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1 Overview

Let k be a number field and p , 2 a prime. Fix a set of places S , which contains all places
dividing p or∞.

Let T be a finitely generated free Zp-module, with a continuous Zp-linear action of
Gk := Gal(ks/k), unramified outside S . Let M be a fixed power of p; we consider the
modular representation A := T/M.

Let K/k be a large pro-p abelian extension; we’ll be interested in the collection of
subfield extensions

Ω := {F : k ⊂ F ⊂ K}

For F ∈ Ω, we set GF = Gal(F/k) and OF := OF,S∪S ram(F/k). (Apologies for this notation.)

Theorem 1.1 (Mazur, Rubin). Under the “standard hypotheses on T and K” there is a
canonical homomorphism from the module of Euler Systems to the module of Kolyvagin
Systems, given by the “Kolyvagin derivative”

ES (T )
DA
−−→ KS (A).

An Euler system is a collection of cohomology classes c = {(c f ) f∈Ω : c ∈ H1(OF ,T )}
which are “compatible” in the sense that their restrictions agree up to Euler factors.

A Kolyvagin system consists of {(κn)n∈N : κn ∈ H1
n(k, A)} where N is something like

squarefree ideal classes. As n varies, the cohomology classes are linked by homomorphisms
which are “finite/singular comparison maps”.

The importance of the theorem is that the left hand side has links to L-values, while the
right hand side is a machine that controls Selmer groups.

Let
YT :=

⊕
v∈S∞(k)

H0(kv,T ∗(1))

and r = rT := rank Zp(YT ) be the “rank” of the Euler system. The situation of interest is
r > 1.
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2 Higher rank Euler systems

Perrin-Riou defined a notion of higher rank Euler systems ES r(T ) parametrizing classes
cF ∈

∧r
Zp[GF ] H1(OF ,T ). Rubin had the insight that it was “too optimistic” for higher rank

Euler systems not to have denominators (he considered T = Zp(1)); he instead suggested
how to bound the denominators that should appear. This answer is given in terms of a
“Rubin lattice” which will appear later.

On the other side, KS r(A) parametrizes classes κn ∈
∧r
Z/M H1

n(k, A).
Another type of system was discovered: the Stark Systems (so called because examples

included systems arising from Stark units) κ′n ∈
∧r+ν(n)
Z/M H1

n(k, A) where ν(n) is the number
of prime divisors of n.

There is a map
πA : S S r(A)→ KS r(A).

It turns out that the module of Stark systems is easier to study. They also control Selmer
groups. For Kolyvagin systems, the relation between the different classes is more compli-
cated. (The map πA is not surjective for r > 1.)

However, the Kolyvagin systems have some advantages. The relation between classes
is functorial. Also, it is harder to see how to get Stark systems from Euler systems (for
instance, it is mystifying that the exponent of the exterior power varies so much).

It is expected that there is a generalization of the Kolyvagin derivative

Dr : ES r(T ) d KS r(A)

Problems.

1. What is Dr?

2. Mazur-Rubin-Perrin-Riou have results for the case Zp(1), but can one do it for more
general coefficients for T, A?

I will talk about joint work with Takamichi Sano. The punchline is that we can do 2 for
satisfactorially general coefficients. However, 1 is still only partially answered.

3 Another overview

Since this work is so technical, we give an overview first.
Let r = rT = rank Zp(YT ).

Remark 3.1. In terms of the notation of Mazur-Rubin-Perrin-Riou’s paper, this coincides
with their “core rank of (T,Tcan)” under mild hypothesis.

Let

E(T ) = ES r(T )

K(T ) = KS r(T )

S(T ) = S S r(T )
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For F ∈ Ω, let RF = Zp[GF] and AF = A ⊗Zp RF , which has an action of RF/M =

Z/M[GF].
I will try to flesh out the following notion: for each F ∈ Ω, one can define

• K(AF),S(AF) with actions of RF

• a canonical homomorphism over Zp[[Gk]]

E(T )
Dr
−−→

but we don’t a priori know that it lands in the right place. Kolyvagin systems parametrize
classes which are “closely related” as n varies. Instead, the target here might be called
“Kolyvagin collections” since we don’t know that the classes are “closely related” as
desired.

E(T )
Dr
−−→ KCr(AF) ⊃ K(AF).

Definition 3.2. Let k ⊂ L ⊂ K. We define the “Kolyvagin-derivable at level L systems”

Eder
L (T ) := {c ∈ E(T ) : Dr,F(c) ∈ K(AF)∀F ∈ Ω, F ⊃ L}

In this context, the theorem of Mazur and Rubin can be stated as follows.

Example 3.3. For r = 1, Eder
L (T ) = E(T ).

I expect that it will be very difficult to find an example of a non-derivable Euler system,
but I don’t have evidence to conjecture that every one will be derivable.

So what can we say about the submodule of Kolyvagin derivable Euler systems (hence-
forth denoted E∗(T ))?

First, it should be big.

Theorem 3.4. Assume the “Standard hypotheses on T,K” and for all F ∈ Ω, H1(OF ,T ) is
Zp-free and H0(F,T ) = 0. (The first condition might seem strong, but we can reduce to this
case via standard tricks of increasing the set.)

Then there exists a canonical Zp[[Gk]]-submodule of Eder
F (T ) with the following prop-

erties.

1. (“Strongly derivable”) There is a commutative diagram

E∗F(T )
DF //

ρF $$

K(AF)

S(AF)

πF

::
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2. Im ρ f determines every Fitting ideal

Fiti
RF

(X2
S (F, A)).

3. If k∞/k is a Zp-tower, k∞ ⊂ K, then E∗F(T ) determines whether or not H2(Ok∞ ,T ) is
torsion over Zp[[Gal(k∞/k)]].

4 Some details about the diagram

In the rest of the talk I’m going to talk about the diagram

E∗F(T )
DF //

ρF $$

K(AF)

S(AF)

πF

::

Remark 4.1. If r = 1, k/Q is abelian then by a theorem of Kato, under mild conditions on
T , E(T )/E∗k(T ) is small and simple.

For r > 1 and T = Zp(1), k/Q real and abelian of degree r, we get a cyclotomic Euler
system. We can prove that it belongs to E∗k(T ).

4.1 Exterior algebra

Let R be a commutative ring and X a finitely generated R-module. For d ≥ 0, we define

d⋂
R

X :=

 d∧
R

X∗

∗

where (−)∗ = HomR(−,R). We have a map

d∧
R

X
θd

X
−−→

d⋂
R

X

which is an isomorphism if X happens to be projective, but neither injective nor surjective
in general.

Example 4.2. Let R = Zp[G] for G a finite abelian group. Then

d⋂
R

X
θd

X
= {a ∈ Qp ·

d∧
R

X | Φ(a) ∈ R for all Φ ∈

d∧
R

X∗}.

This is the “Rubin lattice”, which bounds the denominators of higher rank Euler systems.
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In this setting one can define

E(T ) = {(cF)F∈Ω : cF ∈

d⋂
RF

H1(OF ,T )}

and

E(T ) = {(κn)n : κn ∈

d⋂
RF

H1
n(k, AF)}.

The point is that the bidual behaves much better than the exterior power in terms of con-
structing homomorphisms.

4.2 Construction of E∗F(T )

Let F ∈ Ω. Consider
det−1

RF
RΓc(OF ,T ∗(1)).

Under Artin-Verdier duality, we have

det−1
RF

RΓc(OF ,T ∗(1)) � det−1
RF

RΓ(OF ,T ) ⊗RF det−1
RF

(YT ⊗ RF).

Picking a basis of YT , we can contract the last factor to get a map to

→ detRF
−1RΓ(OF ,T ).

Under our hypotheses, this has cohomology only in degrees 1 and 2. Now you can project
to the component of Qp · RF that kills H2(OF ,T ). Then by Artin-Verdier duality the thing
has to be free of rank 1. So you unwind to

→ Qp ·

r∧
RF

H1(OF ,T ).

Call the composite map ΘF :

ΞF := det−1
RF

RΓc(OF ,T ∗(1))
ΘF
−−→ Qp ·

1∧
RF

H1(OF ,T )

Theorem 4.3. We have

1. Im ΘF ⊂
⋂r

RF
H1(OF ,T ),

2. there exists a surjective transition morphism ΞF → ΞF′ for k ⊂ F′ ⊂ F such that

(δF)F → (ΘF(δF))F

is a homomorphism.

This induces
ΘK : lim

←−−
F∈Ω

ΞF → Σ(T )
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4.3 Kolyvagin derivative

Let P be the set of prime powers q such that

• q splits completely in k(µM, (O∗k)1/M) and

• A/(Frobq −1)A � Z/M.

For q ∈ P, let k(q) be the maximal p-power extension of k in the ray class field mod q. If
p - |Cl(OK)| then Gal(k(q)/k) = 〈σq〉.

Let N be the set of squarefree products of P. For n ∈ N , let

k(n) =
∏
q|n

k(q).

We define for n ∈ N

Dn =
∏
q|n

#Gq−1∑
i=1

iσi
q

 ∈ Zp[Gal(k(n)/k)].

Let On = Ok,S∪S ram/k)∪{q|n}

Theorem 4.4. For c ∈ Σ(T ),

1. For n ∈ N , Dn(ck(n)) (mod M) gives κ′n(c) ∈
∧r

RF
InjRF

(H1(On, AF)). (Here Inj de-
notes an injective envelope.)

2. There exists ΨF ∈ EndRF

(∏
n∈N InjRF

(H1(On, AF))
)

with

(a) For r = 1, F = k
Ψk|∏n∈N H1(On,A)

is the homomorphism used by Mazur-Rubin used to define the Kolyvagin deriva-
tive.

(b) For c ∈ E∗F(T ),
Ψ((κ′n(c)) ∈ K(AF).

Thus:

Definition 4.5. We define KC(AF) =
∏

n∈N
∧r

RF
InjRF

(H1(On, AF)) and DL = Ψ ◦ (κ′n(−))n.

Let me just say that this approach gives an interpretation of the finite/singular compari-
son map of Mazur-Rubin, which is a key point, in terms of Bockstein homomorphisms.
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