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1 Introduction

(This is joint work with R. Guralnick.)
Let A/K be an abelian variety of dimension g over a number field K. Define the endo-

morphism field of K to be “the” minimal field extension L of K such that

End(AL) � End(AK).

Then L/K is a finite Galois extension.

Example 1.1. If E is a CM elliptic curve K/Q then L is an imaginary quadratic field.

Question. For fixed g, how large can [L : K] be?

Theorem 1.2 (Silverberg ’92). The degree [L : K] divides 2
∏

p pr(g,p) where r(g, p) =∑∞
i=0b

2g
(p−1)pi c.

Proof. For each prime ` ≥ 3, Gal(L/K) can be identified with a subquotient of GSp(2s,F`)
via the action of Γ in `-torsion points. The claimed bound then results from taking the gcd
over `. �

This looks like Minkowski’s method for bounding the order of a finite subgroup of
GL(n,Q). The method is to reduce mod F` and take the gcd in a similar sense. The conclu-
sion is that the order divides ∏

p

pb
n

p−1 c+b
n

(p−1)p c+...

but for p = 2, the direct GCD gives the wrong answer, because one must add in archimedean
considerations.

Comparison of bounds. We compare Silverberg’s bound with the LCM of [L : K] over all
A,K.
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g Silverberg bound Optimal bound
1 24 × 3 2
2 28 × 32 × 5 24 × 3
3 211 × 34 × 5 × 7 26 × 33 × 7

It’s not surprising that there’s an issue at 2. However, Silverberg’s bound is also off by
factors of 3 and 5, but at least in the g = 3 case is right for p = 7. This was the starting
point for our project.

2 Where do these bounds come from?

2.1 The optimal bound for g = 2

For g = 1, the optimal bound is easy (either the curve has CM or not).
For g = 2, one enumerates all the options for Gal(L/K) for abelian surfaces. In joint

work with Fité-Rotger-K.-Sutherland, we did this by the classification of Sato-Tate groups
of abelian surfaces.

Conjecture 2.1 (Sato-Tate). Let E/Q be an elliptic curve without CM. Setting

ap := Tr Frobp = p + 1 − #E(Fp),

the distribution of ap
√

p ∈ [−2, 2] is the distribution of the trace of a random matrix in SU(2).

For A an abelian variety over K, we can define a compact Lie group S T (A) for which
one expects an analogous equidistribution statement for the characteristic polynomials of
Frobenius. The recipe for this is essentially written in Serre’s paper in the Motives volume,
and is written somewhat more explicitly in my first paper with Bonaszak.

The group S T (A) is defined in terms of Hodge cycles. If you know the Mumford-Tate
conjecture for A, then you can express it in terms of `-adic Galois representations.

The group of connected components of S T (A) surjects onto Gal(L/K), and is an iso-
morphism if g ≤ 3.

Unfortunately, this classification seems to be hard for g ≥ 3. Instead, we use another
interpretation of the group of connected components of S T (A).

3 Results

3.1 Strategy

S T (A) arises as a compact form of a certain reductive algebraic group over Q, called the
algebraic Sato-Tate group AS T (A). In particular, the group of connected components of
S T (A) and AS T (A) coincide.
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Plan. Use a form of the Minkowski method for AS T (A), plus Archimedean considerations.

We described Minkowski’s method for finite groups, but it turns out to work pretty well
for algebraic groups. You look for integral models, and reduce modulo primes. So what we
have to do is

• realize AS T (A) ⊂ Sp(2g)Q over Z[1/N].

• reduce mod ` for ` � 0.

• realize the component group as a subquotient of Sp(2g,F`).

• look very closely at extreme cases (occurring when the connected part is as small as
possible).

3.2 Statement of results

Theorem 3.1 (G-K). For A an abelian variety of dimension g with endomorphism field L,
[L : K] divides

∏
pr′(g,p) where

r′(g, p) =

∞∑
i=0


r(g, p) − g − 1 p = 2
max{0, r(g, p) − 1} p = Fermat prime
r(g, p) otherwise.

and this is the best possible.

3.3 Why the discrepancy for Fermat primes?

To extremize the power of p in [L : K], you are forced to take A to be a twist of a power of
a CM abelian variety. We can find an exact sequence

1→ G1 → π0(AS T (A))→ G2 → 0

where G1 is the component group of AS T (A) ∩ AS T (A)◦ · Z. So the point is to separate
into the part that commutes with the connected component and the part that doesn’t. The
analysis of G2 is combinatorial, while the G1 is something in the domain of Minkowski’s
method.

To beat the bound r(g, p) the point is that there is not enough room in G1 unless
AS T (A)◦ is abelian. This forces you into CM situations. In particular, AK ∼ A?

0 where
A0 has CM in some subfield of Q(ζp). In order to match this bound exactly, the subfield
must be a proper subfield. (The reason is that we’re looking inside PGL instead of GL, so
the center doesn’t contribute.)

The reason Fermat primes arise is that they are precisely the primes for which there is
no CM subfield of Q(ζp) which is proper.

For p = 2, a similar issue occurs.
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