THE STACKS Bun_n AND HECKE

TIMO RICHARZ

1. Why stacks?

In algebraic geometry one would like to have a classifying space BGL_n for vector bundles, such that

Hom
$$
(S, \text{BGL}_n)
$$
 = {vector bundles of rank *n* on S } / ~ .

Such an object can't be represented by a scheme, since a vector bundle is locally trivial, so any map $S \to B\mathrm{GL}_n$ would need to be locally constant, and for maps of schemes locally constant implies constant.

There are several possible ways to wriggle out of this situation.

- (1) Add extra data (e.g. level structure) in order to eliminate automorphisms.
- (2) Don't pass to isomorphism classes.

Stacks are the result of the second option.

2. Bun_n AS A STACK

Let k be a field.

Definition 2.1. A *stack* M is a sheaf of groupoids

$$
\mathcal{M}\colon \mathrm{Sch}_k^{\mathrm{op}}\to\mathbf{Grp}\subset\mathbf{Cat}
$$

i.e. an assignment

- for all S a groupoid $\mathcal{M}(S)$,
- for every $S \xrightarrow{f} S'$ a pullback functor $f^* \colon \mathcal{M}(S') \to \mathcal{M}(S)$,
- for all $S \xrightarrow{f} S' \xrightarrow{g} S''$ a transformation

$$
\varphi_{f,g} \colon f^* \circ g^* \implies (g \circ f)^*
$$

such that objects and morphisms glue (in the appropriate topology).

Example 2.2. The classifying stack

$$
\mathrm{BGL}_n:=[\mathrm{pt}\,/\,\mathrm{GL}_n]
$$

takes S to the groupoid of vector bundles of rank n on S .

Example 2.3. Let X be a smooth, projective, connected curve over k . We define the stack Bun_n taking S to the groupoid of vector bundles of rank n on $X \times S$.

How do you make this geometric? We have a map $pt \rightarrow BGL_n$ corresponding to the trivial bundle. If $\mathcal E$ is a rank n vector bundle on S , then we get by definition a classifying map

$$
f_{\mathcal{E}}\colon S\to\operatorname{BGL}_n.
$$

Consider the fibered product

$$
S \times_{\text{BGL}_n} \text{pt} \xrightarrow{\hspace{1.5cm}} \text{pt} \downarrow
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
S \xrightarrow{\hspace{1.5cm} f_{\mathcal{E}} \hspace{1.5cm}} \text{BGL}_n
$$

To understand what the fibered product is, let's compute its functor of points is.

Its T-valued points are

$$
\{(f,\varphi\colon \text{Triv}\circ p\xrightarrow{\sim} f_{\mathcal{E}}\circ f\}=\underline{\text{Isom}}(\mathcal{O}_S^{\oplus n},\mathcal{E})(T),
$$

which is the frame bundle of $\mathcal E$. Let's think about what this means.

- (1) We can recover $\mathcal{E} = \mathcal{O}_S^n \times_{\text{GL}_n} \underline{\text{Isom}}(\mathcal{O}_S^{\oplus n})$ $S^{n}(\mathcal{E}),$ i.e. the map $pt \to \text{BGL}_n$ is the universal vector bundle.
- (2) The map pt \rightarrow BGL_n is a smooth surjection after every base change.

Inspired by these examples, we make a definition.

Definition 2.4. A stack M is called *algebraic* if

- (1) For all maps $S \to M$ and $S' \to M$ from schemes S, S' , the fibered product $S \times_{\mathcal{M}} S'$ is a scheme.
- (2) There exists a scheme U together with a smooth surjection $U \to \mathcal{M}$ called an atlas.
- (3) The map $U \times_{\mathcal{M}} U \to U \times U$ is qcqs.

An algebraic stack M is *smooth* (resp. locally of finite type, ...) if there is an atlas $U \rightarrow M$ such that U is smooth (resp. locally of finite type, ...).

Example 2.5. (Picard stack) We define $Pic_X = Bun_{X,1}$. Let Jac_X be the Jacobian of X. This is the coarse moduli space of Pic_X , so we have a map

 $Pic_X \to Jac_X$

which preserves the labelling of connected components by degree. Suppose you have $x \in X(k) \neq \emptyset$. Then we actually have an isomorphism

$$
\operatorname{Pic}_X \xrightarrow{\sim} \operatorname{Jac}_X \times B\mathbf{G}_m
$$

where the map $Pic_X \to BG_m$ corresponds to the restriction of the universal line bundle on $X \times \operatorname{Pic}_X$ to $\{x\} \times \operatorname{Pic}_X$.

This shows that Pic_X is a smooth algebraic stack locally of finite type of dimension $g(X) - 1.$

Theorem 2.6. Bun_n is a smooth algebaic stack locally of finite type over k , of dimension $n^2(g(X) - 1)$, and $\pi_0(\text{Bun}_n) = \mathbf{Z}$.

Proof. Choose an ample line bundle $\mathcal{O}_X(1)$ on X. Define U to be the union over N of $(\mathcal{E}, \{s_i\})$ such that

- $\mathcal{E}(N)$ is globally generated,
- $H^1(X,\mathcal{E}(N))=0$, and
- the $\{s_i\}$ are a basis of $H^0(X, \mathcal{E}(N)).$

This U is represented by a smooth scheme, by the theory of Quot schemes, and $U \to \text{Bun}_n$ is an atlas. (The obstruction to deforming a basis lies in $H^1(X, \mathcal{E}(N)),$ which we have asked to vanish.) \Box

Example 2.7. Let $X = \mathbf{P}_k^1$. Then $[\text{pt}/\text{GL}_n]$, corresponding to the trivial bundle, is an open immersion in Bun_n because $H^1(\mathbf{P}_k^1, \mathfrak{g}) = 0$. For example, Bun₂⁰(k) = $\{\mathcal{O}^{\oplus 2}, \mathcal{O}(1) \oplus \mathcal{O}(-1), \ldots\}$ so the automorphism groups get bigger as the points get more special.

3. ADELIC UNIFORMIZATION OF Bun_n

3.1. Weil's uniformization. Let $k = \mathbf{F}_q$. Let F be a the function field of X, and |X| the set of closed points. For $x \in |X|$ denote by \mathcal{O}_x the completed local ring at x. This is non-canonically isomorphic to $k_x[[\varpi_x]]$. We also set $F_x = \text{Frac}(\mathcal{O}_x)$, which is non-canonically isomorphic to $k_x((\varpi_x))$. Recall the ring of adeles

$$
\mathbf{A} = \prod_{x \in |X|}' (F_x, \mathcal{O}_x) = \{ (a_x) \in \prod F_x \mid a_x \in \mathcal{O}_x \text{ for almost all } x \in |X| \}.
$$

Theorem 3.1 (Weil). There is a canonical isomorphism of groupoids

$$
\operatorname{GL}_n(F)\backslash\left(\operatorname{GL}_n(\mathbf{A})/\prod_{x\in |X|}\operatorname{GL}_n(\mathcal{O}_x)\right)\xrightarrow{\sim} \operatorname{Bun}_n(k).
$$

Here if S is a set with a group action of G, then S/G can be considered as a groupoid, whose objects are orbits and automorphisms are stabilizers. **Example 3.2.** For $n = 1$, this gives

$$
F^{\times} \backslash \mathbf{A}^{\times} / \prod \mathcal{O}_{X}^{\times} = F^{\times} \backslash \left(\prod_{x} F_{x}^{\times} / \mathcal{O}_{x}^{\times} \right) = F^{\times} \backslash \text{Div}(X) = \text{Pic}_{X}(k).
$$

Proof. Consider the set

$$
\Sigma := \left\{ (\mathcal{E}, \{\alpha_x\}, \tau) \colon \alpha_x \colon \mathcal{E} \vert_{\text{Spec } \mathcal{O}_x} \cong \mathcal{O}_x^{\oplus n} \right\}.
$$

$$
\tau \colon \mathcal{E} \vert_{\text{Spec } F} \cong F^{\oplus n}.
$$

We seek to define a $\operatorname{GL}_n(F) \times \prod \operatorname{GL}_n(\mathcal{O}_x)$ -equivariant map

$$
\Sigma \to \mathrm{GL}_n(\mathbf{A}).\tag{3.1}
$$

Once we have this, we get a map of quotients

$$
\Sigma \longrightarrow GL_n(\mathbf{A})
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
Bun_n(k) \longrightarrow GL_n(F) \setminus (GL_n(\mathbf{A}) / \prod GL_n(\mathcal{O}_x)).
$$

We'll just show you how to define the map [\(3.1\)](#page-3-0). Given $(\mathcal{E}, {\{\alpha_x\}}, \tau) \in \Sigma$, we get $gx \in GL_n(F_x)$ given by

$$
F_x^n \xrightarrow{\alpha_x^{-1}} \mathcal{E} |_{\text{Spec } F_x} \xrightarrow{\tau} F_x^{\oplus n}.
$$

3.2. Level structure. Given $D = \sum d_x \cdot x$ an effective divisor, we can look at the double quotient

$$
GL_n(F) \setminus (GL_n(\mathbf{A})/K_D) \cong \{ (\mathcal{E}, \alpha) \mid \alpha \colon \mathcal{E}|_D \cong \mathcal{O}_D^{\oplus n} \}
$$

ker $(\Pi \cup GL_n(\mathcal{O}) \to \Pi \cup GL_n(\mathcal{O}/\pi^{d_x}))$

where $K_D = \ker \left(\prod_{x \in |X|} \mathrm{GL}_n(\mathcal{O}_x) \to \prod_{x \in |X|} \mathrm{GL}_n(\mathcal{O}_x / \varpi_x^{d_x}) \right)$.

3.3. Split groups. If G is any (not necessarily reductive) algebraic group split over k , then

$$
G(F) \setminus \left(G(\mathbf{A}) / \prod_{x \in |X|} G(\mathcal{O}_X) \right) \cong \text{Bun}_G(k).
$$

If G is not split, then we instead get an injection, with the right side having terms related to inner twists of G.

4. Hecke stacks

Let $r \geq 0$ and $\mu = (\mu_1, \ldots, \mu_r)$ a sequence of dominant coweights of GL_n such that μ_i is either $\mu_+ = (1, 0, \dots, 0)$ or $\mu_- = (0, \dots, 0, -1)$.

Definition 4.1. The *Hecke stack* Hk_n^{μ} is the stack defined by $Hk_n^{\mu}(S)$ is the groupoid classifying the following data:

- a sequence $(\mathcal{E}_0, \ldots, \mathcal{E}_r)$ of rank n vector bundles on $X \times S$.
- a sequence (x_1, \ldots, x_r) of morphisms $x_i : S \to X$, with graphs $\Gamma_{x_i} \subset X \times S$,
- maps (f_1, \ldots, f_r) with

$$
f_i\colon \mathcal{E}_{i-1}|_{X\times S\setminus \Gamma_{x_i}} \xrightarrow{\sim} \mathcal{E}_i|_{X\times S\setminus \Gamma_{x_i}}
$$

such that if $\mu_i = \mu_+$, then f_i extends to $\mathcal{E}_{i-1} \hookrightarrow \mathcal{E}_i$ whose cokernel is an invertible sheaf on Γ_{x_i} , and if $\mu_i = \mu_-$ then f_i^{-1} extends to $\mathcal{E}_i \hookrightarrow \mathcal{E}_{i-1}$ whose cokernel is an invertible sheaf on Γ_{x_i} .

For $i = 0, \ldots, r$ we have a map

$$
p_i\colon \operatorname{Hk}_n^\mu\to\operatorname{Bun}_n
$$

sending $(\underline{\mathcal{E}}, \underline{x}, \underline{f}) \mapsto \mathcal{E}_i$ and

$$
p_X\colon \operatorname{Hk}_n^{\mu} \to X^r
$$

sending $(\underline{\mathcal{E}}, \underline{x}, \underline{f}) \mapsto \underline{x}.$

Lemma 4.2. The morphism

$$
(p_0, p_X): \ H\mathbf{k}_n^{\mu} \to \mathrm{Bun}_n \times X^r
$$

is representable by a proper smooth morphism of relative dimension $r(n-1)$, whose fibers are iterated \mathbf{P}^{n-1} -bundles.

Proof. Once we have fixed a reference bundle, the fibers are iterated modifications, which amounts to a choice of a hyperplane in an *n*-dimensional vector space. \Box