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1. A FIRST EXAMPLE

1.1. Representations of SO3 as spherical harmonics. Today we’ll talk about the char-
acters and the representations of SO3(R), the Lie group of rotations in R3. We start by
constructing its irreducible representations.

Definition 1.1.1. Let Pn be the R-vector space of homogeneous polynomials of degree
n in R3, viewed as a representation of SO3(R) via its natural action on R3.

Example 1.1.2. P0
∼= R consists of the constant functions. One can easily see that

dimR P1 = 3, dimR P2 = 6 and so on.

Remark 1.1.3. The representations Pn are not irreducible in general! For example, P2

contains the element x 2+ y 2+ z 2 which is the square radius r 2 and hence is preserved
by any rotation in SO3(R).

More generally, there are maps

×r 2 : Pn−2→ Pn multiply by r 2 = x 2+ y 2+ z 2

which are SO3(R)-equivariant. We also have maps in the opposite directions

∆: Pn → Pn−2 apply Laplacian∆= ∂ 2
x + ∂

2
y + ∂

2
z

1
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Consider the direct sum P :=
⊕

n≥0 Pn . Then the operators ×r 2 and ∆ define a Lie
algebra action of sl2 on P .

This is not just a curiosity, but a specialization of a more general fact that we’ll discuss
later in the course.

Fact 1.1.4. The representations

Vn := ker (∆ : Pn → Pn−2)∼= Pn/r 2(Pn−2)

are a complete collection of irreducible SO3(R)-representations. The Vn ’s are some-
times called spherical harmonics.

This will be shown below.

Example 1.1.5. Explicitly, V2 = SpanR{x y , x z , y z , x 2− y 2, y 2− z 2}.
One can easily compute that dimR Vn = 2n +1.

Remark 1.1.6. The restriction of the functions on Vn to the unit sphere in R3 yields an
eigenspace for the Riemannian Laplacian. This is a well-understandable model of the
representation Vn , and in fact it is how they arise in physics.

1.2. Characters. Our next goal is to find a character formula for the Vn ’s. Recall that
the character of a finite-dimensional representation

ρ : G →GL V

is the class function
Ch : g 7→ Tr(ρ(g )).

When later we will talk about infinite-dimensional representations, we’ll need to be
more careful. Since the trace is additive, we clearly have

Ch(Vn ) =Ch(Pn )−Ch(Pn−2).

Any g ∈ SO3(R) is conjugate to a rotation around the z -axis of angle θ - let’s call this
element gθ , so it’s enough to determine Ch(Vn ) on the elements gθ .

Fact 1.2.1. We have

Ch(Vn )(gθ ) = e i nθ + e i (n−1)θ + . . .+ e −i nθ .

More precisely, the eigenvalues of gθ on Vn are e i nθ , e i (n−1)θ , . . . , e −i nθ , each with mul-
tiplicity one.

Proof. This is an exercise worth doing. It’s just a routine computation by writing down
basis of Pn and Pn−2 and explicitly computing how gθ acts on it. �

Some algebraic manipulations yield

χn (gθ ) :=Ch(Vn )(gθ ) =
e i (n+1)θ − e −i nθ

e iθ −1
=

e i (n+ 1
2 )θ − e −i (n+ 1

2 )θ

e iθ/2− e −iθ/2
. (1.2.1)

If we normalize a Haar measure on SO3(R) so that the total volume is 1, then the
χn ’s are orthogonal with respect to it. In coordinates gθ , this measure is proportional
to |e iθ/2 − e −iθ/2|2, where the constant of proportionality is simply to make the Haar
measure be a probability measure.
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Proof of Fact 1.1.4. The irreducibility of the representations Vn follows by orthonormal-
ity of the charactersχn . To show that the Vn ’s are a complete collection, one checks that
the span of the χn ’s is dense in the space of class functions on SO3(R). �

That orthogonality of characters alone is enough to find and classify irreducibile rep-
resentations for compact, connected Lie groups is a great insight by Weyl.

1.3. Kirillov’s formula. Kirillov found (in another contest) a reformulation of Fact 1.2.1
which holds in a greater generality - for example allowing non-compact groups and
many infinite-dimensional representations. The slogan is

χ =
�

Fourier transform of surface
measure on a sphere in R3

�

. (1.3.1)

Clearly this slogan “as is” does not make sense, so we now modify the two sides to get
a reasonable statement.

Our first step is to make the left hand side take values on a linear space, since this is
certainly true for the Fourier transform on the right hand side. In other words, we need
to pull χ back to the Lie algebra.

Recall that in coordinates we have

SO3(R) =
�

A ∈GL3(R) | AAt = Id3

	

.

By thinking of A as “infinitesimally close” to the identity matrix Id3, we get by “differ-
entiating” a description of the Lie algebra

Lie (SO3(R)) =
�

X ∈Mat3(R) |X +X t = 0.
	

.

Under this description, the exponential map

exp : Lie (SO3(R))→ SO3(R)

is simply given by exponentiating the matrix X - so in fact in the left hand side of our
slogan we mean χ(e X ) for X ∈ Lie (SO3(R)).

Let’s coordinatize Lie (SO3(R)). Let Ja be the rotation of 90 degrees around the axis a .
More explicitly, we have

Jx =





0 0 0
0 0 1
0 −1 0



 , Jy =





0 0 1
0 0 0
−1 0 0



 , Jz =





0 1 0
−1 0 0
0 0 0





so that [Jx , Jy ] = Jz , [Jy , Jz ] = Jx and [Jz , Jx ] = Jy .
Any element of the Lie algebra can then be written in coordinates as X = x Jx + y Jy +

z Jz . In fact, this choice of coordinates determines a map Lie (SO3(R)) → R3 which is
an isomorphism of SO3(R)-representations: on the left we have the adjoint action by
conjugation and on the right the tautological action by rotation.

In particular, since every point on the sphere x 2+ y 2+z 2 = r 2 can be transformed to
(0, 0, r ) by a rotation in SO3(R), for the purpose of computing the class function χ(e X )
we can assume that X = r Jz . In this case, we can use the formula 1.2.1 to obtain

χn (e
X ) =

e i (n+ 1
2 )r − e −i (n+ 1

2 )r

e i r /2− e −i r /2
(1.3.2)
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where r =
p

x 2+ y 2+ z 2 = |X | is the length of X with respect to the standard coordi-
nates.

The right hand side of (1.3.2) can be thus thought of as a radial function on R3. Its
Fourier transform is a mess. Kirillov’s insight was then by putting a little twist to it, one
can turn the Fourier transform into a much nicer function.

To explain the genesis of this twist, notice that if f , g : SO3(R)→R3 are nice functions,
we can pull them back to Lie (SO3(R)) and integrate:

∫

Lie(SO3(R))
f (e X )g (e X )d X

with respect to the Lebesgue measure d X . On the other hand, we can also integrate
them against the Haar measure µmentioned before:

∫

SO3(R)
f (y )g (y )dµ(y ).

These two integrals are not equal to each other. The issue is not simply that the expo-
nential map is finite-to-one (rather than one-to-one), in fact the two integrals do not
coincide even locally. The problem is that the map X 7→ e X has nontrivial Jacobian.

In order to retain orthogonality of characters when pulling back to the Lie algebra,
we need then to twist by a quantity related to the Jacobian of the exponential map.
More precisely, let j (X ) be the Jacobian of the exponential map at X ∈ Lie (SO3(R)), and
instead ofχ(e X )we look atχ(e X )

p

j (X ). Then the twist factors will cancel out with the
Jacobian when comparing the two integrals above, and they will make the two integrals
match up locally.

Fact 1.3.1. In the system of coordinates chosen above, one has

j (X ) =

�

e i r /2− e −i r /2

i r

�2

.

Proof. We’ll prove this next time, using a more general formula worth seeing. �

Let’s see what this buys us. By substituting the expression from (1.3.1) into (1.3.2),
one gets that

χn (e
X )
Æ

j (X ) =
e i (n+ 1

2 )r − e −i (n+ 1
2 )r

i r
,

so to prove our slogan it remains to show that the right hand side is the Fourier trans-
form of some surface measure for a sphere in R3.

Definition 1.3.2. Consider the sphere of radius R in R3, centered at the origin, and
denote it S 2

R . Given a surface measure µ on it, its Fourier transform is

bµ(k ) :=

∫

S 2
R

e i 〈k ,x 〉dµ(x )

where k , x ∈R3 and 〈k , x 〉 is the usual dot product.
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Lemma 1.3.3. For µ the standard measure on the sphere of radius R ,

bµ(k ) = (2πR )
e i Rλ− e −i Rλ

iλ

where λ= |k | is the length of k ∈R3.

This completes the explanation of our slogan. We also record that we obtain that
the χn ’s are Fourier transforms of surface measures of sphere with half-integral radius.
One explanation is that the area of the sphere matches up the dimension of the repre-
sentation - we discuss this more later in the course.

Proof of Lemma 1.3.3. We compute the Fourier transform of the surface measure. Since
the surface measure is radial, so is its Fourier transform. Therefore it suffices to com-
pute bµ(k ) at k = (0, 0,λ). The projection onto the z -axis of the sphere surjects onto the
segment [−R , R ], and the pushforward of the surface measure on the sphere is (2πR )d z :
we obtain then that the Fourier transform is

∫ R

−R

e iλz (2πR d x ) = 2πR
e i Rλ− e −i Rλ

iλ
.

�

1.4. Summary. Here’s a summary of what we’ve done today:

• We listed irreducible representations of SO3(R).
• We pulled back their characters to Lie (SO3(R)).
• We twisted them by a quantity related to the Jacobian of the exponential map.
• Up to pinning down a few constants, we obtain that the character of a repre-

sentation of SO3(R) is indeed the Fourier transform of a surface measure on a
sphere in R3.

2. THE GENERAL PICTURE

2.1. Review of the example. Last time we described a model VN for the irreducible
2N + 1-dimensional representation of SO3(R), and a formula for its character χN . De-
noting by gθ the rotation of angle θ around the z -axis, we had

χN (gθ ) =
e i (N+ 1

2 )θ − e −i (N+ 1
2 )θ

e iθ/2− e −iθ/2
.

After massaging this formula, we reformulated it as

�

χN ◦
p

j
�

(e X ) =
e i (N+ 1

2 )s − e −i (N+ 1
2 )s

i s
(2.1.1)

where

• X ∈ Lie (SO3(R)), and s = |X | is the length of X in the coordinate system de-
scribed last time in §1.3.
• j is the Jacobian at X of the exponential map exp : Lie (SO3(R))→ SO3(R)
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Last time we compared this formula (2.1.1), in particular the right hand side, to the
Fourier transform of the surface measure of a sphere. In fact, we calculated that the
Fourier transform of the area measure of a sphere of radius R in R2 is

bµ(k ) =
e i Rλ− e −i Rλ

iλ
2πR

where λ= |k | is the length of k ∈R3.

Remark 2.1.1. The twist by the Jacobian
p

j is important algebraically, but today we
focus on a heuristic description of what’s behind the scenes of the equality above, and
for this purpose we can disregard this twist.

In other words, we obtain that χN ·
p

j is the Fourier transform of the area measure
of a sphere of radius N + 1

2 , with the measure normalized so that the (2πR ) factor dis-
appears and the total area is 2N +1= dim VN . We can then rewrite (2.1.1) as

(χN

p

j )(e X ) =

∫

ξ∈S
N+ 1

2

e i 〈ξ,X 〉dξ. (2.1.2)

which specializes for X = 0 to

2N +1= dim VN =χN

p

j (e 0) =

∫

ξ∈S
N+ 1

2

dξ=Area
�

S 2
N+ 1

2

�

. (2.1.3)

2.2. Some speculations. Why do these formulas hold? One could speculate that (2.1.3)
is true because there is a basis of VN that is in bijection with bits of S2N+1 each having
area 1.

Speculation 2.2.1. There exists a basis {v1, . . . , v2N+1} of V2N+1 in bijection with a par-
tition

S2N+1 =
2N+1
∐

k=1

Ok

such that µ(Ok ) = 1 for each k .

To explain the more general formula (2.1.2), we need to go beyond this. We could
ask how G or Lie(G ) act on the basis {vk } and we may hope that they are approximate
eigenvectors.

Speculation 2.2.2. For some ξk ∈Ok , we have that each X ∈ Lie (SO3(R)) yields

X · vk ≈ i 〈ξk , X 〉vk .

Notice that this latter speculation would explain formula (2.1.2), as it implies that1

Tr(e X )≈
∑

k

e i 〈ξk ,X 〉 ≈
∫

S
N+ 1

2

e i 〈ξ,X 〉dξ.

Together, Speculations 2.2.2 and 2.2.1 say that the decomposition SN+ 1
2
=
∐

k Ok

should correspond to an approximate diagonalization of the SO3(R)-action.

1Ignoring
p

j as usual
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Remark 2.2.3. The above picture is really an approximation: it cannot be true literally
as it imply that VN is a sum of 1-dimensional representation, which is not.

In particular, Speculation 2.2.2 cannot be true as stated, because it would imply that
for two non-commuting elements X , Y ∈ Lie(SO3(R))we have on one hand

[X , Y ] · vk = i 〈ξk , [X , Y ]〉vk 6= 0

and on the other hand

[X , Y ] · vk = X ·Y vk −Y ·X vk = 0.

One of the goal of the course is to flesh out a picture like this for a general Lie group
G , where the role of these spheres is taken by more general spaces (we’ll describe the
one for SO4(R) later). The Kirillov formula makes the above speculations precise, but
it is even more important because of the picture behind it - which is one of the most
useful aspects from the viewpoint of representation theory.

Remark 2.2.4. Notice that we have been very imprecise about how to choose ξk ∈ Ok .
This adds some fuzziness to the picture.

The best interpretation of Speculation 2.2.1 is saying that if we decompose vk as a
sum of X -eigenvectors, the eigenvalues appearing are of the form i 〈ξ, X 〉 for some ξ ∈
Ok . This yields a map

Ok →R

ξ 7→ 〈ξ, X 〉

whose image is a closed small interval in R, let’s say of length lX : this can be thought of
“length of Ok in the X -direction”.

With this description, Speculation 2.2.2 is saying that X acts on vk via some range of
eigenvalues around i 〈ξk , X 〉 of length approximately lX . The argument with the com-
mutators given before implies that to have no contradiction we must get

lX · lY > 〈ξk , [X , Y ]〉.

The upshot is that Speculation 2.2.2 is a sensible statement as long as Ok is “not too
small” - in the sense given by the inequality above.

Remark 2.2.5. Notice that this “non-smallness” condition is defined purely in terms of
the Lie brackets; we did not have to introduce any non-canonical measure.

2.3. The general formula. Let’s come back to reality, after our speculations. Making
formal the reasoning explained above, one gets

Fact 2.3.1. Let G be a Lie group, and ξ ∈ Lie(G )∗ be an element of the dual Lie algebra.
Let O be the G -orbit of ξ.

Then there is a natural G -invariant non-degenerate symplectic2 form ω on O de-
fined by the following rule: for each t1, t2 ∈ Tanξ(O ) choose X , Y ∈ Lie(G ) such that
t1 = X ·ξ, t2 = Y ·ξ and set

ω(t1, t2) = ξ([X , Y ]).
2That is to say, an alternating non-degenerate bilinear form on the tangent bundle of O , varying G -
equivariantly.
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The condition above obviously determinesω, one needs to show that it is well-defined,
for example independent of the choices of X , Y .

Remark 2.3.2. (1) This canonical form is completely canonical. In particular, one
can prove that it does not depend on the choice of ξ ∈O .

(2) It is hard to grasp what this symplectic form “is”. We’ll come back to this point
later.

Example 2.3.3. As seen last time, in the case of G = SO3(R), the orbits O turn out to be
spheres in R3.

Corollary 2.3.4. The orbits O are even-dimensional.

This is immediate, as any symplectic manifold with a non-degenerate symplectic
form is even-dimensional.

Theorem 2.3.5 (Kirillov, others). Let G be a connected Lie group which is either nilpotent
or semisimple (the latter includes the compact case). Let π be a tempered representation
of G . Then there is an orbit O of G on Lie(G )∗ such that the twist

�

χπ
p

j
�

(e X ) is the

Fourier transform of the measure
�

ω
2π

�d
on O , whereω is the symplectic form associated

to O as above, and 2d is the real dimension of O .

The upshot is that the canonical choice of the symplectic formω fixes the area dis-
crepancy that we have seen in the example of SO3(R).

Remark 2.3.6. The dimension of an orbit O is the dimension of G minus the rank of
G , where the latter should be thought of the dimension of the centralizer of a typical
element of G .

Exercise 2.3.7. In the case G = SO3(R), check that the measure ω
2π gives area 2N +1 to

the sphere of radius N + 1
2 . You could even get rid of the 2π in the expression of the

measure if you normalize the Fourier transform accordingly.

Exercise 2.3.8. What does orthogonality of the charactersχ ’s of G say about the Fourier
transforms of the twists χ

p

j ’s? You should expect to recover properties of “areas of
spheres”.

Exercise 2.3.9. Here’s the decomposition in orbits of the sphere SN+ 1
2

inside R3 ∼= Lie(SO3(R)).
Centering the sphere at the origin, the projection onto the z -axis surjects onto the in-
terval

�

−
�

N + 1
2

�

,
�

N + 1
2

��

, which we partition in 2N + 1 subintervals of length 1 in the
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obvious way.

Then the orbit decomposition
∏

Ok = SN+ 1
2

is given by the preimages of these intervals.
In particular, you can check that each of them has area 1. Which basis of VN does this
orbit decomposition correspond to?

Later in the course we’ll prove the promised general formula for the Jacobian j (X ).

2.4. Vista. Where do we go from here? The Kirillov formula is interesting from several
points of view:

(1) In representation theory, it is related to the Duflo isomorphism, a completely
algebraic way of describing the center of the universal enveloping algebra of
Lie(G ) that involves factors of

p

j .
(2) From the point of view of symplectic analysis, one could ask why the Fourier

transform of the measure on O is so nice (having properties resembling those
of a character of a representation). An explanation has been given by Diuster-
maat and Heckmann, with a later explanation using equivariant cohomology
by Atiyah and Bott.

(3) In general, the formula for the Jacobian is

j (X ) = det
�

ad X

e ad X −1

�

.

This expression u
e u−1 appears in many areas of mathematics. Why does it show

up here?

In the rest of the course we will try to explain why the correspondence between rep-
resentations V of G and orbits O of G on Lie(G )∗ is a special case of quantization: a
correspondence between Hilbert spaces H and symplectic manifolds (M ,ω). Our first
goal starting next time is to study the case of M =R2 via the theory of pseudodifferential
operators.
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3. PSEUDO-DIFFERENTIAL OPERATORS

3.1. Motivation. Recall the picture from last time: we had the SO3(R)-representation
VN on the space of harmonic polynomials of degree N in R3. This was related with
a sphere O ⊂ Lie(SO3(R))∗ whose normalized area is 2N + 1 = dim VN , via the Kirillov
character formula:

�

χVN

p

j
�

(e X ) =

∫

O
e iξ·x dξ.

The heuristic picture for this (which we will make more precise today
setting) is the following: we can dissect the sphere in pieces Oi of area 1, in bijection
with a basis {vi } of VN of approximate eigenvectors - in the sense that

X .vi ≈ 〈ξi , X 〉vi for some ξi ∈Oi .

This formula is not quite well-defined because we have not specified which ξ we pick
in Oi , so there is some fuzziness going on.

The above description should hold for a large class of groups G and representations
V . Today we will instead established a related picture, in a different context: VN is re-
place by L 2(R) and O by R2. There will be no groups involved (for now, but in a few
lectures we’ll see that this picture is related to the Heisenberg group), so the connec-
tion between L 2(R) and R2 will come from pseudo-differential operators - in fact, the
Kirillov character formula will be “replaced” by the formula for the trace of a pseudo-
differential operator.

3.2. Fourier transform. The discussion today will belong to the realm of microlocal
analysis, but we will be a bit informal, not worrying about convergence issues or the
exact regularity of our functions - this will be made more precise next time. Our next
mini-goal is to write every f ∈ L 2(R) as a sum of functions fi ∈ L 2(R)which are localized
(that is to say, they are supported in a small interval) and whose Fourier transforms Òfi

is also localized.
To fix normalizations, recall that the Fourier transform of f (x ) ∈ L 2(R) is

bf (ξ) =

∫

f (x )e i xξd x

and its inverse is

f (y ) =

∫

bf (ξ)e −i y ξdξ.3

In particular, the above normalizations yield that

Û

�

d

d x
f
�

(ξ) = (−iξ) bf (ξ).

3For ease of notation, we are sweeping under the rug all the factors of (2π) that usually appears when deal-
ing with Fourier transforms. To make the statements literally true, one needs to normalize the measure
dξ to be the Lebesgue measure divided by 2π.
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Remark 3.2.1. Why are we shooting for the goal of decomposing f into localized func-
tions? The reason is that such functions fi ’s will be approximate eigenfunctions of a
differential operator.

More generally, a constant-coefficient differential operator acts on the Fourier trans-
forms as multiplication by a polynomial in ξ. This is not true anymore for differential
operators with non-constant coefficients, but the situation is very similar when con-
sidering localized functions.

Lemma 3.2.2. We cannot have both g and bg be compactly supported.

Exercise 3.2.3. Describe a quantitative version of the failure above. More precisely, if
g is mainly supported in an interval of length N , how localized is bg ?

Since the lemma says that our mini-goal is impossible when stated as above, we will
content ourselves with coming up with fi ’s that are “mainly” localized, and similarly
for the Òfi ’s.

Let’s be a bit more precise. Fix an interval I of R of length L and an interval J of
length M , and let χI , χJ be the two characteristic functions. Then χI f is supported

on I , and
�

χJ
bf
�∨

has Fourier transform4 supported on J . The properties of the Fourier
transform also yields that

�

χJ
bf
�∨
=χ∨J ∗ f

is the convolution of f and the Fourier transform of the characteristic function of J .
The upshot is that we have two possible ‘operations’ to do on f :

(1) f 7→χI f localizes f , while
(2) f 7→χ∨J ∗ f localizes bf .

We’d like to do both (to enforce both f and bf to be localized), but these two operations
do not commute! So we just ignore this failure of commutative, do it anyway, and hope
for the best. We’ll get a pseudo-differential operator which will have good properties.

3.3. Example of pseudo-differential operators. Let’s get down to the computations.
First, pick smooth approximations a , b ∈C∞(R) for the characteristic functionsχI and
χJ , so that convolution and Fourier transform will have nice properties. Applying b (ξ)
to f we get

�

b (ξ) bf
�∨
(x ) =

∫

b (ξ) bf (ξ)e −i xξdξ

and multiplying by a (x ) yields
∫

a (x )b (ξ) bf (ξ)e −i xξdξ.

Definition 3.3.1. More generally, let a (x ,ξ) be a function in two variables x and ξ. We
can write down a similar formula, which will have nice properties if C∞c (R

2). We define
Op(a ) : L 2(R)→ L 2(R) by the rule

�

Op(a ) f
�

(x ) =

∫

a (x ,ξ) bf (ξ)e −i xξdξ. (3.3.1)

4We denote by g ∨ the inverse of the Fourier transform.
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This is a pseudo-differential operator with symbol a .

Morally, we want to take a (x ,ξ) to be the characteristic function of the rectangle I× J ,
and we hope that Ob(a ) localizes f at I and bf at J . But as the two operations do not
commute, something delicate needs to happen for our hope to be (approximately) ful-
filled. Since clearly localizing a function f 7→χI f is a projection operator on L 2(R), we
expect Op

�

χI×J

�

to be a projection and hence Op(a ) to be an approximate projection:

Op(a )2 ≈Op(a )

if a is constructed from the two smooth approximations of χI , χJ as in the discussion
above.

Fact 3.3.2. The larger the area of I × J is (in particular, larger than 1), the better the
approximation Op(a )2 ≈ Op(a ) will be. In particular, Op(a ) will almost localize f at
I × J .

Fix a (x ,ξ) and b (y ,ν) two “regular” functions: we want to compute Op(a )Op(b ). We
have

�

Op(a )Op(b ) f
�

(x ) =

∫

a (x ,ξ) Û
�

Op(b ) f
�

(ξ)e −i xξdξ

=

∫

a (x ,ξ)

�∫

Op(b ) f (y )e i y ξd y

�

e −i xξdξ

=

∫

a (x ,ξ)

�∫ �∫

b (y ,ν) bf (ν)e −i y νdν

�

e i y ξd y

�

e −i xξdξ.

Notice that multiplying all the exponentials in the last integral yields e i (y−x )(ξ−ν)e i xν.
If we define

c (x ,ν) :=

∫ ∫

a (x ,ν)e i (y−x )(ξ−ν)b (y ,ν)dξd y

we finally obtain that

�

Op(a )Op(b ) f
�

(x ) =

∫

c (x ,ν) bf (ν)e −i xνdν=
�

Op(c ) f
�

(x ).

Shifting variables, we obtain equivalently that

c (x ,ν) =

∫ ∫

a (x ,ν+ s )e i s t b (x + t ,ν)d s d t .

Denote now by ∂2 the derivative in the second variable, we can expand a as a Taylor
series in the second variable to get

a (x ,ν+ s ) =
∑

l≥0

∂ l
2 a (x ,ν)

l !
s l

and plugging this into the formula for c (x ,ν) one gets

c (x ,ν) =
∑

l≥0

∂ l
2 a (x ,ν)

l !

∫

s l b (x + t ,ν)e i s t d s d t .
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The last integral is easy:

Fact 3.3.3. Let g be a Schwartz function. Then
∫

s l e i s t g (t )d s d t =

∫

s l
bg (s )d s =

�

i
d

d t

�l

g (0).

Therefore, we obtain

c (x ,ν) =
∑

l≥0

i l

l !
∂ l

2 a (x ,ν)∂ l
1 b (x ,ν). (3.3.2)

Remark 3.3.4. Clearly the above passages will need to be justified for a , b , f in some
class of functions - we’ll do this next time.

Explicitly, we have

c (x ,ν) = a (x ,ν)b (x ,ν) + i∂νa (x ,ν)∂x b (x ,ν) +
1

2
∂ 2
ν a∂ 2

x b + . . .
︸ ︷︷ ︸

=:a?b

and we denote the first-order and higher terms by a ? b .

Remark 3.3.5. This is quite a nice expression, and yet it is not literally true - it needs to
be interpreted as an asymptotic series.

Notice that a + b 6= b ∗a , and we can measure the failure of commutativity:

a ∗ b − b ∗a = i (∂νa∂x b − ∂x a∂νb )+ (higher order terms)

where the second-degree term is called the Poisson bracket, which plays an important
role in symplectic geometry.

Let’s go back to our question: to what extent is Op
�

ξI×J

�

a projection operator? To
be precise, let’s assume I = [0, L ] and J = [0, M ]. Fix a smooth approximationφ of ξ[0,1],
so that

a (x ,ν) =φ
� x

I

�

φ

�

ν

J

�

is an approximation of χI×J . Then the explicit formula (3.3.2) yields that

Op(a )2 =Op(a 2) +
1

LM
· (derivatives ofφ)+

�

1

LM

�2

· (second derivatives ofφ)+ . . .

The upshot is that as long as LM >> 1, we have

Op(a )2 ≈Op(a 2)≈Op(a )

where the last approximation is due to the fact that a 2 ≈ a , since a is a smooth approx-
imation of a characteristic function.

Remark 3.3.6. Again, we are postponing to next time the formal, rigorous version of
the above reasoning, that takes care of all the convergence and well-posedness issues.
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3.4. Trace of pseudo-differential operators. Going back to our heuristic picture, here’s
what we found. Given a decomposition

R2 =
∏

i∈N

Oi

in blocks of very large area, we obtain

Id=Op(1) =
∑

i∈N

Op(ai )

where each Op(ai ) is approximately a projection operator. In particular, this yields
morally a decomposition of L 2(R)which is completely geometric in nature!

L 2(R) =
⊕

i∈N

Vi

and moreover the dimension of the Vi is related to the trace of the pseudo-differential
operator. More precisely:

Lemma 3.4.1. We have

Tr (Op(ai )) =

∫

Oi

a (x ,ξ)d x dξ≈Area(Oi ).

Proof. Assuming f is Schwartz, we have

�

Op(a ) f
�

(x ) =

∫

a (x ,ξ) bf (ξ)e −i xξdξ

=

∫

a (x ,ξ)

�∫

e i y ξ f (y )d y

�

e −i xξdξ

=

∫

a (x ,ξ)e i (y−x )ξ f (y )d y dξ

=

∫

K (x , y ) f (y )d y ,

where we defined the kernel

K (x , y ) :=

∫

a (x ,ξ)e i (y−x )ξdξ.

Assuming the standard conditions for Op(a ) to be trace class, we have that its trace is
the integral of its kernel on the diagonal:

Tr (Op(a )) =

∫

K (x , x )d x =

∫

a (x ,ξ)d x dξ.

The last approximation
∫

ai (x ,ξ)d x dξ≈Area(Oi ) is clear, since ai (x ,ξ) is an approxi-
mation of the characteristic function of Oi . �

We’ll see more examples, but it’s worthwhile (and nice!) to see that in this example
we were able to compute everything.
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3.5. Making this rigorous. We now want to sketch how to make the preceding discus-
sion more rigorous. We wrote down a formal infinite sum for the composition of two
pseudo-differential operators:

Op(a )Op(b ) =Op(a b + i∂ξa∂x b + . . .) (3.5.1)

To make this rigorous, we need to impose analytic conditions on the functions involved.
So we specify a class of “allowable symbols” a (x ,ξ). A convenient class Sm of such is
“differentiable operators of order≤m with bounded coefficients”. The simplest version
of the definition is: a (x ,ξ) ∈ S m if

sup
x ,ξ

|∂ i
x ∂

j
ξ a (x ,ξ)|

(1+ |ξ|)m− j
≤ const(i , j ) for all i , j ≥ 0.

Note that we don’t force i , j to be less than m . Note also that there is an asymmetry
between the ξ and x variables. This is because we are thinking of the symbol as a dif-
ferential operator, with ξ being the “derivative symbol”, and we want to model an “al-
most constant coefficient” differential operator, meaning that its coefficients and their
derivatives are bounded.

Fact 3.5.1. Here are the important facts about this definition.

• If a ∈ Sm and b ∈ Sm ′ , then there exists c ∈ Sm+m ′ with Op(a )Op(b ) =Op(c ).
• Moreover,

c −
w
∑

N=0

i N

N !
∂ N
ξ a∂ N

x b ∈ S m+m ′−w−1.

Informally, this says that if w is large then c −
∑w

N=0
i N

N !∂
N
ξ a∂ N

x b decays very quickly in
the second variable. Thus the right interpretation of the formal infinite sum (3.5.1) is
to truncate the sum at some large w .

The formula (3.3.1) works well a priori if a ∈C∞c . But we can extend it to a ∈ S 0, and
for such a we have that Op(a ) is L 2-bounded.

Remark 3.5.2. The theory is not very symmetric. It is adapted to our specific system
of coordinates in R2. We have a decomposition corresponding to the dissection of R2

into rectangles parallel to the axes, and wouldn’t work as well for rotated rectangles.

4. THE KIRILLOV PARADIGM FOR THE HEISENBERG GROUP

4.1. Review. Last time we defined a pseudo-differential operator Op(a ) for a function
a on R2:

Op(a ) f (x ) =

∫

a (x ,ξ) bf (ξ)e −i xξdξ.

Recall that if a is (approximately) the characteristic function of I × J , then Op(a ) is an
approximate projector onto the space of functions f with supp( f )⊂ J and supp( bf )⊂ I ,
as long as the area is large, i.e. `(I )`(J )� 1.

In particular, dividing up R2 into rectangles of pretty large area, we get an approxi-
mate decomposition

L 2(R)≈
⊕

Vi .
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This decomposition is meant to be the same relationship as that between representa-
tions of a group and the decomposition into orbits O of its action on Lie(G )∗.

4.2. Where we are headed. The next goal is to show that this discussion is a special
case of something that fits into the Kirillov paradigm: we’ll exhibit (L 2(R), R2) as a pair

(representation of some Lie group H, orbit of H on Lie(H )∗).

In this situation there will be an exact Kirillov character formula, corresponding to theh
formula (3.4.1)

Tr Op(a ) =

∫

R2

a (x ,ξ)d x dξ

which we discussed last time.
It’s not very hard to guess what H is, using that the approximate decomposition

of L 2(R) into localized functions should correspond to approximate eigenvectors for
the action of H . For a function to be localized in the R2 picture means that both the
function and its Fourier transform are localized. In the Kirillov picture, being localized
means being approximately eigenvector. (Roughly speaking, dividing an orbit of H into
little pieces should correspond to a basis of the representation.)

The condition that bf is localized is equivalent to f (x )≈ e iξx , which is equivalent to
being an eigenvector for translation. This suggests that the H should contain transla-
tions. Let τy be the translation operator

(τy · f )(t ) = f (t + y ).

We can take the Fourier transform of this condition to get the story for f . Let my be the
multiplication operator

(my f )(x ) = e i x y f (x ).

Essentially H will be the group generated by the τy ’s and my ’s. We’ll now set this up
abstractly.

4.3. The Heisenberg group.

Definition 4.3.1. The Heisenberg group is

Heis :=











1 x z
1 y

1



 | x , y , z ∈R







with the group operation being matrix multiplication:




1 x z
1 y

1









1 x ′ z ′

1 y ′

1



=





1 x + x ′ z + z ′+ x y ′

1 y + y ′

1





Let’s define some subgroups of Heis. We define

Ux =





1 x 0
1 0

1




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Vy =





1 0 0
1 y

1





Wz =





1 0 z
1 0

1





Then {Ux },{Vy }, and {Wz } all form subgroups. Furthermore, Wz is central in H (in fact,
it is the center). These operators satisfy the commutation relation

Ux Vy =Vy Ux Wx y .

The Heisenberg group is the basic example of a “2-step nilpotent group”: it has a filtra-
tion by a central subgroup, and the commutators land in it.

Remark 4.3.2. There is a better system of coordinates on H . We have

Lie(Heis) =











0 x z
0 y

0



 | x , y , z ∈R







The matrix exponential sends this to

exp





0 x z
0 y

0



=





1 x z + x y
2

1 y
1





This coordinate system is more symmetric.

Fact 4.3.3. The rule

Ux 7→τx ( f (t ) 7→ f (x + t ))

Vy 7→my ( f (t ) 7→ e i y t f (t ))

Wz 7→ scalar multiplication by e 2πi z

extends to a representation

H →U(L 2(R)).

The remark essentially gives a presentation of the Heisenberg group, so you just
check that it satisfies the commutation relations. We’ll see later that this is very con-
nected with the theory of pseudo-differential operators. Furthermore, it is character-
ized in a very intrinsic way: the Stone-von Neumann theorem says that it is the unique
irreducible representation where Wz acts by the scalar e 2πi z .

We’re heading towards establishing the Kirillov character formula for Heis.

4.4. Infinite-dimensional unitary representations. When dealing with compact groups,
there are enough finite-dimensional representations for all intents and purposes (Peter-
Weyl theorem). But noncompact groups (e.g. the Heisenberg group) typically don’t
have “enough” finite-dimensional representations.
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It is a little subtle to say what an infinite-dimensional representation should be. Once
the representation is not finite-dimensional, you need to pick a topology, since other-
wise it would be equivalent to talking about representations of the underlying discrete
group, which is obviously not what we want to do. So we want to impose some kind of
continuity on the map

G → End(V ).

There is no strict need for V to be a Hilbert space, but it gives a convenient theory. So
in the rest of the course, infinite-dimensional representations will always be on Hilbert
spaces.

What should we mean by continuity? The model case is G =R, acting by translation
on L 2(R). This should be a representation under whatever definition we decide on.
This is not automatic: the strongest topology on the unitary group of H is the operator
norm, but this is way too strong because a small translation is very far from the identity
operator, so the preceding model case would not be continuous in this topology.

Definition 4.4.1. A unitary representation of G on a (separable) Hilbert space H is a
homomorphism

G →Unitary(H )

such that the action map

G ×H →H

is continuous.

Policy. Henceforth, if we ever refer to infinite-dimensional representa-
tions then we will mean a unitary representation on a Hilbert space, as
above.

Definition 4.4.2. A unitary representation H of G is irreducible if H has no closed G -
invariant subspaces.

Example 4.4.3. The model example L 2(R), with G =R acting by translation is not irre-
ducible. This is a little tricky to see (you might think that constant functions form an
invariant subspace, but they aren’t in L 2(R)!). However, it’s much clearer on the Fourier
side, where the action is multiplication. The subspace of functions whose Fourier trans-
form is supported on, for instance, [0,∞) is invariant.

Definition 4.4.4. Let ÒG be the set of irreducible unitary representations of G , up to
isomorphism.

We will be able to understand nicely the set of irreducible representations of the
Heisenberg group. We want to give you an example that shows that ÒG can be a really
pathological object. Consider the “discrete Heisenberg group”

HeisZ :=











1 x z
1 y

1



 | x , y , z ∈ Z







It has “pathological” representations, so there is no nice structure on its space of repre-
sentations. To see this, for x , y , z ∈ Z denote by Ux , Wy , Vz the same operators as before.
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Pick α,β ∈R. We make an action of ΓZ on L 2(Z) as follows:

(Ux f )(t ) = f (t + x )

(Vy f )(t ) = (m (t ) = e 2πi (αt+β )y ) · f (t )

(Wz f )(t ) = e 2πiαz f (t )

Exercise 4.4.5. Check that this defines a representation, which we call V (α,β ).
Fact 4.4.6. If α is irrational, then V (α,β ) is irreducible.

Fixing α, we get a family of irreducible representations parametrized by β ∈ R/〈Z+
Zα〉. Note that Z+Zα is dense in R, so this index set is something horrifying, and cer-
tainly doesn’t have a reasonable topology.

How do you show that V (α,β ) is irreducible? We have a version of Schur’s Lemma
for infinite-dimensional representations (of a group with countable basis):

Lemma 4.4.7 (Schur’s Lemma). A unitary representation H of G is irreducible if and
only if any bounded operator A ∈ End(H ) commuting with the action of G is scalar.

Proof. If H isn’t irreducible, it has a closed subspace H1 which is G -stable. Since H is a
unitary representation, we get an orthogonal decomposition

H =H1⊕H ⊥
1 .

So we can take A to be projection to H1 to get a non-scalar endomorphism.
What about the converse? Following the proof of the finite-dimensional version of

Schur’s Lemma, we would like to take an “eigenspace” of A. However, this requires some
more care in the infinite-dimensional theory.

First we reduce to the case where A is self-adjoint. If A commutes with the G -action
then so does its adjoint A∗:

g A = Ag =⇒ A∗g ∗ = g ∗A∗

and g ∗ = g , since the G -action is unitary. So we can express A in terms of self-adjoint
operators:

2A = (A+A∗) + i
�

A−A∗

i

�

thus reducing to the case where A is self-adjoint. An informal expression of the spectral
theorem for self-adjoint operators says:

Let A be a self-adjoint operator on a Hilbert space H . For each Borel set
T ⊂R, it makes sense to talk about HT =“sum of eigenspaces with eigen-
values in T ”. (To do this, you approximate the characteristic function of
T by polynomials, and apply them to A.) In particular, the spectrum of
A on HT is contained in T .

Assume that H is an irreducible representation. Then HT = 0 or H for each Borel set
T , because it is a closed G -invariant subspace (since it is intrinsically defined). These
behave as you would expect: if T = T ′ tT ′′ then HT =HT ′ ⊕HT ′′ .

Now we can play the following game. If we take T to be a sufficiently large interval,
then HT = H . Then we can divide T up and narrow in on the spectrum: we get a de-
creasing sequence of intervals T1 ⊃ T2 ⊃ T3 ⊃ . . . with H=H . The spectrum of A is then
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contained in the intersection of these intervals Ti , which is a single point. This implies
that A =λ0 Id.

�

Exercise 4.4.8. Check that V (α,β ) is irreducible. [Hint: The idea is that the matrix of
Vy is a big diagonal matrix with different entries. If you commute with it, then you have
to be diagonal. If you commute with a shift as well, then your entries have to be all the
same.]

Corollary 4.4.9. If G is abelian, then every irreducible representation of G is 1-dimensional.

Example 4.4.10. If G = R, then the irreducible representations of all of the form x 7→
e i t x for some t ∈R. Thus, ÒG =R.

Corollary 4.4.11. In any irreducible representation of G , the center Z (G ) acts by scalars.

This is going to be important for us. After we understand the Kirillov formula for Heis
acting on L 2(R), we’ll check it for every representation of Heis.

Recall that we defined subgroups

Ux =





1 x 0
1 0

1





Vy =





1 0 0
1 y

1





Wz =





1 0 z
1 0

1





The action on L 2(R) is given by

Ux 7→τx ( f (t ) 7→ f (x + t ))

Vy 7→my ( f (t ) 7→ e i y t f (t ))

Wz 7→ scalar multiplication by e i z

Remark 4.4.12. According to our preceding discussion, in any representation of Heis
the operators Wz must act by scalars of this form.

In other words,

(Vy Ux Wz f )(t ) =





1 x z
1 y

1



 f (t ) = f (t + x )e i t+z .

This is a unitary representation of Heis on L 2(R).
Exercise 4.4.13. Prove that this representation is irreducible. [Hint: check that an op-
erator commuting with all Vy is a multiplication operator. Then check that commuting
with Ux forces it to be constant.]
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Now we want to consider the character. Recall that we are aiming for a formula

char(e X ) =

∫

e i 〈ξ,X 〉dξ.

But we have a problem. The element Wz acts as a scalar, so can’t have any meaningful
notion of trace. In fact, no g ∈Heis gives a trace class operator.

However, elements of the “group algebra” will have a trace. In the end, we will get
the character as a distribution.

4.5. The group algebra. Let G be a (locally compact) group, and an irreducible repre-
sentation π: G →U(H ). For a finite group, the group algebra can be regarded as func-
tions on the group. Fix a Haar measure on G . We can extend the action of G to L 1(G )as
follows: for A ∈ L 1(G ), we define

π(A)v =

∫

G

A(g )(g · v )d g .

Then π(A) gives a bounded operator H → H , and in fact ||π(A)v || ≤ ||A||L 1 · ||v ||. (The
algebra structure is by convolution.)

Example 4.5.1. Let G =R, acting on L 2(R) as translation. Then

π(A) f (t ) =

∫

A(x ) f (t + x )d x .

If we denote Ǎ(x ) = A(−x ), then we can rewrite this as

π(A) f (t ) = ( f ∗ Ǎ)(t ).

Thus, the L 1(R) action on L 2(R) is basically by convolution.

Remark 4.5.2. In usual functional analysis, if you want to approximate a function by
a smooth function, you can convolve with a smooth approximation to the δ function.
The same works here.

From here on G is a Lie group.

Definition 4.5.3. A vector v ∈H is smooth if the map g 7→ g v defines a smooth function
G →H . We define the subspace of smooth vectors to be H∞.

Then Lie(G ) acts on H∞. Of course, you don’t see the distinction come up for finite-
dimensional representations.

Fact 4.5.4. H∞ is dense in H .

Proof. Take A ∈C∞c (G ) be an approximation to the delta function at e . Thenπ(A)v ≈ v
is smooth. �

This shows that H∞ =H in the finite-dimensional case.

Example 4.5.5. For R acting on L 2(R) by translation,

H∞ = { f ∈C∞ | ∂ i f ∈ L 2(R)∀i }.
You can sort of guess this because the derivative of the translation action on f looks
just like the derivative of f . However, it is not completely formal because the limit is
being taken in L 2(R), not pointwise.
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Example 4.5.6. For Heis acting on L 2 as above, H∞ is the Schwartz space

{ f ∈C∞(R): x j ∂ i f are bounded for all i , j }.

For f ∈H∞,

d

d x
(Ux f ) = f ′

d

d y
(Vy f ) =

d

d y
(e i t y f ) = (i t ) f

2
d

d z
(Wz f ) = i f .

i.e. the action of




x z
y



 · f = (x f ′+ i t y f + i z f ).

Remark 4.5.7. If G acts unitarily, then LieG acts skew-adjointly. This lets you figure
out where the factors of i should be.

4.6. Computing the character. The hope to define the “trace” of an operator in L 1(G )
on H as a distribution.

Start with a function A ∈C∞c (Heis). We’ll write a formula for π(A) · f for f ∈ L 2(R):

π(A) · f =
∫

A





1 x z
1 y

1



 f (t + x )e i (t y+z )d x d y d z

To simplify this, we can first integrate out the z . Letting

B (x , y ) = A





1 x z
1 y

1



e i z ∈C∞c (R
2).

we have

π(A) f (t ) =

∫

B (x , y ) f (t + x )e i t y d x d y . (4.6.1)

We claim that this is essentially Op( bB ) f , up to a few signs, where bB is the Fourier trans-
form in both variables.

The equation (4.6.1) obviously involves a Fourier transform of B in the y variable.
To rewrite it in terms of the Fourier transform of B in both variables, we need to put in
an inverse Fourier transform in the x -variable. Denoting

bB (u , t ) =

∫

B (x , y )d i (x u+t y )d x d y .

Equation (4.6.1) then becomes

π(A) f (t ) =

∫

bB (u , t )e −i u x f (t + x )d x d u . (4.6.2)
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Integrating e −i u x f (t + x ) in x yields e i u t
bf (−u ), so (4.6.2) can be rewritten as

π(A) f (t ) =

∫

bB (u , t )e i u t f̂ (−u )d u

which, up to signs, coincides with Op( bB )( f ).
Now we compute the trace. In fact we saw earlier that

Tr Op(a ) =

∫

a .

(The picture was that if a approximates the characteristic function then Op(a ) approx-
imates a projection.) So

Trπ(A)∼
∫

bB (u , v )d ud v = B (0, 0) =

∫

A(0, 0, z )e i z d z .

In fact we were a little careless with the constants of normalization. Taking care with
the factors of 2π, the result is

Trπ(A) = 2π

∫

A(0, 0, z )e i z d z . (4.6.3)

What does this tells us about the trace of π as a distribution? If π had a character
χ(g ), then we would have

Trπ(A) =

∫

χ(g )A(g )d g .

So we should interpret the formula (4.6.3) as saying that

χ = (2π)e i zδz -axis.

Remark 4.6.1. This in particular implies τx (resp. my ) should have trace 0 if x 6= 0
(resp. y 6= 0). If you think about it, you’ll see that this makes sense for τx : you can
choose a basis in which τx has entries supported strictly above the diagonal. It’s a little
harder to see why the trace should be 0 if y is non-zero.

4.7. The character on the Lie algebra. We now pull the character back to the Lie alge-
bra using the exponential map:

exp





0 x z
0 y

0



=





1 x z + x y
2

1 y
1





For the Heisenberg group, the exponential map enjoys a few special properties. It de-
fines a (global) diffeomorphism

Lie(Heis)
∼−→Heis .

Moreover, the Haar measures are also preserved:

d x d y d z 7→ d x d y d z

i.e. the Jacobian factor j is equal to 1 in this case.
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If we pull back the character by the exponential map, we get a distribution on Lie(Heis):
for

X =





0 x z
0 y

0



 =⇒ χ(e X ) = (2π)e i zδz -axis.

(One might object that the exponential factor should be e i (z+x y /2), but on the z -axis we
have x = y = 0.)

This means that forψ ∈C∞c (Lie Heis),

Tr

�∫

ψ(X )e X d X

�

= 2π

∫

ψ(0, 0, z )e i z d z .

Taking Fourier transform, we have

χ(e X ) =
1

2π

∫

α,β∈R

e (iαx+β y+z )dαdβ . (4.7.1)

Here we are using that

∫

ψ(0, 0, z )e i z d z ∼
∫

Òψ(α,β , 1)dαdβ

=

∫

z

�

∫

α,β∈R

e (iαx+β y+z )ψ(x , y , z )d x d y d z

�

dαdβ

=

∫

z

�

∫

α,β∈R

e (iαx+β y+z )dαdβ

�

ψ(x , y , z )d x d y d z .

4.8. Orbits of Heis on (Lie H )∗. In terms of the x , y , z coordinates on Lie H , put coor-
dinates α,β ,γ on (Lie H )∗ by

X =





0 x z
0 y

0



 7→αx +β y +γz . (4.8.1)

Then H acts on (Lie H )∗, with the following types of orbits:

• For each γ0 ∈R−{0}, we have an orbit

Oγ0
= {(α,β ,γ) | γ= γ0}.

• If γ0 = 0, then the functional (4.8.1) is actually a character of the Lie algebra (i.e.
preserves the Lie bracket). So you get for each (α0,β0) ∈R2 an orbit

Oα0,β0
= {(α0,β0, 0)}.
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So we can rewrite (4.7.1) as

χ(e X ) =
1

2π

∫

α,β∈R

e (iαx+β y+z )dαdβ

=

∫

ξ∈O1

e i 〈ξ,X 〉dαdβ

2π
.

4.9. Summary. So we’ve seen that the action of Heis on L 2(R) corresponds to the orbit
O1 = {(α,β , 1)} ⊂ (Lie H )∗ in the sense that

χ(e X ) =

∫

O1

e i 〈ξ,X 〉dξ.

Also, from B ∈ C∞c (O1 = R2) we get an operator on L 2(R), which realizes the heuristic
picture from early on: if you decomposeO1 into rectangles, then you get something like
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a basis for the representation.

If the dissection is into rectangles of area about 1, then the trace of the projection has
rank 1, hence you get projection onto a rank 1 thing. (This is inaccurate, but gets more
accurate as the areas get larger.) These rank 1 spaces are spanned by approximate
eigenfunctions vi in the sense that

X vi ≈ 〈ξ, X 〉vi .

The picture is of course not right, although it gets better as the area gets larger. The
Kirillov formula is manifestation of this picture that miraculously happens to be exact,
rather than asymptotic.

5. THE STONE-VON NEUMANN THEOREM

5.1. Kirillov’s theorem for Heis.

Theorem 5.1.1. There is a 1-1 correspondence between ÕHeis (the space of irreducible
unitary representations of Heis) and orbits O of Heis on Lie(H )∗.

The correspondence is determined by the following condition: for each O there exists
a unique irreducible representation πO satisfying the Kirillov character formula

TrπO (e
X ) =

∫

ξ∈O
e i 〈ξ,X 〉dξ (5.1.1)

Equation (5.1.1) is meant in the sense of distributions, which means concretely that
for any f ∈C∞c (Lie),

Tr

�∫

f (X )e X d X

�

=

∫

O

bf (ξ)dξ.

Remark 5.1.2. We make the convention that when O is a point, the measure on O is a
point mass of measure 1.
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Concerning the proof: it is easy to make the representations. The hard part is the
uniqueness aspect, saying that there is only one representation with a given central
character. For Heis this is the “Stone-von Neumann Theorem”

Remark 5.1.3. This holds for any simply-connected, nilpotent Lie group, i.e. a con-
nected Lie subgroup of an upper-triangular group









1 ∗ ∗ ∗
1 ∗ ∗

... ∗
1









.

Remark 5.1.4. In general we have a pairing between representations and conjugacy
classes (trace). But you don’t know how to attach representations to conjugacy classes.
However, in this case the theorem is telling us that we can parametrize representations
by conjugacy classes in Lie(Heis)∗.

5.2. Construction ofπO . ForO =Oα0,β0
, the representation (necessarily 1-dimensional)

is




1 x z
1 y

1



 7→ e i (α0 x+β0 y ).

For O =O1, we’ve seen that L 2(R)works.
For O =OΓ0 for γ0 6= 1, we make a representation that looks very similar to the one we

constructed on L 2(R). Notice that R∗ acts on Heis by conjugating by the matrix




u
1

1



 .

This takes Oγ0
→Ou ·γ0

. You can also do this explicitly by replacing “1” by γ0 judiciously
in the definition of the action on L 2(R).

5.3. Uniqueness. Now we need to classify all π ∈ÕHeis. By Schur’s Lemma 4.4.7, the
center





1 0 z
1 0

1





acts by the scalar e iγz for some γ. If γ = 0, then the representation factors through
Heis/Z (Heis)∼= (R2,+). Since this is abelian, all the representations are 1-dimensional.

If γ 6= 0, then we may as well assume that γ= 1, by composing with an automorphism
of Heis. It is a theorem of Stone - von Neumann that the only irreducible representation
with γ= 1 is, up to isomorphism, the one that we wrote down on L 2(R). We are going to
describe two proofs: von Neumann’s original proof, and a later proof by George Mackey.

Remark 5.3.1. Why might Stone and von Neumann been thinking about this? The
motivation could have come from quantum mechanics.
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If we have an action of Heis on a Hilbert space H , then we get an action of Lie(Heis)
on H∞. Now, Lie(Heis) is generated by the operators

U =





0 1 0
0 0 0
0 0 0





V =





0 0 0
0 0 1
0 0 0





W =





0 0 1
0 0 0
0 0 0





which satisfy the relation [U , V ] =W .
We know that W acts by a scalar since it is central; in our normalization it is i Id. So

such a representation is the same as giving two operators U , V on a Hilbert space H
such that [U , V ] = i Id. (Note that this is impossible to achieve in finite-dimensional
representations, since the trace of a commutator is 0.) This is a situation that natu-
rally arises in quantum mechanics, with the operators corresponding to position and
momentum.

5.4. von Neumann’s proof. We begin with the following observation.

Observation. For suitable Gaussian a (x ,ξ), meaning that a is the expo-
nential of a quadratic function, Op(a ) is a rank 1 projection.

We had discussed that if a approximates the characteristic function of a region of
area 1, then Op(a ) is approximately a rank 1 projection. The claim is that in one mirac-
ulous case, Op(a ) is an exact projection.

An indication of the subtlety of this situation is that it doesn’t hold for all Gaussians.
A quadratic form on R2 has one invariant with respect to the symplectic form, which is
its area, and there is exactly one value for the area that works.

Earlier we noted that for a function B (x , y ) on R2,

∫

B (x , y )π





1 x 0
1 y

1



d x d y =
1

2π
Op( bB ).

For convenience, we would like to use a slight variant of this. Note that this formula
essentially depends on choosing a section R2 → Heis. This isn’t the best section, for
instance because it isn’t stable under inversion. A better section is given by the expo-
nential map

exp





0 x 0
0 y

0



=





1 x x y /2
1 y

1







GEOMETRIC QUANTIZATION AND REPRESENTATION THEORY 29

So we prefer to use a slightly twisted version of the pseudo-differential operator:

∫

B (x , y )π





1 x x y /2
1 y

1



d x d y =:
1

2π
OpW ( bB ).

(There isn’t really any significant difference, however.)
von Neumann showed that if you take C = 1

πe −x 2−y 2
, or any 1

πe −Q (x ,y ) with detQ = 1,
then

OpW (C ) = rank one projection.

(This is consistent with C having total integral 1.)

Exercise 5.4.1. Check that this property breaks if you alter Q a bit. For instance, what
do you get if you scale Q down first, then scale up the exponential to have area 1?

von Neumann proves this by just computing

OpW (C )OpW (C ) =OpW (C ).

Now let’s see how this is useful. The upshot is that there exists some function B such
that

∫

B (x , y )π





1 x x y /2
1 y

1



d x d y = rank one projection.

Now take π′ to be another representation with the same central character; we want to
show thatπ′ ∼=π. We can consider the same operator, withπ′ in place ofπ. Morally, the
argument is that we get a vector from this rank one projection, and we can reconstruct
the representation from that vector. So let

P =

∫

B (x , y )π′





1 x x y /2
1 y

1



 d x d y .

von Neumann shows that

(1) P is non-zero, and is a rank one projection. Let Im P =Cv0.
(2) Compute explicitly 〈g v0, v0〉 for g ∈Heis. This can be done by a universal com-

putation in the group algebra of G ; the answer is a Gaussian in the coordinates
of g .

We can then recover π′ from the knowledge of 〈g v0, v0〉 for all g ∈ Heis. Why? If we
know all the matrix coefficients 〈g v0, v0〉, then we also know

〈(a1g1+ . . .+an gn )v0, (b1g1+ . . .+ bn gn )v0〉.

From this you can reconstruct the Hilbert space: as a vector space it should consist of
formal linear combinations (

∑

ai g i )v0, and since we know the matrix coefficients we
know the inner product. Technically, we also need to take the completion.
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5.5. A finite model. We are now going to move on to discuss Mackey’s proof. To moti-
vate it, we first discuss a finite model, replacing R by Z/p Z. Define

Heisp =











1 x z
1 y

1



 | x , y ∈ Z/p Z







.

Theorem 5.5.1. The irreducible representations of Heisp are, up to isomorphism:

• characters e 2πi (a x+b y )/p for a , b ∈ Z/p Z, and
• (p − 1) representations of dimension p , one for each non-trivial character of the

center.

Proof. If the center acts trivially, then the representation factors through Heisp /Z (Heisp )∼=
(Z/p )2, hence is one of the characters enumerated above.

We’ll show that there is a unique irreducible representation where the center acts by
e 2πi z/p . Take such a representation V . Since we can twist any other non-trivial central
character to this one, that will prove the theorem.

A general strategy for understanding representations is to first restrict them to the
largest abelian subgroup. So look at the abelian subgroup

A =











1 0 z
1 y

1











.

Then

V |A ∼=
⊕

charactersψ of A.

Pick one characterψ0. There is a map V |A →ψ0, so by Frobenius reciprocity we have
a non-zero map

V → Ind
Heisp

A (ψ0). (5.5.1)

Fact 5.5.2. For every characterψ of A extending the central character, Ind
Heisp

A is irre-
ducible, and (up to isomorphism) independent ofψ.

The proof of this fact is left as an exercise. Since (5.5.1) is a non-zero map of irre-
ducible representations it must be an isomorphism, so we have characterized V , con-
cluding the proof.

�

In fact we can be a little more precise. Since A is a normal subgroup of Heisp , the set
of characters appearing is acted on by Heisp (by conjugation). There are p characters
extending a given central character form a single orbit under this action, so we may as
well look at a singleψ0:





1 z
1 y

1



 7→ e 2πi z/p .
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The definition of Ind
Heisp

A (ψ0) is the set of functions

f : Heisp →C

such that f (a g ) =ψ0(a ) f (g ) for g ∈Heisp , a ∈ A. If we restrict such a function f to




1 x 0
1 0

1




∼= Z/p

then we get a function in L 2(Fp ). This is the exactly analogous to our model of the “stan-
dard representation”, replacing R by Fp .

In summary: to construct the unique irreducible representation of Heisp where the
center acts by some fixed non-trivial character ω, we extended ω to a larger abelian
subgroup and then induced to Heisp . It will turn out that some analog of this procedure
works for all nilpotent groups.

5.6. Disintegration into irreducibles. We now give Mackey’s proof, which is an ana-
logue of this argument. To transpose the argument to Heis, we need an analogue of the
decomposition

V |A =
⊕

ψ.

In other words, we need to know how to decompose a unitary representation into irre-
ducibles.

Example 5.6.1. Consider our model example, R acting on L 2(R) by translation. This is
certainly not a direct sum of irreducible representations. Indeed, since R is abelian an
irreducible representation would be 1-dimensional, and then an eigenfunction would
be f (x ) = e iαx . But these aren’t in L 2.

So we need to enlarge the notion of “direct sum” to “direct integral”.

Let G be a locally compact topological group. Recall that the unitary dual ÒG is the
set of irreducible unitary representations. There is a σ-algebra of “Borel” sets on ÒG ,
which we will define shortly.

To get a sense of what thisσ-algebra looks like, we first consider the space of framed
irreducible n-dimensional representations FrIrrn . It is the set of unitary irreducible G -
representations on Cn . The space Irrn of irreducible representations of dimension n is
a quotient of FrIrrn by an equivalent relation.

The space FrIrrn has a reasonable topology, which is cut out by the following func-
tions: for each 1≤ i , j ≤ n and each g ∈G we get a function on Irrn , taking

(π, Cn ) 7→ 〈π(g )vi , v j 〉

where {vi } is a basis for Cn . If n =∞, then by Cn we mean `2(N).
This defines a Borel σ-algebra on FrIrrn , which we can then push down to get a σ-

algebra on ÒG . The resulting thing can be quite pathological, however. The problem is
the quotient process: it can look like a quotient by a dense equivalence relation. Recall
that we saw this issue arise for the representations of the discrete Heisenberg group, in
§4.4.



32 LECTURES BY AKSHAY VENKATESH

We now spell out the result of this discussion:

Definition 5.6.2. Let Irrn be the set of homomorphisms G →U (Cn )which define irre-
ducible representations. (For n =∞, we mean `2(N) for C∞.) We define a σ-algebra
on Irr(n ) by requiring all the coordinate functions to be measurable. (The coordinate
functions are the matrix coefficients indexed by group elements and bases of Cn ). A set
S ⊂ ÒG is measurable if for every n , its pre-image under Irr(n )→ ÒG is measurable.

Thisσ-algebra is called the Borelσ-algebra.

Remark 5.6.3. In good cases one can put a topology on ÒG such that this is the Borel
σ-algebra in the usual sense.

We now make a key assumption on G that rules out pathologies.

Assumption (*). For every irreducible unitary representation π and ev-
ery function f ∈ L 1(G ), the operator π( f ) is compact (i.e. a limit of
finite-rank operators in the norm topology).

This assumption implies that there is a good theory of decomposition of representa-
tions. For example, it implies that theσ-algebra on ÒG is “nice”. (A reference for all this
is Dixmier’s book on C ∗-algebras [Dix96].)

Theorem 5.6.4. Under the assumption (*),

(1) The map
⊔

n

FrIrr(n )→ ÒG

has a Borel section.
(2) Any unitary representation of G on a Hilbert space H is isomorphic to a direct

integral
⊕

m∈N∪{∞}

�∫

ÒG

πdνm

�⊕m

for some mutually singular measures νm on ÒG .
(3) The measures νm are uniquely determined up to equivalence. (The equivalence

relation is ν∼ ν′ if each is absolutely continuous with respect to the other, mean-
ing that they share the same measure-0 sets.)

Remark 5.6.5. We make some remarks on what the statement of the theorem means.

(1) Concretely this means that we can make a model for each representation, which
varies in a nice way.

(2) We’ll explain what a direct integral of representations is shortly. When G =
Z, this recovers the spectral theorem for unitary operators. However, it looks
slightly different because the usual statement of the spectral theorem doesn’t
have a uniqueness clause. Note that the index m represents the multiplicity of
the representation.

Direct integrals. What is the meaning of a direct integral of representations? By (1) we
can choose a Borel section of the space of irreducible representations, which means
that there is a reasonable notion of a measurable assignment from an irreducible rep-
resentation π ∈ ÒG to a vector vπ in the space of π.
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Definition 5.6.6. We define the direct integral

∫

πdν

to be the space of measurable assignments π  vπ, completed for the norm

∫

|vπ|2 dν.

Then G acts on an assignment (π  vπ) by acting pointwise:

g · (π  vπ) = (π  g · vπ).

Remark 5.6.7. If you replace ν by an equivalent ν′, the resulting directing integrals are
isomorphic. Imagine the simplest case where ν= 2ν′; then we can just scale the norm
to make the two spaces isomorphic. In general, if ν and ν′ are equivalent then morally
they differ by a reasonable function at all points of ÒG , and we can use this to scale the
norms to be equivalent.

Example 5.6.8. Let G =R, so ÒG =R, with ξ ∈R corresponding the representationπξ of
G on C where x acts as multiplication by e iξx . The Borel σ-algebra here turns out to
coincide with the standard one. Take the standard norm on C.

Consider the direct integral with respect to Lebesgue measure:

∫

πξdξ.

What is this? As a set it consists of assignments: for each ξ an element of the space of
πξ which we identify with C, with finite norm. So as a vector space the direct integral
is identified with the set complex-valued function f (ξ): R→C such that

∫

| f (ξ)|2 dξ<∞.

How does the group act? By replacing f (ξ) with e i xξ f (ξ). This is isomorphic to the
G -action on L 2(R) by translation; the isomorphism is given by the Fourier transform.

In summary, the Fourier transform gives an explicit isomorphism

(L 2(R), translation)∼=
∫

ξ∈ÒG
πξdξ.

Exercise 5.6.9. What does the theorem say for G = Z?

Example 5.6.10. We want to illustrate the kind of pathology that can occur with the
“π( f ) compact” assumption. Once you drop this condition, the structure of ÒG becomes
very bad and you also lose any hope of uniqueness.



34 LECTURES BY AKSHAY VENKATESH

Let’s go back to the discrete Heisenberg group HeisZ. One presentation for it is that
it’s generated by operators

U =





0 1 0
1 0

1





V =





0 0 0
1 1

1





W =





0 0 1
1 0

1





with the relation [U , V ] =W .
Consider the representation Vβ of HeisZ on L 2(R) given by

U f (t ) = f (t +1)

V f (t ) = e iβ t f (t )

W f (t ) = e iβ f .

Take β to be irrational. (We previously constructed a similar representaiton on L 2(Z).)
We claim that this representation is not irreducible. Take J ⊂ [0, 1), and we can take

the set of functions f whose support is contained in J +N. Such a support condition is
obviously preserved by the HeisZ-action, so this is a closed invariant subspace.

We want to decompose Vβ into irreducibles. We can decompose it by shrinking J .
Morally we want to shrink J down to a point. If we do this, we’ll get that VJ is a direct in-
tegral of the spaces where J is a point. But are really just like the representations V (α,β )
that we discussed earlier in §4.4: they are irreducible but there are many isomorphisms
between them. The space of irreducible representations looks like R quotiented out by
a dense subset.

So we do get a decomposition into irreducibles, but it looks when we try to express it
as a direct integral over ÕHeisZ since the collapsing of isomorphism type is very violent.
There’s a second problem, which is that this decomposition is not unique. If we take
the Fourier transform we get a similar decomposition, since the roles of U and V are
reversed, but the two decompositions don’t have anything to do with each other.

Remark 5.6.11. Another way to see that this space is not irreducible is to write down
non-trivial operators that commute with it. Clearly any translation commutes with U .
If we translate by the right amount, it will translate with V as well. Define U ′ : f (t ) 7→
f (t +2π/β ); this commutes with U and V (hence also with W ). Similarly, if we define
V ′ : f (t ) 7→ e i t f (t ), then it commutes with the HeisZ-action. Thus we find two repre-
sentations of HeisZ that commute with each other!
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5.7. Mackey’s proof. Let π be a representation of Heis, where the center acts as




1 z
1

1



 7→ multiplication by e i z .

Letσα be the representation of the (commutative) subgroup

A :=











1 z
1 y

1











on C given by the character e i (αy+z ). The Decomposition Theorem 5.6.4 implies that

π|A ∼=
⊕

m

�∫

σαdνm (α)

�

where νm is a measure on R. (We’ve snuck a step here: bA ∼=R×R, but the subset corre-
sponding to a fixed central character is just R.)

Only one summand is non-zero, because the splitting is intrinsic and the subgroup
A is normal. (Conjugation by G preserves the multiplicities, so each multiplicity sum-
mand defines a G -invariant subspace of π.) Say m0 is the non-zero contributing mul-
tiplicity.

Consider how the U operator acts. Conjugation by




1 x
1

1





sendsσα toσα+x . On the other hand this conjugation doesn’t change the isomorphism
type of π, so we conclude that νm is invariant under translation by x , for all x . That
implies that νm must be equivalent to the Lebesgue measure. So at this point we have
shown that

π|A ∼=
�∫

σαdα

�

⊕

m

.

Now we just need to show that m = 1.
What is the representation

∫

σαdα?

To specify a vector in this representaiton, you have to specify a complex number for
each C, with the collection having bounded norm, so as a vector space this is just L 2(R).
You can check that the action is given by





1 z
1 y

1



 f (t ) = e i (t y+z ) f (t ).



36 LECTURES BY AKSHAY VENKATESH

We want to show that m = 1, and that




1 x
1

1



 acts by translation τx f (t ) = f (t + x ).

Let

Ux = action of





1 x
1

1





Vy = action of





1
1 y

1





Then

[Ux , Vy ] = e i x y

and the same commutation relation holds for τx :

[τX , VY ] = e i x y .

So this tells us that τ−x Ux commutes with A. As we’ve discussed, anything that com-
mutes with A must be a multiplication operator, so τ−x Ux is of the form

f (t ) 7→mx (t ) f (t )

where mx (t ) ∈ U(Cn ). Let’s re-index slightly: write M (t , x + t ) :=mx (t ). The fact that
Ux Uy =Ux+y translates into a cocycle condition M (a , b )M (b , c ) =M (a , c ). Taking b =
0, we get

M (a , 0)M (0, c ) =M (a , c ).

Remark 5.7.1. The careful reader will notice that we’re being a little sloppy here, be-
cause the functions are really only up to equivalence (away from a measure 0 set). This
is problematic because we’re restricting to a measure 0 set. However, it works for almost
all values of “0”.

This implies M (a , c ) =M (a , 0)M (c , 0)−1. So if we replace f (t ) by M (t , 0) f (t ), then in
these coordinates Ux acts by τx .

The conclusion is that π= L 2(R , Cm )with our favorite action




1 x z
1 y

1



 f (t ) = f (t + x )e i (t y+z ).

This is L 2(R )⊕m , so irreducibility forces m = 1.
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6. THE WEIL REPRESENTATION

6.1. Functoriality of the Kirillov correspondence. We’ve now completed the dictio-
nary between representations of Heis and orbits in Lie(Heis)∗:

πO↔O .

We next ask the question: how functorial is this? We’ll see that this leads somewhere
interesting.

More precisely, we’ll shortly see that SL2(R) acts on Heis, preserving all the orbits O
of positive dimension. This raises the question: does SL2(R) also act on πO ?

We’ll now shift to a more convenient set of coordinates for Heis. Write

(x , y ; z ) :=





1 x x y
2 + z

1 y
1



= exp









x z
y







 .

In these coordinates the multiplication is

(x , y ; z ) · (x ′, y ′; z ′) := (x + x ′, y + y ′; z + z ′+
x y ′− x ′y

2
).

The quantity x y ′−x ′ y
2 is a symplectic form! It is the pairing given by

�

x y
�

�

1
−1

��

x ′

y ′

�

.

It follows that for g ∈ SL2(R), the rule [x , y ] 7→ g [x , y ] gives an automorphism of Heis.

Remark 6.1.1. More generally, if V is a vector space over R with symplectic form 〈x , y 〉
then we can define a group HeisV =V ⊕R with multiplication

(v ; t )(v ′; t ) = (v + v ′, t + t ′+
〈v, v ′〉

2
).

Then Lie(HeisV ) =V ⊕R, with the Lie bracket being

[(v ; t ), (v ′, t ′)] = (0; 〈v, v ′〉).

Then Sp(V ) = {g ∈GL(V ) | 〈g v, g w 〉= 〈v, w 〉} acts on HeisV .
Everything we’ve said generalizes to these types of groups. In particular, there is a

unique irreducible representation corresponding to a fixed non-trivial central charac-
ter.

Now check that SL2(R) preserves each positive-dimensional orbit. This implies that
for every g ∈ SL2(R), we must have

π
g
O
∼=πO

where

π
g
O (h ) =πO (g ·h ).

This implies that there exists some Ag ∈Unitary such that

πO (g (h )) = AgπO (h )A
−1
g .
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This Ag is unique up to scalars, by Schur’s Lemma. How do they multiply? It is easy to
check that Ag Ag ′ has the same formal property as Ag g ′ . So

Ag Ag ′ = (scalar) ·Ag g ′ .

Moreover, this scalar is in S 1, since the operators are unitary. (Obviously we couldn’t
have done any better, since Ag is only defined up to scalars in S 1.)

The upshot is that we get a projective representation

SL2→U (L 2(R))/S 1

sending g 7→ Ag .
Let G = {g ∈ SL2(R), choice of Ag }. This is a Lie group under composition (although

technically we haven’t justified this yet), and it has a map

G → SL2(R)

whose kernel is a central S 1. This G acts on L 2(R).
So we have an extension

1→ S 1→G → SL2(R)→ 1.

This gives an extension at the level of Lie algebras:

0→R→ Lie(G )→ Lie(SL2 R)→ 0

which is (uniquely) split. This is a general fact about central extensions of semisim-
ple (or even reductive) Lie algebras, but here is a way to see it concretely (which also
generalizes). Let

e =
�

0 1
0 0

�

f =
�

0 0
1 0

�

h =
�

1
−1

�

be the standard basis of sl2(R), which satisfies the commutation relations

[h , e ] = 2e

[h , f ] =−2 f

[e , f ] = h .

To lift sl2 to Lie(g ): note that for any x , y ∈ sl2 and lifts ex , ey ∈ Lie(G ), the Lie bracket
[ex , ey ] is independent of lift, because the ambiguity in the lift is central. So we can lift
commutators uniquely, but everything in sl2 is a commutator.

Exercise 6.1.2. Check that this defines a lift of the Lie algebra.

At the group level, this implies that we can find a lift gSL2(R)→G from the universal
cover gSL2(R) of SL2(R). The conclusion is that we get

ρ : gSL2(R)→Unitary(L 2(R))
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such that

ρ(g )πO (h )ρ(g
−1) =πO (g ·h ) (6.1.1)

where g is the image in SL2 R. To see the nature of this universal cover, note that SL2(R)
has a map to the bottom row

SL2(R)
�

a b
c d

�

R2−0 (c , d )

whose fibers are lines, which are contractible. So there is a map (c , d ): SL2 R→R2−{0}
showing π1(SL2 R) = Z.

Remark 6.1.3. The group gSL2(R) doesn’t have any faithful finite-dimensional represen-
tations.

So far everything is formal. Now a miracle happens: ρ is trivial on 2Z, so it descends
to a double cover of SL2 R:

0→ Z/2→Mp2(R)→ SL2(R)→ 0.

Remark 6.1.4. Mp2 is the “metaplectic” group. This is parallel to the Spin double covers
of special orthogonal groups.

6.2. Summary. We have constructed a “projective representation”

ρ : SL2(R)→U(L 2(R))/S 1

or alternately a representation of the universal cover

eρ : fSL2(R)→U(L 2(R)).

This is characterized by the relation

ρ(g )π(h )ρ(g −1) =π(g (h )).

We claim that this miraculously factors through the double cover of SL2(R), which we
will show later.

6.3. A heuristic picture. For g ∈ SL2(R ) and h ∈Heis, we had

ρ(g )π(h )ρ(g −1) =π(g ·h ).

This implies that for any B ∈ L 1(Heis), we have

ρ(g )π(B )ρ(g −1) =π(g ·B ).

We saw thatπ(B )had something to do with Op(B ). So we conclude that for a ∈C∞c (R
2),

ρ(g )Op(a )ρ(g −1)∼Op(g ·a ).
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Remark 6.3.1. We only get equality if we replace Op with the Weyl-twisted verison
OpW :

ρ(g )OpW (a )ρ(g −1) =OpW (g ·a )

where

OpW (ba ) =

∫

a (x , y )π(x , y ; x y /2)d x d y

We will present some heuristic reasoning to figure out what, roughly speaking, ρ(g )
should look like for each g .

Let a be the characteristic function of a rectangle of length L and height 1/L , cen-
tered at y -coordinate h .

Then Op(a ) is approximately a projector onto functions which are localized on this rec-
tangle, i.e. which have support in an interval I of length L and Fourier support in an
interval of length 1/L . For large L , this means that Op(a ) should be an approximate
projector onto the line spanned by the function: e i h x truncated to the interval I .

You can pretty much guess the formulas we’re about to write down by thinking in
terms of these pictures.
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• First consider g ∈ SL2(R) of the form

g =
�

s
s−1

�

.

Then g ·a = a ◦g is the characteristic function of a stretched rectangle of length
a s and height 1/s L centered at height s h . So ρ(g ) should be approximately

ρ

�

s
s−1

�

∼ f (x ) 7→
1
p

s
f (x/s )

• Next consider g of the form

g =
�

1
θ 1

�

.

Thenρ(g ) should be an approximate projector onto the line spanned by e i h ′(x )x

where the frequency h ′(x ) now varies with x .
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Since the height is h +θ x , we should have h ′(x ) = h +θ x the upshot is that
ρ(g ) should be an approximate projector onto e i (h+θ x )x . Since Op(a ) is itself a
projector onto e i h x , we conclude that

ρ

�

1
θ 1

�

∼ multiplication by e −iθ x 2/2.

• Finally we consider ρ(g ) for g =
�

1
−1

�

. Since this interchanges the support

and Fourier support, we guess thatρ(g ) is something like the Fourier transform.

6.4. The Weil representation. We’re now going to write down explicit formulas forρ(g ),
guessed from the preceding heuristics. For g ∈ SL2(R), we need to write downρ(g ) such
that

ρ(g )π(h )ρ(g −1) =π(g ·h ) (6.4.1)

or in other words the following diagram commutes up to scalars:

L 2(R) L 2(R)

L 2(R) L 2(R)

ϕ 7→ϕ(t+x )e i t y

ρ(g ) ρ(g )

ϕ 7→ϕ(t+x ′)e i t y ′

where [x ′, y ′] = g [x , y ].
Example 6.4.1. Let’s use this to compute ρ(g ) for

g =
�

1
θ 1

�

so [x ′, y ′] = [x ,θ x + y ].
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If x = 0, then [x ′, y ′] = [x , y ] so the condition (6.4.1) is that ρ(g ) commutes with
multiplication by e i t y , which implies - as we have discussed -

ρ

�

1
θ 1

�

= multiplication by some m (t ).

To figure out the function m (t ), we make the diagram commute:

m (t ) =m (t +θ x )e iθ t x .

So m (t ) = e −iθ t 2/2−iθ x 2/2. Since really m (t ) is only defined up to a scalar in S 1, this is
just as good as m (t ) = e −iθ t 2/2.

We claim that the following formulas work:

ρ

�

s
s−1

�

: ϕ(t ) 7→
1
p

s
ϕ(t /s )

ρ

�

1
θ 1

�

: ϕ(t ) 7→ e −iθ t 2/2ϕ(t )

ρ

�

1
−1

�

: ϕ(t ) 7→ bϕ(t )

We can check them by explicit computation. In fact these matrices generate SL2(R), so
they tells us the action of all of SL2(R). However, it’s easier to just go to the Lie algebra.

6.5. Action of the Lie algebra. When a Lie group G acts on a Hilbert space H , we get
a Lie algebra action of Lie(G ) on the (dense) subspace of smooth vectors H∞ ⊂H , by
the rule: for X ∈ Lie(G ),

X · v =
d

d u
|u=0(e

u X · v )

Let’s determine the action of Lie(SL2) on L 2(R). The Lie algebra is generated by

h =
�

1 0
0 −1

�

f =
�

0 0
1 0

�

e =
�

0 1
0 0

�

The action of h ∈ Lie(SL2) is given by

ϕ 7→
d

d u
|u=0

�

e −u/2ϕ(e −u t )
�

=
�

−
1

2
− t

d

d t

�

ϕ.

The action of f is given by

ϕ 7→
d

d u
|u=0

�

e −i u t 2/2ϕ(t )
�

=
−i t 2

2
ϕ(t ).
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The action of e is essentially the action of f on the Fourier side. So the conclusion is
that

h ·ϕ(t ) =
�

−
1

2
− t

d

d t

�

ϕ

f ·ϕ(t ) =
−i t 2

2
ϕ(t )

e ·ϕ(t ) =−
i D 2

2
ϕ.

Actually what we’ve been doing is not quite well-defined, because we only had a rep-
resentation of SL2(R) up to scalars. However, we know that there is a way to promote
this to an honest representation of Lie(SL2), because there is an honest representation
of fSL2(R)which has the same Lie algebra.

To pin down the representation on the nose, we just need to check that the cor-
rect commutation relations are satisfied. In fact it will turn out that we were fortunate
enough to get the scalars right in the first place.

Recall that we constructed the representationfSL2 by lifting the commutator relations
[h , e ] = 2e , [h , f ] = −2 f , and [e , f ] = h . To confirm that our formulas are correct, we
just need to verify that these relations hold. For instance,

[e , f ]ϕ(t ) =−
1

4
((t 2 f )′′− t 2 · f ′′) =−1/4(2 f +2t f ′)

while

hϕ(t ) =−
1

2
(ϕ+ tϕ′).

We can now check thatρ descends from gSL2 to the double cover. We have the defin-
ing extension

0→ Z→fSL2(R)→ SL2(R)→ 0. (6.5.1)

We have the subgroup SO2(R)⊂ SL2 R, and if we pull this back along (6.5.1) then we get
(in suitable coordinates):

0→ Z→R→ SO2 R→ 0.

So we know that θ = 2π generates the kernel of fSL2→ SL2. Let Z be the action of θ = 2π.
We know that it acts as a scalar in L 2(R) since it projects to the identity in SL2(R). Let’s
compute this scalar.

We have

Lie(SO2(R)) =R
�

0 1
−1 0

�

which acts by

ϕ 7→ −
i

2
(D 2ϕ− t 2ϕ).

The function ϕ(t ) = e −t 2/2 is an eigenfunction (with eigenvalue 1) of the operator, by
the calculation:

D 2ϕ(t ) = (−t e −t 2/2)′ = (t 2−1)e −t 2/2.
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So the conclusion is that
�

0 1
−1 0

�

·ϕ(t ) = i/2 ·ϕ(t ).

Then

exp
�

0 θ
−θ 0

�

ϕ(t ) = e iθ/2ϕ(t ).

(Similar conclusion the other eigenvectors.) So the element

Z = exp
�

0 2π
−2π 0

�

acts as multiplication by −1.
Now let’s try to understand Lie(Heis) as a representation of Lie(SL2).

Lie(Heis) =





0 x z
0 y

0





is generated by

U =





0 1 0
0 0 0
0 0 0





V =





0 0 0
0 0 1
0 0 0





W =





0 0 1
0 0 0
0 0 0





with the commutation relation [U , V ] = W . Because U generates translation and V
generates multiplication by e i t y . So in terms of the action on L 2(R), we have:

f ↔
i

2
V 2

e ↔−
i

2
U 2

and (writing the h more symmetrically)

h↔
i

2
(U V +V U ).

Remark 6.5.1. More generally, we can identify

Lie(SpV )∼= Sym2(V )

Indeed, Lie(SpV ) consists of A ∈ End(V ) that infinitesimally preserve the symplectic
form on V :

〈Ax , y 〉+ 〈x , Ay 〉= 0.
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From A we can make a quadratic form on V : 〈Ax , x 〉. Using the symplectic form, we
can identify this with an element of Sym2(V ).

6.6. Action of a general element. The formulas

ρ

�

s
s−1

�

: ϕ(t ) 7→
1
p

s
ϕ(t /s )

ρ

�

1
θ 1

�

: ϕ(t ) 7→ e −iθ t 2/2ϕ(t )

ρ

�

1
−1

�

: ϕ(t ) 7→ bϕ(t )

specify the action of all of SL2(R), since the special matrices
­�

s
s−1

�

,
�

1
θ 1

�

,
�

1
−1

�·

s ,θ

generate all of SL2(R).
Nonetheless, it will be useful to explain the what the action of a general element of

SL2(R) looks like. Consider the map

L 2(R)→ L 2(R)

given by

f (x ) 7→
∫

f (x )e iQ (x ,y )d x

where Q (x , y ) is a (real-value) quadratic form on R2. Strictly speaking, one might com-
plain that the right side doesn’t clearly lie in L 2(R), but the following discussion will
make it clear what we mean by this.

If
Q (x , y ) = a x 2+ b x y + c y 2

(assume b 6= 0) then

f 7→ f (x )e i (a x 2+b x y+c y 2)d x

is the composite of three operations:

f (x ) 7→ e i a x 2
f (x )

︸ ︷︷ ︸

h (x )

7→
∫

h (x )e i b x y

︸ ︷︷ ︸

g (y )

7→ e i c y 2
g (y ).

In fact we can even think of factoring up the middle step into Fourier transform fol-
lowed by rescaling by b . Each of the steps is the action of some special matrix in SL2(R).

In other words, the map

f 7→
∫

e iQ (x ,y ) f (x )d x

gives (up to scalar) the action of
�

1 −2c
0 1

��

b−1 0
0 b

��

0 1
−1 0

��

1 0
−2a 1

�
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which matrix product is

gQ :=−b−1
�

2a 1
4a c − b 2 2c

�

∈ SL2(R).

The map Q 7→ gQ is birational, with image
�

∗ ∗ 6= 0
∗ ∗

�

∈ SL2(R).

So for any quadratic form Q on R2 with b 6= 0, we get gQ ∈ SL2(R) such that

gQ · f = (scalar)

∫

f (x )e iQ (x ,y )d x .

Where does the relation Q ↔ gQ come from? We’ll try to give a high-level overview.
Given manifolds X , Y of the same dimension, and a smooth (R-valued) function K (x , y )
on X × Y (which we’ll specialize to X =R, Y =R, and K =Q ), its derivative d K (x , y ) ∈
T ∗x ×T ∗y gives a graph Γ (d K )⊂ T ∗X ×T ∗Y . In our case,

Γ (dQ )⊂R2×R2

and it turns out that Γ (dQ ) = Γ (gQ). In the general case, this suggests that the map

C∞c (X )→C∞c (Y )

f 7→
∫

C∞(Y )
e i K (x ,y ) f (x )d x

should be related to the graph of a symplectomorphism T ∗X → T ∗Y . This is the start
of the theory of Fourier integral operators.

6.7. How to work explicitly with fSL2(R). We want to explain how to compute explicit
cocycles describing the extension

0→ Z→fSL2(R)→ SL2(R)→ 0

Given a topological group G acting on a connected topological space X , make an
extension of G . Let eX be a the universal cover of X and let

eG = {lifts of some g ∈G to eX }.

i.e. for any g ∈G , eg is some map eX : → eX making the following diagram commute:

eX eX

X X

eg

g

By the theory of covering spaces, such a lift exists but is not unique. There is a map
eG →G , whose kernel is the ambiguity of the lift, which is a torsor for π1(X ).

0→π1(X )→ eG →G → 0.
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Apply this to SL2(R) acting on X =R2−{0}/R>0, which you can think of as the space
of oriented lines in R2. We can identify X ∼= S 1 ⊂ R2. Then eG is exactly the universal
cover of SL2(R).
Exercise 6.7.1. Check this. [Hint: restrict to SO2(R).]

From here you can get an explicit cocycle for ÝS L 2(R). We have eX = R, and the map
eX → X sends θ ∈R to the line at angle θ . Choose some set-theoretic section

X → eX

(e.g. measure the angle on the x -axis in [−π,π)). Fix a basepoint x0 ∈ X , say the positive
x -axis. Write ex for the lift of x . For each g ∈ G , we get a lift eg ∈ eG by asking that
eg ex0 =Þg x0. This defines a set-theoretic section G → eG .

We want to find an explicit formula for

eg eh =Ýg h · (something in π1).

How does eg act on general ex ? Assume that π1 is abelian for simplicity. For any path p
in X from x to y , we can lift to a path ep in eX from ex to to some lift of y , which is ey +I (p )
where I (p ) ∈ π1(X ). (In the example of SL2(R) acting on X , I (p )measures the number
of times that p crosses the negative x -axis with suitable multiplicities.)

We’ll just state the result and leave it to you to check it:

eg ex =Ýg x + I (g p )− I (p )

where p is a path from x0 to x in X .
So for g1, g2 ∈G we get

eg1 eg2ex0 = eg1(ßg2 x0) =âg1g2 x + I (g1p )− I (p )

where p is a path from x0 to g2 x0. The cocycle is then

eg1 eg2 =ßg1g2+ (I (g1p )− I (p ))
︸ ︷︷ ︸

∈π1

.

6.8. The Weil representation in general. Now we’ll go to the general setting. We’re
going to try to write down an explicit realization of the Weil representation, in a form
that makes it clear why it is only defined on a cover.

Let (V , 〈, 〉) be a symplectic vector space, meaning that V a finite-dimensional R-
vector space with a symplectic (i.e. nondegenerating and alternating) form 〈x , y 〉. We
can form the group

HeisV =V ⊕R

with multiplication

(v, t )(v ′, t ′) =

�

v + v ′, t + t ′+
〈v, v ′〉

2

�

.

As before, HeisV has a unique irreducible representation where (0, t ) acts by e i t .
In the previous case V =R2 and the representation was realized on L 2(R). In general,

if dim V = 2n then the representation can be realized on L 2(Rn ). However, we want to
phrase this more intrinsically.
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Any symplectic vector space (V , 〈, 〉) is isomorphic to a direct sum of (R2, std). Said
differently, we can choose bases (e1, f1), (e2, f2), . . . , (en , fn ) such that

〈ei , e j 〉= 0

〈 fi , f j 〉= 0

〈ei , f j 〉=δi j .

So X := Span(ei ) is an n-dimensional subspace of V where 〈, 〉 vanishes, and Y :=
Span( f j ) has the same property (“Lagrangian”).

In fact we can go backwards from this: suppose we’re given V = X ⊕ Y where X , Y
are Lagrangian, then 〈, 〉 gives a perfect pairing X ×Y →R and we can choose dual bases
(ei ) for X and ( f j ) for Y . Given such a splitting, HeisV acts on L 2(X ) by

(x , 0) f (t ) = f (t + x )

(y , 0) f (t ) = f (t )e i 〈t ,y 〉.

This determines the action of R⊂HeisV , and it is the unique representation where

(0, v ) f (t ) = e i v f .

We’ll try to turn the collection of models into a canonical one, by establishing com-
patible isomorphisms between them. We won’t quite be able to accomplish this, be-
cause of the need to pass to a spin cover; we’ll only achieve compatibility up to an 8th
root of unity.

The first step is to realize that the model just constructed depends only on Y , al-
though we formulated it in a way that seems to depend on X as well. Recall that for
the Heisenberg over Fp , we constructed the analogous representation by inducing the
character





1 z
1 y

1



 7→ e 2πi z/p

am then restricting. (In fact we could have extended the central character arbitrarily to
this subgroup.)

We now want to discuss induction more generally. It requires some care to write
down a good definition for possibly infinite-dimensional representations.

Definition 6.8.1. If H ⊂G are topological groups such that H \G admits a G -invariant
measure, and χ : H → S 1 is a character, we define the induced representation

IndG
H χ = { f : G →C | f (hg ) =χ(h ) f (g )}

with the norm

|| f ||=
∫

H \G
| f |2.

The action of G is by right translation. Note that since χ is valued in S 1, | f |2 is well-
defined on the quotient space H \G .

Let H ≤ Heis be the subgroup Y ⊕R. (Note that H is abelian, because 〈, 〉 vanishes
on Y .) Let χ(y , v ) = e i v be a character of H . Then
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Claim 6.8.2. There is an isomorphism

IndG
H χ
∼= L 2(X ) (with prior action)

given by f 7→ f |X .

Proof. You can just check this by hand. We’ll do one example: matching up the action
of (y , 0). For f ∈ IndG

H χ ,

((y , 0) f )(t , 0) = f ((t , 0) · (y , 0)) = f ((y , 〈t , y 〉)(t , 0)) = e i 〈t ,y 〉 f (t , 0).

�

For the upcoming discussion on the Weil representation, a reference is [LV80].
We have constructed an irreducible representation IY = IndHeisV

Y ⊕R χ for each Lagrangian
Y ⊂V , which are all abstractly isomorphic. We now define isomorphisms

ϕY Y ′ : I (Y )→ I (Y ′).

It’s not hard to guess what such a map should look like. It should send f to some func-
tion invariant with respect to Y ′, and the most straightforward to arrange this is to in-
tegrate over Y ′:

ϕY Y ′ ( f ): g 7→
∫

Y ′∈Y ′
f (y ′g )d y ′

We should specify the measure, but at the end it will be uniquely specified by the con-
dition that it preserves the norm. So we will be quite careless throughout about these
constant factors.

Actually this formula only works if Y ∩Y ′ is transverse. In general, you replace Y ′ by
Y ′/(Y ∩Y ′).

Remark 6.8.3. The definition suggests that ϕY Y ′ doesn’t vary in a nice way, since the
definition changes depending on the the nature of the intersection.

We want to compare

ϕY ′Y ′′ ◦ϕY Y ′ and ϕY ′′Y .
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Choose a third Lagrangian subspace X , with X ∩Y = 0 and X ∩Y ′ = 0.

Then we want to understand

I (Y ) I (Y ′)

L 2(X ) L 2(X )

ϕY Y ′

?

It turns out that ? is convolution with a Gaussian. The important aspect is the phase
which appears in the Gaussian.

By transversality, we can write Y ′ as the graph of some map

A : X → Y .

In other words,

Y ′ = {x +Ax : x ∈ X }. (6.8.1)

(There is a constraint on A coming from the fact that Y ′ is Lagrangian, which we’ll flesh
out later.) Let f ∈ I (Y ); we want to evaluate

ϕY Y ′ f ((t , 0))

for t ∈ X . By definition, and using (6.8.1), we have

ϕY Y ′ f ((t , 0)) =

∫

y ′∈Y ′
f ((y ′, 0) · (t , 0))d y ′ =

∫

x∈X

f ((x +Ax , 0) · (t , 0))d x .

Since f is invariant under Y , we want to pull everything involving Y to the left. Now

(x +Ax , 0) · (t , 0) = (Ax , 〈Ax , x 〉/2)(x + t , 0)

so

f ((x +Ax , 0) · (t , 0)) = e i 〈x ,Ax 〉/2 f (x + t , 0).
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Therefore

ϕY Y ′ f (t , 0) =

∫

X

e i 〈x ,Ax 〉/2 f (x + t )d x

which is the convolution of f with the Gaussian e i 〈x ,Ax 〉/2. Then

FT(conv. of f with e i 〈x ,Ax 〉/2) = FT( f ) ·FT(e i 〈x ,Ax 〉/2).

The Fourier transform of e i 〈x ,Ax 〉/2 is another Gaussian. What are its parameters? On
Rn if A is a nondegenerate symmetric n ×n matrix,

FT(e i x T Ax/2) = γ(A)
︸︷︷︸

phase

e −i x T A−1 x/2

The Gaussian doesn’t actually matter for us; the only important thing is the phase

γ(A) = e iπ/4 sign(A)

where

sign(A) = #positive eigenvalues−#negative eigenvalues.

This shows that the map in question is quite simple in the Fourier-transformed pic-
ture. Let g (A) = e −i x T A−1 x/2 be the Gaussian associated with A. Then we have the com-
mutative diagram

I (Y ) I (Y ′)

L 2(X ) L 2(X )

L 2(X ) L 2(X )

ϕY Y ′

convolution

FT FT

·γ(A)g (A)

This is enough to see that the maps are compatible up to 8th root of unity. Indeed,
suppose we choose another (transverse) Lagrangian Y ′′:
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I (Y ) I (Y ′) I (Y ′′)

L 2(X ) L 2(X ) L 2(X )

L 2(X ) L 2(X ) L 2(X )

ϕY Y ′

ϕY Y ′′

ϕY ′Y ′′

FT FT FT

·γ(A′′)g (A′′)

·γ(A)g (A) ·γ(A′)g (A′)

If the Gaussians are g1, g2 then the composite Gaussian must be g1g2 = g3. Indeed,
the difference between these sides commutes with the action of the Heisenberg group,
hence must be a scalar. So only the phases can differ:

ϕY Y ′′ =ϕY ′Y ′′ϕY Y ′ · (8th root of 1).

6.9. The Maslov index. Let V be as before, and X1, X2, X3 ⊂ V be Lagrangian sub-
spaces. The Maslov index is an integer τ(X1, X2, X3) ∈ Z which is invariant by the sym-
plectic group. Before we give the general definition, let’s say what it is in 2 dimensions.

Example 6.9.1. Suppose you have three pairwise-transverse lines X1, X2, X3 ⊂ V . You
need to attach an integer to the position. One way is to get the cyclic orientation of the
three lines. It should be 1 in one case and −1 in another.

Now we give the general definition.

Definition 6.9.2 (Kashiwara). Consider the quadratic form on X1⊕X2⊕X3 given by

(x1, x2, x3) 7→ 〈x1, x2〉+ 〈x2, x3〉+ 〈x3, x1〉
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Then define the Maslov index τ(X1, X2, X3) to be the signature of this form.

You can also do this algebraically. This is a quadratic form over a general field, and
gives you an invariant in the Witt group.

Example 6.9.3. Let’s see what form this takes in the tranverse case. Suppose X i are
pairwise transverse. We can write X2 are the graph of a map A : X1→ X3. Then

τ(X1, X2, X3) = sign(〈x , Ax 〉).

Properties of the Maslov index:

(1) It is antisymmetric under S3,
(2) If X1, X2, X3, X4 are four subspaces,

τ(X2, X3, X4)−τ(X1, X3, X4) +τ(X1, X2, X4)−τ(X1, X2, X3) = 0.

Exercise 6.9.4. Check these.

The phases for IY Y ′ , IY ′Y ′′ and IY Y ′′ are

e i π4 τ(X ,Y ′,Y ), e i π4 τ(X ,Y ′′,Y ′) and e i π4 τ(X ,Y ′′,Y ).

Therefore

ϕY ′Y ′′ϕY Y ′ = e −
iπ
4 τ(Y ,Y ′,Y ′′)ϕY Y ′′ .

Remark 6.9.5. Strictly speaking we have only justified this when Y , Y ′, Y ′′ are trans-
verse, but it is true in general.

Now we study the action of the symplectic group. Fix a Lagrangian Y0. For any g ∈
Sp(V ), we have a map

IY0

g
−→ Ig Y0

given by
f 7→ f (g −1 x ).

We can use ϕ to go backwards, obtaining

IY0

g
−→ Ig Y0

ϕ
−→ IY0

.
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Call this composition [g ]: it is a unitary operator on IY0
. Now we try to compute the

relation of [g1][g2] and [g1g2]:

Ig1g2Y0

Ig2Y0
Ig1Y0

IY0
IY0

IY0

ϕg1g2 Y0,Y0
g1

ϕg1 Y0,IY0g2

[g2]

g1g2

g2

[g1]

It is easy to see that the middle square commutes, as does the left triangle. So the failure
to commute is expressed by the righmost triangle, i.e.

[g1g2]e
− iπ

4 τ(g1g2Y0,g1Y0,Y0) = [g1][g2].

From a slightly different perspective, this describes an action of an 8-fold cover of Sp(V )
on IY0

. Explicitly, this 8-fold cover is

{(g ,ζ) ∈ Sp(V )×µ8}

with the action being [g ]ζ, and the multiplication law being

(g1,ζ1)(g2,ζ2) = (g1g2,ζ1ζ2e −
iπ
4 τ(g1g2Y0,g1Y0,Y0)).

In fact eG has 4 components, and the identity component is a double cover of Sp(V ).
The point is that the cocycle is actually valued in ±1. We’ll skip this computation for
reasons of time, and leave you to look up the proof in [LV80].
Remark 6.9.6. The rule g1g2 7→τ(g1g2Y0k , g1Y0, Y0) is a cocycle

Sp×Sp→ Z.

The connected component of the associated central extension is the universal cover of
Sp(V ).

For the connection between this presentation and Maslov’s, see [ES76].

7. NILPOTENT GROUPS

7.1. Statement of Kirillov’s Theorem. Let G be a connected, simply-connected Lie
group with nilpotent Lie algebra. The prototypical example is









1 ∗ ∗ ∗
1 ∗ ∗

... ∗
1









Let’s review what these terms mean. That g := Lie(G ) be nilpotent means that the se-
quence

g⊃ [g,g]⊃ [g, [g,g]]⊃ . . .

is eventually 0.
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For such a G , the exponential map exp: g → G is a diffeomorphism. Therefore we
can think of the group structure as being on g, where it is given by the Campbell-Baker-
Hausdorff formula:

exp(X )exp(Y ) = exp(X +Y +
1

2
[X , Y ] + . . .)

Since g is nilpotent, the multiplication law on the Lie algebra is actually just a polyno-
mial. This means that G is the R-points of a unipotent algebraic group. In particular,
this implies that G is a closed subgroup of a standard upper-triangular unipotent group









1 ∗ ∗ ∗
1 ∗ ∗

... ∗
1









.

Theorem 7.1.1 (Kirillov). The irreducible unitary representations of G are in bijection
with G -orbits on g∗, and the correspondence is characterized by the Kirillov character
formula.

Remark 7.1.2. As with the Heisenberg group, most of these representations are ∞-
dimensional.

Let’s remind you what the correspondence is. An orbit O ⊂ g∗ corresponds to a rep-
resentation πO satisfying: for X ∈ g,

p

j (e X )Trπ(e X ) = FT(volume measure on orbit O ⊂ g∗). (7.1.1)

We explicate some aspects of this formula.

• Here j is the Jacobian of the exponential map exp: g→G . (The Jacobian is de-
fined by taking a volume form on g, transporting it to G by the diffeomorphism,
and propagating it by invariance.)
• There’s a symplectic form on O defined as follows: for X , Y ∈O ,

ω(X , Y ) =λ([X , Y ])

where X , Y are the derivatives of g 7→ gλ at X , Y . The volume measure on O is
then

� ω

2π

�d

where 2d = dimO .

Remark 7.1.3. The Jacobian simplifies to j = 1 in the nilpotent case.

The equality (7.1.1) is in the sense of distributions. Concretely, it means that for f ∈
C∞c (g),

Tr

�∫

X

f (X )π(e X )d X

�

=

∫

O
FT( f ).

Here

FT( f )(λ) =

∫

f (X )e i 〈λ,X 〉d X .

The well-definedness (i.e. convergence) of either side is not obvious.
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7.2. Outline of a proof. As for HeisV , we consider restriction to a subgroup. Thanks to
the nilpotence of g, the commutator subgroup is proper:

g) [g,g]

so there exists a Lie algebra homomorphism g→R. Let g1 be the kernel; exponentiating
it gives a subgroup G1 = exp(g1). If you choose X ∈ g−g1, then

G =G1oexp(R ·X )
︸ ︷︷ ︸

∼=(R,+)

.

By induction, we can assume that we know the result for G1. The main point is that you

have a map g∗
pr
−→ g∗1.

The idea is to take a representation π of G , restrict it to G1, and then decompose it
into irreducibles by using the theory of disintegration. It turns out that the possibilities
for this decomposition are limited: either the restriction remains irreducible or it splits
up into a single orbit of an irreducible σ of G1 under the action of R. By the result for
G1, we matchσwith an orbit O ⊂ g∗1. Then we show that the union of the conjugates of
pr−1(O ) by exp(R ·X1) is a single G -orbit on g∗, and is matched with π.

I wrote down the argument, but the technical details are quite tricky. We won’t go
through it.

7.3. Construction of the representation. We now want to explain an explicit way to
construct πO from O via induction. Fix λ ∈ O . The G -action on λ satisfies (by defini-
tion)

gλ(g X ) =λ(X ).
Differentiating this equation, we find that for Y ∈ g,

Y λ(X ) +λ([Y , X ]) = 0.

i.e.
Y λ(X ) =−λ([Y , X ]). (7.3.1)

This tells us that if X , Y belong to the stabilizer gλ of λ ∈ g, then

λ([X , Y ]) = 0

i.e. λ([gλ,gλ]) = 0. In other words, λ defines a Lie algebra homomorphism

gλ→R.

For these simply-connected groups we can easily pass between the group and Lie alge-
bra by exponentiation, so we get a corresponding Lie group homomorphism

e iλ : Gλ→ S 1.

In other words, we’ve used the orbit to build a character of its stabilizer. Now you might
like to induce it to a representation of G . However, that’s not the right thing to do at this
point. As a general philosophy, you need to extend the character as much as possible
before you inducing it. For example, in the Heisenberg case gλ is the center, and we
saw that we should first extend it to a 2-dimensional subalgebra.
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Note that (7.3.1) implies that the pairing

X , Y 7→λ([X , Y ])

descends to a pairing
g/gλ×g/gλ→R

which is alternating and non-degenerate. (According to (7.3.1), if it vanishes for all X
then by definition Y λ= 0.)

Under the identification g/gλ ∼= TλO , this form λ([X , Y ]) corresponds to the canoni-
cal symplectic structure of Fact 2.3.1.

We would like a sub-algebra q⊃ gλ as large as possible so thatλ: q→ R is a Lie algeba
homomorphism, meaning that λ([q,q]) = 0. In other words, q should have isotropic
image in g/gλ. The largest we can hope for is half the dimension.

Definition 7.3.1. A polarization is a (Lie) subalgebra gλ ⊂ q ⊂ g such that q/gλ is La-
grangian (maximal isotropic) for the form

X , Y 7→λ[X , Y ].

Fact 7.3.2 (Kirillov). Polarizations exist.

Of course there is no problem in finding Lagrangian subspaces; the issue is to arrange
them to be subalgebras.

If q is a polarization, and Q = exp(q), and let

χ : Q → S 1

be given by

χ(e q ) = e iλq .

Then IndG
Q χ is irreducible, and gives πO .

Remark 7.3.3. The polarizing subalgebras are not conjugate, yet somehow the repre-
sentations are isomorphic. In the Heisenberg group, any two-dimensional subalgebra
containing the center is a polarization.

We’ll compute the character to verify that it is right. A polarization gives a picture of
what the orbit looks like.

Exercise 7.3.4. Let H ≤G be Lie groups. If χ is a character of H , then the character of
π := IndG

H χ is

θπ(x ) =

∫

g∈G /H

χ(g −1 x g )d g .

This is to be interpreted in the sense of distributions: it means that for f ∈C∞c (G ),

Trπ( f ) =

∫

g∈G /H

∫

x∈H

χ(x ) f (g x g −1)d x d g

You can think of this as takingχ on H and forcing it to be conjugacy-invariant on G . To
prove this, you write down an integral kernel for π( f ). In other words, there is a finite-
group proof involving summing over diagonal entries of a matrix, and here you do the
same for an integral kernel.
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We apply this discussion to IndG
Q χ for q a polarization. We want to work out the trace

of the operator

π( f ) =

∫

X ∈g
f (X )π(e X )d x .

By Exercise 7.3.4, applied with H = exp(q) and in Lie algebra coordinates, says that the
trace is

Trπ( f ) =

∫

g∈G /Q

∫

Y ∈q
e iλ(Y ) f (g Y g −1)d y d g .

For g = 1, the contributing term is
∫

Y ∈q
e iλ(Y ) f (Y )d y

The Plancherel formula tells us that
∫

q

f =
�

1

2π

�d
∫

q⊥
FT( f )

so, shifting this a little, we find that
∫

Y ∈q
e iλ(Y ) f (Y )d y =

�

1

2π

�d
∫

q⊥+λ
FT( f )

where q⊥ = {µ ∈ g∗ : µ|q = 0} (note that dimq+dimq⊥ = dimg) and 2d = dimO = dimg−
dimgλ, so d = dimg−dimq.

Therefore,

Trπ( f ) =

∫

g∈G /Q

∫

Y ∈q
e iλ(Y ) f (g Y g −1)d y d g

=

∫

g∈G /Q

∫

g (λ+q⊥)g −1

FT( f )

=

∫

FT( f )dµ

where µ is the measure on g∗ obtained by pushing forward

G /Q × (λ+q⊥)→ g∗

Exercise 7.3.5. Show thatλ+q⊥ is the Q -orbit ofλ. Then show that G /Q×(λ+q⊥)maps
bijectively to the orbit O , i.e. the union of the G -conjugates of λ+q⊥ is Gλ=O and

g1(λ+q
⊥)g −1

1 = g2(λ+q
⊥)g −1

2 ⇐⇒ g1Q = g2Q .
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This presents a picture ofO as fibered overG /Q , with each fiber an affine space which
is the corresponding translate of λ+q⊥.

This picture interacts well with the symplectic form. It is a Lagrangian fibration, mean-
ing that each fiber is Lagrangian (at every point of every fiber, the tangent space is a
Lagrangian).

Note that

πO = IndG
Q χ .

Ignoring the character, this looks like the space of functions on G /Q , i.e. functions de-
fined on the space of fibers, i.e. “functions on O constant along fibers”. This is a useful
picture to have. For example, it explains why for the Heisenberg group the induced
representation has a model as functions on R2.

7.4. A look ahead. The next goal is to prove the Kirillov character formula for compact
groups. We don’t want to assume much familiarity with the general formalism of roots
and weights, so we’ll focus on the unitary group U (N ).

We first need some of the machinery of symplectic manifolds, including the Duistermaat-
Heckman localization formula. To explain why we need some a formula, recall that in
the Kirillov character formula one side is an integral of a Fourier transform. For nilpo-
tent groups, the coadjoint orbit looks very linear. (In the Heisenberg case it was liter-
ally linear; in the general case it is foliated by linear spaces.) So the Fourier space is
just a function on the dual space.In the compact case we have no linearity, so we need
to identify the Fourier transform somehow. The Duistermaat-Heckman formula deals
with this.

In summary, the unitary case looks very different from the nilpotent one. Afterwards,
we’ll turn to SL2(R), which exhibits some features of both.
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8. BACKGROUND ON SYMPLECTIC GEOMETRY

8.1. Symplectic manifolds. A symplectic manifold (M ,ω) is a manifold M equipped
with a closed, non-degenerate 2-formω ∈

∧2 T ∗m .

Example 8.1.1. R2n with coordinates (x1, . . . , xn , y1, . . . , yn ); the form is
∑n

i=1 d xi ∧d yi .
Darboux’s theorem says that any (M ,ω) locally looks like this.

The following is the most important example for the course.

Example 8.1.2. For any manifold N , the cotangent bundle T ∗N has a canonical sym-
plectic structure. Note that T ∗N carries a canonical 1-form η, specified by for a point
(n ∈N , v ∈ T ∗n ) the value on a tangent vector Y ∈ T(n ,v )T

∗N is

η(Y ) = 〈v, Y 〉

where Y is the projection of Y to T ∗n N .

Then on T ∗N we take the symplectic formω= dη.

LetO be the G -orbit ofλ⊂ g∗with the form previously defined. We still need to show
thatω is closed. For each X ∈ g, we get a vector field X ∗ on O given by

Xλ =
d

d t
|t=0(e

t X ·λ)

We call this vector field X ∗. The symplectic formω is defined by: at λ

ω(X ∗, Y ∗) =λ([X , Y ]).

To show that dω= 0, we want to verify that

dω(X ∗, Y ∗, Z ∗) ?= 0
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(since the map X 7→ X ∗λ defines a surjection g→ TλO ). The formula for the derivative of
a form gives

dω(X ∗, Y ∗, Z ∗) = X ∗ω(Y ∗, Z ∗)−Y ∗ω(X ∗, Z ∗) +Z ∗ω(X ∗, Y ∗)

−ω([X ∗, Y ∗], Z ∗)−ω([Y ∗, Z ∗], X ∗)−ω([Z ∗, X ∗], Y ∗) . . .

Here [X ∗, Y ∗] is the bracket of vector fields on O . We can also form [X , Y ]∗. These are
obviously going to be related, but in fact they are off by a sign:

[X ∗, Y ∗] =−[X , Y ]∗.

Let’s digest the formula. By the definition ofω, the first line is

X ∗λ([Y , Z ])+ . . .=λ([X , [Y , Z ]] + [Y , [Z , X ]] + [Z , [X , Y ]]) = 0

by the Jacobi identity. The second line is

λ([[X , Y ], Z ])+ . . .

which again vanishes by the Jacobi identity.

8.2. Hamiltonian flow. We have just seen that G acts on the orbit O , preserving the
symplectic form.

More generally, suppose g t is a 1-parameter group of diffeomorphisms of some sym-
plectic manifold (M ,ω) preservingω: g ∗tω=ω. Associated to g t , one get a vector field
X given by

d

d t
|t=0(g t m ).

What property of X corresponds toω being fixed?
When we have a vector field, we have a Lie derivativeLX on differential forms, given

by flowing the differential form through the vector field:

LX ν=
d

d t
|t=0(g t )

∗ν.

In particular, since the symplectic formω is invertible we haveLXω= 0.

Remark 8.2.1. Don’t confuse the Lie derivative with the differential. If ν is a k -form,
thenLX ν is a k -form.

An identity of Cartan says that

LX ν= d (X ùν) +X ùdν.

Here the interior product is defined by: if Ω is a k -form, then X ùΩ is the (k −1)-form

X ùΩ(Y1, . . . , Yk−1) =Ω(X , Y1, . . . , Yk−1).

The interior product is sort of like an adjoint to wedging.

Returning to the situation withω a symplectic form, by Cartan’s formula

LXω= d (X ùω) +X ùdω

but dω = 0 because ω is already closed, so the condition that the flow of X preserves
ω is that X ùω is closed.
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Now assume that H 1(M , C) = 0. Then closed 1-forms are automatically exact, so

X ùω= d H (8.2.1)

for some function H : M → R . Concretely, this means (evaluating (8.2.1) at Y )

ω(X , Y ) = d H (Y ). (8.2.2)

Said differently, X assigns to every m ∈M an element of Tm . On the other hand, d H
assigns to every m ∈ M an element of T ∗m . The symplectic form ω can be thought of
as an identification Tm

∼= T ∗m forevery m , and the condition is that the elements agree
under this identification.

To summarize, under the assumption H 1(M , R) = 0, if X preserves ω then X must
arise from H : M → R as X ↔ d H under ω. In this case we say that X is the “Hamil-
tonian flow” associated to H .

Example 8.2.2. Consider (R2, d x ∧d y )with H = x 2+ y 2. This corresponds to a vector
field XH , which we will shortly determine. Note d H = 2x d x + 2y d y . The vector field
XH is characterized by

d H (Y ) =ω(XH , Y ).

If Y = ∂X , then this says

2Y =ω(XH ,∂Y ).

Thus XH = 2y ∂x+?∂y . Repeating this for the other direction, we find that

XH = (2y )∂x − (2x )∂y .

Observe that H is constant along the orbits of the flow. This is not a coincidence! It is
true in general that H is constant along the flow XH .

8.3. Poisson brackets and quantization. Let (M ,ω) be a symplectic manifold. For
f , g ∈C∞(M ), we can make the flows X f , Xg . The rate of change of g along the X f -flow
is, by definition, d g (X f ), which is by definition of Xg (8.2.2) is the same asω(Xg , X f ) =
−ω(X f , Xg ).

Definition 8.3.1. For f , g ∈C∞(M ), we define the Poisson bracket

{ f , g } :=ω(X f , Xg ).

Example 8.3.2. On (R2n ,
∑

d xi ∧d yi ) the Poisson bracket is

{ f , g }=
∑

i

�

∂ f

∂ xi

∂ g

∂ yi
−
∂ f

∂ yi

∂ g

∂ xi

�

So

{xi , x j }= 0

{yi , yj }= 0

{xi , yj }=δi j
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Quantum mechanics suggests that many naturally-occurring symplectic manifolds
(M ,ω) should have a quantization, which should be a Hilbert spaceH . The example to
keep in mind is that for (M ,ω) = (R2, d x∧d y ) the Hilbert space is H = L 2(R). In general,
dimH is the symplectic volume (which could be infinite), and a function a ∈ C∞(M )
picks out an operator Op(a ) onH with

Tr Op(a ) =

∫

a d vol,

and
[Op(a ), Op(b )] = i Op({a , b }).

We’ve already seen examples of this. The theme of the course is to quantize the orbits
O of G on g∗. The story of the Weil representation showed the limits of this quantiza-
tion: there is a topological obstruction to making it SL2(R)-equivariant.

Remark 8.3.3. The Poisson bracket {,} is a Lie bracket on C∞(M ). We would like to
view Lie brackets as coming from Lie groups. In fact, the association

f 7→ X f

defines a map
C∞(M )→ Lie(Symplectomorphisms(M ,ω))

(whose kernel consists of the constant functions) and we’ve seen that if H 1(M , R) = 0
then everything comes from this construction. This map is a Lie algebra anti-homomorphism:

[X f , Xg ] =−X{ f ,g }.

Now we want to understand the Poisson structure on coadjoint orbitO ⊂ g∗. Here we
have a very nice class of functions: every Y ∈ g gives a function fY ∈C∞(O ), defined by
fY (λ) =λ(Y ). So we can ask: What is the flow of fY , and what are the Poisson brackets?
I think the answer is that X fY

= Y ∗, and

{ fY , fZ }= f[Y ,Z ].

The symplectic structure on O was set up to make this true.

8.4. Summary. We’ve seen that to a symplectic manifold (M ,ω) and H ∈ C∞(M ) we
can attach a flow (vector field) XH preserving ω, which is characterized by d H ∈ T ∗

corresponds viaω to XH ∈ T :

d H (Y ) =ω(XH , y ).

In particular, on O one has functions fY for each Y ∈ g, such that

(1) the flow of fY is the vector field corresponding to Y , and
(2) { fY , fZ }= f[Y ,Z ],
(3) the map Y 7→ fY is G -equivariant.

A G -action on a symplectic manifold is Hamiltonian if there exists such a system: a
linear map

g 3 Y → fY ∈C∞(M )
satisfying (1)-(3).
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Example 8.4.1. We explain a simple example, but one which will be important later.
The complex projective space CPn = Cn+1 − {0}/C∗ has a unique symplectic form in-
variant by U (n +1). This is called the Fubini-Study metric. It looks a little messy when
expressed in terms of the usual coordinates, so we’ll explain a cleaner point of view.

Let z0, . . . , zn be the coordinates on Cn+1. Start with the form

n
∑

k=0

i (d zk ∧d z k ).

The i looks a little funny, but in coordinates zk = xk + i yk it becomes

i (d xk + i d yk )∧ (d xk − i d yk ) = 2d xk ∧d yk

which is essentially the usual volume. This is not invariant by C∗, but it is invariant
under the unitary part:

(z0, . . . , zn ) 7→ (e iαz0, . . . , e iαzn ).

We can think of CPn = S 2n+1/S 1 where S 2n+1 = {(zi ) |
∑

|zk |2 = 1} ⊂ Cn+1. Obviously
ω|S 2n+1 is not symplectic, since it’s on an odd-dimensional manifold, but it turns out
that the degenerate direction is the S 1, i.e. ω|S 2n+1 is the pullback of a symplectic form
ω on CPn .

We’ll now write out a formula for this form in coodinates. The usual affine coordi-
nates are not well-adapted to this form, so we’ll introduce some slightly different coor-
dinates.

Let Hk = |zk |2, viewed as a function on S 2n+1 invariant by S 1. Let θk = arg(zk ), which
is a function on S 2n+1, not invariant by rotation of course. Think about polar coordi-
nates in the plane:

2d x d y = 2r d r dθ = d (r 2)dθ .

So we have (on S 2n+1)
∑

d zk ∧d z k =
∑

d Hk ∧dθk . (8.4.1)

We want to descend this down to CPn . Since H0+ . . .+Hn = 1 on S 2n+1, we have

d H0 =−d H1−d H2− . . .−d Hn

which we can use to rewrite (8.4.1) as

∑

d zk ∧d z k =
n
∑

k=1

d Hk ∧d (θk −θ0).

Now θk −θ0 is invariant by rotation, so it descends to a function θ k := θk −θ0 on CPn .
They give local coordinates where the zi 6= 0. This implies that

ωCPn =
∑

d Hk ∧dθ k .
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Let’s have an example of using this form. Suppose we want to compute the volume
of CPn :

∫

ωm
CPn =m !

∫

d H1 ∧ . . .∧d Hn ∧dθ 1 ∧ . . .∧dθ n

= n !(2π)n
∫

d H1 ∧ . . .∧d Hn .

The functions Hi map CPn to a simplex.

CPn [H0,...,Hn ]−−−−−→{(x0, . . . , xn ) ∈Rn+1
≥0 |

∑

xi = 1}

where we normalize Hi =
|zi |2
∑

|zi |2
. The way we’ve set things up, the volume form on the

simplex is d x1∧. . .∧d xn so the n-simplex has volume 1
n ! . So the volume of CPn is (2π)n .

The flow associated to Hk is θk 7→ θk + t . In other words, in these coordinates the
vector field XHk

is ∂θk
.

In summary, on CPn , the flow associated to Hk =
|zi |2
∑

|zi |2
rotates zk :

(z0, . . . , zn ) 7→ (z0, . . . , zk−1, e i t zk , zk+1, . . . , zn )

which is even true for k = 0.

9. DUISTERMAAT-HECKMAN LOCALIZATION

This is a theorem about symplectic manifolds, but the original motivation was from
representation theory. It will be used in the proof of Kirillov’s theorem for compact
groups.

9.1. Stationary phase. Suppose M is a manifold, f ∈C∞c (M ) (which is just a technical
device to regularize integrals), and ϕ ∈C∞(M ). Consider the integral

I (λ) :=

∫

M

f (x )e iλϕ(x )d x .

The point of stationary phase is to study the behavior of this integral as λ→∞.

Lemma 9.1.1. If dϕ 6= 0 on supp( f ), then I (λ) decays faster than any power of λ as
λ→∞.

Proof. Choose a vector field X on M such that Xϕ = 1 on supp( f ). Now

X (e iλϕ) = (iλ)e iλϕ .

Iterating this a thousand times (say), we find that

(iλ)1000I (λ) =

∫

m

f (X 1000e iλϕ)d x =±
∫

X 1000 f · e iλϕd x � 1.

�
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Principle of stationary phase. By this argument, the asymptotic behavior of I (λ) is
controlled by critical points of ϕ.

Suppose that the critical points of ϕ are P1, . . . , Pn . We assume that they are all non-
degenerate, i.e. that the Hessian ofϕ at the Pi is non-degenerate. Then near the critical
points the function looks like a Gaussian:

∫

Rn

e i ( 1
2 x T H x )d x =

(2π)n/2e
iπ
4 sign(H )

p

|det H |
.

So in this situation

I (λ)∼
∑

Pi

f (Pi )e
iλϕ(Pi ) (2π)

n/2e
iπ
4 sign(HessPi

(ϕ))

λn/2
Æ

|det HessPi
(ϕ)|

(9.1.1)

where the Hessian is taken with respect to a system of coordinates (x1, . . . , xn ) such that
d x = d x1 . . . d xn . The meaning of ∼ in (9.3.1) is that

|LHS-RHS of (9.3.1)|=O (λ−n/2−1).

Example 9.1.2. If M = S 2 ⊂R3, with f = 1 and ϕ(x , y , z ) = z . We want to compute
∫

S 2

e iλz .

The critical points occur at the north and south poles. Since

z =
Æ

1− x 2− y 2 ≈ 1−
1

2
(x 2+ y 2)

the Hessian is
�

−1
−1

�

.

Plugging this into (9.3.1) gives
∫

S 2

e iλz ∼ 2π

�

e iλ

iλ
−

e −iλ

iλ

�

(9.1.2)

so
∫

S 2

e iλz ∼ 4π
sinλ

λ
.

But in fact this is even an equality, as we saw way back in Lemma 1.3.3.

9.2. The Duistermaat-Heckman formula. Duistermaat-Heckman understood the gen-
eral context for this phenomenon.

Theorem 9.2.1 (Duistermaat, Heckman). Let (M ,ω) be a compact symplectic manifold
of dimension 2d . Let H ∈C∞(M ), with isolated and non-degenerate critical points, and
consider

∫

e iλHωd .
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Assume that the flow XH generates an action of S 1, i.e. all orbits of the flow return to
themselves after exactly the same length of time. (In other words, all orbits are periodic
with the same length.) Then the stationary phase asymptotic (9.3.1) is exact:
∫

e iλHωd = (stationary phase asymptotic)=
(2π)d

t d

∑

i

e i t H (Pi )
Æ

|HessPi
(H )|

e
iπ
4 sign(HessPi

(H )).

Remark 9.2.2. In general it is not even clear that the stationary phase asymptotic ex-
tends to all λ. For instance, (9.1.2) has an issue at 0 a priori.

Remark 9.2.3. This theorem will be applied to compute one side in the Kirillov char-
acter formula for compact groups.

Example 9.2.4. We claim that in Example 9.1.2, the flow attached toϕ is the vector field
R corresponding to z -axis rotation. We must check that

dϕ(Y ) =ω(R , Y ).

It suffices to check this as Y runs over a basis. If Y = R , then both sides are 0 because
the z -coordinate is unchanging under rotation along the z -axis. It remains to check
the claim for another Y . We choose Y to generate the longitudinal flow. Thenω(R , Y )
is the area of the patch.

This area is dθ ·∆z soω(R , Y ) = d z (Y ). The content of the equality is the same as that
the pushforward of the area measure on S 2 to d z is uniform.

Example 9.2.5. Take S 1 acting on CPn by

θ · (z0, z1, . . . , cn ) = (e
i m0θ z0, e i m1θ z1, . . .)

with m0, m1, . . . ,∈ Z all non-zero and distinct (this latter condition corresponds to the
fixed points being non-degenerate). Consider the flow corresponding to H =

∑

mi Hi ,
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with Hi as in Example 8.4.1. The Duistermaat-Heckman localization theorem com-
putes

∫

CPn

e iλHωn

as the sum of (n +1) terms. Naïvely one can write
∫

CPn

e iλHωn = (2π)n
∫

∑

xi=1

e iλ
∑

mi xi d x1 . . . d xn

and the n-fold iterated integral has 2n terms (two endpoints for each integral), so the
Duistermaat-Heckman localization gives a significant amount of collapsing. In Exam-
ple 8.4.1 we saw that under the map

CPn →{(x0, . . . , xn ) ∈Rn+1
≥0 :

∑

xi = 1}

(zi ) 7→
(|z0|2, . . . , |zn |2)

∑

|zi |2

the volume form pushes forward as

ωn 7→ (2π)n n !d x1d xn .

So we have
∫

e i t Hωn = (2π)n n !

∫

∑

xi=1

e i t (
∑

mi xi )d x1 ∧ . . .∧d xn . (9.2.1)

You can compute this explicitly. For n = 2, it comes out to

(2π)2 ·2! · e i t m0 ·
∫

x1,x2,0≤x1+x2≤1

e i t (m1−m0)x1+i t (m2−m0)x2 d x1d x2.

Evaluating the integral produces four terms, which collapse as

(2π)22!

�

e i t m0

(i t (m0−m1))(i t (m0−m2))
+ symmetric terms

�

.

(Note that it looks singular at t = 0. In fact, when t → 0, this approaches a limit which
is the area of the simplex.)

Let’s compare this to the stationary phase asymptotic. What are the critical points?
They are the points Q ∈CPn such that d H (Q ) = 0, but d H is identified under the sym-
plectic form with XH , so this is equivalent to XH (Q ) = 0, i.e. Q is fixed by the S 1-flow.
(As mentioned above, the mi should be distinct to get non-degenerate critical points.)

So the critical points are Pi = (0, 0, . . . , 1
︸︷︷︸

i

, 0, . . . , 0) with 0 ≤ i ≤ n . Now we have to

compute the Hessian at these points. Put the following local coordinates near Pk

(z0, . . . , zk−1, 1
︸︷︷︸

k

, zk+1, . . . , zn ).
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Then

H (z0, . . . , zk−1, 1
︸︷︷︸

k

, zk+1, . . . , zn ) =

∑

j 6=k m j |z j |2+mk
∑

j 6=k |z j |2+1
= 1+

∑

j 6=k

(m j −mk )|z j |2+ . . .

Since each complex coordinate gives two real coordinates, one has in terms of the sym-
plectic basis

det HessPk
(H ) =

∏

j

(m j −mk )
2

(because the symplectic volume form is 2n times the usual one). You can check that
this agrees with (9.2.1).

9.3. Sketch of Duistermaat-Heckman’s proof. We now discuss what goes into the proof
of Theorem 9.2.1. We want to show that

∫

e i t Hωn = stationary phase expansion=
∑

ci
e i tαi

t d
. (9.3.1)

We can push forward the measureωn by the map H : M →R. The result will be ν(x )d x
for some function ν(x ) (which we can think of as the measure of H −1(x , x +d x )) which
is compactly supported. In these terms, the left side of (9.3.1) can be rewritten as

∫

e i t Hωn =

∫

e i t xν(x )d x = FT(ν)(t ). (9.3.2)

In the example of CPn , we push forward the simplex∆n to R by the map
∑

mi xi .

For n = 2 it is clear thatν(x ) is piecewise-linear; in general for n = d it will be piecewise-
polynomial of degree d −1.

In fact we claim that the formula (9.3.1) forces this sort of behavior. That is, assuming
the Duistermaat-Heckman localization theorem we will show that ν(x ) is piecewise-
linear of degree at most d −1. Multiplying (9.3.1) by t d and using (9.3.2) implies

t d FT(ν) = FT(
∑

ciδαi
)

so

FT
�

(
d

d t
)dν

�

= FT(sum of δmeasures)
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so
�

d
d t

�d
ν is supported at finitely many points, hence ν is piecewise polynomial.

The argument of Duistermaat-Heckman goes in the converse direction: they begin
by showing that ν is piecewise-polynomial, and deduce the theorem from there. We’ll
outline their argument, and then switch to a different one.

Outline of why ν is piecewise-polynomial.

The first step is to relateν(x ) to a volume. (What we’ll say is valid away from the vertices
of the tetrahedron.) For each x ∈ R, H −1(x ) is a manifold of dimension 2d − 1. The
restriction ω|H −1(x ) is obviously not symplectic, but it is pulled back from a form on
Mx :=H −1(x )/S 1, which is a 2d −2 dimensional symplectic manifold. First one checks
that

ν(x ) = volume(Mx ,ωd−1).

Remark 9.3.1. We saw an example of this already (admittedly not in the compact case):

(Cn+1,
∑

d zk ∧d z k ).

In this case H should be the function

H (z ) =
∑

|zi |2

This generates the S 1-action of rotating the coordinates (at the same rate). For example,
H −1(S 1) = S 2n+1 and H |S 2n+1 is the pullback of the Fubini-Study metric on CPn . (The
Mx is the symplectic reduction of (M ,ω).

In this example

Mx =H −1(x )/S 1

we can scale all the coordinates to transform Mx to M1. But this doesn’t preserve the
symplectic form, i.e. doesn’t takeωx toω1. Instead, one finds thatωx 7→ x ·ω1. This is
indicative of the general behavior.



72 LECTURES BY AKSHAY VENKATESH

In the general case, near x = x0 all the Mx are homeomorphic. So we can think of the
cohomological class of the symplectic form ωx ∈ H 2(Mx , R) ∼= H 2(Mx0

, R) as a varying
classωx in the fixed group H 2(Mx0

, R), with

vol(Mx ) =

∫

Mx0

ωd−1
x .

The key observation of Duistermaat-Heckman was that the function

x 7→ [ωx ] ∈H 2(Mx0
, R)

is linear. (So the core of the proof is to interpret things in a cohomological way.) So the
derivative is a canonical class in

d

d x
[ωx ] ∈H 2(Mx0

, R).

This derivative is normalized by demanding that XH is d /dθ . What canonical coho-
mology class is this? It is a constant multiple of the Chern class of the S 1-fibration
H −1(x0)→Mx0

.
Once you know that you want to prove this linearity, the proof itself is quite straight-

forward: just express everything in terms of a connection and compute. �

9.4. Proof of Duistermaat-Heckman by deformation to fixed points. This is due to
Deligne-Verligne. For our symplectic manifold (M ,ω),

Ω•(M ) =
⊕

0≤i≤2d

Ωi (M ).

The idea is to take a one-parameter deformation from
∫

e i t Hωn to an integral localized
at the critical points.

We introduce a deformation of the usual differential η 7→ dη. For X = XH , we define

dX η= dω+X ùη.

Note that this is weird: it doesn’t preserve the grading onΩ• because d raises the degree
by 1 and the X ù decreases it by 1.

The operator dX is no longer a differential: we have

d 2
X (η) = d (η+X ùη) +X ù(dη+X ùη)

= d (X ùη) +X ùdη
=LX η.

So we see that the obstruction to d 2
X = 0 is the Lie derivative. This implies that d 2

X = 0
on forms which are fixed by the flow XH , i.e. forms in Ω∗(M )S1 .

We want to write down an example of a form which is closed for dX . The symplectic
formω is not closed, since

dXω= dω
︸︷︷︸

=0

+X ùω.

We claim that XH ùω= d H : indeed, we have

XH ùω(Y ) =ω(XH , Y ) = d H (Y ).



GEOMETRIC QUANTIZATION AND REPRESENTATION THEORY 73

Therefore, dX H = d H , so

dX (ω−H ) = 0

i.e. ω−H is dX -closed.

Exercise 9.4.1. Check that the formω−H is fixed by S 1. (This is basically a tautology
once you remember how we defined everything.)

Recall that d is a derivation in the sense that

d (ω∧η) = dω∧η+ (−1)mω∧dη.

The same is true for X ù, hence also for dX . This implies that (ω−H )` is also killed by
dX .

Similarly, expressions like

e (ω−H ) = e −H eω

interpreted as a formal series (which truncates at dim M ), are also dX -closed. (Note
that sinceω is in even degree, there are no worries about commutativity vs anti-commutativity.)

Definition 9.4.2. We define the functional
∫

M

: Ω∗(M )→C

which simply integrates the top-degree component:

dim M
∑

i=0

ωi 7→
∫

M

ωdim M .

Remark 9.4.3. Stokes’ Theorem says that
∫

M
dη= 0 if M is closed, and the same is true

for dX , since X ù can’t produce any terms in top degree. (This will imply that the integral
descends to a functional on cohomology.)

Lemma 9.4.4. Supopse dXα= 0 and γ ∈ (Ω1)S
1
. Set β = dX γ ∈Ω0⊕Ω2. Then

∫

M

αe −sβ =

∫

M

α for all s ∈R.

Remark 9.4.5. We’ll apply this with s →∞ and a non-negative function β , so that the
integrand αe −sβ concentrates around the zeros of β .

Proof. Using that dXα= 0 and dX γ= 0, we have

d

d s
(αe −sβ ) =αβe −sβ = dX (αγe −sβ ).

�

We want to set this up so that β vanishes precisely at the critical points of H . To do
this, choose an S 1-invariant Riemannian metric g on M . Use g to turn XH into a 1-form
γ, defined by

γ(Y ) = g (XH , Y ).
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Then

dX γ= dγ+ XH ùγ
︸ ︷︷ ︸

g (XH ,XH )

.

The function g (XH , XH ) ≥ 0 and vanishes exactly when XH = 0, which is equivalent to
H = 0. The other piece dγ is a 2-form, so it’s nilpotent. Lemma 9.4.4 implies

∫

M

α=

∫

M

αe −s g (XH ,XH )e −s dγ

=

∫

M

αe −s g (XH ,XH )
︸ ︷︷ ︸

function

d
∑

j=1

(−s ) j

j
(dγ) j
︸︷︷︸

2 j−form

Near a critical point, this looks like

d
∑

j=1

(−s ) j

j !

∫

(α · (dγ) j )e −s Gaussian

︸ ︷︷ ︸

∼s−d

Letting dim M = 2d , the only term that survives as s →∞ is j = d . So
∫

M

α=
(−s )d

d !

∫

M

αe −s g (XH ,XH )(dγ)d . (9.4.1)

On the right side of (9.4.1), the only term that contributes isα0. On the left side of (9.4.1),
the only term that contributes isα2d . Also, the right side localizes over the critical points
as

∑

P critical point

α0(P )

�

lim
s→∞

(−s )d

d !

∫

M

αe −s g (XH ,XH )(dγ)d
�

.

Probably this implies the result by pure thought, because once we know the result only
depends on the values at the critical points we can probably deduce that it must be the
stationary phase asymptotic.

However, we’re actually going to compute the answer. So we want to know the local
structure near the critical points. The first step is to linearize the S 1-action. S 1 fixes any
critical point P (since the S 1 action is generated by the flow associated to d H ), so S 1

acts on TP M .

Lemma 9.4.6. A symplectic vector space with a (linear) S 1-action is a sum of

(R2, d x ∧d y ,θ ∈ S 1 rotates by nθ ).

Proof. Just linear algebra - left as exercise. �

So we can choose coordinates x1, . . . , xd and y1, . . . , yd centered at P such that the
action of θ on S 1 is given by a block diagonal matrix with blocks

Rniθ =
�

cos niθ −sin niθ
sin niθ cos niθ

�
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plus quadratic terms. The vector field XH is then

XH =
d
∑

i=1

ni (yi ∂xi
− xi ∂yi

) + (higher order terms).

From the form ofω, we see that (by Example 8.2.2)

H =
1

2

∑

ni (x
2
i + y 2

i ) + (higher order terms).

We choose an S 1-invariant metric g such that ∂xi
,∂yi

are an orthonormal basis at P .
This tells us that

g (XH , XH ) =
∑

n 2
i (x

2
i + y 2

i ) + (higher order terms).

Finally, the form γ was obtained by dualizing the vector field, so by the form of g we
just replace the ∂ ’s with d ’s:

γ=
∑

ni (yi d xi − xi d yi ) + (higher order terms).

(No ni vanishes because we assumed that the critical points are non-degenerate.) Then

dγ=
∑

−2ni (d xi ∧d yi ) + (higher order terms).

We can ignore the higher order terms in the limit s →∞.
The conclusion is that (after a little manipulation)

∫

M

α=
∑

P critical point

α0(P )













lim
s→∞

(−s )d
d
∏

i=1

(−2ni )

∫

M

e −s
∑

n 2
i (x

2
i +y 2

i )d xi d yi

︸ ︷︷ ︸

∏d
i=1

2π
2ni s













=
∑

P

α0(P )(2π)
d

d
∏

i=1

1

ni

Now apply this to α = e i t (H−ω), which we saw earlier was a closed form. The left hand
side becomes

∫

M

e i t H

 

∑

j

(−iω) j

j !

!

=

∫

M

e i t H (−i t )d
ωd

d !

= (2π)d
∑

P

e i t H (P )
∏ 1

ni (P )

so the conclusion is then that
∫

e i t H ω
d

d !
=
(2π)d

t d

∑

P

e i t H (P )
d
∏

k=1

i

nk (P )
. (9.4.2)
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9.5. Equivariant cohomology. The Duistermaat-Heckman theorem inspired Atiyah-
Bott’s work on equivariant cohomology [AB84], which we discuss next.

In the preceding subsection we introduced the deformation

dXω= dω+X ùω.

We showed that if dXα= 0, then
∫

M

α=
∑

P crit point

α(P )cP .

To be clear, writing α =
∑

αi the left hand side only depends on αdim M and the right
hand side only depends on α0. This makes sense because the condition dXα= 0 forces
the different components to be related in some way.

For α ∈ ker(dX on Ω∗(M )S
1
), the evaluation

α 7→α(Pi )

for a critical point Pi depends only on the cohomology class of α. To see this, we just
have to show that the evaluation map vanishes on dX -boundaries. The component d
raises degree and thus always vanishes under the evaluation. Since X vanishes at the
critical points, for any 1-form β we have X β (Pi ) = 0, so the evaluation map also kills
any term of the form X ù(−). Thus we have a map

ker(dX on Ω∗(M )S
1
)

im(dX on Ω∗(M )S 1 )
→
⊕

Pi

R. (9.5.1)

This is actually an isomorphism. If you believe this, then the Duistermaat-Heckman
formula becomes very reasonable because

∫

M
α is also a function on cohomology, so it

can be expressed as a sum over the fixed points Pi of some function of α(Pi ).

Suppose S 1 acts freely on a compact manifold M . How can we compute H ∗(M /S 1)
using differential forms on M ? De Rham theory says that

H ∗(M /S 1) =H ∗(ΩM /S 1 ).

If we have a differential form on M /S 1, we can pull it back to a differential form on M ,
and it will land in the S 1-invariants.

Example 9.5.1. This isn’t an isomorphism, as one can see in the simple example M =
Y ×S 1. In this case, the is an invariant form dθ on S 1, which we can also pull back to
M . So

Ω∗(M )S
1
=π∗Ω∗Y ⊕ (π

∗Ω∗Y )∧dθ .

To get rid of the extra part, we impose the condition that X ùω= 0. We now have an
isomorphism

{diff. forms on M /S 1} ∼−→{ω ∈Ω∗(M )S
1

: X ùω= 0}.
Remark 9.5.2. We record for later use that if X ùω = 0, then ω = X ùω′. To prove this,
use a partition of unity to reduce to the product case.
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The conclusion is that if S 1 acts freely on M , then

H ∗(M /S 1) =H ∗({ω ∈Ω∗(M )S
1

: X ùω= 0}). (9.5.2)

But if the S 1-action isn’t free, then neither side is well-behaved. What we mean by this
is that a given a map f : M →M ′ that commutes with the S 1-action and is a homotopy
equivalence, it doesn’t necessarily induce an isomorphism for the quotient by S 1 on
either side of 9.5.2.

You can fix the left hand side by using equivariant cohomology H ∗
S 1 (M ), obtained by

replacing M by a homotopy-equivalent space on which S 1 acts freely.
We want to talk about how you can fix the right hand side correspondingly. The pro-

cess of taking invariant forms for a group action behaves well. The problem is with the
condition X ùω = 0. The construction of taking levelwise kernel on a complex is not
well-behaved.

Note that X ù(X ùω) = 0. So the map ε: ω 7→ X ùω gives an action of the algebra
A :=R[ε]/ε2 on the complexΩ∗(M )S

1
(shifting degrees). In these terms, we can think of

things killed by X ù as

{ω: X ùω= 0}=HomA(A/ε,Ω(M )S
1
).

This clarifies what we should do. This construction is bad because A/ε is not a projec-
tive A-module, and the way to correct it is to replace it by a projective resolution:

P := . . .
ε−→ A

ε−→ A
ε−→ A→ . . .

ε−→ A.

Then Hom(P,Ω∗(M )S
1
) is the total complex of the double complex

Ω∗(M )S
1 ε−→Ω∗(M )S

1 ε−→Ω∗(M )S
1 ε−→ . . . (9.5.3)

(We’ll write this out explicitly shortly.)
Note that if the S 1-action is free then X ù= 0 =⇒ ω= X ùω′ (Remark 9.5.2), so (9.5.3)

is quasi-isomorphic to

ker(ε on Ω∗(M )S
1
) = {ω ∈Ω∗(M )S

1
: X ùω= 0}.

The double complex (9.5.3) is

...
...

...

Ω3(M )S
1

Ω2(M )S
1

Ω∗(M )S
1

. . .

Ω2(M )S
1

Ω1(M )S
1

Ω∗(M )S
1

. . .

Ω1(M )S
1

Ω0(M )S
1

0 . . .

Ω0(M )S
1

0 0 . . .

X ù

X ù

d d d

X ù

d d d

X ù

d d



78 LECTURES BY AKSHAY VENKATESH

The total complex is then

Ω0 dX−→Ω1 dX−→Ω0⊕Ω2 dX−→Ω1⊕Ω3→ . . . (9.5.4)

Theorem 9.5.3. The complex (9.5.4) computes H ∗
S 1 (M ).

The Cartan model for equivariant cohomology. We can rewrite the double complex
as follows. Consider the space of polynomial functions

R→ (Ω∗)S
1

graded by deg(t iω j ) = 2i + j . For example, the terms of degree 3 are tω1 +ω3. The
differential of a polynomial P has value at t ∈ R being dt X P (t ). (More intrinsically,
R = Lie(S 1).) This is the Cartan model. Think of it as a family of differential forms in
Ω∗(M )S

1
indexed by R ·X , and the derivative at t is the derivative of the form using the

vector field t X .

Theorem 9.5.4. The inclusion M S 1
,→M induces an almost isomorphism

H ∗
S 1 (M ) =H ∗

S 1 (M
S 1
).

The meaning of “almost” is that both sides are modules over R[t ], and it’s an isomorphism
after inverting t .

At t = 1, you get the isomorphism (9.5.2). Atiyah-Bott traced through it to prove the
Duistermaat-Heckman theorem. It’s basically an issue of finding that the constants are
related to the normal bundles at the fixed points.

10. THE KIRILLOV CHARACTER FORMULA FOR Un

10.1. The Weyl character formula for Un . First we’ll compute the characters of the ir-
reducible representations of Un , following Weyl’s classical proof.

Let T ⊂Un be the subgroup of diagonal matrices









z1 = e iθ1

z2 = e iθ2

...
zn = e iθn









The irreducible representations of T are all of the form









z1

z2
...

zn









7→
∏

z mi
i =: z m .
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Since any unitary matrix can be diagonalized, to describe the character it suffices to
describe the character restricted to T .

χV









z1

z2
...

zn









=
∑

m∈Zn

cm z m , cm ∈ Z≥0.

Lemma 10.1.1. For any f conjugacy-invariant on Un ,
∫

Un

f =
1

n !

∫

T

f ·
∏

i< j

|zi − z j |2s

Proof. Compute the Jacobian of the conjugation map

Un/T ×T →Un

(g , t ) 7→ g t g −1.

�

We know that if V is irreducible, then

〈χV ,χV 〉= 1

so Lemma 10.1.1 implies

∫

T

�

�

�

�

�

∑

cm z m
∏

i< j

(zi − z j )

�

�

�

�

�

2

= n !.

Note that cm z m is symmetric under permutation and
∏

i< j (zi − z j ) is antisymmetric,
so

∑

cm z m
∏

i< j

(zi − z j ) =:
∑

dm z m

is anti-symmetric. So
∫

T

�

�

�

∑

dm z m
�

�

�

2
=
∑

|dm |2 = n !.

Since dm ∈ Z and is anti-symmetric, we conclude that
∑

dm z m =±
∑

σ∈Sn

sgn(σ)zσ(m 0) for some m 0 ∈ Zn .

This implies that

χV (z ) =±

∑

σ∈Sn
zσ(m 0)

∏

(zi − z j )
(10.1.1)

Remark 10.1.2. The fact that characters are complete is sufficient to imply that every
m0, up to permutation, occurs.
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To summarize, for every m1 >m2 > . . .>mn , with mi ∈ Z, there exists an irreducible
representation V of Un with character (10.3.1). We rewrite (10.3.1) in a different way,
interpreting both the numerator and denominator as a determinant. The numerator

∑

σ∈Sn

zσ(m 0) = det(z
m j

i )

and the denominator is manifestly a Vandermonde determinant. So we have

χ(z ) =
det(z

m j

i )
∏

(z j − zi )

Remark 10.1.3. One feature that makes the character theory simple is that there is an
abelian subgroup that meets every conjugacy class. This can never happen in a finite
group: by counting arguments you can show that no proper subgroup meets every con-
jugacy class.

If we write
χV =

∑

k∈Zn

ck z k

which k occur? (These are called the weights of V .)
This question is answered by highest weight theory. It says that m ′ = (m1 − (n −

1), m2− (n − 2), . . . , mn ) occurs, with coefficient cm ′ = 1. This (and its orbit under Sn ) is
the highest weight, which means that if ck 6= 0 then ||k || ≤ ||m ′||.
Example 10.1.4. We consider U3. Then V ↔m = (m1 >m2 >m3) has highest weight
m ′ = (m1−2, m2−1, m3). All k = (k1, k2, k3)with ck 6= 0 have

∑

k ′i = (m1−2) + (m2−1) +m3

which you can prove by looking at the action of the center.

Fact 10.1.5. If ck 6= 0, then k lies in the shaded hexagon, which is the convex hull of
(σm ′ :σ ∈ S3).
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How do the ck behave inside this hexagon? We’ll come back and discuss this after
we do the Kirillov character formula.

10.2. The Kirillov character formula. We want to establish a formula

χV ·
p

j = FT(
1

d !

� ω

2π

�d
on O )

for some orbit O of G on g∗, which we will determine.

Remark 10.2.1. In the nilpotent case all orbits occur, but in this case only “discretely
many” do.

First we’re going to finally fulfill a promise made long ago (Fact 1.2.1) about a formula
for j (X ). Recall that j (X ) is the Jacobian at X of the exponential map exp: g→G , with
reference to the Lebesgue measure on g and the right invariant measure on G .

Lemma 10.2.2. We have

j (X ) = det

�

e ad X −1

ad X

�

=
∏

λ eigenvalue of ad X

e λ−1

λ
.

In other words, we have an endomorphism ad(X ): g→ g and we can apply e z−1
z to

this endomorphism.

Proof. We need to compute the derivative of the exponential map. This means that
we should study exp(X + δX ), where δX is a small element of g. (The symbol δX is
unrelated to X .) You can write out a power series for this, but it’s a little confusing
because they don’t commute. However, they commute to first order, so

exp(X +δX ) = lim
N→∞

exp
�

X +δX

N

�N

= lim
N→∞

�

exp
�

X

N

�

exp
�

δX

N

��N

We can expand out the term in the limit as
�

exp
�

X

N

�

exp
�

δX

N

��N

= e X /N
︸︷︷︸

=:g

e δX /N e X /N e δX /N . . .

= (g e δX /N g −1)(g 2e δX /N g −2) . . . (g N e δX /N g −N )g N

= e Ad(g )δX /N e Ad(g 2)δX /N . . . e Ad(g N )δX /N e X

= exp

�

∑ Ad(g i )δX

N
+O (|δX |2)

�

e X

N→∞−−−→ exp

�

∫ 1

0

Ad(e t X )δX +O (|δX |2)

�

e X

Finally,
∫ 1

0

Ad(e t X )δX =

∫ 1

0

e t ad(X )δX =
e ad X −1

ad X
δX .

�
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Remark 10.2.3. The significance of using a right-invariant Haar measure was the e X

that popped out at the right end.

For Un = {A | AA
T
= Idn}, we have

Lie(Un ) = un = {A | A+A
T
= 0}= {i X | X hermitian}.

If

X = i





θ1
...

θn





the eigenvalues of ad X : un → un are {θi −θ j | 1≤ i , j ≤ n}. Therefore

j (X ) =
∏

1≤k ,l≤n

e i (θk−θl )−1

i (θk −θl )

This will mostly (but not entirely) cancel the denominator of the Weyl character for-
mula.

j (X ) =
∏

1≤k ,l≤n

e i (θk−θl )−1

i (θk −θl )

=
∏

k<l

e i (θk−θl )−1

i (θk −θl )
e i (θl−θk )−1

i (θl −θk )

=
∏

k<l

e −i (θk+θl )
�

e iθk − e iθl

i (θk −θl )

�2

So the conclusion is that

j (X ) =
∏

k

e −i (n−1)θk

︸ ︷︷ ︸

(det e X )−(n−1)

∏

l<k

�

e iθk − e iθl

i (θk −θl )

�2

Recall that

χ(z ) =
det(z mk

l )
∏

k<l (zl − zk )

where zk corresponds to e iθk .

χ(e X )
Æ

j (X ) = (det e X )−(n−1)/2 det e i mkθl

∏

k<l i (θk −θl )
.

The square root makes the global validity of the formula concerning, but near the iden-
tity there is no confusion.

We now prepare to apply Duistermaat-Heckman. Write

un = Lie(Un ) = {i A | A Hermitian}.

We identify u∗n = {B hermitian}, the space of Hermitian matrices, via

(i A 7→ Tr(AB ))← B .
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In other words, the pairing on un ×u∗n is

〈i A, B 〉= Tr(AB ).

Definition 10.2.4. For λ= (λ1, . . . ,λn ) ∈Rn , the orbit Oλ is the conjugacy class of









λ1

λ2
...

λn









∈ u∗n .

In other words (diagonalizability of Hermitian matrices) Oλ is the set of all Hermitian
matrices with eigenvalues λ1, . . . ,λn .

We want to compute the Fourier transform of the symplectic measure for X ∈ un .

FTOλ (X ) =

∫

ξ∈Oλ

1

d !

� ω

2π

�d
e i 〈X ,ξ〉.

The function on Oλ given by ξ 7→ 〈ξ, X 〉 generates a flow, which is the vector X ∗ field on
Oλ associated to X . (Another way to say this is that G acts onOλ, and the flow is the one
generated by the action in the direction of X .)

Take

X = i





θ1
...

θn





The vector field X ∗ generates an S 1-action if (θ1, . . . ,θn ) = θ (m1, . . . , mn ) with mi ∈ Z.
We need to assume that the mi are distinct in order to apply Duistermaat-Heckman,
which will ultimately correspond to the representation-theoretic requirement on the
weights.

The action of θ ∈ S 1 is conjugation by









e i m1θ

e i m2θ

...
e i mkθ









Duistermaat-Heckman says that (9.4.2)

FTOλ (X ) =
∑

S 1−fixed points P∈Oλ

e i 〈X ,P 〉
∏

(i nαθ )

where the nα come from the action of S 1 on T (P ):

(T (P ),ω,S 1) =
⊕

(R2, std,θ rotates by nαθ ).
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Under our assumption that θi 6= θ j , i.e. mi 6=m j , the S 1-fixed points are the diagonal
Hermitian matrices in Oλ, which is just the orbit under permutation:











λσ(1)
...

λσ(n )



 :σ ∈ Sn







.

So

e i 〈X ,P 〉 = e i
∑

λσ(k )θk .

Now,

X = i





θ1
...

θn



= iθ





m1
...

mn





so {nα} at Pσ is {mσ(l )−mσ(k ) : k < l }. So

FTOλ (X ) =
∑

σ∈Sn

sgn(σ)e i
∑

λσ(k )θk

i
∏

k<l (ml −mk )θ

=
det(e iλkθl )1≤k ,l≤n
∏

k<l i (θl −θk )
.

(We proved this for a dense set of θ ’s, but it follows for all of them by continuity.)

Remark 10.2.5. The interesting quaitative features of this computation were that the
p

j almost cancels the denominator in the Weyl Character Formula, and the sum over
Sn corresponds bijectively to fixed points.

The conclusion is that

χ(m1,...,mn )
p

j (e X ) = FTOλ (X )

where

λ=









m1

m2
...

mn









−
n −1

2
Id .

Remark 10.2.6. Note that for V the trivial representation, (m1, . . . , mn ) = (n − 1, n −
2, 0, . . . , 0) so OV is not {0}.

So we’ve seen that the irreducible characters of Un corresponds to certain coadjoint
orbits, namely the orbits of









λ1

λ2
...

λn









, λ1 >λ2 > . . .>λn , λi ∈
n −1

2
+Z.
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10.3. Applications. This supports the idea that the same picture holds for Un as for
nilpotent groups, namely that there is a basis for V indexed by balls of symplectic vol-
ume 1 on OV , with the ball B centered at ξ being an approximate eigenvector in the
sense that

e X vB ≈ e i 〈ξ,X 〉vB .

This heuristic picture lets us guess things about representation theory.

10.3.1. Weights for U3. Let V be the irreducible representation indexed by (m1 >m2 >
m3).

Then the character of V is

χV





z1

z1

z3



=
∑

k∈Z3

ck z k .

Here ck is the multiplicity of the character





z1

z1

z3



 7→ z k1
1 z k2

2 z k3
3

in the restriction of V to the diagonal subgroup.
We want to guess what ck is. The picture says that V corresponds to an orbit OV ⊂

u∗3. Let T be the diagonal (maximal) torus and t ∈ u3 be its Lie algebra. As we saw, if
V has weights (m1, m2, m3) then OV consists of hermitian matrices with eigenvalues
(m1−1, m2−1, m3−1).

A ball of volume 1 corresponds to an approximate eigenvector for Un , hence also for
T . So V |T corresponds to projecting O to t∗. Identifying u∗3 with Hermitian matrices,
the projection u∗3→ t∗ sends a hermitian matrix to the diagonal. So the image consists
of the diagonals of 3×3 hermitian matrices with fixed eigenvalues (µ1, . . . ,µn ). This was
worked out by Schur: it is the convex hull of permutations of





µσ(1)
µσ(2)

...




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For n = 3, the picture is

This suggests that the weights ck are non-zero exactly when k is in the convex hull
(mσ(1)−1, mσ(2)−1, mσ(3)−1). This is almost true, but the shifts are not quite right.

We can also estimate how the ck are varying. We expect ck to be approximately the
volume of the pre-image of k in O . To calculate the volume, we can push forward the
symplectic measure onO to t∗. By the same principle as in Duistermaat-Heckman, this
measure is piecewise polynomial of the form L (k ) ·Lebesgue where L (k ) is linear.

Exercise 10.3.1. Analyze the tensor product of two irreducibles of SO3. If dim V = 2n+1
and dim W = 2m + 1, then OV is the sphere of radius n + 1/2 and OW is the sphere of
radius m + 1/2 in so∗3 = R3. Consider taking the convolution of measures on OV +OW ,
corresponding to so3 ,→ so3× so3 and so∗3× so

∗
3→ so∗3.

10.3.2. The semiclassical heuristic. Suppose G is a compact Lie group, acting on a com-
pact manifold X . We have a decomposition of G -representations L 2(X ) =

⊕

V . Which
representations V occur and with what multiplicity?

Think back to the case X =R. The theory of pseudo-differential operators suggested
that we can index a basis for L 2(R) by a decomposition of R2. (The two directions in
this R2 are the “position” and “frequency” in X .) We can think of R2 as T ∗R.

We expect a similar relationship between L 2(X ) and the symplectic manifold T ∗X .
Given a ball B in T ∗X centered at (x ∈ X ,ξ ∈ T ∗x ), we should get a corresponding ap-
proximate eigenfunction fB ∈ L 2(X )which is localized near x , with frequency localized
near ξ. Think of fB as e i 〈ξ,x 〉. This suggests that for Y ∈ g near 0, giving Yx ∈ Tx X ,

e Y fB ≈ e i 〈ξ,Yx 〉 fB .

The association Y 7→ Yx defines a map

g→ Tx X

or dually
T ∗x X → g∗
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which we can promote to a G -equivariant map

Φ: T ∗X → g∗.

In other words, fB is an approximate eigenvector for G , with eigenvalue given by
Φ(x ,ξ). This suggests the following (“semiclassical”) heuristic. We consider pushing
forward the symplectic volume via Φ∗. Since the map Φ is G -equivariant, the result will
be a G -invariant measure, so we can decompose it into measures on the G -orbits:

Φ∗(symplectic measure)=

∫

O
νO dµ(O ). (10.3.1)

The orbitO should correspond to a representation V , and the multiplicity ofπO should
have something to do with µ(O ).

This is obviously can’t be right in general, because if G is compact then the represen-
tations appearing in L 2(G ) are discrete, while the right side of (10.3.1) is continuous -
so we need to discretize it in some way.

Example 10.3.2. Consider G =Un acting on X = CPn−1. The stabilizer of [0, 0, . . . , 0, 1]
is

H =

�

Un−1

U1

�

∼=Un−1×U1.

We can view X =G /H . So (by Peter-Weyl)

L 2(X ) =
⊕

π irred.

(dimπH )π.

At x0, we can identify Tx0
X = g/h, hence

T ∗x0
X = {λ ∈ g∗ : λ|h = 0}= h⊥.

The map
Φ: T ∗x0

X → g∗

is then identified with the inclusion

h⊥ ,→ g∗.

We’ve been identify g= u∗n with n ×n hermitian matrices. In these terms,

h⊥ =























0 . . . 0 Y1

0 . . . 0
...

0 . . . 0 Yn−1

Y 1 . . . Y n−1 0























so Φ(T ∗X ) is the union of the G -conjugates of the h⊥. What are the eigenvalues of








0 . . . 0 Y1

0 . . . 0
...

0 . . . 0 Yn−1

Y 1 . . . Y n−1 0









?
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Clearly many of them are 0, except 2. Since the trace is 0, and the sum of the squares of
the matrix entries will be the norm of the matrix squared, which is

||Y ||=
r

∑

|Yi |2

we see that the eigenvalues are

(||Y ||, 0, . . . , 0,−||Y ||).

Since the map g∗→ g∗/G takes a matrix to its eigenvalues, we conclude that the com-
posite map

T ∗X → g∗→ g∗/G

has image {(r, 0, . . . , 0,−r )}. We put the Lebesgue measure on Cn−1 ∼=R2n−2 and push it
forward to R via the map

(x1, . . . , x2n−2) 7→
r

∑

x 2
i

to obtain a measure proportional to r 2n−3 d r . Let O (r ) ⊂ g∗ be the orbit mapping to
(r, 0, . . . , 0,−r ). The dimension of this orbit is 4n−6, so the symplectic volume is homo-
geneous of degree 2n −3. Since

Φ∗(symplectic measure)= c

∫

r

νO (r )d r

this suggests something like each πO (r ) occurs with the same multiplicity.
In fact

L 2(Un/Un−1×U1) =
⊕

Vm=(m1,...,mn )

where m ′ = (m1− (n −1), . . . , mn ) = (k , 0, . . . , 0,−k ).

11. CLASSICAL MECHANICS

11.1. Newton’s laws of motion. Suppose you have a system of n particles in R3, with
position vectors (~q1, ~q2, . . . , ~qn ), interacting according to a potential V (~q1, ~q2, . . . , ~qn ). New-
ton’s law says

mi
d 2

d t 2
~qi =−∇~qi

V (~q1, . . . , ~qn ). (11.1.1)

Example 11.1.1. If the i th particle has mass mi , and the potential is all from gravity,
the potential function is

V (~q1, . . . , ~qn ) =−G
∑

i 6= j

mi m j

|~qi − ~q j |
.
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11.2. Hamilton’s reformulation. Hamilton observed that you can rewrite this as a flow
on a symplectic manifold. One advantage of this is to highlight symmetries that would
otherwise be obscured. We introduce the momentum

~pi =mi
d ~qi

d t
.

The equations (11.2.1) become

~pi =mi
d ~qi

d t
(11.2.1)

d ~pi

d t
=−∇~qi

V (~q1, . . . , ~qn ). (11.2.2)

Write

x = (~q1, ~q2, . . . , ~qn )

p = ( ~p1, ~q2, . . . , ~pn )

Introduce the “Hamiltonian”

H (p , q ) :=
∑ | ~pi |2

2mi
+V (~q1, ~q2, . . . , ~qn ).

Using this we can rewrite (11.2.1) as

d ~pi

d t
=−

∂H

∂ xi
(11.2.3)

d ~xi

d t
=
∂H

∂ pi
(11.2.4)

Think of (p , x ) ∈R3n ×R3n as a symplectic manifold with differential form
∑

d pi ∧d xi .
Recall that we have a Poisson bracket

{ f , g }=
∑ ∂ f

∂ pi

∂ g

∂ xi
−
∂ f

∂ xi

∂ g

∂ pi
.

This allows us to rewrite (11.2.3) as

d ~pi

d t
=−

∂H

∂ xi
= {H , pi } (11.2.5)

d ~xi

d t
=
∂H

∂ pi
= {H , xi }. (11.2.6)

Recall the meaning of these Poisson brackets. A function H on a symplectic manifold
M gives a flow XH . For f ∈C∞(M ),

XH f =±{H , f }.

So the equations tells us that the time evolution of p and x is given by the Hamiltonian
flow XH associated to H . In particular, H is constant along the flow of XH , correspond-
ing to conservation of energy.
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11.3. Quantization. We’ll describe the quantization of this system.
In classical mechanics, the state (position and momentum) is represented by a vec-

tor in R6n , which we view as T ∗R3n . The quantum state is represented by a wavefunc-
tionψ ∈ L 2(R3n ) with ||ψ|| = 1, which encodes the probability density that a particle is
at position (x1, . . . , xn ).

In classical mechanics observables are represented by a function F on the phase
space T ∗R3n . The corresponding quantum observable is represented by an operator
Op(F ),with 〈Op(F )ψ,ψ〉 being the expected value of F .

Classical Quantum
State (x , p ) ∈ T ∗(R3n ) Stateψ ∈ L 2(R3n ), with ||ψ||= 1
Observable F on T ∗R3n Operator Op(F ) on L 2(R3n )

We remind you how to quantize an observable, i.e. how to construct Op(F ) from F .
Let n = 1, so the potential is

V (x ) =
−1

q

x 2
1 + x 2

2 + x 2
3

.

Then L 2(R) is the quantization of R2 = T ∗R. We wrote down a rule Op from functions
f on T ∗R to operators. The function x was sent to multiplication by x . The function p
was sent to i d

d x .

What about x p ? You might want to send it to x ·i d
d x , but this is not self-adjoint, while

operators corresponding to observables should be self-adjoint since their eigenvalues
are real numbers. So you might try 1

2 (bx bp + bp bx ), which is the Weyl-twisted operator
OpW , corresponding to a different splitting of the Heisenberg group (Remark 6.3.1).

We also had the Weil representation

Lie(SL2 R)→Operators on L 2(R)

and there was a map Lie(SL2 R) to vector fields on T ∗R.
What about a vector field Y on T ∗R not coming from Lie(SL2 R)? We want to attach

to Y an operator AY such that A∗ =−A. We’re going to follow an analogue of our story
for the Weil representation; the analogue of the defining equation (6.1.1) is

[AY , Op( f )] =Op(Y f ).

Suppose Y = XH for some Hamiltonian H ∈C∞(T ∗R), i.e. Y preserves the symplectic
form. Then Op(Y f ) =Op(−{H , f }). Recall that

[Op( f ), Op(g )] = i Op({ f , g }) + (higher order terms).

This suggests that AY = i Op(H )when Y = XH associated to H .
This tells us that XH can be thought of as i Op(H ) to first order, which is correct when

you restrict to quadratic H .

Finally, we discuss one more aspect of quantization. The time evolution associated
to a Hamiltonian H is the flow of the vector field XH . In quantum mechanics, time
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evolution is governed by the time-dependent Schrödinger equation

∂ ψ

∂ t
= i Op(H )ψ.

Classical Quantum
State (x , p ) ∈ T ∗(R3n ) Stateψ ∈ L 2(R3n ), with ||ψ||= 1
Observable F on T ∗R3n Operator Op(F ) on L 2(R3n )
Time evolution (flow of XH ) Schrödinger equation ∂ ψ

∂ t = i Op(H )ψ
Suppose you’re looking for an observable that doesn’t evolve with time. In particular,

ifψ0 ∈ L 2(R3n ) is an eigenfunction of Op(H ), with

Op(H )ψ0 = E0ψ0

thenψ(t ) =ψ0 · e i E0t is a “stationary” solution to the Schrödinger equation.
In other words, the quantum behavior of the system is governed by the spectrum of

Op(H ) acting on L 2(R3n ).

11.4. The Kepler problem. Consider a singular particle in R3 with potential

V (~q )∝
−1

||~q ||
.

The periodic nature of planetary orbits is a special feature of this (inverse square) po-
tential. If you change the exponent slightly, that would fail. In the Hamiltonian formu-
lation, the symplectic manifold is T ∗R3s, with

H = p 2
1 +p 2

2 +p 2
3 −

1
q

x 2
1 + x 2

2 + x 2
3

.

There are some conserved quantities of this flow: the energy H , and the angular mo-
mentum vector L x , L y , Lz . So this flow should be constrained to a 6−4= 2-dimensional
space. But in fact the flows are 1-dimensional, which suggests that there are more in-
variants. We’ll construct Kx , K y , Kz , which together with the L ’s generates Lie(SO4). The
quantization of this system is SO4 acting on L 2(R3−{0}).

We’ll work in the 2D case, considering T ∗(R2), so

H = p 2
1 +p 2

2 −
1

Æ

x 2
1 + x 2

2

.

If we believe that the orbits are closed, then we should be able to find 3 invariants pre-
served by the flow. We’ll write down 3 conserved quantities.

First, note that the whole system is stable under rotation. Letting R ∈ SO2, the oper-
ation

(x1, x2) 7→R (x1, x2)

(p1, p2) 7→R (p1, p2)

preserves H . The corresponding vector field is (x1∂x2
−x2∂x1

)+(p1∂p2
−p2∂p1

). Since this
preserves the symplectic form, it is the flow of some J ∈C∞(X ). The vector field X J of
the flow is defined by

d J (Y ) =ω(X J , Y ),
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so J = x1p2 −p1 x2. Then d H (J ) is the rate of change of H along the J -flow, which is 0
since the flow of J is rotation. This tells us that {J , H }= 0. By symmetry, the change of
J along the H flow is 0, i.e. J is conserved. This J is angular momentum.

More generally, F is conserved if and only if {F, H }= 0.
So we have the two conserved quantities

J = x1p2− x2p1

H = p 2
1 +p 2

2 −
1

Æ

x 2
1 + x 2

2

.

Now we have to do something not entirely formal (that depends on inverse square).
We study the level set {T ∗R2 : J = J0}. This is preserved by rotation, so it’s preserved
by the S 1-action, so we can take the quotient {T ∗R2 : J = J0}/S 1. This is an example of
symplectic reduction. It inherits a symplectic form by “descending” the restriction of
the symplectic form on T ∗R2.

Let’s introduce some coordinates on this quotient. If (x1, x2, p1, p2) has J = J0, then
we can rotate so that x2 = 0. Since x1p2− x2p1 = J0, this tells us that p2 = J0/x1. So our
point is then (x1, 0, p1, J0/x1), which is controlled by the coordinates r := x1 and p := p1.
The Hamiltonian is then

H = p 2+
J 2

0

r 2
−

1

r
= p 2+

�

J0

r
−

1

2J0

�2

−
1

4J 2
0

.

Let ρ = J0
r −

1
2J0

, so

H = p 2+ρ2− constant.

The symplectic form in these coordinates is d p ∧d r = r 2

J0
dρ ∧d p . In (p ,ρ)-space, the

particle moves along circles of the form p 2+ρ2 = constant. The factor r 2

J0
just rescales

the speed of the flow. (If the symplectic form doubles then the flow halves speed, so the
rate of change of the angle is 2J0/r 2 instead of 1. We should be writing things in terms
of ρ instead of r , but they determine each other and the formulas are cleaner in terms
of r .)

Although the orbit is closed in (p ,ρ)-space, upstairs in the level set {T ∗R2 : J = J0}
(before the S 1-quotient) you might have precession. This is typical for central poten-
tials. But there is a coincidence that the angular speed of the particle in these coordi-
nates is the same as the original one.

To summarize, in (ρ, p )-space the orbit is a circle. Letting ϕ be the angle clockwise
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from the x -axis, the angular speed is dϕ/d t = 2J0/r 2.

In (x1, x2)-space, letting θ denote the angle clockwise from the x -axis atx2 = 0, we
have dθ/d t = x ′2/x1. By Hamilton’s equations (11.2.3) we have

x
∂H

∂ p2
= 2p2.

Since J = x1p2− x2p1, simplifies at x2 = 0 to x1p2, we conclude that

x ′2
x1
=

2J0

x 2
1

=
2J0

r 2
.

So the miracle is that the angles are changing at the same speed.
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This is a reformulation of one of Kepler’s laws: r 2dθ/d t is the rate of sweeping out
area, which is constant in time.

We emphasize that dθ/d t and dϕ/d t are not constant, since r depends on t (the
actual orbits are not spherical), but they are exactly opposite. This leads to a time in-
variance that we now explain.

Call Rθ a counterclockwise rotation by θ . Since we have just seen that in time t the
(p ,ρ) vector rotates by R−θ (t ), we have that Rθ (t )(p (t ),ρ(t )) is actually constant in time.
We now compute the consequences of this observation. We have

(p ,ρ) =
�

p ,
J0

r
−

1

2J0

�

=
�

p ,
J0

r

�

−
�

0,
1

2J0

�

The vector
�

p , J0
r

�

was by obtained by definition from rotating the momentum vector

(p1, p2) so that x2 = 0, which is a rotation by −θ . Therefore
�

p , J0
r

�

=R−θ (p1, p2), so

Rθ (p ,ρ) = (p1, p2)−Rθ

�

0,
1

2J0

�

.

Now we unravel this by explicitly computing the entries of Rθ . We have

Rθ =
�

x1/r −x2/r
x2/r x1/r

�

Substituting this into the constancy of Rθ (p ,ρ) in time, we find that

�

p1+
1

2J0

x2

r
, p2−

1

2J0

x1

r

�

is time-independent.

Exercise 11.4.1. Double check this by computing the Poisson brackets.
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Define

B = J p1+
1

2

x2

r

A = J p2−
1

2

x1

r

The vector (A, B ) is called the Lenz vector. One can check that {H , A}= {H , B }= 0.
Now A, B , J , H are all invariant under the flow XH . These are all functions on T ∗R2,

which is 4-dimensional, yet we found a 1-dimensional orbit. This means that we should
really have 3 “independent” invariants, so there needs to be a relation. Indeed, we com-
pute

A2+B 2 = J 2(p 2
1 +p 2

2 ) +
1

4
+ J

p1 x2− x1p2

4
︸ ︷︷ ︸

−J /r

= J 2
�

p 2
1 +p 2

2 −
1

r

�

+
1

4

= J 2H +
1

4

which we rewrite as
�

A
p
−H

�2

+
�

B
p
−H

�2

+ J 2 =
−1

4H
.

(We’ve written things this way because we want to quantize them in a moment.)

Remark 11.4.2. Unbounded orbits correspond to H positive, so the closed orbits cor-
respond to negative H .

Since {H , A} = {H , B } = 0, the Jacobi identity implies that {A, B } also has 0 bracket
with H . Since we already have enough nvariants, this should be a function of the ones
we already have. In fact, {A, B }=H J . Similarly, {J , A}=−B and {J , B }= A.

We introduce new coordinates α= A/
p
−H , β = B/

p
−H . In these terms

{α,β}=−J

{J ,α}=β
{β , J }=−α

which is a presentation of Lie(SO3), with the Casimir

α2+β2+ J 2 =−
1

4H
.

(The calculations are simplified by the fact that H Poisson-commutes with everything.)

Remark 11.4.3. In 3 dimensions we would have gotten SO4, etc. If H were positive, we
would have gotten SO(2, 1) instead.

This means that at least infinitesimally, SO3 acts on T ∗(R2 − {0}). In fact this action
does not exponentiate to SO3, because of the non-compactness of the space. So it does
extend after compactifying.
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Remark 11.4.4. One way to think about the compactification is that you can map S 2

by stereographic projection to R2, so you have T ∗S 2→ T ∗R2 away from∞, and there
is an SO3-action on T ∗S 2. This goes back to Fock, and is explained in [Mos]. (We have
given a highly oversimplified account.)

We have defined a map

T ∗(R2−{0})H<0 (α,β ,H )
−−−−→ Lie(SO3)

∗.

In this picture the orbits of energy H correspond to spheres of radius squared is−1/4H .
These are the coadjoint orbits.

We now pass to the quantum story. As we know from the Kirillov character formula,
not all coadjoint orbits correspond to representations. The question is: what are the
eigenvalues of the Schrödinger operator

Op(H ) =−∆−
1

4
on R2?

We have to replace everything by operators. Recall that Op(x1) is multiplication by x1,
(p1) is i∂1, and

Op(H ) =Op

�

p 2
1 +p 2

2 −
1

Æ

x 2
1 + x 2

2

�

=−∆−
1

r
.

What about A, B , J ? Let bA = Op(A), etc. To compute their quantizations we need to
symmetrize:

Op(A) =
1

2
[Op(J )Op(p1) +Op(p1)Op(J )] +

1

2

x2

r

Op(B ) =
1

2
[Op(J )Op(p2) +Op(p2)Op(J )]−

1

2

x1

r
.

These are all differential operators on R2−{0}.
Miraculously, they turn out to satisfy almost the exact same relations as their classical

versions.

Fact 11.4.5. We have

[ bJ , bA] =−i bB ,

[ bB , bJ ] =− bA,

[ bA, bB ] = i ÒH bJ ,

and

bA2+ bB 2 = bJ 2
ÒH +

1

4
(1+ ÒH ).

Assume that you can make sense of 1/
p

−ÒH . (This is true in ≥ 3 dimensions. It has
to do with self-adjointness; these operators are formally self-adjoint but you also need
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some convergence conditions for functional analysis.) Then we can make sense of the
operators

α= i bA/
Æ

−ÒH ,

β = i bB/
Æ

−ÒH ,

γ= i bJ .

Then α,β ,γ generate SO3(R), and

α2+β2+γ2 =−
1+ ÒH −1

4
.

The space L 2(R2−{0})ÒH<0 carries a representation of Lie(SO3), which you can actually
lift to SO3. So it decomposes as

L 2(R2−{0})ÒH<0 ∼=
⊕

V2n+1
︸ ︷︷ ︸

dim 2n+1

(possibly with multiplicities). By explicit computation,

α2+β2+γ2 acts by n (n −1) on V2n+1.

This implies that the ÒH -eigenvalues En all satisfy

−
(1+E −1

n )
4

= n (n −1) =⇒ En =
−1

(2n −1)2
.

The Kepler Problem in 3 dimensions. In three dimensions you instead get energy lev-
els 1/n 2. This matches with the known energy levels of the hydrogen atoms, so the
theory seems to work!

In summary, you have SO4 or SO3,1 acting on the 3d Kepler problem. In fact there is
a larger symmetry group SO4,2 acting, after compactification, that preserves the sym-
plectic form, and interpolates between these two cases.

11.5. Summary. For the Kepler problem in 3 dimensions, the classical mechanics are
controlled by the phase space T ∗(R2−{0})with Hamiltonian

H =
∑

p 2
i −

1
q

x 2
1 + x 2

2 + x 2
3

.

The periodic orbits led us to discover extra conserved quantities, which generated Lie(SO4)∗.
The quantum version is controlled by the Hamiltonian

Op(H ) =−∆−
1

q

x 2
1 + x 2

2 + x 2
3

acting on L 2(R3). The Hamiltonian operator has a degenerate spectrum. The eigen-
values are − 1

4n 2 with multiplicity n 2. In fact the states correspond to n 2-dimensional
representations of SO4.
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12. QUANTIZATION

We have seen so far that for G nilpotent or compact, there is a correspondence from
irreducible representations π of G to coadjoint orbits Oπ ⊂ (LieG )∗, which is described
by the Kirillov character formula.

We now address the questions:

(1) Which orbits O occur?
(2) Can we give a recipe for making πO from O ? (More generally, can we make a

Hilbert space from a symplectic manifold (M ,ω)?)

12.1. Quantizable orbits. We address (1) first.

Example 12.1.1. Let’s start by considering a very simple Lie group: G = U (1) = S 1.
Since G is abelian, its adjoint action on Lie(G ) is trivial, so the G -orbits on Lie(G )∗ are
just points. The corresponding representations are 1-dimensional, and the correspon-
dence sends

χ 7→
1

i
dχ : Lie(G )→R.

The elements of Lie(G )∗ occurring are the ones that exponentiate to G , i.e. which vanish
on ker log.

In general (for any Lie group G ), if O =G ·λ for some λ ∈ Lie(G )∗, we have seen (§7.3)
that λ defines a Lie algebra homomorphism

Lie(Gλ)→R

where Gλ is the stabilizer of λ. In view of Example 12.1.1, this suggests:

Guess 12.1.2. The orbit O =G ·λ corresponds to a representation when you can lift the
character

iλ: Lie(Gλ)→ i R

to a homomorphism eλ: Gλ→ S 1.

Let’s see how this guess plays out for the unitary group Un . Recall that, identifying
LieUn with hermitian matrices, the relevant O were orbits of





m1
...

mn



+
n −1

2
Id

where m1 > . . . >mn ∈ Z. We’ll see that Guess 12.1.2 leads to an answer that is sort of
close to being correct, but for instance it doesn’t know about the n−1

2 Id.
Take λ ∈ Lie(Un )∗ corresponding to

λ↔





λ1
...

λn





and without loss of generality assume that

λ1 ≥λ2 ≥λ3 ≥ . . . .
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The stabilizer of λ is then
Gλ ∼=Un1

×Un2
× . . .×Unk

The only possibility for eλ is (det g1)λ1 (det g2)λ2 . . . (det gk )λk . So the guess is that the rel-
evant O -orbits are those of the characters





λ1
...

λn



 λ1 ≥ . . .≥λn ;λi ∈ Z.

This is wrong if n is even, because it is off by n−1
2 Id, and also because we miss the strict

inequalities.

We now describe an improvement due to Duflo. The problem is that even when we
try to quantize a vector space, we really get something like Mp(V ) instead of Sp(V ). So
considering these double-cover issues is really unavoidable. Since Gλ fixes λ ∈ O , we
have a map Gλ → Aut(TλO ). But in fact Gλ preserves the symplectic structure (clear
from inspection) and so lands in Sp(TλO )

Gλ→ Sp(TλO ).

This symplectic group has a metaplectic cover Mp(TλO ). Does this split, i.e. lift to Gλ→
Mp(TλO )?

Mp(TλO )

Gλ Sp(TλO ).

We can rephrase this as follows. Let eGλ be the pullback cover to Gλ, so concretely

eGλ = {g ∈Gλ, lift to Mp(TλO ) of its image in Sp(TλO )}.

This gives us a double cover

0→{±1}→ eGλ→Gλ→ 0.

The existence of a lift Gλ→Mp(TλO ) is equivalent to the existence of a lift Gλ→ eGλ.

Guess 12.1.3 (Duflo). The orbit O = G · λ corresponds to a representation when you
can lift the character λ to a character of eGλ such that eλ(−1) =−1.

Let’s see how this plays out for the unitary group. If

λ=





λ1
...

λn



 ∈ Lie(Un )
∗, λ1 > . . .>λn ,

then
Gλ = (S

1)× . . .× (S 1)
︸ ︷︷ ︸

n

and
eGλ = {g ∈Gλ, z ∈ S 1 : z 2 = (det g )n−1}



100 LECTURES BY AKSHAY VENKATESH

In this case Guess 12.1.3 correctly picks out integral λi for odd n , and half-integral λi

for even n . However, it still doesn’t pick out the strict inequalities.
The two guesses are equivalent when the cover eGλ is split. In the case of the unitary

group, this happens when n is odd. From now one we assume that eGλ is split.

12.2. Konstant’s recipe for quantization. We now turn to (2), the problem of making
πO from O , under the assumption above. We’ll give a recipe of Kostant.

We are given a character eλ: Gλ → S 1 with derivative iλ. Then eλ gives a line bundle
(or S 1-bundle)Lλ on G /Gλ =O . Explicitly, the total space ofLλ is

{(g , z ) ∈G ×C}/(g , z )∼ (g h ,eλ(h )−1z ) for h ∈Gλ.

The sections are f : G →C with f (g h ) = eλ(h )−1 f (g ), which you can recognize as IndG
Gλ
eλ.

However, this is still too big to be the right representation.

Example 12.2.1. For G =Heis, and λ on a planar orbit, we have Gλ = Z (G ). Therefore
the induced representation IndG

Gλ
eλ is L 2(R2), but the correct quantization is L 2(R).

We will make a candidate for πO inside the sections of our line bundle.

Lemma 12.2.2. The Chern class c1(Lλ) ∈ H 2(O , R) is the class of [ ω2π ] ∈ H 2(M , R). In
particular, [ ω2π ] is integral.

Remark 12.2.3. This is significant - for instance if M is compact then it implies that the
volume of M will be integral, which is desirable because that volume is supposed to be
related to the dimension of the representation.

Outline of proof. One way to compute c1 is as the curvature of a connection. So we’ll
make a connection onL .

Every X ∈ Lie(G ) gives a vector field X ∗ on O . We will specify the connection by
telling you how to differentiate along X ∗. For f a section ofL , equivalently f : G → C
satisfying f (hg ) = eλ(h )−1 f (g ), we define a connection∇ by

∇X∗ f (g ) = X l f − iλ(g −1X g ) f .

Here

X l f (g ) :=
d

d t
|t=0 f (e −i t X g ).

This connection is also G -equivariant.
You can compute the curvature:

∇X∗∇Y∗ −∇Y∗∇X∗ −∇[X∗,Y∗].

We won’t write out the details, but you explicitly compute that the curvature at e ∈ O
sends X∗, Y∗ 7→ −iλ([X , Y ]). Recall that the symplectic form is (X∗, Y∗) 7→ λ([X , Y ]). The
Chern class is then given by

[i
(curvature)

2π
] = [

ω

2π
].

�
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Let’s highlight some properties of the connection ∇ that we didn’t use above. The
connection is defined by

∇X∗ f (g ) = X l f − iλ(g −1X g ) f .

This is G -equivariant, meaning that for γ ∈G we have

∇γX∗ (γ f ) = γ(∇X∗ f ).

Also, for sections f , g ofL , f g is a function on O =G /Gλ, and

X∗( f g ) = (∇X f )g + f (∇X g )

i.e. the connection is compatible with a hermitian structure onL . (The concrete con-
sequence is that parallel transport preserves the hermitian inner product.)

In summary, we have for λ ∈ Lie(G )∗:
• The orbit O =G .λ, with a canonical symplectic formω,
• eλ: Gλ → S 1 with d eλ = λ, corresponding to a line bundle L → O with c1(L ) =
[ ω2π ].

Algebra Geometry
λ, O =G .λ (M ,ω)
eλ: Gλ→ S 1 L , c1(L ) = [ ω2π ].

Recall that for a nilpotent group N , we constructed πO using a polarization, i.e. a
subgroup Gλ ⊂Q ⊂G such thatq is Lagrangian for the symplectic formωon Lie(G )/Lie(Gλ).
Given this, we make the induced representation IndG

Q
eλ. This turns out to be identified

with sections ofL which are flat, i.e. ∇ = 0, along right Q -orbits, and this will lead us
to a better construction in general.

A polarization is a subgroup Q fitting into Gλ ⊂ Q ⊂ G which is maximal isotropic
with respect to λ([X , Y ]). Geometrically, the map O = G /Gλ → G /Q is a family of La-
grangians filling out M .

In the nilpotent case the quantization was the induced representation

IndG
Q λ= { f : G →C: f (g q ) = f (g )eλ(q )−1}.

We can view this as sections ofL which are flat along the fibers of O →G /Q . To make
this precise, we formalize the notion of a “real polarization”.

Definition 12.2.4. A real polarization on (M ,ω) is a smooth assignment x ∈M   La-
grangian L x ⊂ Tx M which is integrable, in the sense that if X , Y are such that X x , Yx ∈
L x then [X , Y ]x ∈ L x .

Given a real polarization {L x }we can form

{ f ∈ Γ (L ):∇X f (x ) = 0 when X x ∈ L x }

is a first approximation to the quantization of (M ,ω). However we need to give this a
Hilbert space structure. One candidate is

( f , g ) =

∫

O
f g .
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This isn’t quite right because of the intervention of the metaplectic group, so we need
to correct it by some sort of twist.

Remark 12.2.5. This doesn’t work for unitary groups, or even for SO3. We’ll modify it to
something that works better, but everything we describe in this section is a template,
which does not work universally.

Algebra Geometry
λ, O =G .λ (M ,ω)
eλ: Gλ→ S 1 L , c1(L ) = [ ω2π ].
Q real polarization
IndG

Q λ sections constant
along Lagrangian leaves

Kostant’s fix was to introduce a notion of a complex polarization.

Definition 12.2.6. A complex polarization on (M ,ω) is a smooth assignment of a com-
plex Lagrangian L x ⊂ Tx M C for every x ∈M , which is integrable.

What does this look like? We have

T C
x = Tx ⊕ i Tx .

If L x is in general position, then it will be the graph of some function Φ:

L x = {v + iΦ(v ): Φ}.

Let’s explicate the Lagrangian condition. It implies

ω(v + iΦ(v ), w + iΦ(w )) = 0 for all v, w ∈ T C
x .

The real and imaginary components are

ω(v, w )−ω(Φv,Φw ) = 0

ω(Φv, w ) +ω(v,Φw ) = 0.

This tells us thatω(v, w )+ω(Φ2v, w ) = 0 =⇒ Φ2 =−1. (This also follows from L x being
a complex vector space.) In other words Φ2 defines a complex structure on TX , and

ω(Φv,Φw ) =ω(v, w ).

So generically (under a transversality condition) L x arises from a complex structure on
TX , and

ω(J v, J w ) =ω(v, w ).

Another way to say this is that a complex structure on TX induces a decomposition
T C

x
∼= Tx ⊕Tx , and L x = Tx .

The integrability assumption implies that this is an integrable complex structure,
i.e. M is a complex manifold. Assume that it’s further Kähler, i.e. Imω(J v, v )> 0 for all
v ∈ Tx .

The line bundleL →M also has a holomorphic structure, (i.e. we can choose tran-
sition functions that are not just smooth but holomorphic.) Indeed, obstruction to en-
dowing a complex line bundle with a holomorphic structure is that its Chern class is
type (1, 1), which is ensured by the Kähler assumption ensures that.
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The connection

∇X :L →L ⊗Ω1

has (0, 1)-componentL →L ⊗Ω(0,1) defining the ∂ -operator. (This is not a formality.)
What does it mean for a section ofL to be “flat along the Lagrangian direction”? It

means exactly that they are holomorphic sections of L . So Kostant’s quantization is
holomorphic sections Γ (M ,L ).

Algebra Geometry
λ, O =G .λ (M ,ω)
eλ: Gλ→ S 1 L , c1(L ) = [ ω2π ].
Q real polarization
IndG

Q λ sections constant
along Lagrangian leaves

J complex polarization
(e.g. coming from Kähler structure)

Γ (M ,L ) holomorphic sections

In the nilpotent case, the quantization of an orbit comes from a real polarization. In
the compact case, the quantization of an orbit comes from a complex polarization. The
general case of a semisimple Lie group will be a hybrid between the real polarization
(Lagrangian) and complex polarization (Kähler) pictures.

We mentioned earlier that the presence of the metaplectic group forces a modifica-
tion of this discussion.

Example 12.2.7. Consider the representations of SU2. The quantizable coadjoint or-
bits O =G .λ are spheres of radius n +1/2, with

∫

ω

2π
= 2n +1

hence are associated to a 2n +1-dimensional representation V2n+1.
The sphere has a complex structure, making it CP1. The symplectic formω is a mul-

tiple of Fubini-study, namely (2n + 1)c1(O (1)). You can check that L = O (2n + 1). In
this case the recipe gives Γ (CP1,O (2n +1)) = Sym2n+2 C2, which is 2n +2-dimensional.
That’s not quite right.

The necessary modification comes from the metaplectic group. We need to twist
by the square root of K . In this case KCP1 = O (−2), so

p
K = O (−1). Another good

thing about this is that it gives you a more canonical inner product: the product of two
sections of

p
K is an honest differential, which can be integrated. What does this square

root have to do with a lifting to the metaplectic group? For Riemannian manifolds a
square root of K corresponds to a spin structure; an analogue of spin for symplectic
manifolds is metaplectic structure.

(This twist by
p

K is necessary even for real polarizations.)

12.3. Representations of SL2 R. To conclude, we’ll use this picture to describe the rep-
resentations of SL2 R. This is a non-compact Lie group, with many infinite-dimensional
representations. Let’s think about its coadjoint orbits: Lie(SL2) is the 3-dimensional
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vector space
�

x y
z −x

�

which has the invariant quadratic form given by det. The co-adjoint orbits are the level
sets of this quadratic form, which are hyperboloids and paraboloids.

The hyperboloids are ruled by lines, which are the real polarizations. (There are
two rulings, which give isomorphic representations.) That gives a family of represen-
tations called the principal series, which satisfy Kirillov’s character formula. All the hy-
perboloid orbits comes from representations, so they form a continuous part of the
spectrum ÖSL2 R.

The paraboloids correspond to complex polarizations. (They are realized as holo-
morphic or antiholomorphic sections, depending on whether they point up or down.)
In this paraboloids which come from representations are discrete, and the correspond-
ing representations are called the discrete series. The discrete series are quantized by
Kähler forms (taking L 2 sections).

So ÖSL2 R has principal and discrete series, the trivial representation, and one more
mysterious class: the complementary series.
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