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1 The Cohen-Lenstra Heuristics

Let K be an imaginary quadratic field. We know that ClK is a finite abelian group. The
Cohen-Lenstra heuristics address the question: as K varies, how often is ClK a particular
group?

Cohen-Lenstra (’84) predicted that for p odd

Prob(ClK[p∞] � G) =
1

# Aut(G)
·
∏
i≥1

(1 − p−i).

This comes from the philosophy that, in the absence of “external” influences, objects should
appear inversely proportional to their number of automorphisms. (This fails for p = 2,
because we do know external influences from genus theory.)

This also predict moments. If A is an odd finite abelian group, then they predict

E(#Surj(ClK , A)) = 1.

This is called the “A-moment”. It is a remarkable property of the Cohen-Lenstra distribu-
tion.

Remark 1.1. Why is this called a moment? If you take all homomorphisms instead of
surjections, you get “mixed moments” of group invariants. We take surjections to get this
nice answer.

There is a general probabilistic principle that when moments don’t grow too fast, they
determine a unique distribution.

However, it turns out that the A-moments grow too fast for any rigorous, quantitative
measure of “don’t grow too fast”. The point is that the moments are really like homomor-
phisms (instead of surjections), which count the number of subgroups.

In this case, though, there are restrictions on the distribution such as that it must be
supported on integers.
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Theorem 1.2 (Wood ’14). These moments determine a unique distribution on finite abelian
groups.

Moral. The moments are everything.

So from now on we’ll focus on the moments.

2 The Davenport-Heilbronn Theorem

Class field theory tells us that

ClK = Gal(Kunr,ab/K).

So a surjection ClK � A has number-theoretic interpretation as an unramified A-extension
of K. The A-moment is then counting the number of unramified A-extensions of K. This
interpretation is the major way that counting results have been accessed.

Theorem 2.1 (Davenport-Heilbronn ’71). We have

E(#Surj(ClK ,Z/3Z)) = 1.

The argument is by counting unramified Z/3-extensions of quadratic fields, rather than
working directly with ideal classes.

3 A non-abelian version

Let Gunr
K = Gal(Kunr,K). We can still ask about

E(#Surj(Gunr
K ,H))

in other words the average number of unramified H-extensions of a K.
It turns out that there is a piece of structure here that was invisible in the abelian case.

Kunr

K
〈σ〉

Q

We have an action of complex conjugation σ on Gunr
K . (In the abelianization σ acts by −1,

so its presence is not felt in the abelian case.)
We can use group theory to reduce to studying

E(#Surjσ(Gunr
K ,H))
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given H with an automorphism σ.
Boston, Bush, Hajir ’14 gave heuristics for Gunr,pro−p

K (the Galois group of the maximal
unramified pro-p extension of K, where p is odd). This group is often infinite (but can be
finite). Here talking about probability is subtler, because we are a priori in the setting of
uncountably many infinite pro-p groups. Impressively, they even gave empirical evidence
for their heuristics.

In joint work with Nigel Boston, we reworked their heuristics in terms of a measure
µBBH on the space of isomorphism classes of pro-p groups (in terms of an explicitly defined
σ-algebra).

Proposition 3.1 (BW). When H is a finite p-group (p odd),

µBBH(H) =
1

# Autσ(H)
·C.

This is a variant of the Cohen-Lenstra heuristics: objects should appear with probability
inversely proportional to the number of automorphisms respecting all extra structure.

Proposition 3.2 (BW). Let H be a finite p-group and σ ∈ Aut(H) generator-inverting.
Then

E(#Surjσ(µBHH group,H)) = 1

and these moments determine µBBH uniquely.

4 Function Field Analogues

Replace Q with Fq(t). The analogue of an imaginary quadratic extension K/Fq(t) is a
quadratic extension ramified at∞.

Replace Gal(Kunr/K) with Gal(Kunr,∞,K), the Galois group of the maximal everywhere-
unramified extension of K which is split completely at∞. In particular, the abelianization of
Gal(Kunr,∞,K) is the affine class group (whereas the abelianization of Gal(Kunr/K) contains
the constant field extensions).

Theorem 4.1. Let H be an odd finite group and σ be a generator-inverting automorphism
of H, and Z(H)σ = 1. Then

lim
q→∞
Esup / inf(#Surjσ(Gal(Kunr,∞/K),H)) = 1

where the limit runs through q such that (q, 2|H|) = 1 (ruling out wild inertia) and (q −
1, |H|) = 1 (so there are no extra roots of unity).

Remark 4.2. In this theorem first q is fixed and the discriminant of K goes to ∞, and then
q goes to infinity. We expect the result to be true without the q limit, but this is the best we
can prove.
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5 Remarks on the proof

The proof is in the direction of work of Ellenberg, Venkatesh, Westerland (’09) when H is
abelian (that is the main result of the paper).

The idea is to consider Hurwitz spaces that parametrize extensions of P1, and count
Fq-points on them using Grothendieck-Lefschetz. Finally, use topology to bound the Betti
numbers.

The necessity of taking the limit q→ ∞ is that there can be unstable cohomology which
we cannot control.
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