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In the first half we will explain the unramified picture from the geometric point of view,
and in the second half we will sketch the generalization to the ramified situation.

1 The unramified case

Let p be a prime and Fq a finite field over Fp. Let ` be a prime not equal to p.
The central actor in our story is a smooth projective geometrically connected curve

X/Fq. Let K = K(X) be the field of rational functions on X. For x ∈ |X| (the set of closed
points of X), we denote Ox = ÔX,x and Kx = Frac(Ox). Let

AK =

′∏
Kx.

The goal of unramified class field theory is to understand all abelian extensiosn of K which
are everywhere unramified.

Theorem 1.1 (Unramified CFT). There is an isomorphism(
Gm(K)\Gm(AK)/Gm(

∏
Ox)

)∧
� (Gunr

K )ab

such that
(ax) 7→

∏
x

Frobordx(ax)
x

where the ∧ means profinite completion.

1.1 First geometric reformulation

We want to understand this statement more geometrically. The right hand side can be
interpreted as

Gunr
K = π1(X).

(We are suppressing the base points.) The left hand side can be interpreted as

Gm(K)\Gm(AK)/Gm(
∏
Ox) � Pic(X).

So here is a geometric reformulation.
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Theorem 1.2. We have a natural bijection

{characters π1(X)→ Z
×

` } ↔ {characters Pic(X)→ Z
×

` }.

If we denote it by ρ 7→ χρ, then

ρ(Frobx) = χρ(O([x])) for all x ∈ X.

1.2 Second reformulation: categorification

The goal is to upgrade this statement by categorifying both sides. The point is to obtain a
formulation of local nature, so that you can apply things like descent. Although the initial
statement is specific to working over a finite field, the categorical reformulation will not be.

Let’s first categorify the left sidde of Theorem 1.2. That’s easy: it is the same thing as
rank 1 local systems on X, up to isomorphism:

{characters π1(X)→ Z
∗

`} = π0(Loc1(X) := {rank 1 local systems/X}).

For the right hand side, recall the following fact.

Theorem 1.3. If G is a connected commutative algebraic group over Fq, then the set of
characters G(Fq)→ Z

∗

`} is isomorphism classes (i.e. π0) of the category of “character local
systems”

CharLoc(G) := {character local systems /G}.

This CharLoc(G) is the category of local systems L ∈ Loc1(G) such that

m∗L � p∗1L ⊗ p∗2L on G ×G.

Alternatively, one can think of the isomorphism being given

ψ : m∗L � p∗1L ⊗ p∗2L on G ×G

but then one also has to guarantee a cocycle condition (it is non-trivial to show that there
always exists a unique such datum, i.e. that the two definitions presented are equivalent).
Remark 1.4. One can also think of a character local system as a homomorphism from G to
B GL1. (A general rank 1 local system would be any morphism G → B GL1.)

Proof. If (M, ψ) ∈ CharLoc(G), then we get a function G(Fq)→ Z
∗

` by

g 7→ Tr(Froby | Mg).

This is simply the function-sheaf correspondence.
The converse is trickier; it uses the Lang isogeny

LG : G → G

defined by g 7→ Frob(g)g−1. This is an abelian étale cover of G with Galois group G(Fq).
This construction gives an N ∈ Loc1(G) for any χ : G(Fq)→ Z

∗

` .

Exercise 1.5. Check that N is in fact a character local system, and that these constructions
are inverse.

�
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1.3 The Abel-Jacobi map

In the geometric formulation there is an obvious choice of bijection. To describe this we
need to recall the Abel-Jacobi map

AJ : X → Pic(X)

Here Pic(X) denotes the Picard variety (as opposed to the group). For x ∈ X, we have

AJ(x) := O([x]).

Theorem 1.6. AJ∗ induces an equivalence of categories

CharLoc(Pic(X)) � Loc1(X).

We denote the inverse by L 7→ AutL.

Remark 1.7. Although we stated the theorem for connected abelian G, we seem to be ap-
plying it to Pic(X) which is not connected. Fortunately, it is also true for G = Z (but not
necessarily for finite groups!).

Remark 1.8. Some observations:

1. This makes sense over any field, even C. (We used the fact that we were over a
finite field to arrive at this geometric formulation, but the final statement makes no
reference to that.)

2. We have the following compatibility: for x ∈ X(Fq),

Tr(Frobx | Lx) = Tr(FrobO([x]) | AutL,O([x])).

This is the desired compatibility condition from earlier.

3. There is a Hecke eigensheaf condition: if

h : X × Pic(X)→ Pic(X)

is the map
(x,L) 7→ L ⊗ O([x]),

then
h∗AutL � L � AutL .

Proof. (Deligne) There is a clear map in one direction: given a character local system on
Pic(X), we can pull it back to one on X via the Abel-Jacobi map.

In the other direction, we will descend to the space of line bundles of sufficiently large
degree, and then use the character sheaf property to extend to all of Pic(X). Fix d > 2g − 2,
we have

Xd → [Xd/S d]→ Symd(X)→ Picd(X).

Some observations:
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• The map Symd(X)→ Pic(X) is a projective space bundle for d � 0.

• The map [Xd/S d]→ Symd(X) is a coarse moduli space. The only difference between
the two spaces is that the stack has nontrivial stabilizers.

• The map Xd → [Xd/S d] is a S d-torsor.

Step 1. Given L, we form L�d ∈ Loc1(Xd). This is evidently invariant under S d, so descends
at least to L̃(d) ∈ Loc1([Xd/S d]). To descend to the coarse space Symd X, you need to check
that stabilizers act trivially. That works here because we are in the rank 1 situation.

Example 1.9. For d = 2, we have (x, x) ∈ ∆ ⊂ X × X. This has a stabilizer S 2. A local
system on L�2

(x,x) has stalk Lx ⊗ Lx, which is also the stalk L̃(2)
(x,x). The S 2 action here is the

switch action. But because we’re in the rank one case, the switch map is the identity.

Step 2. This implies that L�d descends to L(d) on Symd(X) for d � 0. The last step is easy,
thanks to Deligne’s observation that if we have a projective space bundle then the source
and target have the same fundamental group:

π1(Symd(X)) � π1(Picd(X))

so L(d) descends to Picd
X .

Step 3. To extend to all of Pic(X), we use the following fact: for d, e > 2g − 2 the map

+ : Picd
X ×Pice

X → Picd+e
X

obtained by tensoring the corresponding line bundles has the following “character sheaf”
property. If we call the descended object AutL,d ∈ Loc1(Picd

X) then

+∗AutL,d+e � AutL,d �AutL,e .

Because of this we can extend to all of PicX .
�

2 The ramified case

2.1 Generalized Picard varieties

We want to do something similar on open curves. Fix S = {x1, . . . , xn} ⊂ |X| (we may and
do assume that n ≥ 1.) Let U = X − S . We want to understand rank 1 local systems on U,
i.e. extensions of K which are unramified outside U.

This involves “generalized Picard varieties”. To introduce these, we need some setup.
Let D := [x1] + . . . + [xn] and Dm := mD. As m varies we get a tower

D1 ⊂ D2 ⊂ . . . ⊂ D∞ := formal completion of X along D.
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Definition 2.1. We define PicDn(X) to be the moduli space for pairs {L ∈ Pic(X), ψ : L|Dn �

ODn}.

We get a tower

PicD∞(X) = lim
(
. . .→ PicD2(X)→ PicD1(X)→ Pic(X)

)
.

The map PicD1(X) → Pic(X) is a Gn
m-bundle. Then PicD2(X) → PicD1(X) is a Gn

a bundle,
and similarly for the rest of the maps. In particular, since the transition maps are affine
morphisms the limit makes sense. This PicD∞(X) is a pro-algebraic group over the ground
field.

2.2 The generalized Abel-Jacobi map

We want to do an analog of the previous story in the unramified case. To do that we need
an Abel-Jacobi map

AJ : U → PicD∞
(X)

which sends
y 7→ (O(y), ?)

We need to also say how to trivialize this at Dn. But there is a canonical trivialization of
O(y) at every Dn since y ∈ U is disjoint from Dn; the map AJ can then be described

y 7→ (O(y), canon.).

Theorem 2.2. The pullback AJ∗ induces an isomorphism

CharLoc(PicD∞
(X)) � Loc1(U).

This encodes class field theory because it tells us how to translate local systems into
bundle-theoretic data, and you can translate that into an adelic description. In order to do
that, we need a sheaf-function correspondence for pro-algebraic groups.

The goal of the rest of the talk is to explain why this theorem amounts to a local state-
ment. First, however, we remark on connections with the more classical versions.

2.3 Some remarks

1. There exists a version with bounded ramification. It basically says that if we restrict
to PicDn

, then we get Galois extensions such that in the upper numbering of the ram-
ification groups, everything above n acts trivially.

2. We get the classical formulation of CFT via the function-sheaf dictionary.

3. In characteristic 0, we have π1(An) = 0 so

CharLoc(PicD∞
(X)) = CharLoc(PicD(X)).
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So in this case we can proceed as before using the following observation:

There exists d � 0 such that

Symd U → Picd
D(X)

is an affine space bundle.

You can also do something like in the case of tame ramification, but wild ramification
truly presents new difficulties.

4. Serre’s classifcal proof (as in “Algebraic groups and class fields”) uses the following
two results.

Theorem 2.3 (Rosenlicht). The Abel-Jacobi map AJ : U → PicD∞
(X) is the universal

map for U → G for G a commutative smooth algebraic group.

This tells us that if we know that local systems are always pulled back from commu-
tative groups then they are even pulled back from PicD∞

(X); this turns out to apply
here.

Theorem 2.4. If A is a finite abelian group, then any A-torsor V → U is pulled back
via

V

��

// G′

π
�� ��

U // G

where π : G′ → G is an isogeny of commutative smooth algebraic groups with kernel
A.

Example 2.5. If A = Z/p, you can see this by Artin-Schreier theory.

2.4 The descent step

Instead of discussing this classical stuff we want to focus on explaining what happens if you
try to imitate the proof in the unramified case.

Proof. Assume D = [x]. (This isn’t necessary but simplifies the discussion.) Fix L ∈
Loc1(U). We want to use the descent; we get L(d) ∈ Loc1(Symd(U)). The hard step is to
descend L(d) to PicD∞

(X) along Symd X → Picd
D∞

(X).
Consider the cartesian diagram

Symd(X)

��

T

��

oo

Picd(X) Picd
D∞

(X)oo
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The map Picd(X) ← Picd
D∞

(X) is a torsor for O∗x, since the fiber over a point is the space of
rigidifications of D∞ (remember that we are assuming that D = {[x]}). The fiber product T
is the moduli space for the datum of D′ ∈ Symd(X) plus a trivialization for O(D′) on the
formal completion along x.

Now consider the base change with respect to Symd(U)→ Symd(X).

Symd(U)

��

???oo

��
Symd(X)

��

T

��

oo

Picd(X) Picd
D∞

(X)oo

Since U is disjoint from {x}, we get a 0-section

Symd(U)→ Symd(U) × O∗x.

so the fibered product will be a trivial O∗x torsor over Symd(U):

Symd(U)

��

Symd(U) × O∗Xoo

��
Symd(X)

��

T

��

oo

Picd(X) Picd
D∞

(X)oo

Let’s remind ourselves of our goal: we want to descend a local system from Symd(U)
to Picd

D∞
(X). The map T → Picd

D∞
(X) is a projective space bundle, so we can descend any

local system along it; therefore it suffices to descend to T .
For this, the strategy is to find some M ∈ CharLoc(O∗x) such that L(d)�M ∈ Loc1(Symd(U)×

O∗x) extends to T . Since everything is smooth we only have to extend along codimension-
one points of the complement. Since the map is base-changed from Symd(U) → Symd(X)
against a 0-dimensional torsor, the situation basically looks the same as for the two maps.
What are the codimension-one points of Symd(X)−Symd(U)? They correspond to the sub-
set parametrizing divisors where two points collide, so in codimension 1 we are reduced to
the d = 1 case. To do this we use a local analogue of this story, which we explain presently.

2.5 Local geometric class field theory

For X the formal disk and x ∈ X the closed point, U the punctured disk, we get by analogous
constructions an O∗x-torsor T → X whose fiber over y ∈ X is the space of trivializations of
O(y) at x. This splits canonically over U, so T |U � U × O∗x.
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Theorem 2.6 (Local class field theory). There is an equivalence

Loc1(U)/Loc1(X) � CharLoc(O∗x).

Moreover, [L] ∈ Loc1(U)/Loc1(X) corresponds to M ∈ CharLoc(O∗x) if and only if L�M|O∗x
extends to T .

This informs us how to choose M locally.
�
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