Image of big Galois representations and modular forms mod *p*

Notes by Tony Feng for a talk by Joel Bellaiche

June 14, 2016

1 Introduction

This will be a talk about modular forms mod *p*, specifically:

- the coefficients,
- Hecke algebra, an attached Galois representation, and the image of the Galois representation.

Fix a prime $p > 2$ and let F be a finite extension of \mathbb{F}_p . Let $N \ge 1$ and $k \in \mathbb{Z}/(p-1)\mathbb{Z}$. Let $M = M_{\Gamma_0(N), k}(\mathbb{F})$ be the space of modular forms with coefficients in \mathbb{F} , e.g. in the sense of Katz. This is a subspace of F[[*q*]]. Let

$$
\mathcal{M}_0 := \{ f = \sum_n a_n q^n \in \mathcal{M} \colon a_n \neq 0 \implies (n, Np) = 1 \} = \bigcap_{\ell \mid Np} \ker(U_\ell \colon \mathcal{M} \to \mathcal{M}).
$$

Proposition 1.1. *For* $f = \sum a_n q^n \in M_0$,

$$
\#\{\ell \le x, a_{\ell} \neq 0\} \sim \delta(f) \frac{x}{\log x}.
$$

If $f \neq 0$ *then* $\delta(f) > 0$ *.*

Corollary 1.2. *If* $f = \sum a_n q^n$ and $g = \sum b_n q^n \in M_0$, and $a_\ell = b_\ell$ for almost all ℓ , then $f = a$ $f = g$.

This would be trivial if *^f*, *^g* were eigenforms, but we want to stay away from that assumption.

We would like to understand how $\delta(f)$ changes as f varies over the space of modular forms. We will focus on a special class of modular forms.

2 Cyclotomic forms

Definition 2.1. We say that $f \in M_0$ is cyclotomic if there exists *q* such that a_ℓ depends only on ℓ mod q .

It is true but nontrivial that $T_{\ell} f$ depends on ℓ mod *N*. The converse is immediate, so the two notions are in fact equivalent.

Fact. There exists a sequence of cyclotomic forms $f_n \in M_0$ such that $\delta(f_n) \to 0$. So we cannot hope for any uniform control of $\delta(f)$ if we allow sequences of cyclotomic forms.

Remark 2.2*.* The name comes from analogy with *dihedral forms*, which have analogous definition with target being a dihedral group instead.

Let *A* be a closed subalgebra generated by the T_ℓ in End_F(\mathcal{M}_0). Then *A* is a semi-local ring. If F is large enough, then

$$
A = \prod_{\overline{\rho} \in \mathcal{R}} A_{\overline{\rho}}
$$

where each $A_{\overline{Q}}$ is a local ring and the index set R is a finite set of semi-simple Galois representations $G_{\mathbb{Q},Np} \to GL_2(\mathbb{F})$. This induces a decomposition

$$
\mathcal{M}_0 = \bigoplus_{\rho \in R} \mathcal{M}_{\overline{\rho}}
$$

where $M_{\overline{\rho}} = A_{\overline{\rho}} M_0$ is the set of generalized eigenforms f for the T_ℓ with eigenvalue $Tr \overline{\rho}(Frob_{\ell}).$

We have a pairing

$$
A\times\mathcal{M}_0\to\mathbb{F}
$$

sending $(t, f) \mapsto a_1(tf)$, and it is perfect.

We will shortly define a subspace $M_{\overline{\rho},\text{special}} \subset M_{\overline{\rho}}$. The punchline is that

Theorem 2.3. *For all* $\overline{\rho}$ *, there exists c* > 0 *such that for all* $f \in M_{\overline{\rho}}$ – $M_{\overline{\rho}, special}$ *, we have* $\delta(f) > c$.

Theorem 2.4. $M_{\overline{o},\text{special}}$ *is of infinite codimension in* $M_{\overline{o}}$ *.*

Classification of $\overline{\rho}$ according to the projective image. Recall that the projectivization of the image can be

- cyclic,
- dihedral,
- *(exceptional image)* A_4 , S_4 , A_5 ,
- *(large image)* $PGL_2(\mathbb{F}_q)$, $PSL_2(\mathbb{F}_q)$ for $\mathbb{F}_q \subset \mathbb{F}$.

The representation $\bar{\rho}$ is irreducible except in the cyclic case.

Theorem 2.5. *If* $\overline{\rho}$ *has exceptional or large image, then* $M_{\overline{\rho}, special}$ *is of finite dimension. If* $\overline{\rho}$ *is reducible and the projectivization of* Im $\overline{\rho} \neq \mathbb{Z}/2$ *, then* $M_{\overline{\rho}, special}$ *consists of the cyclotomic forms.*

The goal for the rest of the talk is to explain the definition of a special modular form.

3 Pseudorepresentations

Recall that a *pseudorepresentation* of a group *G* on an algebra *A* consists of the data of

- $t: G \rightarrow A$,
- $d: G \rightarrow A^*$
- $t(1) = 2$
- $t(xy) = t(yx)$
- *t*(*xy*) + *d*(*y*)*t*(*xy*−¹) = *t*(*x*)*t*(*y*).

Proposition 3.1. *There exists a unique pseudo-representation*

$$
t, d \colon G_{\mathbb{Q}, Np} \to A_{\overline{\rho}}
$$

such that t(Frob_{ℓ}) = $T_{\ell} \in A_{\overline{\rho}}$ *and d* = det $\overline{\rho}$ *(meaning that d takes image in* $\mathbb{F} \subset A_{\overline{\rho}}$ *). Moreover, this is a deformation of* $\overline{\rho}$ *in the sense that*

$$
t \mod \mathfrak{m}_{A,\overline{\rho}} = \text{Tr}\overline{\rho}
$$

$$
d \mod \mathfrak{m}_{A,\overline{\rho}} = \text{det}\overline{\rho}
$$

Proposition 3.2. $A_{\overline{\rho}}$ *is generated as a closed vector space by the T_{* ℓ *}.*

This implies the first Proposition I stated that $\delta(f) > 0$.

4 Generalized Matrix Algebras (GMA)

Let *B*, *C* be *A*-modules (in this talk they will be finite), with a multiplication

$$
m\colon B\otimes C\to A
$$

satisfying some properties. Then we can form

$$
R = \begin{pmatrix} A & B \\ C & A \end{pmatrix}
$$

and the properties are rigged to make *R* an associative algebra.

We say that *R* is *faithful* if *m* is a perfect pairing. There are maps

$$
Tr: R \to A
$$

det: $R \to A$

with the same formulas as usual.

Theorem 4.1. *There exists a faithful GMA R and morphism* $\rho: G_{\mathbb{Q},Np} \to R^*$ *such that* Γ **F** $\rho = t$ *and det* $\rho = d$, *It can be assumed that* $\partial(G_{\mathbb{Q},N})$ *agregates R as an A module, in* Tr $\rho = t$ and $\det \rho = d$. It can be assumed that $\rho(G_{\mathbb{Q},Np})$ generates R as an A-module, in *which case* (ρ, *^R*) *is unique.*

5 Pink's theory

Let $\mathcal A$ be a local complete ring with residue field $\mathbb F$ finite of characteristic $p > 2$. Let R be a GMA; we will be interested in $R = M_2(A)$ or $\begin{pmatrix} A & B \\ C & A \end{pmatrix}$ with $BC \subset \mathfrak{m}_A$.

Definition 5.1. Define $SR^1 = \{x \in R^*$, det $x = 1, x \equiv \text{Id} \mod \mathfrak{m}_R\}$. This is a pro-*p* group.
Define $\left(\text{rad } R\right)^0 = \left\{y \in \text{rad } R \mid \text{tr}(y) = 0\right\}$. This is the Lie algebra of SR^1 . Define $(\text{rad } R)^0 = \{y \in \text{rad } R, \text{tr}(y) = 0\}$. This is the Lie algebra of $S R^1$.

Pink defined a logarithm

$$
\theta\colon SR^1 \to (\operatorname{rad} R)^0
$$

sending $x \mapsto x - \frac{\text{tr}\rho(x)}{2}$. This is a homeomorphism with inverse

$$
\theta^{-1}(y) = y + \sqrt{1 + \frac{\text{Tr}(y^2)}{2}} \,\text{Id}\,.
$$

Theorem 5.2. *Let* Γ *be a closed subgroup of S R*¹ *. Let L be the closed additive subgroup of* (rad *R*) ⁰ *generated by* θ(Γ)*. Then L is a Lie subring of* (rad *^R*) 0 *. (This means a subgroup stable by Lie bracket.)*

Proof. Check that

$$
\theta(x)\theta(y) - \theta(y)\theta(x) = \theta(xy) - \theta(yx).
$$

 \Box

We have $\Gamma \subset \theta^{-1}(L)$, but this is not always an equality.

Theorem 5.3. *If* $L_2 = \overline{[L, L]}$ *and* $\Gamma_2 = \overline{(\Gamma, \Gamma)}$ *then* $\Gamma_2 = \theta^{-1}(L_2)$ *.*

6 Large image

Let $\overline{\rho}$: $G_{\mathbb{Q},Np} \to R^*$ and *G* be the image. Let $\Gamma = G \cap SR^1$. We have an exact sequence (using constancy of the determinant) (using constancy of the determinant)

$$
1 \to \Gamma \to G \to \text{Im } \overline{\rho} \to 1.
$$

Let *L* be the assocsiated Pink algebra.

Theorem 6.1. *Suppose* $\overline{\rho}$ *is exceptional or large image. Then there exists a closed subgroup I* of $A_{\overline{\rho}}$ *with* $I^2 \subset I$ *, such that* $\mathbb{F}I = \mathfrak{m}_{A,\overline{\rho}}$ *and*

$$
\mathbb{F}_{p^2}L = \begin{pmatrix} I & I \\ I & I \end{pmatrix}^0
$$

 $and \Gamma = \theta^{-1}(L)$.

Theorem 6.2. *Suppose* $\overline{\rho}$ *is reducible,* $R =$ $\begin{pmatrix} A & B \\ C & A \end{pmatrix}$. Then there exists a subgroup $I \subset A$ *with* $I^3 \subset I$ *and* $BC \subset I$ *such that*

$$
\mathbb{F}L = \begin{pmatrix} I & B \\ C & I \end{pmatrix}^0.
$$

We can finally explain what a special form is.

Definition 6.3. *f* is *special* if for all $g \in G$ with $g^2 = 1$, *f* is orthogonal to $Tr(gL_2) \subset A$.