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1 Preliminaries on Fontaine’s Rings

1.1 Construction of C[

We start with some (pre)historical remarks. We denote by C a complete algebraically closed
field of characteristic 0; we can imagine C = Cp. We associate to C the set

C[ = {(x(n)) | (x(n+1))p = x(n) for all n}.

We can define on this set multiplication and addition operations making it into a commuta-
tive ring:

(x(n))(y(n)) := (x(n)y(n))

and
(x(n)) + (y(n)) :=

(
lim
k→∞

(x(n+k) + y(n+k))pk
)
.

For x ∈ C, we get x[ = (x, x1/p, x1/p2
, . . .) ∈ C[ which is well-defined up to εZp where

ε = (1, ζp, ζp2 , . . .). Then we denote

x] := x(0).

Theorem 1.1. C[ is an algebraically closed field of characteristic p, complete for the val-
uation

vC[(x) = vp(x])

and we have kC[ = kC .

1.2 Construction of Ainf

Definition 1.2. Let Ainf = W(OC[). An element x ∈ Ainf can be (uniquely) represented as

x =
∑
k∈N

[xk]pk, xk ∈ OC[ .

We have a Frobenius endomorphism ϕ on Ainf by

ϕ
(∑

[xk]pk
)

=
∑

[xp
k ]pk.
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We also have a map
θ : Ainf � OC

sending ∑
[xk]pk =

∑
x]k pk.

Proposition 1.3. θ is a surjective ring homomorphism with kernel generated by p − [p[].
We have OC = Ainf/(p − [p[]).

1.3 Construction of BdR and Bcris

Definition 1.4. We define

B+
dR := lim

←−−
k

Ainf[1/p]/(p − [p[])k

and the subring

Acris := Ainf

[
(p − [p[])k

k!
, k ∈ N

]∧
.

The ring Acris has an element t := log[ε]. It is easy to see that ϕ(t) = pt. Define Bcris =

Acris[1/t], which has an action of ϕ. We have Bcris ⊂ BdR := B+
dR[1/t]. Finally, we define

Be = Bϕ=1
cris .

These rings are related by the “fundamental exact sequence”

0→ Qp → Be → BdR/B+
dR → 0.

Note that this implies

Gr Be = Qp +
1
t
C[1/t].

Surprisingly, Be is a PID. This is the starting point for everything.

2 The Fargues-Fontaine curve

2.1 Informal description

The p-adic comparison theorems for crystalline/de Rham/étale cohomology lead one to
consider the category of pairs (We,W+

dR) where We is a free Be-module and W+
dR is a free

B+
dR-module such that

BdR ⊗Be We = BdR ⊗B+
dR

W+
dR.

(In comparison theorems We is the crystalline cohomology, W+
dR is the de Rham cohomol-

ogy, and the étale cohomology can be recovered from this setup.)
Fargues and Fontaine were looking for a geometric object that would explain why this

category has good properties. Roughly speaking, they constructed a curve X from Spec Be
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completed by adding a point at ∞ (corresponding to the valuation given by the grading; in
general you should imagine that you can add a “point at ∞” whenever one has a filtered
Dedekind domain).

So this curve X has the properties that Be = O(X − {∞}), and B+
dR = OX,∞. Then the

fundamental exact sequence can be interpreted as follows. The fact that

Be � BdR/B+
dR

is a surjection is saying that we can find find a function which has any particular polar part
at ∞. The short exact sequence tells us that the global sections are Qp, which makes us
imagine that the curve is “proper”. (Note however that the residue field at∞ is C, which is
weird since it’s infinite-dimensional over Qp.)

In these terms the category of pairs (We,W+
dR) corresponds to the category of vector

bundles over X = Spec Be
∐

(formal neighborhood around∞) by the Beauville-Laszlo in-
terpretation. The comparison isomorphism is what you need to glue two vector bundles.

What is the meaning of Be = (Bcris)ϕ=1? It suggests that our X should be obtained by
taking the quotient of some bigger space by ϕ. Indeed, we have

Xad = Yad/ϕZ

where Yad = Spa(Ainf) − (p[p[]).

Remark 2.1. One might wonder why we don’t build Y using Spa(Bcris), in light of Be =

(Bcris)ϕ=1. This is bad because ϕ is not an automorphism of Bcris; we should only quotient
by automorphisms. If we were to replace Bcris by the largest subring on which ϕ is an
isomorphism, then one does indeed arrive at the same Y .

2.2 First construction

Definition 2.2. Let [E : Qp] < ∞. Define Ainf,E = OE ⊗W(kE) Ainf where $ is a uniformizer
of E. For x ∈ Ainf,E we can write

x =
∑

[xk]$k

which admits an action of ϕE = 1 ⊗ ϕ f where q = |kE | = p f . Then

ϕE(
∑

[xk]$k) =
∑

[xq
k]$k.

The expression suggests that Ainf,E is similar to OC[[T ]].

This suggests defining the Newton polygon

NPx := convex hull {(k, vC[(xk)}.

Remark 2.3. The theory of Newton polygons is a little subtler than usual because there are
infinitely many coefficients, but it is a theorem that things work out.
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Theorem 2.4. If λ < 0 is a slope of NPx with multiplicity d then there exist a1, . . . , ad ∈ OC[

such that
vC[ (ai)
vp($) = −λ for each i and

($ − [a1]) . . . ($ − [ak]) | x.

Remark 2.5. This is the result we would have expected if we were working instead with
C[[t]]. In the case OC[[T ]] or OC[[[T ]] the ai would be unique, but they are not unique
here.

Corollary 2.6. The closed prime ideals of Ainf,E are

• (0), with residue field Frac(Ainf,E),

• maximal ideals, with residue fields kC[ = kC .

• ($), with residue field C[.

• ($−[a]), up to some equivalence relation, with residue field Ka which is algebraically
closed and complete for vp, and has K[

a � C[.

• W(mC[)“ = [$[]” with residue field is Ẽ := E ⊗W(kC[).

Now we define the curve YE,C[ =: YE := Spec ′ Ainf,E − {$[$[] = 0}, where Spec ′

means that we take only the closed prime ideals.

Proposition 2.7. The points of YE correspond to E-untilts of C[.

Proof. For y ∈ YE of the form y = ($ − [a]) the residue field Ky is an “E-untilt” of
C[. An E-untilt is a pair (K ⊃ E, ι : K[ � C[). Given an E-untilt, we produce a point
($ − [ι($[)]) ∈ YE . This shows: �

2.3 Lubin-Tate theory

The description of the points of YE above has some problems; for instance there is no easy
description for when ($ − [a]) = ($ − [b]). We can get a better parametrization of YE via
Lubin-Tate theory. Associated to (E, $), for α ∈ OE we have σα ∈ αT + T 2OE[[T ]] such
that

σα(X ⊕ Y) = σα(X) + σα(Y)

and σ$ ≡ T q mod $. Then we can define

σα/$n(T ) = σα(T q−n
).

This gives an action of E on mC[ , with α acting by the reduction of σα modulo p.

Theorem 2.8. If x ∈ mC[ , then
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1. [x]$ := limn→+∞ σ$m([xq−n
]) is the unique lift of x in Ainf,E such that

ϕE([x]$) = σ$([x]$).

2. We have σα([x]$) = [σa(x)]$

3. The map x 7→ ξx := [x]$
[x1/q]$

gives a bijection between

(mC[ − {0})/O∗E � YE .

3 The analytic curve

3.1 Construction

As we have just seen, YE is “the punctured open ball over C[ modulo O∗E”. So we would
like to say:

YE = D̃∗C[/O
∗
E = D̃∗C/O

∗
E

where D is the open unit ball. To make sense of this we need diamonds; indeed, giving
rigorous meaning to this expression was one of the motivations for Scholze’s theory of
diamonds.

The adic Fargues-Fontaine curve Yad
E is defined to be

Yad
E := Spa(Ainf,E) − {$[$[] = 0}.

We will eventually define
Xad

E := Yad
E /ϕ

Z

after we show that this makes sense.

Remark 3.1. Proving that these really are adic spaces, i.e. the structure sheaves are sheafy,
is quite nontrivial.

3.2 Some properties

For any u ∈ mC[ − {0}, we get
OẼ[[T q−∞]] ↪→ Ainf,E

by sending T 7→ [u].

Theorem 3.2. Ainf,E is the ($,T )-completion of the maximal extension of OẼ[[T q−∞]] un-
ramified outside T = 0.
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We have OẼ[[T ]] → OẼ[[T q−∞]] → Ainf,E . Therefore, we can view Spa(Ainf,E) as a
cover of SpaOẼ[[T ]], which we can think of as a “unit disk”.

That is, Spa(Ainf,E) is a profinite covering ramified only over the point (T ), with fiber GkC((T ))
over all points except (T ), where it has fiber GkC .

There is a map δ : SpaOE[[T ]]→ [0,∞] defined by

δ(x) :=
vx($)

vx([$[])
.

(In terms of absolute values, this would be the “radius function” on the unit disk.) Compos-
ing this with the map from Spa Ainf,E , we obtain a map

Spa Ainf,E → [0,+∞]

which sends
vx 7→ vx 7→ δ(x)

and Yad
E = δ−1((0,∞)) ⊂ Spa Ainf,E .

Definition 3.3. We define YI := δ−1(I), with O(YI) being Ainf,E[1/$, 1/[$[]] completed
with respect to the family of valuations vr for r ∈ I, where

vr(
∑

[xk]$k) =

inf(vC[(xk) + krvp($)) r ≥ 1,
inf( 1

r vC[(xk) + kvp($)) r ≤ 1.

Proposition 3.4. YI enjoys the following properties:

1. O(YI) is a Fréchet algebra, and is Banach if I is compact.

2. If min I , 0 then O(YI) is Bézout, and is even a PID if I is compact.

We have
δ(ϕ(x)) =

1
q
δ(x),

so ϕ acts properly on YE . This implies that Xad
E := Yad

E /ϕ
Z is compact, since Y[1,q] covers it.
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Theorem 3.5. Xad
E = (XE)ad for some scheme XE .

If [E′ : E] = +∞ then
XE′ = E′ ⊗E XE .

The content here is that

M(Yad
E′ )

ϕE′=1 = E′ ⊗E M(Yad
E )ϕE=1.

whereM denotes meromorphic functions.

Theorem 3.6. All finite étale coverings of XE are of this shape, so π1(XE) = Gal(E/E).
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