consider the category of pairs (W,, W) where W, is a free B,-module and W, is a free
Bj,-module such that

Bar ®p, W, = Bar ®B§R W;R'

(In comparison theorems W, is the crystalline cohomology, W is the de Rham cohomol-
ogy, and the étale cohomology can be recovered from this setup.)

Fargues and Fontaine were looking for a geometric object that would explain why this
category has good properties. Roughly speaking, they constructed a curve X from Spec B,



completed by adding a point at co (corresponding to the valuation given by the grading; in
general you should imagine that you can add a “point at co” whenever one has a filtered
Dedekind domain).

So this curve X has the properties that B, = O(X — {o0}), and BgR = Ox,. Then the
fundamental exact sequence can be interpreted as follows. The fact that

Be = BdR/BgR

is a surjection is saying that we can find find a function which has any particular polar part
at co. The short exact sequence tells us that the global sections are Q,, which makes us
imagine that the curve is “proper”. (Note however that the residue field at co is C, which is
weird since it’s infinite-dimensional over Q,,.)

In these terms the category of pairs (W,, W) corresponds to the category of vector
bundles over X = Spec B, [ [ (formal neighborhood around co) by the Beauville-Laszlo in-
terpretation. The comparison isomorphism is what you need to glue two vector bundles.

What is the meaning of B, = (Bais)?=17 Tt suggests that our X should be obtained by
taking the quotient of some bigger space by ¢. Indeed, we have

Xad - Yad / (,DZ

where Y% = Spa(Ainr) — (p[p"]).

Remark 2.1. One might wonder why we don’t build Y using Spa(B.s), in light of B, =
(Beris)?=!. This is bad because ¢ is not an automorphism of B.s; we should only quotient
by automorphisms. If we were to replace B.is by the largest subring on which ¢ is an
isomorphism, then one does indeed arrive at the same Y.

2.2 First construction

Definition 2.2. Let [E : Q,] < oco. Define Ainr g = O ®w(iy) Ainf Where @ is a uniformizer
of E. For x € Ajyr g We can write
x = [l

which admits an action of ¢z = 1 ® ¢/ where ¢ = |kg| = p/. Then

A EDY A

The expression suggests that Ajys g is similar to Oc¢[[T]].

This suggests defining the Newton polygon
NP, := convex hull {(k, vy (x)}.

Remark 2.3. The theory of Newton polygons is a little subtler than usual because there are
infinitely many coefficients, but it is a theorem that things work out.



Theorem 2.4. If A < 0 is a slope of NP, with multiplicity d then there exist ay, . ..,aq € O»

vcb (ai) _

such that @) = —A for each i and

(w—[a1])...(@ - [ak]) | x.

Remark 2.5. This is the result we would have expected if we were working instead with
Cll[z]]. In the case Oc[[T]] or Ox[[T]] the a; would be unique, but they are not unique
here.

Corollary 2.6. The closed prime ideals of Ains E are
o (0), with residue field Frac(Ains £),
o maximal ideals, with residue fields kqv = kc.
o (@), with residue field C b,

o (w—|al), up to some equivalence relation, with residue field K, which is algebraically
closed and complete for v,, and has Kg = CP.

o Wimnew)“ = [@"]” with residue field is E=E® Wkev).

Now we define the curve Yz v =: Yp := Spec’ Aiyr g — {w[w’] = 0}, where Spec’
means that we take only the closed prime ideals.

Proposition 2.7. The points of Yi correspond to E-untilts of C".

Proof. For y € Yg of the form y = (w — [a]) the residue field K, is an “E-untilt” of
C’. An E-untilt is a pair (K D E,c: K” = C?). Given an E-untilt, we produce a point
(@ — [«(w@”)]) € YE. This shows: O

2.3 Lubin-Tate theory

The description of the points of Yr above has some problems; for instance there is no easy
description for when (@ — [a]) = (@ — [b]). We can get a better parametrization of Yg via
Lubin-Tate theory. Associated to (E, @), for @ € O we have o, € aT + T?>Og[[T]] such
that

To(XBY) = 0¢(X) + 0a(Y)

and o0 = TY mod w. Then we can define
Taa(T) = Ta(TT).
This gives an action of E on mg, with a acting by the reduction of o, modulo p.

Theorem 2.8. If x € m», then



1. [X]g :=1im,5 100 O'E,m([xqfn]) is the unique lift of x in Ains g such that
ve([x]lw) = 0u([x]w).

2. We have 0,([X]w) = [04(X) ]

Xz
[x1/4]g,

3. The map x — &, := gives a bijection between

(me —{0})/OF, = Y.

3 The analytic curve

3.1 Construction

As we have just seen, Yz is “the punctured open ball over C’ modulo O;”. So we would
like to say: . _
Yg = Dy, /0 = D/O}

where D is the open unit ball. To make sense of this we need diamonds; indeed, giving
rigorous meaning to this expression was one of the motivations for Scholze’s theory of
diamonds.

The adic Fargues-Fontaine curve Ygd is defined to be

Y3 := Spa(Aint ) — (@l[@’] = 0).

We will eventually define
after we show that this makes sense.

Remark 3.1. Proving that these really are adic spaces, i.e. the structure sheaves are sheafy,
is quite nontrivial.
3.2 Some properties

For any u € m — {0}, we get
Ozl[T? 1] = Ainte

by sending T +— [u].

Theorem 3.2. Ajyr g is the (w, T)-completion of the maximal extension of OE[[Tq_w]] un-
ramified outside T = 0.



We have Oz[[T]] — OE[[T‘IW]] — Ajnr.e. Therefore, we can view Spa(Aiqrg) as a
cover of Spa Oz[[T]], which we can think of as a “unit disk™.

Thatis, Spa(Aixt £) is a profinite covering ramified only over the point (7°), with fiber G
over all points except (T'), where it has fiber G,..
There is amap 6: SpaOg[[T]] — [0, o] defined by

.. vi(@)
0=

(In terms of absolute values, this would be the “radius function” on the unit disk.) Compos-
ing this with the map from Spa Aj,r g, we obtain a map

SpaAint,g — [0, +o0]

which sends
Ve P vz B 0(X)

and Y3 = 671((0, 0)) C Spa Aint .

Definition 3.3. We define Y; := ¢~!(I), with O(Y;) being Aintgll /@, 1/[@]1] completed
with respect to the family of valuations v, for r € I, where

inf(vey (xg) + krv,(@ r>1,
v L) = {infE;}bC(b (];)k) + kvi,((w)))) r<l.
Proposition 3.4. Y; enjoys the following properties:
1. O(Y)) is a Fréchet algebra, and is Banach if I is compact.
2. If min[I # 0 then O(Y;) is Bézout, and is even a PID if I is compact.
We have |
o(p(x)) = 215(16),

so ¢ acts properly on Yg. This implies that X%d = Ygd /¢* is compact, since Y| 1,4] COVersS it.
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Theorem 3.5. de = (Xp)™ for some scheme XE.

If [E’ : E] = +oc0 then
Xp = E' Q¢ Xg.

The content here is that
MYsyee=l = B @p M(Ya)ee=!,
where M denotes meromorphic functions.

Theorem 3.6. All finite étale coverings of Xg are of this shape, so m(Xg) = Gal(E/E).
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