The Fargues-Fontaine Curve

Notes by Tony Feng for a talk by Pierre Colmez

April 4, 2016

1 Preliminaries on Fontaine's Rings

1.1 Construction of C^{\flat}

We start with some (pre)historical remarks. We denote by *C* a complete algebraically closed field of characteristic 0; we can imagine $C = \mathbb{C}_p$. We associate to *C* the set

$$C^{\flat} = \{(x^{(n)}) \mid (x^{(n+1)})^p = x^{(n)} \text{ for all } n\}.$$

We can define on this set multiplication and addition operations making it into a commutative ring:

$$(x^{(n)})(y^{(n)}) := (x^{(n)}y^{(n)})$$

and

$$(x^{(n)}) + (y^{(n)}) := \left(\lim_{k \to \infty} (x^{(n+k)} + y^{(n+k)})^{p^k}\right).$$

For $x \in C$, we get $x^{\flat} = (x, x^{1/p}, x^{1/p^2}, ...) \in C^{\flat}$ which is well-defined *up to* $\epsilon^{\mathbb{Z}_p}$ where $\epsilon = (1, \zeta_p, \zeta_{p^2}, ...)$. Then we denote

 $x^{\sharp} := x^{(0)}.$

Theorem 1.1. C^{\flat} is an algebraically closed field of characteristic *p*, complete for the valuation

 $v_{C^{\flat}}(x) = v_p(x^{\sharp})$

and we have $k_{C^{\flat}} = k_C$.

1.2 Construction of A_{inf}

Definition 1.2. Let $A_{inf} = W(O_{C^{\flat}})$. An element $x \in A_{inf}$ can be (uniquely) represented as

$$x = \sum_{k \in \mathbb{N}} [x_k] p^k, \quad x_k \in O_{C^\flat}.$$

We have a Frobenius endomorphism φ on A_{inf} by

$$\varphi\left(\sum [x_k]p^k\right) = \sum [x_k^p]p^k.$$

We also have a map

$$\theta: A_{\inf} \twoheadrightarrow O_C$$

sending

$$\sum [x_k] p^k = \sum x_k^{\sharp} p^k.$$

Proposition 1.3. θ is a surjective ring homomorphism with kernel generated by $p - [p^{\flat}]$. We have $O_C = A_{inf}/(p - [p^{\flat}])$.

1.3 Construction of B_{dR} and B_{cris}

Definition 1.4. We define

$$B_{\mathrm{dR}}^{+} := \varprojlim_{k} A_{\mathrm{inf}} [1/p] / (p - [p^{\flat}])^{k}$$

and the subring

$$A_{\text{cris}} := A_{\inf} \left[\frac{(p - [p^{\flat}])^k}{k!}, k \in \mathbb{N} \right]^{\wedge}.$$

The ring A_{cris} has an element $t := \log[\epsilon]$. It is easy to see that $\varphi(t) = pt$. Define $B_{cris} = A_{cris}[1/t]$, which has an action of φ . We have $B_{cris} \subset B_{dR} := B_{dR}^+[1/t]$. Finally, we define $B_e = B_{cris}^{\varphi=1}$.

These rings are related by the "fundamental exact sequence"

$$0 \to \mathbb{Q}_p \to B_e \to B_{\mathrm{dR}}/B_{\mathrm{dR}}^+ \to 0.$$

Note that this implies

$$\operatorname{Gr} B_e = \mathbb{Q}_p + \frac{1}{t}C[1/t].$$

Surprisingly, B_e is a PID. This is the starting point for everything.

2 The Fargues-Fontaine curve

2.1 Informal description

The *p*-adic comparison theorems for crystalline/de Rham/étale cohomology lead one to consider the category of pairs (W_e, W_{dR}^+) where W_e is a free B_e -module and W_{dR}^+ is a free B_{dR}^+ -module such that

$$B_{\mathrm{dR}} \otimes_{B_e} W_e = B_{\mathrm{dR}} \otimes_{B_{\mathrm{dP}}^+} W_{\mathrm{dR}}^+$$

(In comparison theorems W_e is the crystalline cohomology, W_{dR}^+ is the de Rham cohomology, and the étale cohomology can be recovered from this setup.)

Fargues and Fontaine were looking for a geometric object that would explain why this category has good properties. Roughly speaking, they constructed a curve X from Spec B_e

completed by adding a point at ∞ (corresponding to the valuation given by the grading; in general you should imagine that you can add a "point at ∞ " whenever one has a filtered Dedekind domain).

So this curve X has the properties that $B_e = O(X - \{\infty\})$, and $B_{dR}^+ = O_{X,\infty}$. Then the fundamental exact sequence can be interpreted as follows. The fact that

$$B_e \twoheadrightarrow B_{\rm dR}/B_{\rm dR}^+$$

is a surjection is saying that we can find find a function which has any particular polar part at ∞ . The short exact sequence tells us that the global sections are \mathbb{Q}_p , which makes us imagine that the curve is "proper". (Note however that the residue field at ∞ is *C*, which is weird since it's infinite-dimensional over \mathbb{Q}_p .)

In these terms the category of pairs (W_e, W_{dR}^+) corresponds to the category of vector bundles over $X = \text{Spec } B_e \coprod$ (formal neighborhood around ∞) by the Beauville-Laszlo interpretation. The comparison isomorphism is what you need to glue two vector bundles.

What is the meaning of $B_e = (B_{cris})^{\varphi=1}$? It suggests that our X should be obtained by taking the quotient of some bigger space by φ . Indeed, we have

$$X^{\mathrm{ad}} = Y^{\mathrm{ad}} / \varphi^{\mathbb{Z}}$$

where $Y^{ad} = \text{Spa}(A_{inf}) - (p[p^{\flat}]).$

Remark 2.1. One might wonder why we don't build Y using Spa(B_{cris}), in light of $B_e = (B_{cris})^{\varphi=1}$. This is bad because φ is not an automorphism of B_{cris} ; we should only quotient by automorphisms. If we were to replace B_{cris} by the largest subring on which φ is an isomorphism, then one does indeed arrive at the same Y.

2.2 First construction

Definition 2.2. Let $[E : \mathbb{Q}_p] < \infty$. Define $A_{\inf,E} = O_E \otimes_{W(k_E)} A_{\inf}$ where ϖ is a uniformizer of *E*. For $x \in A_{\inf,E}$ we can write

$$x = \sum [x_k] \varpi^k$$

which admits an action of $\varphi_E = 1 \otimes \varphi^f$ where $q = |k_E| = p^f$. Then

$$\varphi_E(\sum [x_k]\varpi^k) = \sum [x_k^q]\varpi^k.$$

The expression suggests that $A_{inf,E}$ is similar to $O_C[[T]]$.

This suggests defining the Newton polygon

NP_x := convex hull {
$$(k, v_{C^{\flat}}(x_k))$$
}.

Remark 2.3. The theory of Newton polygons is a little subtler than usual because there are infinitely many coefficients, but it is a theorem that things work out.

Theorem 2.4. If $\lambda < 0$ is a slope of NP_x with multiplicity d then there exist $a_1, \ldots, a_d \in O_{C^{\flat}}$ such that $\frac{v_{C^{\flat}}(a_i)}{v_p(\varpi)} = -\lambda$ for each i and

$$(\varpi - [a_1]) \dots (\varpi - [a_k]) \mid x.$$

Remark 2.5. This is the result we would have expected if we were working instead with $\mathbb{C}[[t]]$. In the case $O_C[[T]]$ or $O_{C^{\flat}}[[T]]$ the a_i would be unique, but they are *not* unique here.

Corollary 2.6. *The closed prime ideals of* $A_{inf,E}$ *are*

- (0), with residue field $\operatorname{Frac}(A_{\inf,E})$,
- maximal ideals, with residue fields $k_{C^{\flat}} = k_C$.
- (ϖ) , with residue field C^{\flat} .
- $(\varpi [a])$, up to some equivalence relation, with residue field K_a which is algebraically closed and complete for v_p , and has $K_a^b \cong C^b$.
- $W(\mathfrak{m}_{C^{\flat}})^{\iota} = [\varpi^{\flat}]^{\iota}$ with residue field is $\widetilde{E} := E \otimes W(k_{C^{\flat}})$.

Now we define the curve $Y_{E,C^{\flat}} =: Y_E := \text{Spec}' A_{\inf,E} - \{\varpi[\varpi^{\flat}] = 0\}$, where Spec' means that we take only the *closed* prime ideals.

Proposition 2.7. The points of Y_E correspond to *E*-untilts of C^{\flat} .

Proof. For $y \in Y_E$ of the form $y = (\varpi - [a])$ the residue field K_y is an "*E*-untilt" of C^{\flat} . An *E*-untilt is a pair $(K \supset E, \iota: K^{\flat} \cong C^{\flat})$. Given an *E*-untilt, we produce a point $(\varpi - [\iota(\varpi^{\flat})]) \in Y_E$. This shows:

2.3 Lubin-Tate theory

The description of the points of Y_E above has some problems; for instance there is no easy description for when $(\varpi - [a]) = (\varpi - [b])$. We can get a better parametrization of Y_E via Lubin-Tate theory. Associated to (E, ϖ) , for $\alpha \in O_E$ we have $\sigma_{\alpha} \in \alpha T + T^2 O_E[[T]]$ such that

$$\sigma_{\alpha}(X \oplus Y) = \sigma_{\alpha}(X) + \sigma_{\alpha}(Y)$$

and $\sigma_{\varpi} \equiv T^q \mod \varpi$. Then we can define

$$\sigma_{\alpha/\varpi^n}(T) = \sigma_{\alpha}(T^{q^{-n}}).$$

This gives an action of E on $\mathfrak{m}_{C^{\flat}}$, with α acting by the reduction of σ_{α} modulo p.

Theorem 2.8. If $x \in \mathfrak{m}_{C^{\flat}}$, then

1. $[x]_{\varpi} := \lim_{n \to +\infty} \sigma_{\varpi^m}([x^{q^{-n}}])$ is the unique lift of x in $A_{\inf,E}$ such that

$$\varphi_E([x]_{\varpi}) = \sigma_{\varpi}([x]_{\varpi}).$$

- 2. We have $\sigma_{\alpha}([x]_{\varpi}) = [\sigma_a(x)]_{\varpi}$
- 3. The map $x \mapsto \xi_x := \frac{[x]_{\varpi}}{[x^{1/q}]_{\varpi}}$ gives a bijection between

$$(\mathfrak{m}_{C^{\flat}} - \{0\})/\mathcal{O}_E^* \cong Y_E.$$

3 The analytic curve

3.1 Construction

As we have just seen, Y_E is "the punctured open ball over C^{\flat} modulo \mathcal{O}_E^* ". So we would like to say:

$$Y_E = \widetilde{D}_{C^\flat}^* / \mathcal{O}_E^* = \widetilde{D}_C^* / \mathcal{O}_E^*$$

where D is the open unit ball. To make sense of this we need diamonds; indeed, giving rigorous meaning to this expression was one of the motivations for Scholze's theory of diamonds.

The *adic Fargues-Fontaine curve* Y_E^{ad} is defined to be

$$Y_E^{\mathrm{ad}} := \mathrm{Spa}(A_{\mathrm{inf},E}) - \{\varpi[\varpi^{\flat}] = 0\}.$$

We will eventually define

$$X_E^{\mathrm{ad}} := Y_E^{\mathrm{ad}} / \varphi^{\mathbb{Z}}$$

after we show that this makes sense.

Remark 3.1. Proving that these really are adic spaces, i.e. the structure sheaves are sheafy, is quite nontrivial.

3.2 Some properties

For any $u \in \mathfrak{m}_{C^{\flat}} - \{0\}$, we get

$$O_{\widetilde{E}}[[T^{q^{-\infty}}]] \hookrightarrow A_{\inf,E}$$

by sending $T \mapsto [u]$.

Theorem 3.2. $A_{\inf,E}$ is the (ϖ, T) -completion of the maximal extension of $O_{\widetilde{E}}[[T^{q^{-\infty}}]]$ unramified outside T = 0.

We have $O_{\widetilde{E}}[[T]] \to O_{\widetilde{E}}[[T^{q^{-\infty}}]] \to A_{\inf,E}$. Therefore, we can view $\text{Spa}(A_{\inf,E})$ as a cover of $\text{Spa}O_{\widetilde{E}}[[T]]$, which we can think of as a "unit disk".

That is, $\text{Spa}(A_{\inf,E})$ is a profinite covering ramified only over the point (T), with fiber $G_{k_C((T))}$ over all points except (T), where it has fiber G_{k_C} .

There is a map δ : Spa $O_E[[T]] \rightarrow [0, \infty]$ defined by

$$\delta(\overline{x}) := \frac{v_{\overline{x}}(\overline{\omega})}{v_{\overline{x}}([\overline{\omega}^{\flat}])}.$$

(In terms of absolute values, this would be the "radius function" on the unit disk.) Composing this with the map from $\text{Spa}A_{\text{inf},E}$, we obtain a map

$$\operatorname{Spa} A_{\operatorname{inf},E} \to [0, +\infty]$$

which sends

 $v_x \mapsto v_{\overline{x}} \mapsto \delta(\overline{x})$

and $Y_E^{\mathrm{ad}} = \delta^{-1}((0,\infty)) \subset \operatorname{Spa} A_{\mathrm{inf},E}$.

Definition 3.3. We define $Y_I := \delta^{-1}(I)$, with $O(Y_I)$ being $A_{\inf,E}[1/\varpi, 1/[\varpi^{\flat}]]$ completed with respect to the family of valuations v_r for $r \in I$, where

$$v_r(\sum [x_k]\varpi^k) = \begin{cases} \inf(v_{C^\flat}(x_k) + krv_p(\varpi)) & r \ge 1, \\ \inf(\frac{1}{r}v_{C^\flat}(x_k) + kv_p(\varpi)) & r \le 1. \end{cases}$$

Proposition 3.4. Y_I enjoys the following properties:

- 1. $O(Y_I)$ is a Fréchet algebra, and is Banach if I is compact.
- 2. If min $I \neq 0$ then $O(Y_I)$ is Bézout, and is even a PID if I is compact.

We have

$$\delta(\varphi(x)) = \frac{1}{q}\delta(x),$$

so φ acts properly on Y_E . This implies that $X_E^{ad} := Y_E^{ad} / \varphi^{\mathbb{Z}}$ is compact, since $Y_{[1,q]}$ covers it.

Theorem 3.5. $X_E^{ad} = (X_E)^{ad}$ for some scheme X_E .

If $[E':E] = +\infty$ then

$$X_{E'} = E' \otimes_E X_E.$$

The content here is that

$$\mathcal{M}(Y_{E'}^{\mathrm{ad}})^{\varphi_{E'}=1} = E' \otimes_E \mathcal{M}(Y_E^{\mathrm{ad}})^{\varphi_E=1}.$$

where \mathcal{M} denotes meromorphic functions.

Theorem 3.6. All finite étale coverings of X_E are of this shape, so $\pi_1(X_E) = \text{Gal}(\overline{E}/E)$.