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1. BASIC STRUCTURE OF REDUCTIVE GROUPS

1.1. Linear algebraic groups. Let’s review some notions from the previous course.

Definition 1.1.1. For a field k , a linear algebraic group over k is a smooth affine k -group
scheme (equivalently, a smooth closed k -subgroup of GLn ).

Remark 1.1.2. We allow linear algebraic groups to be disconnected. However, the iden-
tity component G 0 is geometrically connected over k . This follows from a general fact
(an instructive exercise) that if X is finite type over k and X (k ) 6= ;, then X is connected
if and only if X is geometrically connected.

One uses this fact all the time when calculating with geometric points of normalizers,
centralizers, etc. to ensure that one does not lose contact with connectedness.

1.2. Reductive groups. Recall the brute-force definition of reductivity:

Definition 1.2.1. A reductive k -group is a linear algebraic group G over k whose geo-
metric unipotent radical (maximal unipotent normal smooth connected k -subgroup)
Ru (Gk ) is trivial.

Example 1.2.2. Many classical groups are reductive (verified in lecture or homework of
the previous course, but some to be revisited from scratch in this course):

• SO(q ) for finite-dimensional quadratic spaces (V , q ) with q 6= 0 that are non-
degenerate. (Non-degeneracy is defined by smoothness of the zero-scheme of
the projective quadric (q = 0). This works uniformly in all characteristics.)
• U(h ) and SU(h ) for non-degenerate finite-dimensional hermitian spaces (V ′, h )

with respect to quadratic Galois extensions k ′/k .
• Sp(ψ) for a non-degenerate finite-dimensional symplectic space (V ,ψ).
• A× for A a finite-dimensional central simple algebra over k , representing the

functor R   (A⊗k R )× on (commutative) k -algebras.

Remark 1.2.3. We shall use throughout Grothendieck’s fundamental theorem, proved
in the previous course, that maximal k -tori in a linear algebraic group G over k are
geometrically maximal (i.e., remain maximal over k , or equivalently after any field ex-
tension). In particular, all such tori have the same dimension, called the rank of G .
Our proof of Grothendieck’s theorem applied to infinite k ; the handout on Lang’s the-
orem (and dynamic methods) takes care of the case of finite fields, so Grothendieck’s
theorem is thereby established in general.

The following was a major result near the end of the previous course, to be used a lot
in this course.

Theorem 1.2.4. If G is connected reductive and split (i.e. has a split maximal k -torus)
and has rank 1 then G =Gm , SL2, or PGL2 as k -groups.

There are a lot more properties of reductive groups that we would like to investigate
(some to be addressed in handouts of this course), such as the following.

• If G � G ′ is a surjective homomorphism of linear algebraic k -groups then we
would like to show Ru (Gk )�Ru (G ′k ), so G ′ is reductive if G is.
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• If char k = 0 and G is reductive, then all linear representations of G on finite-
dimensional k -vector spaces are completely reducible. (The converse is a con-
sequence of the Lie-Kolchin theorem, but in characteristic p > 0 only applies to
special G such as tori and finite étale groups of order not divisible by p .)
• Structural properties of connected reductive k -groups G , such as:

– for locally compact k , relate compactness of G (k ) to properties of G as an
algebraic group. For instance if G contains Gm =GL1 then G (k ) is not com-
pact since its closed subgroup k× is non-compact; we want to show that
this is the only way compactness fails.

– for general k , prove G (k )-conjugacy for maximal split k -tori and minimal
parabolic k -subgroups. Build a “relative root system”.

– use root systems and root data to analyze the k -subgroup structure of G
(e.g., structure of parabolic k -subgroups) and the subgroup structure of
G (k ) (e.g., simplicity results for G (k )/ZG (k ), at least for k -split G ).

– for k =R, understand π0(G (R)) and prove that if G is semisimple and sim-
ply connected in an algebraic sense then G (R) is connected.

1.3. Chevalley’s Theorem. Recall that a smooth closed k -subgroup P ⊂G is parabolic
if the quasi-projective coset space G /P is k -proper, or equivalently projective. (This
can be checked over k .) By the Borel fixed point theorem, which says that a solvable
connected linear algebraic k -group acting on a proper k -scheme has a fixed point over
k , Pk contains a Borel subgroup (it is a simple group theory exercise to show that Pk

contains a G (k )-conjugate of a Borel B ⊂Gk if B acting on (G /P )k has a fixed point).
Here is the key result which enabled Chevalley to get his structure theory over alge-

braically closed fields off the ground (as Chevalley put it, once the following was proved
“the rest follows by analytic continuation”):

Theorem 1.3.1 (Chevalley). Let G be a connected linear algebraic k -group and P ⊂G a
parabolic k -subgroup. Then P is connected and NG (K )PK = P (K ) for any extension K /k .

Remark 1.3.2. One could ask if P =NG (P ), the scheme-theoretic normalizer. [See HW3,
Exercise 3 of the previous course for the notion and existence of scheme-theoretic nor-
malizers.] The answer is yes, but the proof uses a dynamic description of P . We’ll ad-
dress this in Corollary 6.3.12.

To prove Chevalley’s Theorem (stated without proof in the previous course but used
crucially there, such as to prove Theorem 1.2.4!), first we want to pass to an algebraically
closed field. For connectedness it is harmless to do this; what about the normalizer
property? Note that

NG (K )(PK ) =NG (K )(PK )∩G (K )

so if NG (K )(PK ) = P (K ) then the right side is P (K ). Thus, without loss of generality we

may assume that K = k = k .
Next note that the normalizer property implies the connectedness. Indeed, if P con-

tains a Borel, then P 0 contains a Borel (by definition Borel subgroups are connected),
so P 0 is parabolic. Therefore, if the normalizer property is proved in general, then we
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can apply this to P 0. Any group normalizes its own identity component, so we would
immediately get that P is connected.

We claim that it suffices to show that NG (k )(B ) = B (k ) for one Borel subgroup B . Any
two such B are G (k )-conjugate, so it is the same for that to hold for all Borel subgroups.
Grant this equality. For general P , choose B ⊂ P . Consider n ∈ NG (k )(P ); we want to
show that n ∈ P . Consider the conjugation action of n on B . The element n doesn’t nec-
essarily conjugate B into itself, but for our purposes it is harmless to change n by P (k )-
translation. Note that n B n−1 is a Borel subgroup of P . But any two Borel subgroups of
any linear algebraic group are conjugate, so n B n−1 = p B p−1 for some p ∈ P (k ). This
implies that p−1n ∈NG (k )(B ) = B (k )⊂ P (k ), so n ∈ P (k ).

Now we focus on the assertion NG (k )(B ) = B (k ). We proceed by induction on dimG .
If G is solvable then the result is easy (G = B ), so the case dimG ≤ 2 is fine. We seek
lower-dimensional subgroups that interact well with B , but also contain the element in
question; there’s a tension between these two things. (In general B does not necessarily
intersect an arbitrary smooth connected subgroup H in a Borel subgroup of H ; we need
H to be in “good position” relative to B and to be rather special.)

Choose n ∈NG (k )(B ); we want to show that n ∈ B (k ). Fix a maximal torus T ⊂ B ; all
such choices are B (k )-conjugate, so nT n−1 is B (k )-conjugate to T . Replacing n with a
suitable B (k )-translate, we may assume without loss of generality that n normalizes T
as well, so n ∈NG (k )(T ) too. Now we would like to find a lower-dimensional subgroup or
quotient of G into which n fits, so that we can apply induction. We’ll do this by studying

H := ZT (n )red = {t ∈ T | n t n−1 = t },

the reduced scheme structure on the centralizer of n in T . Then S :=H 0 ⊂ T is a torus
in B centralized by n . (The general principle is that if you have a central subgroup, then
you pass to the quotient; if it’s not central, then you pass to the centralizer.) There are
now three cases:

(1) S ⊂G is non-trivial and central,
(2) S ⊂G is non-trivial and non-central,
(3) S is trivial.

We analyze each in turn.

(1) Then B/S ⊂ G /S is of lower dimension, so we can apply induction to conclude
that n ∈ B/S , so n ∈ B .

(2) The centralizer of S contains n and is lower-dimensional, and is connected (as we
shall review in §1.4). But why does this interact well with Borel subgroups? First, ZG (S )
is a (smooth) connected lower-dimensional subgroup - the smoothness and connect-
edness are nontrivial properties proved in the previous course (HW8 Exercise 4(i) and
Theorem 24.2.5). If B ∩ ZG (S ) = ZB (S ) (which is smooth connected and solvable) is a
Borel subgroup of ZG (S ), then again we would win by dimension induction.

The problem here is that one doesn’t necessarily know that ZB (S ) is a Borel subgroup
of ZG (S ). This would follow from ZG (S )/ZB (S ) being proper, but is that true? There is
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certainly a map
ZG (S )/ZB (S )→ (G /B )S

which is at least injective on points, and (G /B )S is complete, being a closed subset of
G /B . We want to show that the above map is in fact a closed embedding.

Proposition 1.3.3. For a smooth subgroup H ⊂ G containing a k -torus S, the natural
map ZG (S )/ZH (S )→ (G /H )S is an isomorphism onto the connected component of the
identity point in the target.

This is proved in a handout on torus centralizers.

Remark 1.3.4. It is essential that S is a torus since a key point is that the represen-
tation theory of S is completely reducible. The proof eventually reduces to showing
that ZG (S )→ (G /H )S is smooth at the identity, and upon passing to tangent spaces at
identity points we need that the invariants in a quotient vector space are images of in-
variants in the original vector space. In general the geometry of (G /H )S is completely
non-homogeneous (e.g., components with varying dimensions, some affine and some
proper, etc.); examples are given in the handout.

(3) This is the most difficult case. We’ll show that in this case G is actually equal to B
(i.e. is solvable). Let N =NG (B ).

Lemma 1.3.5. If S is trivial then T ⊂D(N ).
Proof. Consider the map T → T given by t 7→ n t n−1t −1 = (n t n−1)t −1. This is a prod-
uct of homomorphisms (as T is commutative), hence a homomorphism. Its image is
contained in D(N ), and it has finite kernel by the triviality of S , so it is surjective for
dimension reasons. �

Now pick a representation ρ : G → GL(V ) such that N = StabG (L ) for some line
L ⊂ V . The N -action on L is via some character χ : N →Gm . Necessarily χ kills D(N ),
hence T . It also kills Ru (B ), because unipotent groups don’t have non-trivial charac-
ters. But B is solvable, and over an algebraically closed field a connected solvable group
is the semidirect product of any maximal torus and its unipotent radical, soχ even kills
B , i.e. B acts trivially on L . Now we’re basically done: picking any non-zero v ∈ L , the
orbit map on v induces a map G /B → V . But G /B is proper and V is affine, so this
orbit map is constant, so N = StabG (L ) =G . So B /G , which implies that G /B is affine.
However it’s also proper, hence equal to a point, so G = B . �

1.4. Connectedness of torus centralizers. By HW7 Exercise 4 of the previous course,
if Y is a smooth (separated) k -scheme with the action of a k -torus T , then the functor

R   Y T (R ) = {y ∈ Y (R ) | t 7→t ·y : TR→YR
is constant map to y }

is represented by a closed subscheme Y T ⊂ Y (if k = ks then Y T =
⋂

t ∈T (k )StabY (t ),
and in general one bootstraps from this via Galois descent).

Remark 1.4.1. By infinitesimal methods, in HW8 Exercise 3 of the previous course it
was shown that if Y is smooth then Y T is smooth. The main ingredient in the proof is
the complete reducibility for T -representations, so in characteristic 0 (see Proposition
5.3.1) it works for any reductive group in place of T .
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Example 1.4.2. If G is a linear algebraic group over k , and T ⊂G is a k -torus acting by
conjugation, then ZG (T )⊂G is smooth.

In the proof of Chevalley’s Theorem 1.3.1 concerning the self-normalizing property
of parabolics, we used the following fact:

Proposition 1.4.3. For a connected linear algebraic group G and torus T ⊂G , ZG (T ) is
connected.

We’ll give the proof in this section as an illustration and review of the all-important
dynamic method (which was used multiple times in the previous course and will per-
vade this course). Without loss of generality we may assume that k = k . Then T =Gr

m
and we can assume that r ≥ 1 (otherwise the result is trivial). We can write T =Gm×T ′.

A homomorphism from Gm into a k -group scheme is called a one-parameter sub-
group. We have a one-parameter subgroup

λ: Gm → T ⊂G

given by s 7→ (s , 1) and
ZG (T ) = ZZG (T ′)(λ),

so by induction on r , it is enough to study ZG (µ) for a one-parameter subgroupµ: Gm →
T and show that it is connected.

Review of the dynamic method. Let G be an affine k -group of finite type and λ: Gm →
G a k -homomorphism.

Example 1.4.4. For G =GL4, an example of a one-parameter subgroup is

λ(t ) =







t 7

t 7

t 3

t −2






.

Remark 1.4.5. We think of cocharacters additively (especially when valued in a fixed
torus), so we define −λ := 1/λ and write 0 to denote the trivial cocharacter.

There exist closed subschemes ZG (λ), PG (λ),UG (λ) ⊂ G that represent the functors
on k -algebras:

• Z G (λ): R   {g ∈G (R ) | g commutes with λR }.
• P G (λ): R   {g ∈ G (R ) | limt→0λ(t )gλ(t )−1 exists}. By “limit exists” we mean

that the R -scheme map Gm ,R → GR given by g 7→ λ(t )gλ(t )−1 factors through
A1

R :

Gm ,R
λ(t )gλ(t )−1

//

��

GR

A1
R

∃

88

(Such a factorization is unique if it exists since GR is affine and R [t ]→R [t , 1/t ]
is injective.)
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• U G (λ): R →{g ∈G (R ) | limt→0λ(t )gλ(t )−1 = 1}.
Obviously ZG (λ)⊂UG (λ)⊂ PG (λ).

Example 1.4.6. In Example 1.4.4,

λ(t )gλ(t )−1 =







g11 g12 t 4g13 t 9g14

g21 g22 t 4g23 t 9g24

t −4g31 t −4g32 g33 t 5g34

t −9g41 t −9g42 t −5g43 g44







So PG (λ) is cut out by the condition that some partial lower-triangular stuff vanishes:

PG (λ) =







∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗







Likewise,

UG (λ) =







1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1







Observe that a point g ∈UG (−λ)∩PG (λ) valued in a k -algebra R has the property that
λ(t )gλ(t )−1 has limits as t goes to both 0 and∞; i.e. we have a factorization

Gm ,R
//

��

GR

P1
R

∃

==

But GR is affine, so the extended map must be constant. Furthermore, 1 ∈Gm ,R maps to
1 ∈GR by the definition of UG (−λ), so g = 1 (the identity R -point); i.e., UG (−λ)∩PG (λ) =
1 as k -schemes. This implies that the multiplication map

m : UG (−λ)×PG (λ)→G

is monic. On the other hand, it is an isomorphism on tangent spaces at the identity: this
was worked out in the previous course. The point is that the Lie algebra decomposes
as

Lie(G ) = Lie(G )<0⊕Lie(G )≥0 for Gm -weights.

(A Gm -action on a vector space corresponds to a grading, and in the previous course we
saw that the Lie algebra of UG (−λ) is Lie(G )<0 and the Lie algebra of PG (λ) is Lie(G )≥0.)
If we knew that UG (−λ) and PG (λ) were smooth, then it would follow that this map
is étale at the identity, hence étale everywhere by the homogeneity coming from the
left and right translations by group actions on the source. An étale monomorphism is
automatically an open immersion (see [EGA, IV4, 17.9.1], but it is an instructive exercise
to prove this directly for schemes or finite type over a field or for noetherian schemes).
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Remark 1.4.7. In general PG (λ) = ZG (λ)nUG (λ) (proved in the previous course without
any smoothness hypotheses on G ). So we get that

m : UG (−λ)×PG (λ)→G

is the same as
m : UG (−λ)×ZG (λ)×UG (λ)→G

However, it turns out that this line of reasoning isn’t so easy to push through without
knowing smoothness of UG (−λ) and PG (λ); instead we shall show by an entirely differ-
ent method that m : UG (−λ)×PG (λ)→G is an open immersion without any smoothness
hypotheses on G (or on anything), and use that to deduce the smoothness of UG (−λ)
and PG (λ) from smoothness of G .

By HW10 of the previous course, for G =GL(V )we can compute UG (±λ), ZG (λ), PG (λ)
explicitly over k (upon composing with suitable conjugation to make λ valued in the
diagonal torus with monotonically decreasing exponents) to see by inspection that
they’re all smooth. This generalizes the example above with GL4. Thus, for G =GL(V )
the above argument with tangential and translation considerations shows that the mul-
tiplication map

UG (−λ)×PG (λ)→G

is an open immersion.

Example 1.4.8. Suppose G =GLn and

λ(t ) =





t e1

...
t en





For e1 > . . . > en , this gives the usual upper triangular Borel B+ as PG (λ), and UG (−λ)
is the usual lower triangular unipotent subgroup U −. Thus, U − × B+ → GLn is the
“standard open cell”.

The general case of the open immersion property for m (without any smoothness
hypotheses on G !) is deduced from the settled GLn in the handout on (Lang’s theorem
and) dynamic methods as follows. For any subgroup inclusion j : G ,→G ′ and the in-
duced one-parameter subgroupλ′ = j ◦λ one does some hard work to prove that inside
G ′ (as subfunctors) we have

UG (−λ)×PG (λ) =G ∩ (UG ′ (−λ′)×PG ′ (λ
′)).

Hence, taking G ′ =GLn gives the desired open immersion property in general! This is
called the “open cell” in G associated to λ.

Now we know that
UG (−λ)×ZG (λ)×UG (λ) ,→G

is an open immersion. So if G is smooth then each of its (non-empty) direct factor
schemes ZG (λ),UG (λ), PG (λ) are all smooth. Likewise, if G is connected (hence irre-
ducible, since (Gk )red is smooth and connected), so its “open cell” is irreducible and
thus connected, then all of these factor schemes are connected too! In particular, we
get that ZG (λ) is connected for connected linear algebraic groups G .
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Remark 1.4.9. These constructions are functorial. If you have a homomorphism G →
G ′ then any one-parameter subgroupλ for G induces a one-parameter subgroupλ′ for
G ′, and there are natural maps UG (λ)→UG ′ (λ′) and PG (λ)→ PG ′ (λ′).

If G �G ′ is surjective, then between dense open subschemes we have

U (−λ)

��

× Z (λ)

��

× U (λ)

��
U (−λ′) × Z (λ′) × U (λ′)

is dominant, so each of the factor maps (e.g. U (−λ′) → U (−λ)) is dominant. But we
know that a homomorphism of groups has closed image, so U (−λ)�U (−λ′) and like-
wise for Z , P . Iterating such 1-parameter considerations, much as in our earlier reduc-
tion of the connectedness of torus centralizers to the 1-parameter centralizer case, we
obtain:

Corollary 1.4.10. For a surjective k -homomorphismπ : G �G between linear algebraic
groups and S ⊂G a torus, the natural map ZG (S )→ ZG (S ) is surjective.

This is amazing for π non-separable or G disconnected. In the separable case it’s
surjective on Lie algebras, so the result is clear with connectedness. But in the non-
separable or disconnected case you can’t check on Lie algebras.

2. THE UNIPOTENT RADICALS

2.1. Two important theorems. Next we’ll discuss two big theorems on unipotent rad-
icals. (The omitted details are given in §1 of the handout “Basics of reductive and
semisimple groups”.)

The definition of reductivity in terms of the unipotent radical is hard to use at first
so we want to relate the unipotent radicals to more tangible things.

Suppose G is a connected linear algebraic group over an algebraically closed field k
and T ⊂G is a maximal torus. Consider

I (T ) := (
⋂

B⊃T

Ru (B ))
0
red

The unipotent radical is contained in a Borel, as it’s solvable. But all Borels are conju-
gate and the unipotent radical is normal, so it is contained in the above.

Theorem 2.1.1. The containment I (T )⊃Ru (G ) is an equality.

Remark 2.1.2. Pass to G /Ru (G ), which is reductive (exercise: extension of unipotent
by unipotent is unipotent). Under quotient maps, Borels surject onto Borels (exercise).
Hence, by the structure of connected solvable groups, under a surjection between lin-
ear algebraic groups the image of a maximal torus is a maximal torus; we will use this
a lot without comment. In particular, the theorem says exactly that for reductive con-
nected G we have I (T ) = 1.



10 LECTURES BY BRIAN CONRAD, NOTES BY TONY FENG

One visualization of (and motivation for) the theorem is in terms of opposite Borels,
whose unipotent radicals already intersect trivially, e.g. for GLn

B+ =





∗ ∗ ∗
∗ ∗
∗



 B− =





∗
∗ ∗
∗ ∗ ∗



 .

The notion of opposite Borel in connected reductive groups (admitting a Borel sub-
group) will rely on much of what we are developing in the coming lectures!

For G a connected linear algebraic group over k = k and S ⊂G a k -torus, obviously

ZG (S )∩Ru (G ) =Ru (G )
S .

Now the smooth group Ru (G )S is a connected (by preceding discussion, being a cen-
tralizer of a connected group under a torus action, realized as a centralizer against a
torus subgroup upon passing to a semi-direct product construction), and it is clearly
unipotent as well as normal inside ZG (S ). Thus, a priori Ru (G )S ⊂Ru (ZG (S )).

Theorem 2.1.3. The containment Ru (G )S ⊂Ru (ZG (S )) is an equality. In particular, a
torus centralizer in a reductive group is reductive.

Theorem 2.1.1 implies Theorem 2.1.3. Why? The first theorem is a formula for the
unipotent radical in terms of those of certain Borels. We discussed that Borels play well
with centralizers of tori: ZG (S )∩B is a Borel of ZG (S ). So you apply the formula to G and
ZG (S ), and roughly speaking you have the same collection of Borels in the two cases.

Exercise 2.1.4. Write out a careful proof for the preceding sketch.

Remarks on proof of Theorem 2.1.1 The proof of this Theorem is quite involved, and
the argument basically never comes up again, so we won’t go through it in detail, refer-
ring instead to the handout “Basics of reductive and semisimple groups” for full details.
(I once presented this material in extra lectures for a course and it took many hours.)
However, we’ll point out some of the ingredients now. It uses lots of manipulations with
torus centralizers and dynamic constructions; the main serious input is the classifica-
tion of rank-1 reductive groups over algebraically closed fields.

Lemma 2.1.5. If H is reductive and Z ⊂H is a central torus, then H /Z is reductive.

(More generally a quotient of reductive is reductive, but that requires much more
input and will be proved a bit later; we need this special case now.)

Proof. Without loss of generality k = k . Let U =Ru (H /Z ) and N be the pre-image of
U in H .

1 // Z // H // H /Z // 1

1 // Z // N
?�

OO

// U
?�

OO

// 1

Then N is a connected smooth normal in H because U is in H /Z , and being an ex-
tension of a unipotent group by a torus it is also solvable. We have that Ru (N ) ⊂ N
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is stable under all automorphisms because it is a characteristic subgroup, so in par-
ticular it is stable under H (k )-conjugation, so Ru (N ) /H (this argument applies to all
characteristic subgroups of normal subgroups of linear algebraic groups). Therefore,
Ru (N )⊂Ru (H ) = 1, so N is reductive. But we also saw that N is solvable, and over an
algebraically closed field any solvable group is the semidirect product of a torus and its
radical, so then N is a torus. (This is the general fact over any field that a connected
reductive linear algebraic group is solvable if and only if it is a torus.) As U is unipotent
and the quotient of a torus, it must be trivial. �

For the proof of Theorem 2.1.1 we will apply Lemma 2.1.5 to a certain subquotient
H of G . Let Φ :=Φ(G , T ) be the set of non-trivial weights, i.e.

Φ= {a ∈ X(T )−{0} | ga 6= 0}
where ga is the a -weight space for the adjoint action of T on g. Elements ofΦ are called
roots of G with respect to T . Recall that for this adjoint action there is a decomposition

g= gT ⊕

�

⊕

b∈Φ
gb

�

with gT = Lie(ZG (T )).
Choose a ∈Φ, and view it as a (non-trivial) map a : T →Gm . Let Ta = (ker a )0red ⊂ T be

the codimension-1 subtorus killed by a . Let Ga = ZG (Ta ), a connected linear subgroup
of G . Then

Lie(Ga ) = gTa ⊕

�

⊕

b∈Φ∩Q×a

gb

�

because the roots that appear in Lie(Ga ) are the roots which are non-zero rational mul-
tiples of a (because if χ and χ ′ are two nontrivial homomorphism T →Gm then there
is a containment (kerχ)0 ⊃ (kerχ ′)0 if and only if χ ,χ ′ are Q-linearly dependent; the
presence of Q ultimately comes from the equality End(Gm ) = Z).

Exercise 2.1.6. Prove this description of Φ(Ga , T ).

Consider Ga/Ru (Ga ) · Ta =: Ga . This is a reductive group by Lemma 2.1.5 because
Ta is by definition central in Ga . Inside here we have a maximal torus T /Ta , which is
one-dimensional. But by the classification of (split) rank-1 connected reductive groups
there are only three possibilities for Ga : SL2 or PGL2 or Gm , with T /Ta identified with
the diagonal torus in the first two cases. For these particular groups and maximal tori
it is elementary to find which Borel subgroups contain the indicated maximal torus (as
we can write down one and prove the Bruhat decomposition for SL2 by bare hands so
as to see there is only one other such Borel subgroup). The last case is trivial, and in the
first two you have only the upper/lower triangular Borels. By inspection IGa

(T /Ta ) = 1
in all of these cases!

The central Ta lives inside all Borel subgroups of Ga (for instance, since such Borel
subgroups are all conjugate). Hence, we can upgrade to say IGa /Ru (Ga )(T ) = 1, or equiv-
alently IGa

(T ) =Ru (Ga ). This proves the result we want for each Ga in place of G .
This is all we will say here about the proof of the general case (full details in the hand-

out as noted earlier). Rather than attack the full group directly, you study the subgroups
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Ga first and then need to bootstrap from such subgroups for varying a to conclude. The
classification of (split) rank-1 connected reductive groups is the most serious input; the
rest is clever manipulations with torus centralizers, Lie algebras, dynamic construc-
tions, and so on. �

2.2. Structure of roots. Theorem 2.1.1 has many good consequences, which we now
explain. First we use it to analyze the roots of connected reductive G over k = k , es-
sentially by studying the groups Ga and Ga appearing in the proof. Note that while the
proof of Theorem 2.1.1 might lose contact with ga in quotienting by the unipotent rad-
ical Ru (Ga ) (as we don’t see a-priori that ga can’t be supported inside the Lie algebra
of Ru (Ga )), we know after the proof that this unipotent radical is in fact trivial. This
underlies the proof of:

Corollary 2.2.1. Let G be connected and reductive over k = k and T ⊂G be a maximal
torus, a ∈Φ. Then

• Qa ∩Φ= {±a } (so −Φ=Φ inside X(T )),
• ga is one-dimensional.

Proof. By Theorem 2.1.3 (a consequence of Theorem 2.1.1), we know that Ga is con-
nected reductive. Therefore, Ru (Ga ) = 1, so by the argument in the proof of Theorem
2.1.1 we have that Ga/Ta ' SL2 or PGL2 or Gm .

Actually, we claim that Ga is not solvable, which rules out the possibility Ga/Ta 'Gm .
Indeed, otherwise the connected reductive Ga would be a torus. But Ga ⊃ T and the
T -action on Lie(Ga ) has a non-trivial weight (namely a ), so Ga is not commutative and
hence not a torus. So now we know that Ga/Ta is isomorphic to SL2 or PGL2.

Choose λ: Gm → T which is an isogeny-complement to Ta ⊂ T ; i.e., the map

Gm ×Ta → T

induced by multiplication against λ is an isogeny. (This can be viewed as a splitting
of T � T /Ta ' Gm up to isogeny.) Since Ta is already central in Ga , we have ZGa

(λ) =
ZGa
(T ). But inside Ga/Ta = SL2 or PGL2, we see by inspection that the diagonal is its

own centralizer, so we conclude that the centralizer ZGa
(λ) = ZGa

(T ) coincides with T .
Next we’re going to use the open cell

Ga ←-UGa
(−λ)× (ZGa

(λ) = T )×UGa
(λ).

Consider the relation between this and the corresponding open cell of Ga :

Ga

��

UGa
(−λ)? _oo

��

× T

��

× UGa
(λ)

��
Ga UGa

(−λ)? _oo × T /Ta × UGa
(λ)

The kernel Ta of the quotient map Ga → Ga is already eaten up in the middle factor,
so the outer maps must be isomorphisms because the middle factor at each level and
either of the two flanking factors combined to give a semi-direct product subgroup of
the ambient group at each level.
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FIGURE 2.2.1. A generic coroot lies in the interior of a chamber cut out
by the root hyperplanes.

The Lie algebras Lie(U (±λ)) account for all nontrivial weights since we have seen
that each torus is its own centralizer. Aha! We understand those weight spaces well on
the bottom level because Ga = SL2 or PGL2 with T /Ta the diagonal torus. So we can
conclude that UGa

(±λ) are one-dimensional with opposite T /Ta weights. We conclude
the same upstairs. But we know that upstairs one of the T -roots is a by design, so the
other one must be −a (with multiplicity one).

�

The dynamical methods in the of proof of Theorem 2.1.1 yield the following state-
ment, which says essentially that all Borels arise via the dynamic method.

Corollary 2.2.2. For G , T /k = k as in Corollary 2.2.1, the Borel subgroups containing T
are exactly B (λ) = PG (λ) for “generic” λ ∈ X∗(T ).

What is the meaning of generic? Each root a cuts out a hyperplane 〈µ, a 〉 = 0 in
X∗(T )R (alternatively, µ: Gm → T lands in Ta ). A generic λ is one that does not lie in any
of these hyperplanes. The proof of this dynamic description of Borel subgroups is not
at all trivial, and is a large part of the dynamic work in the proof of Theorem 2.1.1 (upon
revisiting that proof once the triviality of I (T ) in the connected reductive case has been
established).

Remark 2.2.3. We will see later that if we drop the adjective “generic” in Corollary 2.2.2
then we get exactly the parabolic subgroups containing T .

Choose a generic λ. Then the decomposition of the Lie algebra under the adjoint
action can be grouped as

g= gT

︸︷︷︸

Lie(T )

⊕
⊕

a∈Φ
〈a ,λ〉>0

ga ⊕
⊕

a∈Φ
〈a ,λ〉<0

ga
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Using that −Φ=Φ, it is easy to thereby deduce that

dim B =
1

2
(dimG +dim T ).

This is a cute formula for the dimension of the Borel subgroups of a connected reductive
group.

2.3. Quotient of reductive is reductive.

Proposition 2.3.1. If G is connected reductive over a field k and T ⊂ G is a maximal
torus, then ZG (T ) = T .

Proof. We know that ZG (T ) is connected reductive. (This is called a Cartan subgroup.)
But it’s a general fact that Cartan subgroups are always solvable! Indeed, ZG (T )/T is
a connected linear algebraic group with no non-trivial tori (the pre-image would be a
non-trivial torus not contained in T , but T is a central maximal torus and in general all
maximal tori are conjugate). That implies that ZG (T )/T is unipotent (22.1.4 of the notes
for the previous course). In particular ZG (T ) is is solvable. But a connected reductive
group is solvable if and only if it’s a torus, hence equal to T . �

Corollary 2.3.2. If π: G �G ′ is a surjection of linear algebraic groups, then

Ru (Gk )�Ru (G
′
k
).

In particular, if G is reductive then so is G ′.

Proof. First a couple of reductions. Obviously we can assume without loss of generality
that k = k . Because π(Ru (G )) ⊂ Ru (G ′) is normal in G ′ (as π is surjective), we can
replace G by G /Ru (G ) and G ′ by G ′/π(Ru (G )) to assume that G is reductive.

Let U ′ = Ru (G ′). Then π−1(U ′)0red is normal in G (easy exercise) and hence reduc-
tive (as we have already reviewed in the proof of Lemma 2.1.5 the elementary fact that
a normal linear algebraic subgroup in a reductive group is reductive). Thus, replac-
ing G ′ with U ′ and replacing G with N allows us to assume without loss of generality
that G ′ is unipotent, and then we want to show that G ′ = 1. Let T ⊂ G be a maximal
torus, so ZG (T ) � ZG ′ (π(T )) by Corollary 1.4.10. But π(T ) = 1 since G ′ is unipotent,
so ZG ′ (π(T )) = G ′. Thus, the unipotent G ′ is the image of ZG (T ) = T (see Proposition
2.3.1), so G ′ = 1. �

3. CENTRAL ISOGENY DECOMPOSITION

3.1. Perfect groups. Recall that SL2(k ) is a perfect group (meaning that it is own com-
mutator subgroup) for any field k with #k > 3. In particular, SL2 =D(SL2) over any field,
since this property can be checked on geometric points.
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The group SLn contains many embedded copies of SL2:

SLn ⊃Hi< j :=





















1
...

ti . . . xi j
...

...
...

x j i . . . t −1
i

...





















The standard tori Gm ⊂Hi< j generate the diagonal torus of SLn , which implies that the
Hi< j generate SLn .

Exercise 3.1.1. Prove this. [Hint: Consider the open cell U − × T ×U + ⊂ SLn , which is
evidently contained in the subgroup generated by the Hi< j .]

Corollary 3.1.2. SLn is perfect.

Example 3.1.3. For G =GLn , we have an exact sequence of group schemes

1→µn
ξ7→(ξ,ξ−1)
−−−−−→Gm ×SLn →G → 1

obtained from the diagram

1 // SLn
//

++

GLn
det // Gm

// 1

1 // Gm

33

maximal central torus
// GLn

// PGLn
// 1

The diagonal arrows are isogenies, namely the natural quotient map SLn → PGLn and
the endomorphism t 7→ t n of Gm . In particular, it follows that D (GLn ) = SLn .

We’ll see that this isogeny decomposition for GLn adapts to any connected reductive
k -group G and that moreover DG is always perfect for such G (and DG is certainly
reductive, since it is normal in G ). The upshot is that the essential case for most work
is perfect connected reductive G (we’ll see next time that this is the same as connected
semisimple).

Proposition 3.1.4. If G is a connected reductive group over k , thenDG is perfect.

Example 3.1.5. Here is an example to illustrate that connectedness needs to be re-
spected. Let H = Z/2ZnGm , with the Z/2Z acting by inversion on Gm . This is clearly
reductive. Since (1, t )t (1, t )−1t −1 = t −2, we have Gm ⊂ D(H ), and this is an equality
since H /Gm is commutative. Hence, the derived group is not perfect since it is com-
mutative and nontrivial.

Proof. Let N = DG ⊂ G . This is a characteristic subgroup; i.e. stable under all auto-
morphisms. So its own derived subgroup is still normal (and even characteristic) in G :
D2G /G . Consider the resulting exact sequence

1→N /DN →G /D2G →G /N → 1.



16 LECTURES BY BRIAN CONRAD, NOTES BY TONY FENG

Now, G /N is commutative connected reductive, hence a torus. Since N is normal in G
it is also reductive, and connected because the derived subgroup of a connected group
is connected, so N /D(N ) is also a torus. But then G /D2(G ) is an extension of a torus
by a torus, hence is also a torus (by considerations of Jordan decomposition), hence
is commutative. Therefore, D(G /D2G ) is its own derived group is trivial, but this is
DG /D2G . �

3.2. Central isogeny decomposition. Classically, for a linear algebraic k -subgroup H
of a linear algebraic k -group G , the centralizer was built over an algebraic closure to be
smooth (i.e., one made ZGk

(Hk ) as a reduced Zariski-closed subgroup of Gk ), but it was

not clear that this had the expected Lie algebra g
Hk

k
, and even less clear whether or not

it descends to a k -subgroup of G (but classically for H smooth of multiplicative type
such descent is proved after some hard work).

We shall need the centralizer ZG (H ) as a scheme over the ground field representing
a centralizer functor without smoothness hypotheses on H ; see Exercise 3(iii) in HW3
of the previous course for the case of smooth H with no smoothness hypotheses on G .
By using k -bases of coordinate rings, one can prove such existence results for ZG (H )
and identify its Lie algebra with gH without any smoothness hypotheses; this will be
essential later in this course with smooth G but H a possibly non-smooth k -subgroup
scheme of a torus (such as the kernel of a root). See Exercise 4 in HW7 of the previous
course for the determination of Lie(ZG (H ))when G and H are smooth.

In a later handout “Reductive centralizer” we will provide a proof of the existence of
ZG (H ) and the identification of its Lie algebra for any affine k -group scheme G and
closed k -subgroup scheme H , by using k -bases of coordinate rings in place of the
Galois-theoretic method that works in the smooth case. If H has completely reducible
representation theory on finite-dimensional k -vector spaces (e.g., a k -group scheme
of multiplicative type, such asµn , without any smoothness hypotheses!) then ZG (H ) is
also smooth whenever G is smooth due to the infinitesimal criterion (as presented in
Exercise 3 of HW8 of the previous course when H is a torus).

Remark 3.2.1. In HW3 Exercises 3 and 4 of the previous course, for any linear alge-
braic k -group H we built the scheme-theoretic center ZH ⊂H , as a closed k -subgroup
scheme representing the functor on k -algebras

R   {h ∈H (R ) | conjugation by h is trivial on HR }.

From this definition it is clear that (ZH )K = Z(HK ) for any K /k , but Lie(ZH ) ⊂ h is a
mystery. For instance, Lie(ZSLp

) = Lie(µp ) 6= 0 inside slp if p = char k > 0.

Theorem 3.2.2. Let G be a connected reductive group over k and Z ⊂ G the maximal
central k -torus.

(1) Z = (ZG )0red and for all K /k , ZK ⊂GK is the maximal central K -torus.
(2) The multiplication homomorphism m : Z ×D(G )→ G is a central isogeny (i.e.

an isogeny with central kernel).

Remark 3.2.3. (i) In general, for an affine k -group scheme H of finite type, the un-
derlying reduced scheme Hred ⊂H can fail to be a k -subgroup scheme when k
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is imperfect. A connected counterexample is given in [SGA3, VIA, 1.3.2]. A much
easier disconnected counterexample is the p -torsion of a Tate curve over a local
function field of characteristic p when the Tate q -parameter is not a p th power.

(ii) This Theorem easily implies that Z →G /D(G ) and DG →G /Z are central iso-
genies. For G =GLn , the first map is t 7→ t n and the second is SLn → PGLn . The
centrality of kernels of isogenies is automatic in characteristic 0 because a finite
group scheme in characteristic 0 is étale and if H is a connected linear algebraic
group over k with any characteristic then every finite normal étale k -subgroup
N in H is central (much as a discrete normal subgroup of a connected Lie group
is central): conjugation of H on N is classified by a map H → AutN /k , and the
latter group is finite étale, so this classifying map must be trivial.

By contrast, isogenies in characteristic p can have non-central kernel: the
relative Frobenius isogeny FH /k : H →H (p ) for a linear algebraic group H , whose
infinitesimal kernel N ⊂ H has full Lie algebra (very non-commutative when
H = SLn with n > 1, for example).

Proof. For (1), let T ⊂G be a maximal k -torus. Then T = ZG (T ) by Lemma 2.3.1, hence
contains ZG . It is a general fact that for tori, the underlying reduced scheme is always a
subgroup whose formation commutes with extension of the ground field. More specif-
ically for our purposes, for any closed k -subgroup M ⊂ T , Mred is a k -subgroup whose
formation commutes with extension of k [for a proof, see Lemma 1.3 of the “Basics of
reductive groups” handout]. (The idea of the proof is that you can pass to the separable
closure, and so assume that k = ks , so T splits as Gr

m . Then the subgroups of T corre-
spond to quotients of the character group, i.e. M = Hom(Λ, Gm ) for some quotient Λ
of Zr . But by the structure of Gm , M is necessarily of the form Gs

m ×
∏

µ`ei
i

for some

primes `i , so it reduces to the fact that (µp e )red = 1 if p = char k > 0.)
This shows that (ZG )0red is a torus, but Z ⊂ (ZG )0red by definition, so we must have

Z = (ZG )0red. Since (ZG )0red commutes with formation of extension on k (by the pre-
ceding discussion plus the fact that the formation of ZG and of identity components of
group schemes of finite type each commute with extension of the ground field), Z does
too.

(2) Let’s first show that ker m is central and finite. The centrality is easy: the kernel is
Z ∩DG ,→ Z ×DG embedded via (t , t −1), and anything intersected with Z is obviously
central.

For finiteness, we use:

Lemma 3.2.4. Let H be a connected linear algebraic group over k and C ⊂H a central
k -torus. Then C ∩D(H ) is finite.

Proof. The idea is to reduce to the case H = GLn . Without loss of generality, k = k .
Choose a closed immersion H ,→GL(V ) as k -groups. Under the C -action on V we get
a weight space decomposition

V =
⊕

χ∈X(C )

Vχ .
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Since C ⊂ H is central, the H -action on V preserves the C -eigenspaces, so we get an
embedding H ,→

∏

GL(Vχ ) under which C ,→
∏

χ Gm . But D(H ) ⊂
∏

χ SL(Vχ ), so it is
enough to observe that Gm ∩SLn =µn is finite for any n ≥ 1. �

Finally, we show the surjectivity of m : Z ×DG →G . It is the same to show that G /Z is
perfect. But G /Z is connected reductive with trivial maximal central torus, since a nor-
mal torus S inside a connected linear algebraic group H is always central (by Exercise
3 of HW6 of the previous course: conjugation on S is classified by a homomorphism
H → AutS/k whose target is étale; e.g. if S is split, then this automorphism scheme is
the constant group GLn (Z)). The upshot is that by replacing G with G /Z , we can reduce
to the case where Z is trivial, and then we want to show that G is perfect.

Without loss of generality we may assume that k = k , so all k -tori are split. Let T be
a maximal torus in G . For a ∈Φ(G , T ), recall that we defined a smooth connected sub-
group Ga := ZG (Ta ) ⊂ G where Ta = (ker a )0red and Ga/Ta ' SL2 or PGL2. In particular,
Ga/Ta is perfect, so the multiplicative homomorphism

Ta ×D (Ga )→Ga

with finite central kernel is surjective too; i.e., for Ga (with maximal central torus Ta of
codimension 1 in the non-central maximal torus T ⊂ Ga ) the desired central-isogeny
result is known to hold. Moreover, we saw via dynamic considerations with U (±λ) for
suitableλ ∈ X∗(T ) that the T -equivariant mapD(Ga )→Ga/Ta induces an isomorphism
on the T -weight spaces for nontrivial weights, so the Lie algebra ofD(Ga ) has a as a T -
weight.

Since T = ZG (T ) has Lie algebra gT , it follows that Lie(G ) is spanned by the Lie al-
gebras of T and the D (Ga )’s (using all roots a ). Thus, the connected linear algebraic
subgroup 〈T ,D(Ga )〉a∈Φ〉 has full Lie algebra, so it is equal to G . So far we have not used
the triviality hypotheses on Z .

Now it suffices to show that T ⊂DG when Z = 1. This is immediate from the follow-
ing claim.

�

Proposition 3.2.5. If Z = 1 then T = [T , NG (T )].

Proof. Of course the containment ⊃ is trivial because t n t −1n−1 = t (n t n−1) ∈ T . The
substance is in the other direction.

Recall the Weyl group W = NG (T )/ZG (T ) = NG (T )/T , which is finite (see Exercise 4
in HW6 of the previous course). We consider the map

T oNG (T )→G .

For w ∈W represented by n ∈NG (T ), we have

n t n−1t −1 = (n t n−1)t −1 = (w · t )/t .

We want to show that T is generated by commutators, and this shows that (w · t )/t is a
commutator. So it suffices to show that T is generated by elements of the form (w ·t )/t .

To this end, consider the subtorus

Sw = Im (T
t 7→(w ·t )/t
−−−−−−→ T ).
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It’s enough to show that the Sw generate T . We can check this by showing that any
character χ ∈ X(T ) which is trivial on each Sw must be trivial on all of T , i.e. if χ |Sw

= 1
for all w then χ = 1. The condition that χ |Sw

= 1 is simply that χ(t ) = χ(w · t ) for all
t ∈ T , i.e. χ ∈χ(T )w . So it is equivalent to show that X(T )WQ = 0.

The reason for passing to rational coefficients is that we have a good theory of rep-
resentations of finite groups (such as W ) over fields of characteristic 0 (such as Q). For
instance we know that Q[W ]-modules are semisimple, so X(T )WQ = 0 if and only if the
dual module has trivial W -invariants. The dual is the familiar object X∗(T )Q, so we have
reduced to showing that X∗(T )W = 0.

Now this is a more concrete statement, since X∗(T ) =Hom(Gm , T W ). This is equiva-
lent to T W having no non-trivial subtori, but to say that a closed subgroup scheme M
of a torus contains no non-trivial subtori is to say that M is finite. So we have reduced
to showing that T W is finite when Z = 1.

Example 3.2.6. Consider G = GLn versus G = SLn . Take T to be the diagonal torus in
either case, so W = Sn via coordinate permutation. What is T W ? It is the group of scalar
matrices (since W acts by permutation on the coordinates). So T W is µn for SLn and
Gm for GLn . Note that Z = 1 for SLn , but Z 6= 1 for GLn .

Lemma 3.2.7. If Z = 1, then
⋂

a∈Φ ker(na a ) is finite for any collection of na ∈ Z−{0}.

(The converse is obviously true).

Proof. Since a closed subgroup scheme M of a torus contains a torus if and only if M
is not finite (as M 0

red is a torus), it is the same to show that if a subtorus S ⊂ T is killed
by all characters na a , then S = 1. Consider the restriction map

X(T )→ X(S )

and note that X(S ) is torsion-free (since S
t n

−→ S is surjective for all n 6= 0). Therefore

na ·a |S = 1 ⇐⇒ a |S = 1

⇐⇒ gS ⊃ ga

⇐⇒ Lie(ZG (S ))⊃ ga .

Certainly ZG (S )⊃ ZG (T ), so Lie(ZG (S ))⊃ Lie(ZG (T ))⊃ gT . But then Lie(ZG (S )) contains
gT and all the root lines, so Lie(ZG (S ))⊃ gT ⊕

�
⊕

a∈Φ ga

�

= g, so ZG (S )⊂G as a connected
smooth subgroup is full, i.e. S ⊂ ZG . The assumption Z = 1 obviously finishes off the
proof, but notice that none of the preceding argument required that hypothesis. �

Now the proof is (finally!) completed by the following general Lemma (which re-
quires no hypotheses on Z ). �

Lemma 3.2.8. We have T W ⊂ ker(2a ) for all a ∈Φ=Φ(G , T ).

Proof. Choose a and consider Ga = ZG (Ta ) for Ta = (ker a )0red ⊂ T . We’re going to use
a special case of the theorem (which we’re trying to prove) that we already know: the
map

πa : Ta ×D(Ga )→Ga

is a central isogeny, because Ga/Ta is perfect (since it’s SL2 or PGL2).
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Remark 3.2.9. Since D(Ga )→ Ga/Ta = SL2 or PGL2 is a central isogeny, it follows that
D(Ga ) has rank one and is not solvable (being perfect), so is either SL2 or PGL2.

Remark 3.2.10. It is shown in Example 3.4 of the handout “Basics of reductive groups”
that for PGLn , n ≥ 3 we always have D(Ga ) = SL2 whereas for SO5 we sometimes gets
SL2 and sometimes get PGL2 (depending on a ).

We want to reduce to the rank-1 case. Note that for any central quotient map f : H �
H ′ (i.e. a quotient by central subgroup scheme) between connected reductive groups
over an arbitrary field k , it is always the case that there is a bijection

{maximal k -tori of H }⇐⇒{maximal k -tori of H ′}

which is given explicitly by f 7→ f (T ) and f −1T ′← [ T ′ (using scheme-theoretic preim-
age, as always). Why? To prove the recipes give maximal k -tori (e.g., that f −1(T ′) is
k -smooth) and are inverse to each other, it suffices to check after an extension on k ;
hence, we may and do assume k = k . Thus, all maximal tori are conjugate, so we just
have to show that the (scheme-theoretic) preimage of one maximal torus is a maximal
torus. Start with a maximal torus T in H , and we want to know if it is the full preim-
age of its image. In other words, we need to know that T contains the kernel, and this
follows from ker f being central since ZH ⊂ ZH (T ) = T .

Apply this discussion to f =πa . Then π−1(T ) is a maximal torus in Ta ×D(Ga ). What
can we say about this maximal torus? It contains Ta , since the maximal torus in a direct
product of linear algebraic groups is a direct product of maximal tori in the factors (as
we may check after passage to an algebraically closed field and using conjugacy con-
siderations), so π−1

a (T ) = Ta ×Ta for Ta = T ∩D(Ga ). Thus, Ta is a 1-dimensional torus
(in particular, smooth and connected!).

Note that
Ta ×Ta → T

is an isogeny, with Ta central in Ga , so it induces an isomorphism of the rational char-
acter groups:

X(Ta )Q⊕X(Ta )Q
∼←− X(T )Q.

The whole game is to produce elements of the Weyl group that visibly cut down the
invariant space. We know that

(D(Ga ),Ta )' (SL2 or PGL2, diagonal torus)

so we have an element na =
�

0 1
−1 0

�

∈ NG (a )(Ta ). Note that na ∈ NG (Ta · Ta ) = NG (T )

since it centralizes Ta and also normalizes Ta , which together generate T , and so rep-
resents an element wa ∈W . We’ll show that T wa ⊂ ker(2a ), which will do the job.

Look at the decomposition

X(T )Q = X(Ta )⊕X(Ta )Q.

The first summand is a hyperplane and the second summand is a line. What does wa

do? It restricts to the identity on the hyperplane, and negation on the line by inspec-
tion. This is a reflection (by definition, an automorphism which is the identity on a
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hyperplane and negation on the quotient line). We claim that the following diagram
commutes:

T
a //

na -conj

��

Gm

−1
��

T a
// Gm

It suffices to check this on Ta ,Ta separately. On Ta , the compositions are both trivial.
On Ta , they are both −a .

Now, suppose that you have a fixed point t ∈ T W . Then commutativity of the dia-
gram gives that a (t ) = 1/a (t ), so one has

a (t )2[= t 2a ] = 1

as desired (by definition of the notation 2a ∈ X(T )). �

Corollary 3.2.11. For G connected reductive and perfect and a split maximal torus T ⊂
G , ZΦ⊂ X(T ) has finite index.

Proof. We always have the central isogeny

Z ×DG →G

so G = DG ⇐⇒ Z = 1. On the other hand, ZΦ has finite index in X(T ) if and only if
⋂

a∈Φ ker a contains no Gm (this is an easy exercise concerning the relationship between
subtori and quotient lattices), which as seen above is equivalent to Z = 1. �

Corollary 3.2.12. Let G be a connected linear algebraic group over a field k . Then the
following are equivalent:

(1) the geometric solvable radical R(Gk ) is trivial (the definition of semisimplicity!);
(2) G is reductive and Z = 1;
(3) G is reductive and perfect.

Proof. The equivalence of (2) and (3) is clear from central isogeny decomposition.
For the equivalence of (1) and (2), the point is that we know that the formation of Z is

compatible with base change, so we can assume that k = k . Being central and solvable,
Z is always in the solvable radical. Conversely, a normal connected solvable subgroup
in a connected reductive group is a normal torus (as it is a solvable connected reduc-
tive group, hence a torus) and this is central torus (as normal tori in connected linear
algebraic groups are always central, due to étaleness of the automorphism scheme of
a torus). �

All the real work in representation theory is in the semisimple case, but for induc-
tive purposes it’s better to work in the reductive setting because one wants to make
constructions, e.g. torus centralizers, which pass out of the semisimple realm.
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3.3. Applications. For any central isogeny G �G ′ (or more generally central quotient
map) between connected reductive groups over any field k , we have seen that there is
a natural bijection

{maximal tori of H }⇐⇒{maximal tori of H ′}

given by

T 7→ f (T )

f −1(T ′)← [ T ′.

The same applies for parabolic k -subgroups, as well as for Borel k -subgroups (if any
exist!), by the same argument.

Apply this to Z ×DG →G for connected reductive G over a field k to obtain that the
set of maximal k -tori of DG is in bijection with the set of maximal k -tori of G via the
constructions

T 7→ Z ·T
T ∩DG ← [ T

and likewise for parabolics k -subgroups and Borel k -subgroups. We emphasize that
these bijections work with k -subgroups; e.g., G contains a Borel k -subgroup if and only
ifDG does.

Example 3.3.1. This fails without the centrality assumption. Example 4.2 of the “Basics
of reductive groups” handout shows that such a counterexample over any local func-
tion field k of characteristic p > 0 is given by the non-central isogeny f : D × → GLp

arising from the relative Frobenius isogeny for D × where D is a central division algebra
of dimension p 2 over k . (If T ⊂ GLp is a split maximal k -torus then f −1(T ) is a non-
smooth k -subgroup scheme of D ×, and f −1(T )red is not a smooth k -subgroup scheme
of D ×; the same goes for a Borel k -subgroup of GLp .)

The key point is that D × has no Borel k -subgroup nor a split maximal k -torus due
to D being a central division algebra, and D is split by any degree-p extension (such
as the p -power endomorphism k → k ) due to local class field theory. (The invariant
of a central simple algebra multiplies by d under a degree-d extension, so a central
division algebra with invariant j /p ∈ Q/Z splits after a degree-p extension.) It is this
latter splitting that allows us to identify the Frobenius base change of D × with GLp .

3.4. Central isogenies preserve roots. The central isogeny decomposition shows that
up to central isogeny, for problems with connected reductive k -groups G it is often
sufficient to examineDG , which has the advantage of being semisimple. (This applies,
for instance, in studying problems involving maximal k -tori, or Borel k -subgroups, and
so on.) Here is another instance of the same principle:

Proposition 3.4.1. For a central isogeny f : G →G ′ of connected reductive k -groups, and
T ⊂G a split maximal k -torus with T ′ = f (T ′)⊂G ′ (necessarily also split maximal), un-
der the inclusion X( f ): X(T ′) ,→ X(T ) the set of roots Φ′ :=Φ(G ′, T ′) is mapped bijectively
to Φ(G , T ) =:Φ.
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(We need a split maximal torus to have a weight space decomposition. The forma-
tion of weight space decomposition commutes with field extension, so the facts we
know about root spaces over algebraically closed fields, such as 1-dimensionality and
Φ∩Q ·a = {±a }, apply over k .)

Before proving this result, we make some general observations.

Remark 3.4.2. This is only interesting in characteristic p since it is trivial when f is étale
(as then Lie( f ) is an isomorphism). If f is not étale (e.g. SLp → PGLp ) then the finite
group scheme ker f must have nonzero Lie algebra, so g→ g′ is not injective and hence
is not surjective (as G and G ′ have the same dimension). This failure of surjectivity is
what gives the result some substance, as it is not clear a priori that a root line in the
target is in the image of Lie( f ). The proof will show that it is in the image (of a unique
root line in the source).

Remark 3.4.3. Apply this result to the central isogeny

Z ×DG →G .

If T ⊂G is a split maximal torus, then it pulls back to a split maximal torus of the form
Z ×T ⊂ Z ×DG . This induces a finite-index inclusion

X(T ) ,→ X(Z )⊕X(T ).

Clearly Φ(G , T ) restricts to 0 on X(Z ), so must map bijectively to Φ(DG ,T ). In other
words, every root of the derived group arises from a unique root of the ambient group.
Informally, this says that the root system of G only knows DG . (The roots also only
know about G up to central isogeny, which is why one needs to keep track of a root
datum in the classification up to isomorphism.)

Exercise 3.4.4. Centrality is crucial! For the relative Frobenius isogeny FG /k : G → G (p )

in characteristic p (e.g. SLn → SLn by (xi j ) 7→ (x
p
i j )), the effect on the roots is to identify

X(T (p )) with p ·X(T ) and Φ(G (p ), T (p )) with pΦ(G , T ). (Hint: show that the composition
of the natural bijection X(T ) ' X(T (p )) induced by base change with the pullback map
X(T (p ))→ X(T ) is multiplication by p ).

Example 3.4.5. There are even more bizarre examples, coming from exceptional isoge-
nies in low characteristic such as SO2n+1→ Sp2n in characteristic 2. This has commu-
tative non-central kernel α2n

2 . When n = 1, this is PGL2→ SL2, which is an instance of
the more general disorienting map PGLp = SLp µp → SLp (induced by FSLp /k ) from the
adjoint type to the simply connected type.

Proof of Proposition 3.4.1. Choose λ ∈ X∗(T ) and let λ′ = f ◦λ ∈ X∗(T ′). Since f induces
an isomorphism X∗(T )Q ' X∗(T ′)Q, we can choose the cocharacter λ so that both λ and
λ′ are generic (i.e. lie outside the root hyperplanes). We have the map of open cells

G

f
��

U (−λ)? _oo

��

× T

��

× U (λ)

��
G ′ U (−λ′)? _oo × T ′ × U (λ′)
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Since ker f ⊂ ZG ⊂ ZG (T ) = T , we have ker f = ker(T → T ′). So U (−λ) 'U (−λ′) and
U (λ) 'U (λ′). Since the roots are contained in the Lie algebras of these unipotent fac-
tors, the result now follows from passing to the map on Lie algebras. �

4. BOREL’S COVERING THEOREM

4.1. Statement and proof. We need one more big theorem before we get into the fine
structure theory of reductive groups, which asserts that a linear algebraic group is cov-
ered by Borel subgroups, a vast generalization of the statement that any n ×n matrix
over an algebraically closed field can be conjugated to be upper triangular.

Theorem 4.1.1 (Borel’s Covering Theorem). Let G be a connected linear algebraic group
over k = k . Let B ⊂G be a Borel subgroup. Then

G (k ) =
⋃

g∈G (k )

g B (k )g −1.

Remark 4.1.2. We’ll see later that this has many useful consequences. For G =GLn it is
the familiar fact that every matrix can be conjugated to be upper triangular.

Outline of proof. For a linear algebraic subgroup H ⊂G , we define

ΣH =
⋃

g∈G (k )

g H (k )g −1.

Step 1. We’ll show that ΣB is closed in G (k ) (for the Zariski topology).

Step 2. Choose T ⊂ B a maximal torus (necessarily also maximal in G ). Then ZG (T )⊂
B (e.g. pass to G /Ru (G ) and use the fact that maximal tori are their own centralizers
in connected reductive groups) so

ΣZG (T ) ⊂ΣB .

We’ll show thatΣZG (T ) is dense in G (k ). (This is like the statement that a random matrix
is semisimple with distinct eigenvalues.)

Now we begin the proof of Theorem 4.1.1. Consider the map

fH : G ×G
µ
−→G ×G

p1×1
−−→ (G /H )×G = (G ×G )/(H ×1).

where µ sends (g , g ′) 7→ (g , g g ′g −1), which is an isomorphism. We track the subgroup
G ×H :

fH : G ×G
µ

∼
//// G ×G

p1×1 // (G /H )×G

G ×H
?�

OO

// µ(G ×H ) //
?�

OO

fH (G ×H )
?�

OO

Now µ(G ×H ) = {(g , g hg −1)} which is stable by H -translation on the right on the first
factor. So the map µ(G ×H )→ fH (G ×H ) is a quotient map by H × 1. In particular, by
descent theory for closed subschemes, fH (G ×H ) is closed in (G /H )×G .
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Note that p2( fH (G ×H ))(k ) =ΣH . So if G /H were proper, then (G /H )×G
p2−→G would

be closed, hence ΣH would be closed in G . But that properness holds for H = B . This
completes Step 1.

Next, we want to show that ΣH is dense when H ⊂G is a Cartan subgroup. Working
with general H , consider the map π defined by composing fH with p2:

fH (G ×H ) //

π
''

(G /H )×G

p2

��
G

which has imageΣH on k -points. We want to show that this is dominant, so we should
get a handle on the dimension of the source. The map fH is the composition ofµ, which
is an isomorphism, with a quotient by H ×1, so

dim fH (G ×H ) = dimµ(G ×H )−dim(H ×1)

= dimG +dim H −dim H

= dimG

IfΣH ⊂G (k ) is dense thenπ has finite fibers over a dense open in G (k ) (as for any dom-
inant map between varieties of the same dimension). Even better, the converse holds
with just one finite non-empty fiber over G (k ), by semicontinuity for fiber dimension.

So what is the fiber of π over a point g0 ∈G (k )? Chasing through the definition,

π−1(g0) = {(g H , g0) | g −1g0g ∈H }.

Note that g −1g0g ∈H ⇐⇒ g0 ∈ g H g −1. This is finite if and only if

{g ∈G (k )/H (k ) |g0 ∈ g H g −1}

is finite. We’d like to massage this a little bit, and replace G /H with G (k )/NG (H )(k ). Of
course, the condition on g only depends on its right NG (H )-coset, not just its right H -
coset, but we have to make sure that the finiteness aspect of the counting isn’t screwed
up either. So if H ⊂ NG (H ) has finite index on k -points, then we can index by g ∈
G (k )/NG (H )(k ). We claim that this finite-index property holds for Cartan subgroups
H :

Example 4.1.3. The group H := ZG (T ) for maximal T ⊂ G has finite index in NG (H ).
Indeed, T ⊂ ZG (T ) is the unique maximal torus in ZG (T ), so any (smooth) subgroup of
G normalizing ZG (T )must normalize T . Hence,

ZG (T ) =H ⊂NG (H )⊂NG (T )

but the outer inclusion is finite index on k -points!

The upshot is that it is enough to find g0 which lies in only finitely many (and at least
one!) Cartan subgroups. We will show that most points in a maximal torus T of G lie in
a unique Cartan subgroup, namely ZG (T ); that will finish the proof of Theorem 4.1.1.

Definition 4.1.4. For T ⊂G , we say that t ∈ T (k ) is regular if a (t ) 6= 1 for all a ∈Φ(G , T ).
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This means that

t ∈ T −
�

⋃

a∈Φ
ker a

�

so there are many such t .

Remark 4.1.5. A priori this definition depends on a choice of T , but we will later see
that it is in fact an intrinsic property of a semisimple element t ∈G (k ).

Example 4.1.6. For G =GLn and T the diagonal torus, then

Φ :=Φ(G , T ) = {ai j : t 7→ ti /t j }i 6= j

so t ∈ T is regular with respect to T if and only if t has distinct eigenvalues.

Example 4.1.7. For G = SL2 and T the diagonal torus

T =
§�

c
c −1

�ª

the roots are ( c 0
0 c −1 ) 7→ c ±2, so regularity is the condition c 2 6= 1.

Example 4.1.8. For G = PGL2 and T the diagonal torus

T =
§�

c
1

�ª

the roots are ( c 0
0 1 ) 7→ c ±1, so regularity is the condition c 6= 1.

We wish to analyze the scheme-theoretic centralizer Zg (t ) and its Lie algebra. Since
t is an element rather than a k -group, we shall relate this to constructions involving the
Zariski closure M = 〈t 〉 of the cyclic subgroup generated by t . Note that M is a smooth
(possibly disconnected) closed subgroup of T , so in the short exact sequence

1→M 0→M →M /M 0→ 1,

M 0 is a torus and M /M 0 is a finite group whose order is not divisible by char k (since
M /M 0 is a finite constant subgroup of the torus T /M 0, and over a field of characteristic
p > 0 a torus has no non-trivial geometric p -torsion, as follows from the case of Gm ).

We claim that that the scheme-theoretic centralizer ZG (M ) is smooth. We know that
ZG (M 0) is smooth: the proof by infinitesimal criteria in the previous course came down
to the fact that the finite-dimensional representation theory of a k -torus is semisimple.
Since M /M 0 is a finite constant group of order not divisible by the characteristic (so its
representation theory is also semisimple), we can push through the infinitesimal crite-
rion for M as well. See Lemma 3.2 of the handout on “Applications of Borel’s covering
theorem” for further details.

Since t Z ⊂M (k ) is Zariski-dense in M , it is schematically dense (i.e. the map k [M ] ,→
∏

n∈Z k via f 7→ ( f (t n ))n is injective). Although tensoring does not commute with infi-
nite direct products in general, over a field the natural map map

V ⊗
∏

Wi ,→
∏

(V ⊗Wi )

is automatically injective. Therefore, for any k -algebra A it follows that the coordinate
ring of MA injects into the direct product of copies of A indexed by t Z (via evaluation
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at t n ’s), so ZG (t ) = ZG (M ) as schemes (i.e., as functors on k -algebras). Thus, ZG (t ) =
ZG (M ) is smooth, with Lie algebra

gM = gt=1 = gT ⊕
⊕

a∈Φ
a (t )=1

ga .

It follows that dim ZG (t )0 ≥ dim ZG (T ) = dimgT with equality if and only if a (t ) 6= 1 for
all a ∈Φ; i.e. t is regular. In particular, ZG (t )0 = ZG (T ) in the regular case.

Proposition 4.1.9. Let G be a connected linear algebraic group over k = k and T ⊂G a
maximal torus. For t ∈ T (k ) regular (with respect to T ),

(1) T is the unique maximal torus containing t ,
(2) ZG (T ) is the unique Cartan subgroup containing t (and it is ZG (t )0).

Remark 4.1.10. Part (2) settles the proof of Borel’s Covering Theorem 4.1.1.

Proof. We saw that regularity implies ZG (t )0 = ZG (T ), which has T as a central (hence
unique) maximal torus. Since tori are commutative, tori containing t lie in ZG (t )0 =
ZG (T ). This implies (1).

For (2), suppose C = ZG (S ) is a Cartan subgroup containing t (for S ⊂G a maximal
torus). Since C is connected and solvable (as for Cartan subgroups in general), by the
structure theorem for connected solvable groups over algebraically closed fields and
the fact that S is central in C we obtain

C = S nU = S ×U

for U := Ru (C ). But t ∈ C is a semisimple element, so t is necessarily killed by the
quotient map C � C /S = U because U is unipotent, so t ∈ S . This forces S = T by
(1). �

Example 4.1.11. Here is an example to show that ZG (t ) can be disconnected in general.
For G = PGL2, T the diagonal torus, and t = diag(−1, 1) over a field k with char k 6= 2
one computes:

ZG (t ) = T o 〈w 〉
where w = (0 1

1 0 ).

4.2. Some applications of Borel’s covering theorem. See the handout “Applications
of Borel’s covering theorem” for a comprehensive discussion of many applications of
the covering theorem, with proofs that are sometimes quite different from the ones in
standard textbooks. Here we will only discuss the statements of the main applications.
None of what follows is used in the rest of this course, but these results are important
in practice.

Let G be any connected linear algebraic group over any field k .

(i) If g ∈G (k ) is semisimple, then g ∈ T (k ) for some maximal k -torus T ⊂G . (Warn-
ing: you can’t try the identity component of the closure of the subgroup generated by

g because g could have finite order, in which case g /∈ 〈g 〉
0
). Furthermore, it is always

the case that g ∈ ZG (g )0.
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Remark 4.2.1. This implies, in view of our arguments with ZG (t ) above, that for any
semisimple g ∈ G (k ), ZG (g )0 is smooth with Lie algebra gg=1 (which you can check
over k ) with dimension ≥ dim (Cartan), and that equality of dimensions holds if and
only if ZG (g )0 is itself a Cartan subgroup, in which g lies in a unique maximal k -torus.
In such cases we say that g is regular. (This shows that regularity is an intrinsic property
of semisimple elements of G (k ).)

(ii) If g ∈G (k ) is unipotent (so necessarily of finite order in characteristic p > 0) then
g ∈ U (k ) for some unipotent smooth connected k -subgroup U ⊂ G provided that k
is perfect. (Example 3.5 of the handout gives counterexamples over every imperfect
field.)

In characteristic 0 this is easy because 〈g 〉 is unipotent and unipotent groups in char-
acteristic 0 are automatically connected. (The reason for connectedness in characteris-
tic 0 is that semisimplicity and unipotence are well-behaved with respect to subgroups
and homomorphisms, so if a unipotent group were disconnected then its finite compo-
nent group would be too. But in characteristic 0 nontrivial unipotent elements always
have infinite order, as we see by computing in GLn - the exact opposite of what happens
in characteristic p .)

For the proofs of (i) and (ii), one first settles the case over k by using Borel’s Theorem
(e.g., a unipotent element u is in some Borel subgroup B by the covering theorem, and
dies in the quotient of B by Ru (B ) since that is a torus, and hence u ∈ U := Ru (B )).
More work is needed to bootstrap from the result over k to get the result over k .

Remark 4.2.2. Steinberg defines regularity for g ∈G (k )with k = k by the condition

dim ZG (g ) = dim (Cartan).

(The inequality ≥ always holds, but is not obvious.) Warning: [Bor] defines an element
to be regular if its semisimple part is regular, which unfortunately would never hold (for
instance) for a unipotent element in a nontrivial connected semisimple group, whereas
Steinberg’s definition is satisfied by many unipotent elements in general.

(iii) Using (i) and the fact that any two maximal tori are conjugate over a separably
closed field, we see that over k = ks there is a bijection

{g semisimple ∈G (k )}/G (k )-conj↔ T (k )/W

for W =NG (T )/ZG (T ), a finite constant group (since k = ks ).

It makes sense to seek Lie algebra versions of (i) and (ii), since we have notions of
semisimplicity and nilpotence for elements of g (definitions which rest on the specifi-
cation of G too, especially in positive characteristic). Namely, we can ask if a semisim-
ple element of the Lie algebra is tangent to a k -torus, or if a nilpotent element of the Lie
algebra is tangent to a (connected) unipotent smooth closed k -subgroup. These work
out well in the geometric case, as follows.

(iv) If k = k and X ∈ g then

• X semisimple =⇒ X ∈ Lie(T ) for some maximal torus T ⊂G ,



REDUCTIVE GROUPS OVER FIELDS 29

• X nilpotent =⇒ X ∈ Lie(U ) for some unipotent connected linear algebraic
subgroup U ⊂G .

For the semisimple case, the proof uses the smoothness of the scheme-theoretic cen-
tralizer ZG (X ) for X under AdG . For the nilpotent case, the proof uses the full force of
the structure theory for connected reductive groups (Bruhat decomposition, root sys-
tems, and so on); note that for the treatment of the nilpotent case one can reduce the
general case to the reductive case by quotienting by the unipotent radical.

Remark 4.2.3. For connected linear algebraic groups H over a general field k , there is a
finer notion than solvable called nilpotence, which is defined as the descending central
series reaching {1}. The main example is that of (connected) unipotent groups. The
handout on nilpotence shows that nilpotence is equivalent to solvability with a central
maximal k -torus. For example, a Cartan k -subroup is always nilpotent.

5. EXPONENTIATING ROOT SPACES

5.1. The reductive case: examples. Let G be a connected reductive group over a field
k . We know that if G has a split maximal k -torus T (which it may not), then

• Φ :=Φ(G , T ) =−Φ,
• Qa ∩Φ= {±a } for a ∈Φ,
• ga is 1-dimensional for all a ∈Φ.

We want to “exponentiate” ga to a canonical k -subgroup Ua ⊂ G (the uniqueness
is obvious in characteristic 0, but can fail characteristic p > 0 without further require-
ments on Ua , as we shall see below!). More generally, for suitable spans h ⊂ g of root
lines, we seek a canonical connected unipotent linear algebraic subgroup U ⊂G with
Lie(U ) = h and such that U is normalized by T . (The second property is automatic in
characteristic 0, but not so in characteristic p > 0.)

Example 5.1.1. Let G = SL4 and T the diagonal subgroup
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Then X(T ) = Z4/∆ and Φ= {ai j : t 7→ ti /t j }i 6= j . Letting
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and t u (x , y )t −1 = u (t1t −1
2 x , t3t −1

4 y ) for t ∈ T . If char k = p > 0, consider the subgroup

U =Ga ,→Ga ×Ga =Ua12
×Ua34

embedded by z 7→ (z , z p ). Then Lie(U ) = ga12
is a T -root line, but U is not T -stable

because conjugation by t scales the first coordinate scales by a12(t ) and the second by
a34(t ), and a34(t ) 6= a12(t )p .

Example 5.1.2. For G = SL3, let a = a12, b = a23, and c = a13 = a + b . In terms of










1 x y
1 z

1











note that x is the coordinate on Ua , z is the coordinate on Ub , and y is the coordinate
on Uc . Then

Ub ·Ua+b =





1 0 y
1 z

1





is a subgroup of G with Lie algebra having weights b and a + b . On the other hand,

Ua ·Ub =





1 x 0
1 z

1





is not a subgroup of G . You can see this by explicit computation, or by observing that
the commutator of ga and gb contains ga+b . Note that there is a subsemigroup A ⊂
X(T )meeting the set of roots in exactly b and a + b , but no such A exists for the pair
a , b (since such an A would obviously have to contain a + b ); see Figure 5.1.2. The
significance of the existence (or not) of such an A will become apparent later, when
we study which spans of root lines can be “exponentiated” to a (unique) T -smooth
unipotent connected linear algebraic subgroups.

Next time we’ll discuss in the general setting of split tori S acting on connected linear
algebraic groups H how to use dynamic methods to construct S-stable connected linear
algebraic subgroups of H whose Lie algebra realizes sets of S-weights determined by a
subsemigroup of X(S ). (The use of subsemigroups will later be related to the notion of
closed sets of roots that cannot consider at this stage since we have not yet shown that
sets of nontrivial weights occurring on the Lie algebra constitute a root system.) This
will be the essential key to how we can set up the structure theory of reductive groups
over fields without needing to first develop the entire theory in the split case (or over
algebraically closed fields) first.

5.2. Subgroups corresponding to root semigroups. Let G be a connected linear alge-
braic group over a field k equipped with an action by a k -torus S . (Reductivity will play
no role in this discussion.)

For H = S nG , we have ZH (S ) = S ×G S , where G S is the functorial centralizer of S ,
defined as the fixed points of the S-action. Passing to H reduces many problems to the
more familiar case of the conjugation action by a subtorus.
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FIGURE 5.1.1. The A2 root system corresponding to S L3. We can find a
subsemigroup, such as an affine half-space, meeting the set of roots in
{b , a + b } but not in {a , b }.

Example 5.2.1. For S =Gm , we have S ×G S = ZH (λ) for

λ: Gm = S ,→ S nG

s 7→ (s , 1)

Setup. Let wtS (G ) = {a ∈ X(S ) | ga 6= 0}. We want to exponentiate (spans of) suitable
S-weight spaces to S-stable connected linear algebraic subgroups (with S-stability en-
suring a uniqueness that cannot be guaranteed by the Lie algebra alone in positive char-
acteristic).

Lemma 5.2.2. The set of S-weights on the augmentation ideal IG ⊂ k [G ] lies in the sub-
semigroup 〈wtS (G )〉 generated by wtS (G ).

Proof. Since G is connected, its coordinate ring k [G ] is a domain and hence injects
into the local noetherian ring k [G ]IG

. This local ring is filtered by powers of its maximal
ideal and so each nonzero element of its maximal ideal has nonzero image in I n

G /I n+1
G

for some n > 0 by the Krull Intersection Theorem. Any successive quotient I n
G /I n+1

G is
a quotient of (IG /I 2

G )
⊗n , and IG /I 2

G = g∗. This is all S-equivariant (giving g∗ the linear
dual action by S ). �

Remark 5.2.3. Depending on how you define the action of G on its coordinate ring, the
weights which show up are those claimed or their negations (of course, this difference
blurs in the case of the action of the commutative S , especially when the set of weights
which occur on the Lie algebra is stable under negation as for the conjugation on a
connected reductive group by a split maximal torus).
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Proposition 5.2.4. [CGP, Prop. 3.3.6] Let A ⊂ X(S ) be a subsemigroup (i.e., a subset set,
possibly empty, stable under addition). There is a unique S-stable connected linear alge-
braic k -subgroup HA(G )⊂G with the property that

Lie(HA(G )) =
⊕

a∈A∩wtS (G )

ga .

Moreover, HA(G ) enjoys the following properties.

(1) (maximality) If H ⊂G is an S-stable connected linear algebraic k -subgroup such
that wtS (h)⊂ A then H ⊂HA(G ).

(2) If 0 /∈ A then HA(G ) is unipotent (denoted UA(G ) for emphasis).

Remark 5.2.5. The weight spaces ga for nonzero a can be pretty large because of the
generality: in particular, they are not necessarily lines!

Idea of proof. We’re going to explain the idea of the proof if 0 /∈ A, as happens in most
cases of interest. (When 0 ∈ A, one has to include G S in the construction below.)

To build HA(G ), we want to construct things with A ∩wtS (G ) showing up in the Lie
algebra. For each a ∈ A∩wtS (G ), consider the k -subgroup scheme ZG (ker a )⊂G , which
is smooth even if ker a is non-reduced since ker a ⊂ S (see near the start of §3.2); this
subgroup might be disconnected.

How does S act on ZG (ker a ) ? Well, ker a acts trivially, so the S-action factors through
the quotient S/ker a , which can be identified via a with Gm . Let

λa : Gm ×ZG (ker a )→ ZG (ker a )

be the induced action. Note that λa is not a one-parameter subgroup, but by the semi-
direct product trick as discussed above we can apply all of the dynamic formalism
to Gm -actions on affine group schemes of finite type. Hence, we can make sense of
UZG (ker a )(λa ) as a unipotent smooth k -group that is moreover connected (as groups
UH (µ) arising in the dynamic formalism are always connected, even when H is not,
since the limiting definition provides an affine line from each geometric point to the
identity point.).

This construction extracts the part of the Lie algebra with weights which are posi-
tive with respect to λa . That is, the Lie algebra of UZG (ker a )(λa ) consists of the positive
integral multiples of a that are S-weights on g:

LieUZG (ker a )(λa ) =
⊕

b∈wtS (G )∩Z≥1a

gb .

Define the S-stable connected linear algebraic subgroup

HA(G ) = 〈UZG (ker a )(λa )〉a∈A∩wtS (G ) ⊂G .

The real content is to show that its Lie algebra doesn’t have unexpected weights. The key
is that we control the weights showing up in the coordinate ring of each UZG (ker a )(λa ),
and the group generated by these has a dominant multiplication map from a direct
product of finitely many of these groups (perhaps with high multiplicity); that realizes
the coordinate ring of HA(G ) as an S-equivariant k -subalgebra of a tensor product of
finitely many copies of the UZG (ker a )(λa )’s. So the fact that this has the expected Lie
algebra is ultimately due to Lemma 5.2.2.
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How do we show unipotence of HA(G ) when 0 /∈ A? Let H := S nHA(G ). Then ZH (S )
has Lie algebra hS = Lie(S ) since 0 /∈ A, so the inclusion S ⊂ ZH (S ) is equality. Hence S is
a maximal k -torus in H , so in particular the dimension of the maximal tori of H (i.e.,
its rank) is dimS . This implies that HA(G ) has trivial maximal torus - for instance, by
working over k we see that

dimS = rank H = dimS + rank HA(G ),

so rank HA(G ) = 0, implying that HA(G ) is unipotent.
�

Example 5.2.6. Let G be a connected reductive group with split maximal k -torus T .
By Proposition 5.2.4, for a ∈Φ(G , T ) there is a unique connected linear algebraic group
Ua ⊂ G that is T -stable with Lie(Ua ) having as its set of T -weight wtT (G )∩ 〈a 〉 = {a },
where 〈a 〉 denotes the subsemigroup {na }n≥1. So we know that Ua is unipotent with
Lie(Ua ) = ga a line. Therefore, dimUa = 1. We call this the a -root group.

We would like to show that Ua 'Ga ; this is a special case of Proposition 5.2.12 below.
Once this is proved, since Autks

(Ga ) = k×s (true over fields but not arbitrary bases!) it
would follows that transporting the T -action on Ua over to Ga becomes

t · x = a (t )x

(as the action of each t ∈ T (ks ) is scaling by some element of k×s , and the actual scalar
can be read off from the action on the Lie algebra of Ga ).

The unique characterization of Ua implies that if f : G → G ′ is a central isogeny
and for the split maximal k -torus T ′ := f (T ) ⊂G ′ we denote by a ′ ∈ Φ(G ′, T ′) the root
corresponding to a as in Proposition 3.4.1 then f carries Ua isomorphically on Ua ′ (so
the formation of root groups is insensitive to passing to central isogenous quotients!).
Indeed, if we choose generic λ ∈ X∗(T ) (i.e., 〈b ,λ〉 6= 0 for all b ∈Φ(G , T )) then λ′ := f ◦λ
is generic for (G ′, T ′) and in the proof of Proposition 3.4.1 we saw that f carries UG (λ)
isomorphically ontoUG ′ (λ′). Since necessarilyUa ⊂UG (λ) andUa ′ ⊂UG ′ (λ′), the unique
characterization forces the isomorphism f : UG (λ)'UG ′ (λ′) to carry Ua isomorphically
onto Ua ′ . This reasoning applies verbatim when G ′ = G /Z for any (not necessarily
finite) central closed k -subgroup scheme Z ⊂ G ; i.e., the formation of root groups is
compatible with central quotients.

Example 5.2.7 (Rosenlicht). If k is not perfect, then we can always make unipotent,
connected, 1-dimensional k -groups which are not Ga ! If c ∈ k − k p for p = char(k )
then take

U = {y p = x − c x p } ⊂A2 =Ga ×Ga .

Its closure in P2 has one point, which is regular, at the line at∞. However, this point is
not rational (it is Spec k ( ppc )). Therefore, U is not isomorphic to A1

k , since the unique
regular compactification of A1

k has a unique point at∞ that is moreover k -rational.

In general, UA(G ) is filtered by Ga ’s in the following sense:
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Definition 5.2.8. Let U be a unipotent connected linear algebraic k -group. We say that
U is k -split if there exists a composition series {Uj } of connected linear algebraic k -
subgroups such that

Uj /Uj+1 'Ga .

We say that U is k -wound if it has no copy of Ga as a k -subgroup; i.e. if there is no
k -subgroup inclusion Ga ,→U .

Example 5.2.9. Inside GLn , Ru (B ) is split for a Borel subgroup B . On the other hand,
Rosenlicht’s construction in Example 5.2.7 is k -wound.

Tits’ structure theory of unipotent groups is developed in a self-contained modern
manner in [CGP, App. B] (addressed in the handout “Structure of solvable groups over
fields”), including split and wound connected unipotent linear algebraic groups and
properties of these groups.

Warnings. The notions of split and wound for connected unipotent linear algebraic
k -groups are not as robust as in the theory of k -tori (i.e. where there is a notion max-
imal split k -torus the quotient by which is k -anisotropic, and maximal k -anisotropic
k -subtorus the quotient by which is k -split).

(1) Rosenlicht’s wound group is a k -subgroup of a split k -group Ga ×Ga .
(2) [CGP, Ex. B.2.3] gives a Ga -quotient of a wound k -group.

Proposition 5.2.10. If k is perfect, then every unipotent connected linear algebraic k -
group U is k -split.

Proof. See [Bor, 15.5(i)] or [CGP, B.2.5]. �

Actually, we’ll need a slightly more general result, as follows. For tori we noted above
that there is a robust theory of split subtori with anisotropic quotient and vice-versa.
For unipotent groups, we only have one of the two: a maximal split smooth connected
k -subgroup Us such that U /Us is k -wound. More precisely, by [CGP, B.3.4], for any
unipotent connected linear algebraic k -group U , there exists a unique k -split con-
nected smooth k -subgroup Us /U such that

U :=U /Us

is k -wound (and the formation of Us is compatible with separable extension of k ).

Remark 5.2.11. Whereas the formation of Us is compatible with separable extensions
on k , the analogue for tori is only compatible with purely inseparanble extensions.

Proposition 5.2.12. If 0 /∈ A, then UA(G ) is k -split.

Proof. For U =UA(G ), we want to show that U = 1. By design, if U 6= 1 then wtS (U ) ⊂
wtS (U )⊂ A is non-empty. But it is a general fact [CGP, B.4.4] that a wound group (such
as U ) can only admit a trivial action by a torus (such as S ). �

Example 5.2.13. If k ′/k is a nontrivial finite separable extension, and G ′ is a split con-
nected reductive k ′-group with T ′ 'Gr

m ⊂G ′ the split maximal torus, consider the Weil
restriction

G :=Rk ′/k (G
′).
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We claim that this is connected reductive, with maximal k -torus T := Rk ′/k (T ′) since
this can be checked over ks (and we know that Gks

'
∏

σ:k ′,→ks
G ′⊗k ,σ ks , and likewise

for T ). So a maximal torus for G is T =Rk ′/k (Gr
m )⊃Gr

m =: S . (Later we will show that in
a connected reductive group over a field, all maximal split tori are rationally conjugate
to each other; S is such a k -torus for G .) As an exercise, check that via the identification
X(S ) = X(T ′), we have

Φ(G ,S ) =Φ(G ′, T ′)

and gb = g′b as k -vector spaces (so of dimension [k ′ : k ] > 1), and at the level of roots

groups Ub =Rk ′/k (Ga )'G[k
′:k ]

a .

5.3. Direct spanning of root subgroups. Let (G , T ) be a split reductive pair over k (i.e.
G is a connected reductive k -group and T a split maximal k -torus). Let Φ = Φ(G , T ) ⊂
X(T )−{0} be the set of roots with respect to this pair.

Some reminders. Recall that we showed that the central isogeny

Z ×D(G )→G ,

where Z is the maximal central k -torus of G , induces isomorphisms

X(T )Q = X(T )Q⊕X(Z )Q.

where T := T ∩D(G ) is a (split) maximal k -torus ofD(G ), and

Φ=Φ(D(G ),T )×{0}.

SinceD(G ) has trivial maximal central torus, we know that the inclusion ZΦ⊂ X(T ) has
finite index, so QΦ= X(T )Q inside X(T )Q.

For c ∈Φ, we have a root group Uc 'Ga inside ZG (Tc ), and

D(ZG (Tc )) = SL2 or PGL2

since it is connected semisimple and split of rank 1: the codimension-1 torus Tc ⊂ T
must be maximal central in ZG (Tc ) (as T isn’t central) and we have the central isogeny

D(ZG (Tc ))×Tc → ZG (Tc )

satisfying
Tc ×Tc � T

whereTc := T ∩D (ZG (Tc )) is a 1-dimensional split torus. The identification of D (ZG (Tc ))
with SL2 or PGL2 can be chosen to carry Tc over to the diagonal. This implies that the
only non-trivial dependencies over Q among a pair roots are for±c , and that 〈Uc ,U−c 〉=
D (ZG (Tc )).

As an application of the ubiquity of SL2 inside split connected semisimple groups,
we obtain an important fact in characteristic 0 (never used in this course):

Proposition 5.3.1. If G is connected reductive over a field k of characteristic 0 then ev-
ery linear representation of G on a finite-dimensional k -vector space V is completely
reducible.
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In contrast, for any field K whatsoever and any linear representation V of smooth
connected unipotent K -group U , the subspace V U is nonzero (as we may check over
K via the Lie–Kolchin theorem).

Proof. Let’s check that we can assume k = ks (so tori become split). This will be mainly
an application of the structure theory of finite-dimensional algebras over fields [L, XVII].
Suppose complete reducibility holds for V ′ := Vks

. Let A ⊂ Endk (V ) be the Galois de-
scent of ks [G (ks )] ⊂ Endks

(V ′). Assuming V ′ is a semisimple Gks
-representation, so

it is a semisimple Aks
-module (as G (ks ) is Zariski-dense in Gks

since G is k -smooth),
Aks

is a semisimple ring by [L, XVII, Prop. 4.7]. Thus, Aks
has no nonzero nilpotent

2-sided ideal, so the same holds for A. Such vanishing characterizes semisimplicity
for finite-dimensional algebras over fields (see [L, XVII, Thm. 6.1]), so A is semisimple.
The A-module V therefore decomposes as a direct sum of simple A-modules [L, XVII,
Prop. 4.1]. But a k -subspace of V is G -stable if and only if it is an A-submodule (as each
can be checked over ks ), so V is completely reducible for G as desired.

Now we may assume k = ks . Let Z ⊂G be the maximal central torus and G ′ =D (G ).
Since Z is split, V decomposes into weight spaces for Z . The groups G ′ and Z commute
inside G , so the G ′-action on V preserves each Z -weight space. It suffices to treat these
weight spaces as G -representations separately, so we are reduced to the case where Z
acts through a Gm -valued character. Now a subspace is stable under G if and only if it
is stable under G ′, so we may focus on G ′; i.e., we may assume G is semisimple. So far
we haven’t used that k has characteristic 0!

The crucial fact is that g :=Lie(G ) is a semisimple Lie algebra. In the theory of finite-
dimensional Lie algebras in characteristic 0 as developed in [Bou1, §6], semisimplicity
is defined as the vanishing of commutative Lie ideals and it is proved that the linear
representation theory of such Lie algebras is completely reducible. Hence, it suffices
to prove two things: g has no nonzero commutative Lie ideal (so it is semisimple) and
that a subspace of V is G -stable if and only if it is g-stable (under the Lie algebra repre-
sentation g→ End(V )). The proofs of each will use characteristic zero in a crucial way
(and are false in every positive characteristic).

Let W ⊂ V be a subspace. We claim that W is G -stable if and only if it is g-stable.
The “only if” direction is obvious. To prove the converse, inside GL(V ) consider the sub-
group H of linear automorphisms preserving W . It is easy to check by computations
with a basis of V extending one of W that the Lie subalgebra h ⊂ gl(V ) consists of the
endomorphisms of V preserving W . The hypothesis gives that for our representation
ρ : G → GL(V ), Lie(ρ) lands inside h, and we want to prove that the scheme-theoretic
preimage ρ−1(H ) coincides with G . By Cartier’s theorem (characteristic 0!) ρ−1(H ) is
smooth, so it suffices to show that it has full Lie algebra inside g. The formation of tan-
gent spaces is compatible with fiber products, soρ−1(H )has Lie algebra Lie(ρ)−1(h) = g.

Finally, we check that any commutative Lie ideal c in g vanishes. Since Lie(AdG ) = adg,
any Lie ideal is stable under AdG by the equivalence of G -stability and g-stability for
subspaces of G -representations. Thus, c is a G -subrepresentation of g. Let T ⊂G be a
maximal torus, so c is a T -subspace of g. If c supports a nonzero T -weight then it con-
tains some root line ga . But the subgroup 〈Ua ,U−a 〉 ⊂G that is SL2 or PGL2 contains the
standard Weyl element that swaps a and−a , so by G -stability cwould also contain g−a .
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The common Lie algebra sl2 of SL2 and PGL2 away from characteristic 2 is generated
as a Lie algebra by its opposite root lines, so c would have to contain sl2, contradicting
that c is commutative.

Hence, the T -action on c is trivial, which is to say c ⊂ gT = Lie(ZG (T )) = Lie(T ). But
T was arbitrary! By noetherian induction, the intersection

⋂

T T of all maximal tori
coincides with the intersection T1∩· · ·∩Tn of finitely many. This intersection coincides
with the center ZG by Corollary 2.4 in the handout “Basics of reductive groups”, so

c⊂∩ j Lie(Tj ) =Lie(∩ j Tj ) =Lie(ZG ).

But ZG is finite since G is semisimple, and it is smooth (Cartier’s theorem, once again),
so Lie(ZG ) = 0. �

Now we consider linearly independent roots c , c ′ ∈Φ (i.e. c ′ 6=±c ). Note that

A :=〈c 〉+ 〈c ′〉=N c +N c

={i c + j c ′ ∈Φ | i , j ≥ 1}=: (c , c ′)

does not contain 0. Thus, by Proposition 5.2.4 we have a unipotent connected linear
algebraic group

UA(G ) = 〈Ua 〉a∈A∩Φ.

(The inclusion ⊃ follows from maximality of UA(G ), and ⊂ because we know the Lie
algebras coincide by our description of roots for a split reductive group, and the fact
that an inclusion of smooth connected groups with the same Lie algebras is an isomor-
phism.) In fact we can do much better: we will show that such groups Ua “directly span”
UA(G ) under multiplication in any desired (but fixed) enumeration of A ∩Φ. Before we
discuss such a property, we record a general result on commutators.

Notation. For smooth closed k -subgroups H and H ′ of a linear algebraic group G
over k , we denote by (H , H ′) the subgroup generated by commutators of H by H ′. In
the past this has usually been denoted [H , H ′].

Proposition 5.3.2. [CGP, Prop. 3.3.5]Let G be a connected linear algebraic k -group with
action by a split k -torus S.

(1) If H , H ′ ⊂G are S-stable connected linear algebraic k -subgroups then

wtS ((H , H ′))⊂wtS (H ) +wtS (H
′).

(2) If A, A′ ⊂ X(S ) are subsemigroups, then

(HA(G ), HA′ (G ))⊂HA+A′ (G ).

Remarks on proof. Clearly (1) implies (2), by the maximality of HA+A′ with respect to
containing weights within A + A′. For (1), we get intuition from characteristic 0, since
in such cases

Lie((H , H ′)) = [h,h′]
and we have functoriality of the Lie bracket, so

t .[X , X ′] = [t .X , t .X ′] for t ∈ S

via the induced S-action on g. A characteristic-free proof is given in [CGP] by studying
the S-action on coordinate rings. �
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Example 5.3.3. Let (G , T ) be a split reductive pair. For c ∈Φ, choose a k -isomorphism

uc : Ga 'Uc .

By Proposition 5.3.2(2) we have

(Uc ,Uc ′ )⊂U〈c 〉+〈c ′〉(G ) = 〈Ua 〉a∈(c ,c ′).

The right side is “directly spanned” by {Ua }a∈(c ,c ′) (where (c , c ′) := (〈c 〉+ 〈c ′〉)∩Φ) in the
sense of the following definition.

Definition 5.3.4. A linear algebraic k -group H is directly spanned by smooth closed k -
subgroups H1, . . . , Hn ⊂H if for any permutationσ of {1, . . . , n} the multiplication map

Hσ(1)× . . .×Hσ(n )→H

is an isomorphism of k -schemes.

The direct-spanning result to be recorded shortly has nothing to do with reductive
groups (not even in the proofs), being instead about the action of a split k -torus S on
any connected linear algebraic k -group G . Let A ⊂ X(S ) be a subsemigroup not con-
taining 0. Consider a decomposition

A ∩wtS (G ) =
∐

Ψi

where Ψi is disjoint from the subsemigroup A j := 〈Ψ j 〉 for all j 6= i ; i.e. the subset A ∩
wtS (G ) breaks up into pieces which do not intersect even when some mild addition is
permitted.

Example 5.3.5. Here is a prototypical example for the setup: let (G ,S ) be a split reduc-
tive pair and

A = {χ ∈ X(S ): 〈χ ,λ〉> 0} for a regular λ ∈ X∗(S ).
We may take Ψi = {ai } for {a1, . . . , an}=Φλ>0 =Φλ≥0.

Theorem 5.3.6. [CGP, Thm. 3.3.11] The k -group UA(G ) is directly spanned by {UA j
(G )}.

Idea of proof. Note that each UAi
(G ) = UAi

(UA(G )) because UAi
⊂ UA(G ) a priori from

the maximality property. Hence, we can replace G with UA(G ) so that G is unipotent.
Now this is one of the rare instances where want to use the descending central series
(remember that unipotent is nilpotent, so the descending central series terminates).
This is a good thing to do because the difficulty with these direct spanning results is the
rampant non-commutativity.

If G is non-commutative then we have via the canonical descending central series
an S-equivariant exact sequence

1→ Z →G →G /Z → 1

with Z ⊂G a nontrivial smooth connected central k -subgroup. We perform dimension
induction via such centrality to reduce to the case of commutative G .

In characteristic 0, a commutative unipotent group is a vector group. In character-
istic p > 0 we use the composition series {p i G } to reduce to the case when G is also
p -torsion. Now the key is to use the structure theory in [CGP, App. B] for unipotent
connected linear algebraic groups equipped with a sufficiently nontrivial action by a
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split torus (via the hypothesis 0 6∈ A) to ensure that such a commutative G also killed by
p in characteristic p is necessarily a vector group (i.e., Gn

a ) on which the S-action is lin-
ear relative to some linear structure (beware that G2

a admits many non-linear automor-
phisms in characteristic p > 0, such as (x , y ) 7→ (x + y p , y )). The complete reducibility
of linear representations of a split torus then yields the desired result. �

Example 5.3.7. If (G , T ) is a split reductive pair then

{Borels⊃ T }= {PG (λ)⊃ T for regular λ ∈ X∗(T )}.

Thus, for any such B we have Ru ,k (B ) = UG (λ) using such a regular λ, so Ru ,k (B ) =
Uc1
× . . .×Ucn

via multiplication for any enumeration {c1, . . . , cn} of Φλ>0 =Φ(B , T ).
Note in particular (as can also be proved directly from the dynamic description) that

a Borel k -subgroup containing T is determined by the set of roots Φ(B , T ) (as B =
T nRu ,k (B )). A consequence of this is that there is a unique opposite Borel B ′ ⊂ G
containing T and satisfying B ′ ∩ B = T ; this characterization of B ′ in terms of B and
T makes sense without requiting T to be split, and in that generality its existence and
uniqueness can be deduced immediately from the split case over ks via Galois descent.

Proposition 5.3.8. Consider a split reductive pair (G , T ) and c , c ′ ∈ Φ := Φ(G , T ) with
c ′ 6=±c . Fix a parametrization uc ′′ : Ga 'Uc ′′ for all c ′′ ∈Φ. Then

(uc (x ), uc ′ (x )) =
∏

a=i c+ j c ′∈(c ,c ′)

ua (mi , j ,c ,c ′x
i y j )

for some mi , j ,c ,c ′ ∈ k using a fixed enumeration of (c , c ′).
(The structure constants mi , j ,c ,c ′ depend on the enumeration and parametrizations

{ua }).

Before we prove this result, we make some remarks. Chevalley showed that for suit-
able parameterizations one can always arrange the structure constants to arise from
specific integers determined up to sign solely by the enumeration and (root system) Φ.
It turns out that such integers lie in {±1,±2,±3}; see [C1, Prop. 6.3.5, Rem. 6.3.5] and
references therein.

Example 5.3.9. Let G = Sp4 (root system Φ of type B2 =C2) with the symplectic form

ψ(v, v ′) = v T
�

0 1
−1 0

�

v ′

and maximal torus

T =







t1

t2

t −1
1

t −1
2






.
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FIGURE 5.3.1. Positive roots for the B2 = C2 root system corresponding
to Sp4.

We have parameterizations of corresponding root groups:

ua (x ) =







1
−x 1

1 x
1







ub (x ) =







1 x
1

1
1







ua+b (x ) =







1 x
1 x

1
1







u2a+b (x ) =







1
1 x

1
1






.

The nontrivial commutation relations are

(ua (x ), ub (y )) = u2a+b (x
2 y )ua+b (−x y ),

(ua (x ), ua+b (y )) = u2a+b (−2x y );

Ub and Ua+b commute, as do Ua and U2a+b (either by inspection or more conceptually
because the sets of roots (b , a + b ) and (a , 2a + b ) are empty!). Note in particular that
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in characteristic 2 the second commutation relation degenerates, or more specifically
the root groups for a and a + b commute in characteristic 2.

Proof of Proposition 5.3.8. We are considering a split reductive pair (G , T ) over k . Let
c , c ′ ∈ Φ(G , T ) be two roots with c ′ 6= ±c . In Proposition 5.3.2 we noted that there is a
containment [Uc ,Uc ′ ] ⊂UA(G ) for A = 〈c 〉+ 〈c ′〉 for formal reasons. (Note that (c , c ′) =
A∩Φ.) Fix k -isomorphisms ub : Ga 'Ub for all roots b . Upon fixing an enumeration of
the set (c , c ′) of roots a = i c + j c ′ with i , j ≥ 1, we have

[uc (x ), uc ′ (y )] =
∏

a∈(c ,c ′)

ua (Fa (x , y ))

for some Fa : A2
k =Uc ×Uc ′ →Ua = A1

k ; i.e., Fa ∈ k [x , y ] (depending on the choice of
enumeration and on the parameterizations ub for roots b ). Our task is to show that Fa

is a monomial, and more specifically of bi-degree (i , j )where a = i c + j c ′.
The proof is a simple consequence of behavior under conjugation against T . There

is no harm in assuming that k = k . For any t ∈ T (k ), we have

t [uc (x ), uc ′ (y )]t
−1 = [t uc (x )t

−1, t uc ′ (y )t
−1]

= [uc (c (t )x ), uc ′ (c
′(t )y )]

=
∏

a

ua (Fa (c (t )x , c ′(t )y )).

On the other hand,

t ·
∏

a∈(c ,c ′)

ua (Fa (x , y )) · t −1 =
∏

a=i c+ j c ′
(t ua (Fa (x , y ))t −1)

=
∏

a

ua (a (t )Fa (x , y )).

Therefore we must have a termwise equality:

Fa (c (t )x , c ′(t )y ) = a (t )Fa (x , y ) = c (t )i c ′(t ) j Fa (x , y )

where a = i c + j c ′. Now we are saved by the condition that the characters are linearly
independent. We have a surjective map

T
(c ,c ′)
−−→Gm ×Gm .

Therefore
Fa (u x , v y ) = u i v j Fa (x , y )

for all x , y ∈ k and u , v ∈ k×. By considering the contribution to both sides from each
monomial term appearing in Fa , this implies that Fa (x , y ) = fi j x i y j for fi j ∈ k . �

An important fact due to Chevalley, which we mentioned last time, is that there is a
systematic choice of enumeration of (c , c ′) and parameterizations {ub }which leads to
fi j ∈ {±1,±2,±3} determined solely by Φ.

Example 5.3.10. Consider the split connected semisimple k -group G = G2; this is the
automorphism scheme of the unique (up to isomorphism) split octonion algebra over k
(see [C2, App. B]). In this case, a split maximal k -torus T ⊂G has rank 2 andΦ :=Φ(G , T )
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is a root system of type G2. Let {c , c ′} be a basis for this root system with c short and c ′

long as shown in the accompanying Figure.

The set (c , c ′) consists of c +c ′, 3c +2c ′, 2c +c ′, 3c +c ′. It turns out that fi j =±3 does
occur for this root system, using an appropriate enumeration of (c , c ′) (see [C1, Lemma
6.2.8, Ex. 6.2.9] and references therein or [H, §33.5] for the general form of Chevalley’s
commutation relations for G2). We now explain the consequence this has for the struc-
ture of G , especially in characteristic 3; this will not be used in anything that follows.

From the picture and Chevalley’s commutation relations, the span of the root lines
for c ′, c +c ′, 2c +c ′, 3c +c ′ is a 4-dimensional representation for the k -subgroup SL2 '
Gc →G =G2 generated by the root groups for {±c }.

The corresponding four root groups together with the root group for 3c +2c ′ directly
span a unipotent group U normalized by Gc ; explicitly, U =UA(G ) for an evident sub-
semigroup A not containing 0. The form of the commutation relations implies that
the root group U3c+2c ′ corresponding to the highest root is the center of U and that
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U :=U /U3c+2c ′ is abelian, so there is a short exact sequence

1→ ZU =U3c+2c ′→U →U → 1

for which U is a vector group of dimension 4 identified with the direct product of the
other 4 root groups. That direct product structure on U yields a linear structure on this
vector group that is the unique one equivariant with respect to the T -action; in this way
we identify U with its Lie algebra h=Lie(U ).

The commutator of the root lines for c + c ′ and 2c + c ′ is nonzero and valued in the
root line for 3c +2c ′, and similarly for the longer roots c ′ and 3c +c ′ (by a computation
in the root system for sl3). Hence, U is a Heisenberg group: there is a symplectic pairing
on the quotient h of U valued in the k -subgroup U3c+2c ′ ⊂U .

We have built SL2 =Gc acting on the 4-dimensional space h, and this action is linear
(as we can check using the actions ofUc andU−c ). When char(k ) 6= 2, 3, we can conclude
that h is the unique 4-dimensional irreducible representation of SL2, so h ' Sym3(V )
where V is the standard 2-dimensional representation of SL2. Letting {e , e ′} denote
the standard ordered basis for V , a basis for h is {e 3, e 2e ′, e e ′2, e ′3} relative to which
the “raising operator” (1 1

0 1 ) ∈ SL2 acts by e 7→ e and e ′ 7→ e + e ′. When we apply this
operator to e ′3, for instance, the coefficient 3 shows up against e e ′2.

Assume char(k ) = 3. The irreducible 4-dimensional SL2-representations are (V ⊗3)S3

and (V ⊗3)S3
. Inside (V ⊗3)S3 is a copy of V spanned by the symmetrizers of e ⊗2⊗ e ′ and

e ⊗ e ′⊗2, the quotient by which is the Frobenius twist V (3) (using e ⊗3 7→ e (3) and e ′⊗3 7→
e ′(3)). Likewise, (V ⊗3)S3

contains a copy of V (3) spanned by the classes of e ⊗3 and e ′⊗3,

the quotient by which is V (spanned by images of the classes of e ⊗2⊗ e ′ and e ⊗ e ′⊗2).
This gives non-trivial extensions of SL2-representations:

0→V → (V ⊗3)S3 →V (3)→ 0

0→V (3)→ (V ⊗3)S3
→V → 0

These are distinguished by the unique 2-dimensional subrepresentations with weights
for the diagonal torus given by ±1 for (V ⊗3)S3 and ±3 for (V ⊗3)S3

respectively.

Is h isomorphic to (V ⊗3)S3 or (V ⊗3)S3
? To answer this we shall calculate use some

notions to be discussed later, namely coroots (see §6.2) and their encoding in terms
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of the Dynkin diagram or geometry of the root system. This gives 〈c , c ′∨〉 = −1 and
〈c ′, c ∨〉=−3, so the weights of the (split) maximal torus c ∨(Gm )⊂Gc = SL2 on the short
root lines gc+c ′ and g2c+c ′ inside h are ∓1 and the weights of c ∨(Gm ) on the long root
lines gc ′ and g3c+c ′ inside h are ∓3. Thus, h ' (V ⊗3)S3 precisely when the short root
lines in h span a Gc -stable subspace (and then the span of the long root lines in h is not
Gc -stable). We shall prove that the span of the short root lines is indeed Gc -stable.

The group Gc = SL2 is generated by the torus c ∨(Gm ), the root group Uc , and any rep-
resentative for the nontrivial element of W (Gc , c ∨(Gm )). The adjoint action of c ∨(Gm )
preserves all root lines, and the effect of a Weyl element swaps root lines according to
the reflection rc , so this swaps the two short root lines inside h as well as swaps the two
long root lines inside h. Hence, everything comes down to determining whether the
adjoint action of Uc preserves the span of the short root lines inside h or preserves the
span of the long root lines inside h. We shall prove that the former holds.

For suitable parameterizations of the root groups the commutation relations for Uc

against Uc+c ′ and U2c+c ′ degenerate in characteristic 3 to

uc+c ′ (y )uc (x ) = uc (x )uc+c ′ (y )u2c+c (−2x y )

u2c+c ′ (y )uc (x ) = uc (x )u2c+c ′ (y ).

Thus, the adjoint action of Uc on g2c+c ′ is trivial and on gc+c ′ is valued in gc+c ′ +g2c+c ′ ,
so the span of the short root lines inside h is Gc -stable as claimed. That is, h ' (V ⊗3)S3

as a representation for Gc = SL2.
Note that the long roots constitute a root system of type A2, and likewise for the short

roots. Hence, it is natural to ask if the long root groups are the root groups for a copy
of SL3 or PGL3 (the two split connected semisimple groups with root system A2) in-
side G2 containing T , and likewise for the short root groups. In all characteristics (and
even over Z with appropriate definitions) the long root groups generate an SL3 contain-
ing T with those long roots as its T -root groups, whereas precisely in characteristic 3
the short root groups are the root groups for a connected semisimple group of type A2

containing T , and this special subgroup in characteristic 3 is PGL3. In [CGP, §7.1] this
phenomenon is explained from a broader point of view.

6. DYNAMIC DESCRIPTION OF PARABOLIC SUBGROUPS

6.1. Main result. We want to prove the following characterization of parabolic sub-
groups. It is difficult to overestimate the importance of this result.

Theorem 6.1.1. Let G be a connected, reductive group (not necessarily split) over any
field k .

(1) For every k -homomorphism λ : Gm →G the k -subgroup PG (λ) is parabolic, and
every parabolic k -subgroup of G arises in this manner.

(2) If P is a parabolic k -subgroup of G and T ⊂ P is any maximal k -torus, then there
exists a k -homomorphism λ: Gm → T such that PG (λ) = P .

Remark 6.1.2. The generality is quite non-trivial. For instance, if P 6=G then λ is obvi-
ously nontrivial, so this implies that any maximal torus T ⊂ P must have a non-trivial
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one-parameter k -subgroup. Thus, a consequence of this Theorem is that any maximal
k -torus T in a proper parabolic k -subgroup of G cannot be k -anisotropic.

Since proper parabolic k -subgroups of G correspond bijectively to those of D (G ),
and the center of D (G ) is finite with the multiplication map Z ×D (G )→G (where Z is
the maximal central k -torus of G ) being an isogeny, it follows from this Theorem that G
has a proper parabolic k -subgroup if and only if D (G ) contains a nontrivial split k -torus
(i.e., D (G ) is k -isotropic, or equivalently G contains a non-central split k -torus).

Indeed, by finiteness of the center of D (G ) it follows that if there is a nontrivial split
k -torus S in D (G ) and λ ∈ X∗(S )− {0} then the parabolic k -subgroup PG (λ) must be
proper (as otherwise UG (λ) = Ru ,k (G ) = 1, forcing G = PG (λ) = ZG (λ), contradicting
that the nontrivial λ : Gm →D (G ) cannot be central in Z ·D (G ) =G ).

We have already seen in Corollary 1.11 of the handout “Basics of reductivity” that for
a maximal k -torus T ⊂G the Borel subgroups of Gk containing Tk are PG (λ) for regular
λ: Gm → Tk . This will be used in the proof of Theorem 6.1.1.

To begin the proof of this Theorem, we first prove PG (λ) is a parabolic k -subgroup
of G for any k -homomorphism λ : Gm → G . For this, we may assume that k = k . We
need to exhibit a Borel subgroup in PG (λ). Let T ⊂ PG (λ) be a maximal torus (so T is
also maximal in G ). We’ll produce a regular µ: Gm → T such that PG (µ) ⊂ PG (λ). Since
PG (µ) is a Borel subgroup of G , the parabolicity of PG (λ)would follows.

Visualizing the finite subset Φ ⊂ X(T )Q − {0}, it is clear what to do: choose µ to be a
small perturbation of λ. More precisely, we have

Φ(PG (λ), T ) = {a ∈Φ | 〈a ,λ〉 ≥ 0}.

We can decompose this into two subsets Φλ>0 and Φλ=0. Choose µ0 ∈ X∗(T )Q such that
for each of the finitely many a ∈ Φλ>0, we have 〈a ,µ0〉 > 0. (Any µ0 close enough to
λ works.) Then take µ = Nµ0 for a positive integer N sufficiently divisible so that µ ∈
X∗(T ), and µwill still have the same property. Let B = PG (µ), a Borel subgroup.

The crucial step is to show that B is contained in PG (λ). The set

Φ(B , T ) = {a ∈Φ | 〈a ,µ〉 ≥ 0}

is a subset of

Φ(PG (λ), T ) = {a ∈Φ | 〈a ,λ〉 ≥ 0}

because the choice of µ forces

〈a ,λ〉< 0 =⇒ 〈−a ,λ〉> 0 =⇒ 〈−a ,µ〉> 0 =⇒ 〈a ,µ〉< 0.

Hence, for the two smooth connected k -subgroups B , PG (λ)⊂G containing T we have

Lie(B )⊂Lie(PG (λ))

since each Lie algebra is the direct sum of Lie(T ) and the root lines for the respective
roots for T that occur in these Lie algebras. This does the job in characteristic 0, but we
need to do more work to give an argument applicable in all characteristics:

Lemma 6.1.3. For λ,µ ∈ X∗(T ), if Φ(PG (µ), T )⊂Φ(PG (λ), T ) then PG (µ)⊂ PG (λ).
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Proof. We use the functoriality of the dynamical construction. Let P = PG (λ) and Q =
PG (µ); these are smooth and connected. Thus, Q ∩P =Q ∩PG (λ) = PQ (λ) is also smooth
and connected (and contains T ). But the containment of Lie algebras Lie(PQ (λ)) ⊂
Lie(Q ) is an equality by comparing T -roots that occur in each (precisely by the hypoth-
esis Φ(P, T ) ⊂ Φ(Q , T )). A containment of smooth connected groups with the same Lie
algebras is always an equality. �

We have finished the proof over general k (not just algebraically closed) that PG (λ)
is always parabolic. To complete the proof of (1) we need to show that every parabolic
k -subgroup arises from the dynamic construction over k , and this is a consequence of
(2), so it suffices to prove (2).

Let us reduce the proof of (2) to the case k = k . Given P over k and a maximal k -torus
T ⊂ P , suppose λ′ ∈ X∗(Tk ) such that Pk = PGk

(λ′). We want to find a k -homomorphism
λ : Gm → T such that P = PG (λ).

We know thatλ′ ∈ X∗(Tks
), and the equality Pks

= PGks
(λ′)holds since it can be checked

over k . There exists a finite Galois extension k ′/k splitting T , so λ′ ∈ X∗(Tk ′ ) and

Pk ′ = PGk ′ (λ
′).

This λ′ may not be defined over k , so the idea to overcome this problem is to average
over a finite Galois group.

The k ′-homomorphism Gm → Tk ′ defined by

λ :=
∑

σ∈Gal(k ′/k )

σλ′

is visibly Gal(k ′/k )-invariant, so it descends (uniquely) to a k -homomorphism Gm → T
that we also denote as λ. We shall prove that PG (λ) = P .

It suffices to check equality after scalar extension to k ′: we claim that

PG (λ)k ′ = Pk ′ .

By functoriality of the dynamic construction with respect to base change, this is equiv-
alent to showing

PGk ′ (λ) = PGk ′ (λ
′).

By Lemma 6.1.3 (applied over k ′), this reduces to proving the equality

{a ∈Φ | 〈a ,λ〉 ≥ 0}= {a ∈Φ | 〈a ,λ′〉 ≥ 0}
for Φ :=Φ(Gk ′ , Tk ′ ). Hence, we want to show

〈a ,λ〉< 0 ⇐⇒ 〈a ,λ′〉< 0 (6.1.1)

for each a ∈Φ.
Now we use the fact that the k ′-subgroup Pk ′ ⊂Gk ′ arises from the k -subgroup P ⊂G ,

so the set of roots occurring in Lie(Pk ′ ) =Lie(P )k ′ ⊂Lie(G )k ′ =Lie(Gk ′ ) is stable under the
natural Galois action on X(Tk ′ ). Therefore, the condition imposed by the right side of
(6.1.1) is actually Galois-invariant. This is the key observation! So

〈a ,λ′〉< 0 ⇐⇒ 〈σ(a ),λ′〉< 0

⇐⇒ 〈a ,σ−1λ′〉< 0
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by the Galois-invariance of the pairing. Now we claim that

〈a ,λ′〉< 0 ⇐⇒ 〈a ,
∑

σ

σλ′〉< 0.

The direction =⇒ is clear. For the other direction, examine the contrapositive: if a
pairs non-negatively with someσλ′, then it pairs non-negatively with each term in the
sum (by our Galois-invariance observation) and hence with the sum of the Galois orbit
of λ′.

Now we show that for any maximal torus T ⊂ P , we can find a λ: Gm → T such that
P = PG (λ). Let Φ :=Φ(G , T )⊃Φ(P, T ) =:Ψ.

Lemma 6.1.4. If λ ∈ X∗(T ) satisfies Φλ≥0 := {a ∈Φ | 〈a ,λ〉 ≥ 0}=Ψ then P = PG (λ).

Proof. The proof again rests on the functoriality of the dynamical construction. Note
that P∩PG (λ) = PP (λ) is a smooth connected subgroup of P containing T and having the
same Lie algebra (as it suffices to compare T -root lines contained in each), so PP (λ) = P .
This implies that P ⊂ PG (λ). Again, this is an inclusion of smooth connected groups
containing T and having the same Lie algebra, so P = PG (λ). �

We now make a second reduction. Consider the central isogeny decomposition

Z ×DG →G .

Take the corresponding tori:
Z ×T → T

where T = (T ∩DG )0red. Since this is an isogeny, it induces a decomposition at the level
of rational cocharacter groups:

X∗(T )Q ' X∗(Z )Q⊕X∗(T )Q
such that Φ ⊥ X∗(Z )Q. Also recall that Φ(G , T ) = Φ(D (G ),T ). It suffices to find λ ∈
X∗(T )Q such that Φλ≥0 = Ψ, so we may assume that G = D(G ) is semisimple. In par-
ticular, the Z-span of Φ has finite index in X(T ), so Φ(G , T ) spans X(T )Q.

To complete the proof of Theorem 6.1.1, we need some basic theory of root systems.
We’ll digress to discuss this and then come back to the proof.

6.2. Root systems and coroots.

Definition 6.2.1. Let V be a Q-vector space of finite dimension. Let Φ ⊂ V − {0} be
a finite set that spans V (e.g. the roots Φ(G , T ) for a connected semisimple group G
admitting a split maximal torus T , with V = X(T )Q). Then (V ,Φ) is a root system if for all
a ∈Φ, there exists a∨ ∈V ∗ satisfying the following two properties:

(1) a∨(a ) = 2, and a∨(Φ)⊂ Z.
(2) Define ra ,a∨ : V → V by x 7→ x − a∨(x )a . This is a reflection across the hyper-

plane ker a∨, satisfying a 7→ −a . (Since there is no Euclidean structure imposed
on V , we need to specify the action on the quotient V /(ker a∨) =Q ·a is nega-
tion to speak of a “reflection” on V .) Then ra ,a∨ is required to preserve the roots;
i.e.,

ra ,a∨ (Φ) =Φ.
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Note in particular that since ra ,a∨ (a ) =−a , we have−Φ=Φ for any root system (V ,Φ).
We say Φ is reduced if Φ∩Qa = {±a } for each a ∈Φ.

Example 6.2.2. What are the 1-dimensional root systems? There is one that looks like

(with a∨ uniquely determined by the condition a∨(a ) = 2); this is denoted A1. Are there
any others (up to isomorphism)? Suppose we tried to add another root b 6= ±a , so Φ
must contain {−b ,−a , a , b }. We may and do assume (by relabeling if necessary) that
b = q a for some q ∈Q with q > 1. This is usually not contained in any root sytem:

the second condition in the definition is not a problem since reflections in dimension
1 are simply negation, but the first condition implies

〈a∨, a 〉= 2

〈a∨, b 〉 ∈ Z

〈b ∨, b 〉= 2

〈b ∨, a 〉 ∈ Z

Writing b = q a with q > 1, we have 2q ∈ Z, b ∨ = (1/q )a∨, and 2/q ∈ Z. Hence, q = n/2
for some integer n > 2 such that 2/q = 4/n is an integer, so n = 4; i.e., q = 2. In other
words, there is exactly one other 1-dimensional root system, obtained by taking b = 2a
(and it cannot be made any larger); this is called BC1 and it is non-reduced.
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FIGURE 6.2.1. Nonreduced root system of rank 2.

Example 6.2.3. The reduced 2-dimensional root systems are A1×A1, B2 =C2,A2, G2.

These are all reduced. There is a unique non-reduced root system including B2 = C2,
called BC2 (it is the union of a copy of B2 and a copy of C2 for which the short roots
of a copy of C2 are the long roots of a copy of B2), and the only other non-reduced 2-
dimensional root systems turn out to be A1×BC1 and BC1×BC1.

Remark 6.2.4. It is not immediate from the definition, but a 7→ a∨ is well-defined; i.e.
a∨ is uniquely determined by a . See [SGA3, XXI, 1.1.4] for a self-contained proof of this
fact. Therefore, we can write ra := ra ,a∨ . Since ra and a uniquely determined the linear
form a∨, it follows that Φ→ V ∗ defined by a 7→ a∨ is a bijection onto a finite subset of
V ∗−{0} denoted Φ∨. It turns out that (V ∗,Φ∨) is a root system, called the dual of (V ,Φ).
Elements of Φ∨ are called coroots.

In the handout “Root datum of a split reductive group” it is shown that the roots of a
split connected semisimple group form a root system. (A more refined result is proved
there involving the notion of root datum, which we will discuss this later.) Let’s explain
where the coroots come from in group-theoretic terms.

Let G be a connected semisimple group over a field k and suppose it contains a split
maximal k -torus T , so

V := X(T )Q ⊃Φ(G , T ) =:Φ.
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For a ∈Φ, we seek a∨ ∈V ∗ = X∗(T )Q whose pairing with all roots is in Z. We will find a∨

inside X∗(T ) (even when ZΦ is a proper sublattice of X(T )). To get started, a corresponds
to a k -homomorphism

a : T →Gm .

For the torus Ta := ker(a )0red of codimension-1 in T , the connected reductive k -group
ZG (Ta ) contain T as a split maximal k -torus and Ta is central. In fact, Ta is the maximal
central k -torus in ZG (Ta ) since the maximal k -torus T of dimension 1+dim Ta is non-
central in Ga , as its action on Lie(ZG (Ta )) = gTa supports root lines for ±a .

Hence, for Ga :=D (ZG (Ta )), multiplication Ta×Ga → ZG (Ta ) is a central isogeny with
Ga connected semisimple of rank 1 having

Ta := T ∩Ga

as a split maximal k -torus. (Recall the general link between maximal tori of a connected
reductive group and of its derived group; apply that to ZG (Ta ).) Hence, by the classi-
fication of rank one semisimple groups (from the previous course), Ga ' SL2 or PGL2

carrying Ta over to the diagonal k -torus.
We will find a k -homomorphism a∨ : Gm →Ta ⊂ T which does the job. Since a : T →

Gm is nontrivial and kills Ta , the restriction a |Ta
to the canonical isogeny-complement

torus Ta to Ta inside T is nontrivial. But Ta is 1-dimensional (and split), so the de-
sired Ta -valued cocharacter a∨ is uniquely determined (if it exists!) by the requirement
〈a , a∨〉 = 2. This uniqueness enables us to make some choices in the construction of
a∨ without any concern that the end result will depend on choices beyond (G , T , a ).

To build such an a∨, we treat separately the cases that Ga is SL2 or PGL2.

• In the SL2-case, fix an isomorphism Ga ' SL2 carrying Ta over to the diagonal
torus {( t 0

0 1/t )}. This isomorphism must carry the Ta -root group Ua ⊂Ga over to
one of the two root groups U ± in SL2 for the diagonal torus. We may conjugate
the chosen isomorphism Ga ' SL2 against the standard Weyl element w = ( 0 1

−1 0 )
if necessary so that Ua is carried over to U +. Hence, the root a |Ta

computing
the Ta -action on Lie(Ga ) = sl2 is the root ( t 0

0 1/t ) 7→ t 2 for U +. Then we can write
down the 1-parameter subgroup a∨ explicitly as

t 7→
�

t 0
0 t −1

�

,

so a∨ : Gm →Ta is an isomorphism in the SL2-case.
• In the PGL2-case we proceed similarly, the only difference being that the diag-

onal torus is described in terms of matrices ( t 0
0 1 ) for which the corresponding

conjugation on U + induces multiplication by t on the k -line Lie(U +). Conse-
quently, a∨ : Gm → Ta is a degree-2 isogeny corresponding to t 7→ ( t 2 0

0 1 ) since
we require 〈a , a∨〉= 2.

Since T = Ta ·Ta with Ta central in ZG (Ta ) and Aut(Ta ) = {±1}, we have naturally

W (Ga ,Ta )⊂W (G , T )⊂GL(X(T ))⊂GL(X(Ta )Q⊕X(Ta )Q)
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as a subgroup of GL(X(Ta ))×GL(X(Ta )) = GL(X(Ta ))× {±1} with trivial effect on X(Ta ).
That is, W (Ga ,Ta ) has order at most 2, as its elements induces the identity on the hy-
perplane X(Ta )Q = (ker a∨)Q and induce ±1 on the complementary line X(Ta )Q = Q · a
(!), so W (Ga ,Ta ) really has order exactly 2 since conjugation against the standard Weyl
element w in SL2 or PGL2 identified with Ga as above gives a nontrivial element.

This nontrivial element is a reflection that must be the canonical refection ra on
X(T )Q since both automorphisms of X(T )Q satisfy the same properties. In other words,
ra is also characterized uniquely as being the only nontrivial element in W (Ga ,Ta ).

Remark 6.2.5. As an element of NGa
(Ta )(k ) rather than merely its quotient W (Ga ,Ta )

we do not get a canonical element. Indeed, it is ambiguous up to translation by Ta (k ),
precisely the ambiguity in the choice of isomorphism from Ga onto SL2 or PGL2 carry-
ing Ta onto the diagonal torus and Ua onto U +. Note also that if char(k ) 6= 2 then the
standard Weyl element in SL2(k ) has order 4 rather than order 2.

6.3. Parabolic sets of roots. GivenΦ⊃Ψ =Φ(P, T )we want to findλ ∈ X∗(T )Q such that
Φλ≥0 =Ψ. We need to find an intrinsic characterization of subsets ofΦ of the formΦλ≥0,
mirroring the one for parabolics as subgroups containing a Borel.

Definition 6.3.1. For a root system Φ, a subset Ψ ⊂ Φ is called closed if for all a , b ∈ Ψ
such that a + b ∈Φ, we also have a + b ∈Ψ.

Example 6.3.2. Subsets of the form Φλ≥0 and Φλ>0 (for λ ∈V ∗), or more generally Φ∩A
for a subsemigroup A ⊂V , are closed.

This condition isn’t enough to characterize subsets of the form Φλ≥0, since (for in-
stance) the latter contain at least half of the roots. (Recall Φ ⊂ V −{0} is a finite subset
stable under negation.)

Definition 6.3.3. A subset Ψ of a root systemΦ is parabolic if

(1) Ψ is closed,
(2) Ψ ∪ (−Ψ) =Φ.

Example 6.3.4. For λ ∈ X∗(T ), Φλ≥0 is a parabolic subset.

Proposition 6.3.5. [CGP, Prop. 2.2.8] Any parabolic subset of a root system Φ is of the
form Φλ≥0 for some λ ∈V ∗.

The proof (given in [CGP]) is an application of the early developments about root
systems in [Bou, VI, §1.7]. Here we just give an intuitive explanation for how to find λ,
given a parabolic subset. First consider the case Ψ ∩ (−Ψ) = ;, so the parabolic set Ψ is a
closed subset consisting of exactly half of the roots. In this case we seekλ that is regular
(since Φλ≥0 will need to be disjoint from its negative).

We need to appeal to the theory of “bases” of root systems. A basis of Φ is a subset∆
with two properties:

• ∆ is a basis for V ,
• every element of Φ has its∆-coefficients either all in Z≥0 or all in Z≤0.
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FIGURE 6.3.1. A basis for the root system A2.

The general fact is that for any parabolic subset there exists a basis∆ of Φ such that
the parabolic subset contains (Z≥0∆) ∩ Ψ. (This is the counterpart of the characteri-
zation of parabolic subgroups of connected reductive groups over algebraically closed
fields as smooth closed subgroups contains a Borel subgroup.) For any basis∆ of Φwe
get the dual Q-basis∆∗ = {b ∗}b∈∆ of V ∗.

Warning 6.3.6. Do not confuse b ∗ with b ∨; they are not equal in general! Indeed, we
can have 〈a , b ∨〉 6= 0 for linearly independent a , b ∈ ∆, as already happens for B2 and
G2, whereas by design 〈a , b ∗〉= 0 for distinct a , b ∈∆.

Returning to a parabolic Ψ of exactly half the size of Φ, define λ =
∑

b∈∆ b ∗ for ∆
whose non-negative Z-linear combinations inΦ are contained inΨ, and hence coincide
with Ψ by counting reasons. This works precisely from the definition of∆ being a basis
contained in Ψ.

If instead Ψ∩ (−Ψ) is non-empty, consider Φ′ =Ψ∩ (−Ψ). It turns out that this is also a
root system in its own Q-span inside V . (The image of Φ in the quotient V /(Q ·Φ′)may
not be a root system.) The idea is to find a basis∆′ ⊂ Φ′ and extend it to a basis∆ of Φ
contained in Ψ. Then one takes λ=

∑

b∈∆−∆′ b
∗.

We finish the proof of Theorem 6.1.1 by proving:

Proposition 6.3.7. Let G be a connected semisimple group over k = k . If P ⊂ G is a
parabolic subgroup and T ⊂ P is a maximal torus then the subset Ψ :=Φ(P, T )⊂Φ(G , T )
is parabolic.

Since P contains a Borel subgroup B and the T -roots occurring in Lie(B ) cover Φ up
to signs, clearly Ψ ∪ (−Ψ) = Φ. Hence, by Proposition 6.3.5, it remains to check that Ψ is
closed. This will rest on a general criterion for closedness of a subset of a reduced root
system in terms of reflections, the proof of which involves calculations with (reduced)
rank-2 root systems.

Let G be a connected semisimple group over k = k , P ⊂G a parabolic group, and T a
maximal torus inside P . Note that X(T )Q =Q ·Φ since ZΦ has finite index inside X(T ) in
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the semisimple case. We need to show that the subset Φ(P, T ) ⊂ Φ := Φ(G , T ) is closed.
We know that P ⊃ B ⊃ T for a Borel subgroup B = PG (µ) for some regular cocharacter
µ ∈ X∗(T ). Therefore,

Φ(P, T )⊃Φ+ :=Φ(B , T ) =Φµ≥0 =Φµ>0.

We shall use the following sufficient criterion for a subset of roots in a reduced root
system (such as Φ(G , T )) to be closed:

Proposition 6.3.8. Let (V ,Φ) be a reduced root system. A subset Ψ ⊂ Φ containing Φµ>0

for a regular cocharacter µ is closed if for all {c ,−c } ⊂Ψ the action of the reflection rc on
Φ preserves Ψ.

We’ll prove this soon using case-checking for all rank-2 reduced root systems (A1×A1,
A2, B2 = C2, G2). But first let’s see how to use this criterion. For root systems coming
from an actual split reductive pair (G , T ), the reflections come from the standard Weyl
element in SL2 or PGL2 identified with Gc = 〈Uc ,U−c 〉=D (ZG (Tc ))⊂G (equipped with
the split maximal torus Tc := T ∩Gc ). So in that setting for Ψ = Φ(P, T ) it suffices to
show that such Weyl elements arise from P (k )when {c ,−c } ⊂Ψ. The key claim is:

Lemma 6.3.9. If c ∈Φ(P, T ) then Uc ⊂ P .

Granting this lemma, it follows that if {c ,−c } ⊂Φ(P, T ) then

P ⊃ 〈Uc ,U−c 〉=Gc :=D(ZG (Tc ))' SL2 or PGL2

where the final isomorphism carries the split maximal k -torus Tc := T ∩Gc over to the
diagonal. Then P contains the k -point nc corresponding to ( 0 1

−1 0 ) in SL2 or PGL2, and
nc -conjugation preserves Tc · Tc = T (as the identity on Tc and −1 on Tc ), inducing rc

on X(T ). Since conjugation on G by nc ∈ P (k ) trivially preserves P (and T ), it follows
that the induced effect rc of nc -conjugation on X(T ) preserves Φ(P, T ) as desired. Here
is the proof of Lemma 6.3.9.

Proof. We have P ⊃ B ⊃ T , so

ZP (Tc ) = P ∩ZG (Tc )⊃ B ∩ZG (Tc ).

Now, ZP (Tc ) is smooth and connected and B ∩ ZG (Tc ) is a Borel subgroup of ZG (Tc )
(recall that intersecting a Borel subgroup with the centralizer of a subtorus of the Borel
always yields a Borel subgroup of that torus centralizer), so P ∩ZG (Tc ) is parabolic in
ZG (Tc ).

We know that for any connected reductive group H , there is a natural bijection

{parabolics of H }⇐⇒{parabolics ofDH }

due to the central isogeny Z ×D (H )→ H for the maximal central torus Z ⊂ H that is
contained in every maximal torus and hence in every parabolic subgroup. Thus, the
fact that P ∩ZG (Tc ) is parabolic in ZG (Tc ) implies that P ∩Gc is parabolic in Gc . The
(split) maximal torus Tc ⊂Gc acts on Lie(Gc )with the only roots being c |Tc

and −c |Tc
.

Hence, we can pass to Gc (and Tc ) to reduce to the case of SL2 or PGL2 with diagonal
T . In this case the possibilities for parabolic subgroups P containing T are G , B+, and
B−, so the containment Uc ⊂ P follows by inspection. �
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Proof of Proposition 6.3.8. For reduced (V ,Φ) and regular µ ∈ V ∗ and Φµ>0 ⊂ Ψ ⊂ Φ, we
want to show that Ψ is closed if Ψ is rc -stable for all {c ,−c } ⊂Ψ.

Choose a , b ∈ Ψ such that a + b ∈ Φ. Note that a and b can’t be dependent because
Φ ∩Q · a = {±a } and 0, 2a 6∈ Φ by the reducedness of Φ. Thus, V ′ := Qa +Qb ⊂ V
is a plane, containing the finite spanning Φ′ := (Za + Zb )∩Φ ⊂ V ′ − {0}. This is itself
a reduced root system (using the coroots {c ∨|V ′}c∈Φ′) since the reflection of a root c ′

through a reflection rc ′′ is an integral combination of c ′ and c ′′. Using Ψ′ = Ψ ∩Φ′, the
problem reduces to that of (V ′,Φ′,Ψ′,µ|V ′ ), so now our problem considered reduced
root systems of rank 2.

But there is a classification of reduced root systems (V ,Φ) equipped with a choice of
Φ+ =Φµ>0 for regularµ ∈V ∗, rather explicit in the rank-2 case. We will discuss this more
fully later when we need to make more serious use of Dynkin diagrams and related
concepts, but for now we simply state the classification and then check each case. Of
course, we can also assume at least one of a or b is not contained in Φ+ or else there is
nothing to do (as Φ+ ⊂Ψ by hypothesis and obviously Φ+ is closed).

The possibilities, as mentioned already, are A1×A1, A2, B2 =C2, G2. The first case is
irrelevant since no two roots have sum equal to a root in that case. For the other cases,
to be systematic one separately considers the cases a ∈ Φ+, b 6∈ Φ+ and then a , b 6∈ Φ+
(exhausting all possibilities since the task is symmetric in a and b ). Taking into account
symmetries of a regular hexagon, the case of A2 involves just two possibilities for {a , b }
to check, each of which is easy, and to illustrate the more interesting case-checking we
now present the case of B2.

The above Figure is for one of the few cases to consider with a , b 6∈ Φ+ (where Φ+ con-
sists of the Z≥0-linear combinations of c and c ′ as shown). We want to show that a+b ∈
Ψ. Since b and −b are in Ψ, we have by assumption that rb preserves Ψ. But then
a + b = rb (c ′) ∈Ψ.
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Among the few cases with a ∈Φ+ and b 6∈Φ+, here is one:

In this case we have b ,−b ∈ Ψ so −a = rb (c ′ + 2c ) ∈ Ψ. Then ±a ∈ Ψ, so Ψ contains
ra (b ) = a + b .

For the root system G2, the subset of roots with a common length in G2 is a copy of
A2. We have already settled A2, so for the case-checking with G2 we may assume that if
a and b have the same length then each is short and a + b is long. �

The following consequence of Theorem 6.1.1 in the split case will later be generalized
to incorporate the non-split case.

Corollary 6.3.10. For a split reductive pair (G , T ), there is a natural inclusion-preserving
bijection

{parabolics ⊃ T }⇐⇒{parabolic subsets of Φ(G , T )}

Proof. The maps are

P 7→Φ(P, T )

PG (λ) = 〈T ,{Uc }c∈Ψ〉← [Ψ =Φλ≥0

The inclusion-preserving nature follows from the explicit descriptions. �

Remark 6.3.11. The preceding proof shows that parabolic k -subgroups P, P ′ ⊃ T we
have P ⊃ P ′ if and only if Lie(P )⊃ Lie(P ′). The conditions on both sides of this equiva-
lence do not refer to T , so one might wonder if it is true even without the assumption
P, P ′ ⊃ T or more generally without assuming G contains a split maximal k -torus at all.

Later we’ll show that for parabolic k -subgroups P, P ′ in a connected reductive group
G over any field k , P ∩P ′ is smooth and contains a maximal k -torus of G . (Note that to
prove this assertion it suffices to work over k .) Therefore, P ⊂ P ′ if and only if Lie(P )⊂
Lie(P ′) because it is enough to check over k , where a choice of common maximal torus
in P and P ′ becomes split.

As another application, we can settle a question raised in Remark 1.3.2:

Corollary 6.3.12. If P is a parabolic k -subgroup of a connected reductive k -group G
then the scheme-theoretic normalizer NG (P ) coincides with P .
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Proof. We can assume k = k . Since equality holds on geometric points (Theorem 1.3.1)
and P is smooth and connected, it suffices to check equality of tangent spaces. From
the functorial meaning of NG (P ), if X ∈ Lie(NG (P )) then AdG (g )(X )− X ∈ Lie(P ) for all
g ∈ G (k ). If T ⊂ P is a maximal torus and Lie(NG (P )) is strictly larger than Lie(P ) then
we can pick such X 6= 0 that is an eigenvector for T , say with weight a . Hence, for all
t ∈ T (k )we have (a (t )−1)X ∈Lie(P ), forcing a = 1. Thus, it suffices to show that all T -
weights on Lie(G )/Lie(P ) are nontrivial. But we can pick λ ∈ X∗(T ) such that P = PG (λ),
so UG (−λ)→G /P is an open neighborhood of the identity. In particular, all T -weights
a on Lie(G /P ) = g/p satisfy 〈a ,λ〉< 0, so a 6= 1. �

7. MAXIMAL SPLIT TORI AND MINIMAL PARABOLIC SUBGROUPS

7.1. Conjugacy results and first steps of proof. The following theorem (to be proved!)
underlies the structure theory of connected reductive groups over general fields.

Theorem 7.1.1. Let G be a connected reductive group over a field k .

(1) The maximal split k -tori are G (k )-conjugate.
(2) The minimal parabolic k -subgroups are G (k )-conjugate.

Note that (1) is only interesting if there is a non-central split k -torus, and (2) is only
interesting when there is a proper parabolic k -subgroup. But we have seen in Remark
6.1.2 via the dynamic description of parabolic k -subgroups there is a non-central split
k -torus if and only if there is a proper parabolic k -subgroup, so the interesting cases of
(1) and (2) either both occur or both do not occur.

Remark 7.1.2. Warnings:

• Do not confuse maximal split k -tori with split maximal k -tori.
• In general there may not be Borel k -subgroups, so the minimal parabolic k -

subgroups may not be solvable.

Exercise 7.1.3. Read the handout “Root datum for reductive groups”, especially Exam-
ples 2.1 and 2.2 for comparing root data of G and DG , as well as comparing root data
for G versus G /ZG (including the special case G =GLn ). See the October 25, 2011 Eilen-
berg lecture by B. Gross (at Columbia) on YouTube.

Before we prove Theorem 7.1.1 we record some consequences.

Corollary 7.1.4. If there exists a Borel k -subgroup B ⊂G , then every minimal parabolic
k -subgroup is a Borel, and all such are G (k )-conjugate.

Proof. By dimension reasons every parabolic k -subgroup contains a minimal one, and
certainly B is minimal (as it is even minimal over k ). Thus, by part (2) of Theorem
7.1.1, every parabolic k -subgroup of G contains a G (k )-conjugate of B , so the minimal
parabolic k -subgroups of G are precisely the G (k )-conjugates of B . In particular, such
k -subgroups are Borel k -subgroups. �

Corollary 7.1.5. If G is split, then every Borel k -subgroup contains a split maximal k -
torus.
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Proof. By hypothesis G contains a split maximal torus T . We know that we can con-
struct Borel k -subgroups containing T via the dynamic method: these are PG (λ) for a
regular cocharacter λ ∈ X∗(T ). Since Theorem 7.1.1 tells us that all Borel k -subgroups
are conjugate, it follows that every Borel k -subgroup contains a split maximal torus (in
fact a G (k )-conjugate of T ). �

Example 7.1.6. Later we’ll see that for a non-degenerate finite-dimensional quadratic
space (V , q ) and a non-degenerate finite-dimensional hermitian space (W , h ) (relative
to separable quadratic extensions k ′/k ), usually SO(q ) and SU(h ) are not quasi-split
(the minimal parabolic k -subgroups and maximal split k -tori will be related to maxi-
mal isotropic subspaces for the bilinear form Bq and sesquilinear form Bh respectively).

The handout “Compactness and anisotropicity” shows that for connected semisim-
ple G over a local field k (including k = R), G has no proper parabolic k -subgroup
(which is equivalent to G being k -anisotropic) if and only if G (k ) is compact. Of course
if G (k ) is compact then G is k -anisotropic (equivalently, G contains no proper para-
bolic k -subgroup), so the converse is the interesting part.

Example 7.1.7. If k is any field and D is a finite-dimensional central division algebra
over k then by Exercise 1 of Homework 8 of the previous course the connected semisim-
ple k -group SL1(D ) of units of reduced norm 1 in D (i.e., the k -group scheme whose
points valued in a k -algebra R are the units with reduced norm 1 in the Azumaya R -
algebra R ⊗k D ) is k -anisotropic.

It is a deep result of Bruhat and Tits (beyond the scope of this course) that over a
non-archimedean local field k , up to central isogeny these are the only nontrivial con-
nected semisimple k -groups that are k -anisotropic and absolutely simple (i.e., have no
nontrivial proper normal subgroups over k ).

7.2. Proof of part (1) of Theorem 7.1.1. We will prove (1) by induction on dimG . We
may assume that there are non-central split k -tori (as otherwise the only maximal split
k -torus is the maximal split k -subtorus of the unique maximal central k -torus Z ⊂G ),
so any maximal split k -torus S ⊂ G is non-central. In particular, there must exist
a proper parabolic k -subgroup P . We will apply dimension induction to a Levi k -
subgroup L ⊂ P (e.g., L = ZG (λ) for λ : Gm → G such that P = PG (λ)). To carry out
such dimension induction with L , we require:

Proposition 7.2.1. For a connected reductive k -group G and a parabolic k -subgroup P ,
the natural map G (k )→ (G /P )(k ) is surjective.

A natural first attempt at proving such surjectivity is to note that for ξ ∈ (G /P )(k ),
the fiber π−1(ξ) ⊂ G is a (right) torsor for P , so we can try to show that all P -torsors
are trivial (i.e. have a k -point) when P 6=G (the case P =G being trivial in Proposition
7.2.1). This works if P = B is a Borel k -subgroups containing a split maximal k -torus
T , since then B = T nRu ,k (B ) is filtered by Ga ’s and Gm ’s, so H1(k , B ) = 1.

However, the triviality of P -torsors more generally is false, as we’ll see in a moment.
The upshot is that we cannot expect to prove Proposition 7.2.1 by a purely cohomolog-
ical argument. More specifically, the fiber of π : G → G /P over any ξ ∈ (G /P )(k ) is a
P -torsor, but even if G is split it can happen (for many k ) that there exist non-trivial



58 LECTURES BY BRIAN CONRAD, NOTES BY TONY FENG

P -torsors over k . Hence, the absence of such torsors in the fibers of π over (G /P )(k ) is
remarkable. Here is an example:

Example 7.2.2. Let G = PGO(q ) = PGON for the standard split non-degenerate qua-
dratic form

q = x1 xN + x2 xN−1+ . . .

in N variables with N ≥ 4; this is SON for odd N and SON /µ2 for even N . The 1-
parameter subgroup λ(t ) = diag(t , 1, 1, . . . , 1, t −1)mod Gm gives rise to a proper para-
bolic k -subgroup P = PG (λ) = L nU with k -split U =UG (λ) and L = ZG (λ). We have
L =GO(q ′) for q ′ := x2 xN−1+. . . a split non-degenerate quadratic form in N−2 variables
(check separately for odd N and even N , using the good behavior of torus centralizers
under quotient maps in the latter case).

For any L-torsor E whose pushout along L → P is trivial, E is trivial since there is a
retraction homomorphism P � P /U = L . (Using the insensitivity of the k -split prop-
erty under ks /k -twisting of unipotent connected linear algebraic k -groups, one can
even show that the sets of isomorphism classes of L-torsors and P -torsors over k are
in natural bijection under such pushout.) Thus, to exhibit a nontrivial P -torsor over k
it suffices to construct a non-trivial torsor over k for L =GON−2.

Since GON−2 is the group scheme of conformal automorphisms of the standard split
quadratic space of rank N −2, the isomorphism class of an L-torsor over k is “the same”
as the conformal isometry class (i.e., homothety class) of a non-degenerate quadratic
space of rank N −2≥ 2 over k . Hence, the class of such a k -anisotropic quadratic space
(of which there are many examples over any global field k ) does the job.

Proof of Proposition 7.2.1. For finite k , all torsors for a smooth connected k -group are
trivial by Lang’s Theorem. Thus, the naive idea works in this case, so we may and do
assume k is infinite. Now the crucial fact is that G (k )⊂G is Zariski dense! This follows
from:

Proposition 7.2.3. For any field K , a connected linear algebraic K -group H is unira-
tional (over K ) if K is perfect or H is reductive.

Recall that by definition a geometrically integral scheme X of finite type over a field
K is unirational (over K ) when there is dominant K -morphism Ω→ X with Ω dense
open in an affine space over K .

Proposition 7.2.3 is proved in a handout, where it is shown that the hypotheses are
optimal by giving a non-unirational unipotent H over any imperfect field.

Let’s give some brief comments on the proof of unirationality in the reductive case
over any field (to which the general case over perfect fields is reduced, using the split
property of unipotent connected linear algebraic groups over perfect fields). The idea
for infinite K is to show that H is generated by its maximal K -tori (reducing unirational-
ity to the case of tori). More precisely, for infinite K one uses Zariski-density consider-
ations in Lie algebras (reminiscent of the proof of Grothendieck’s theorem on maximal
tori) to build K -tori T1, . . . , Tn ⊂H such that the multiplication map of K -schemes

T1× . . .×Tn →H
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is dominant. A natural method is to try to find tori whose Lie algebras span the Lie
algebra of H , though that does not actually work in general (e.g., in characteristic 2 all
maximal tori in SL2 have the same 1-dimensional Lie algebra, namely the Lie algebra
of the central µ2), forcing one to instead use dimension induction via centralizers of
semisimple elements in the Lie algebra.

The unirationality of tori can be handled directly by arguing with Galois lattices: any
Galois lattice occurs inside a direct product of finitely many induced Galois lattices, so
any torus over a field K is a quotient of a direct product of finitely many Weil-restricted
tori of the form RK ′/K (Gm ) for separable finite extensions K ′/K . But as a K -scheme

such a Weil restriction is dense open inside RK ′/K (A1
K ) =A[K

′:K ]
K .

Returning to the proof of Proposition 7.2.1, we’ll show that G → G /P has Zariski-
local sections. (This obviously implies that the induced map of rational points is sur-
jective.) So we want to show that there is an open cover {Ωα}of G /P such thatπ−1(Ωα)→
Ωα has sections (over k ) for all α. How can we do this?

One such dense open subset of G /P is provided by the dynamic method: we know
that P = PG (λ) for some k -homomorphism λ : Gm →G , so

UG (−λ)×P →G

is an open immersion. Then by descent theory UG (−λ)→G /P is an open immersion,
so the image Ω⊂G /P has a section

UG (−λ)

'
��

� � // G

��
Ω �
� // P /G

Clearly we have sections over g ·Ω for all g ∈G (k ) (by applying g -translation to the
section overΩ). Hence, it is enough to show that {g ·Ω}g∈G (k ) covers G /P . But G (k )⊂G
being Zariski dense implies that G (k )⊂Gk is Zariski-dense (by expressing the injectivity
in terms of injectivity of the total evaluation map

k [G ]→
∏

x∈G (k )

k

and then tensoring with k , using that V ⊗k

∏

i Wi →
∏

i (V ⊗k Wi ) is injective for any
vector space V and collection of vector spaces {Wi }). It then follows that {gΩk } is an
open cover of (G /P )k because (by the Nullstellensatz) such an “open covering” property

for k -schemes of finite type may be checked on k -points: if x ∈ (G /P )(k ) and g0 ∈G (k )
represents x then the non-empty open set Ωk g −1

0 has non-empty open preimage in
Gk that must contain some point g in the dense subset G (k ), so g .x ∈ Ωk and hence
x ∈ g −1Ωk . �

The following important consequence of Proposition 7.2.1 is the analogue over gen-
eral fields of the fact that a Borel subgroup over an algebraically closed field contains a
conjugate of any connected solvable closed subgroup:
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Corollary 7.2.4. Let G be a connected reductive group over a field k , and P a parabolic
k -subgroup. Let H ⊂G be a connected linear algebraic k -subgroup that is split-solvable
(i.e. has a composition over k with successive quotients Ga or Gm ). There exists g ∈G (k )
such that g H g −1 ⊂ P .

This result will be used with H a torus in our proof of Theorem 7.1.1(1), and with H
unipotent in our proof of Theorem 7.1.1(2).

Proof. The connected split-solvable H acts by left translation on the proper k -scheme
X = G /P for which X (k ) 6= ;. Then the Borel fixed point theorem, which applies for
connected split-solvable groups acting on proper schemes with a rational point over a
field (as shown in the previous course), says that there is a rational fixed point x ∈ X (k )
fixed by H . But X (k ) = G (k )/P (k ) by Proposition 7.2.1, and if g ∈ G (k ) represents x
then g −1H g ⊂ P . �

We have carried out the preliminaries needed to finally give the proof of part (1) of
Theorem 7.1.1! Let S ⊂G be a maximal split k -torus. We all such S to be G (k )-conjugate
to each other. If one such S is central then we are done (as for any split k -torus S ′ the
k -group generated by S and S ′ is a quotient of S × S ′ by centrality of S , so it is a split
k -torus containing S and thus equal to S by maximality, forcing S ′ ⊂ S ).

Now we can assume all such S are non-central. In particular, there exists a proper
parabolic k -subgroup P = PG (λ) = L nU for L = ZG (λ) a lower-dimensional connected
reductive group, and U = UG (λ) a connected unipotent k -subgroup that is split (by
Proposition 5.2.12 applied with the action of the torus Gm through λ and the subsemi-
group A ⊂ X(Gm ) = Z consisting of positive integers). By Corollary 7.2.4, every S admits
a G (k )-conjugate contained in P , so we may limit ourselves to only study maximal k -
split tori of G contained in P .

The composition

S ,→ P � P /U ' L

realizes S as a split k -torus of P /U , with dim(P /U )< dimG . By dimension induction,
the image of S in P /U admits a (P /U )(k )-conjugate contained inside a fixed choice
of maximal split k -torus S0 ⊂ P /U . But P (k )→ (P /U )(k ) is surjective because the k -
subgroup L ⊂ P maps isomorphically onto P /U . Identifying S0 with a k -subtorus of L
in this manner, it is enough to study maximal split k -tori of G lying in H0 = S0 nU for
the split torus S0 and the split connected unipotent U normalized by S0.

Our general conjugacy claim for maximal split k -tori in arbitrary connected reduc-
tive k -groups has been reduced to the same for k -groups of the form H0 = S0nU0 where
S0 is a split k -torus acting on a split connected unipotent linear algebraic k -group U0.
For this we shall use induction on dimU0 to eventually reduce to the case of a linear
representation of S0 on a vector space, which we will be able to treat by bare hands.

Remark 7.2.5. Every k -torus T ⊂H0 is split since the composition T ,→H0/U0 = S0 has
trivial kernel. Hence, we aim to prove H0(k )-conjugacy of all maximal k -tori in H0.

Warning 7.2.6. If char(k ) = p > 0 and the split connected unipotent U0 is commutative
and p -torsion then U0 'Gn

a (see Exercise U.1 in the handout on “Structure of solvable
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groups”) but Aut(Gn
a ) is much bigger than GLn for n > 1. The standard example of a

non-linear automorphism is

Ga ×Ga 'Ga ×Ga

(x , y ) 7→ (x + y p , y )

Thus, the Ga -module structure on such U0 is highly non-unique in general, so finding
one that is S0-equivariant is not obvious.

The situation is better in characteristic 0: the endomorphism functor of Ga on the
category of Q-algebras is represented by Ga (as the only additive polynomials over a Q-
algebra are the degree-1 monomials), so the automorphism functor of Gn

a on the cate-
gory of Q-algebras is represented by GLn . Hence, any action on Gn

a by a group scheme
in characteristic 0 is necessarily linear.

We’ll argue by induction on dimU0 via S0-equivariant composition series of U0 over
k in split connected linear algebraic k -subgroups of U0. The point is to use such a
composition series to simplify the situation, eventually reaching the case that U0 is a
linear representation of S0. As a first step, we record some good properties of the “split”
condition for connected unipotent linear algebraic groups over a general field. (Recall
that over imperfect fields a split connected unipotent linear algebraic group can have
non-split smooth connected subgroups, such as Rosenlicht’s example of a non-split
form of Ga as a subgroup of G2

a , in contrast with the analogue for tori.)
We need three facts about splitness in the connected unipotent case.

(1) It is inherited by quotients (not by k -subgroups in general).
(2) It always holds for k perfect (e.g. characteristic 0 or finite fields).
(3) It is inherited by the derived group.

For (1) and (2) see §20 of the notes from the first course. Assertion (3) is more subtle,
so we sketch the idea. Recall that the derived group is generated by a bounded number
of commutators; i.e., for the commutator map of k -schemes c : U ×U →D(U ), there
exists some integer n > 1 such that the multiplication of n commutators

(U ×U )n →D(U )

is dominant. Thus, (3) follows from a geometric characterization of splitness for con-
nected unipotent linear algebraic k -groupsU : it is equivalent to the existence of a dom-
inant k -morphism

An
k −Z →U

for a generically k -smooth closed proper subscheme Z ⊂ An
k . This characterization

is proved in Corollary 3.9 in the handout on solvable groups. (There is also a coun-
terexample in Remark 3.6 of that handout, giving a 1-dimensional U in characteristic
2 demonstrating the necessity of the generic smoothness hypothesis on Z .) The easy
direction is that if U is split, then it is even an affine space over k . This is proved by suc-
cessive application of the fact that any Ga -torsor (for the étale topology) over an affine
space over a field is itself an affine space, due to the vanishing of the étale cohomol-
ogy group H1(An , Ga ) (via the comparison with Zariski cohomology for quasi-coherent
coefficients, for example).
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Using (3), we have an S0-equivariant composition series {D j (U0)} with each D j (U0)
actually k -split. Rather generally, whenever we have an S0-equivariant exact sequence

1→U ′
0 →U0→U ′′

0 → 1

where U ′
0 ,U ′′

0 are split connected unipotent linear algebraic k -groups, then this in-
duces an exact sequence on k -points (because H1(k ,U ′

0 ) = 1), so the associated exact
sequence of k -groups

1→H ′
0→H0→H ′′

0 → 1

(built via semi-direct products against S0) is also exact on k -points. In this way, we
reduce the problem of showing that all maximal (split) tori are k -rationally conjugate
to each other for H0 to the same for H ′

0 and H ′′
0 . By applying this with the successive

quotients of the derived series {D j (U0)}we thereby reduce to the case where U0 is com-
mutative, as we now may and do assume.

In characteristic p > 0, we can further reduce to the case when the commutative U0 is
p -torsion by using the successive quotients of (split!) images p j (U0) of multiplication
by powers of p . (One might try to instead use the successive kernels U0[p j ], but this
runs into numerous problems: such kernels might not be smooth or connected, if non-
smooth their underlying reduced schemes might not be subgroup schemes when k is
not perfect, and even if smooth and connected perhaps they may not be split!) In this
way, we reduce to the case when the split connected unipotent commutative U0 is also
p -torsion when char(k ) = p > 0. Hence, in all characteristics U0 is a vector group.

We now must confront the problem noted earlier that if char(k )> 0 it isn’t at all clear
that the vector group U0 admits a Ga -module structure that is S0-equivariant (i.e., can
we obtain U0 from a linear representation of S0 on a vector space?). Incredibly, by study-
ing the S0-action on the huge k -vector subspace Homk -gp(U0, Gm )⊂ k [U0], Tits was able
to realize U0 inside a linear representation of S0 and then refine the description to es-
tablish:

Theorem 7.2.7 (Miracle Theorem 4.3 of handout on structure of solvable groups). There
exists an S0-equivariant decomposition U0 =U ′

0 ×V ′ where

• S0 acts trivially on U ′
0 ,

• V ′ is a linear representation of S0 with no occurrence of the trivial weight.

Since H0 := S0nU0 =U ′
0 × (S0nV ′), and any torus contained in H0 obviously projects

trivially to the unipotent direct factor U ′
0 , every such torus is contained inside S0 nV ′.

Thus, by replacing U0 with V ′ we may assume that U0 is a linear representation of S0

with no trivial weight. Using a filtration of such a representation space built from spans
of eigenlines for S0, we further reduce to the case when there is a non-trivial character
χ : S0→Gm such that U0 =Ga (χ) is Ga on which S0 acts through scaling against χ .

Let S ′0 = (ker)0red ⊂ S0, the codimension-1 subtorus killed by χ . Every subtorus of a
split k -torus always arises as a direct factor because every Zr -quotient of Zn always
splits off as a direct summand. Hence, S0 = S ′0 ×Gm with χ arising from a nontrivial
character on the second factor. This gives

H0 = S ′0× (Gm nGa (χ))
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where χ(t ) = t n for some n 6= 0. Clearly every maximal torus inside H0 contains the
central k -torus S ′0, so we can reduce to the case H0 =Gm nGa with action t .x = t n x for
some n 6= 0. Now we’re facing a very tractable-looking task!

For a maximal (split) k -torus T ⊂H0 (necessarily 1-dimensional), the composition

σ : T �H0/Ga =Gm

is an isomorphism since the kernel is the (scheme-theoretic) intersection of T with a
unipotent group. Usingσ−1 to identify T with Gm , the inclusion of T into H0 becomes
an inclusion having the special form

j : Gm
(t , f (t ))
−−−→Gm nGa

for some Laurent polynomial f (t ) ∈ k [t , 1/t ]. What is the condition on f for j to be a
homomorphism? It turns out to be precisely that

f (t t ′) = f (t ′) +
f (t )
(t ′)n

.

Exercise 7.2.8. Inspect monomial terms in f to show that it is necessary and sufficient
that f (t ) = c (t −n − 1) for some c ∈ k . Then it is easy to check that j (Gm ) is the (1, c )-
conjugate of S0 =Gm ×{0}.

7.3. Proof of part (2) of Theorem 7.1.1. We’ll shortly begin the proof of the second
part of Theorem 7.1.1: for a connected reductive k -group G , all minimal parabolic
k -subgroups P ⊂ G are G (k )-conjugate to each other. The proof is again a game of
conjugating the object of interest into smaller groups and then applying dimension in-
duction, and we will use the settled G (k )-conjugacy of maximal split k -tori as part of
the argument.

First we record an interesting consequence of this second conjugacy result:

Corollary 7.3.1. For any extension field K /k and parabolic k -subgroups P,Q ⊂G , if PK

and QK are G (K )-conjugate then P and Q are G (k )-conjugate.

Proof. We know that the minimal parabolics are rationally conjugate. Therefore, by
using Theorem 7.1.1 to replace Q by some G (k )-conjugate we can assume that P and
Q both contain a common (minimal) parabolic k -subgroup. Of course the property
of containing a common parabolic (with reference to minimality!) is preserved after
ground field extension (minimality may be destroyed in this way).

Under such a property, we claim that G (K )-conjugacy implies PK = QK (and thus
P = Q ). For the purpose of proving this refined claim, we may assume k = K = K .
Correspondingly, P and Q contain a common Borel subgroup B (by choosing a Borel
subgroup of a common parabolic subgroup).

We have by assumption Q = g P g −1 ⊃ B for some g ∈G (k ), and also Q ⊃ g B g −1 since
P contains B . By conjugacy of Borel subgroups of Q over the algebraically closed field
k , there exists some q ∈Q (k ) such that q (g B g −1)q−1 = B . Therefore, q g ∈ NG (B ) = B
(!). Hence, q g ∈ B ⊂Q , so g ∈Q and thus P = g −1Q g =Q as claimed. �

We now move on to the proof of G (k )-conjugacy of any two minimal parabolic k -
subgroups P,Q ⊂G . By the dynamic method, there is a k -homomorphism λ : Gm →G
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such that

P = PG (λ) = ZG (λ)nUG (λ),

and we know that UG (λ) = Ru ,k (P ) is k -split. Choose a maximal split k -torus S ⊂ G .
Since P is parabolic, we can find a G (k )-conjugate of P containing S . Therefore, with-
out loss of generality we can assume that P ⊃ S , so

P ⊃ S nRu ,k (P ).

Since SnRu ,k (P ) is connected and split-solvable, by Lemma 7.2.4 we can replace Q with
a G (k )-conjugate so that Q ⊃ S nRu ,k (P ).

Proposition 7.3.2. Let G be a connected reductive group over a field k , and let S be a
maximal split k -torus of G contained in a parabolic k -subgroup P . Then

(1) ZG (S )⊂ P (so ZP (S ) = ZG (S )),
(2) P is minimal if and only if P = ZG (S ) ·Ru ,k (P ).

Before giving the proof of the proposition, let’s see why this finishes the proof of
part (2) of Theorem 7.1.1. Applying Proposition 7.3.2 to P and Q that each contain
S nRu ,k (P ), with P minimal, we get

P = ZG (S ) ·Ru ,k (P )⊂Q .

But since Q is minimal, we must have P =Q .

Proof of Proposition 7.3.2. Since S ⊂ P , we can find a maximal k -torus T ⊂ P contain-
ing S . By Theorem 6.1.1, we can find λ: Gm → T such that P = PG (λ). Since S is a max-
imal split torus of G , it is a fortiori the maximal split torus of T . Therefore, λ(Gm ) ⊂ S
inside T . Then anything centralizing S certainly centralizes λ, so

ZG (S )⊂ ZG (λ)⊂ PG (λ) = P.

This proves (1).
Now onto (2). Write U =Ru ,k (P ) and consider the quotient map

P � P /U =: P

onto a connected reductive k -group. Clearly P = ZG (S ) ·U if and only if ZG (S )� P . But
recall that torus centralizers always behave well under quotient maps: the image of the
torus centralizer is the centralizer of the image torus. Applying that to the surjection
P � P , the image of ZG (S ) = ZP (S ) in P is ZP (S ) for the image torus S under S � S ⊂ P .
But S � S is an isomorphism since S ∩U = 1 (as S is a torus and U is unipotent), so for
dimension reasons S is maximal as a split torus of P (as P ' ZG (λ)⊂G ).

The upshot is that P = ZG (S ) ·U if and only if the maximal split k -torus S in P is
central. This is equivalent to saying that all split tori of the connected reductive P are
central, which is equivalent to the connected reductive P having no proper parabolic
k -subgroups. Therefore, it suffices to show that P has no proper parabolic k -subgroups
of G if and only if P has no proper parabolic k -subgroups of itself.

We claim that a linear algebraic k -subgroup Q ⊂ P is parabolic in G if and only if Q
is parabolic in P . This is because we can always check the property of being parabolic
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over k , where it is equivalent to containing a Borel, and by dimension considerations
the Borel subgroups of Pk are the same as the Borel subgroups of Gk contained in Pk .

Also, every parabolic k -subgroup of P contains U := Ru ,k (P ) because Uk = Ru ,k (Pk )
(the dynamic construction commutes with field extension) and the unipotent radical
of a linear algebraic group over k is contained in every Borel (being connected and
solvable). Hence, we have established a bijection

{parabolic k -subgroups of P }↔{parabolic k -subgroups of P /U }

that completes the proof. �

7.4. Consequences.

Proposition 7.4.1. For P a parabolic k -subgroup of a connected reductive k -group G ,
all maximal split k -tori of P are P (k )-conjugate.

Proof. Write P = L nU as usual, and consider the quotient map

P � P /U
∼←− L .

We saw above that any maximal split k -torus S ⊂ P maps isomorphically onto a max-
imal split k -torus S ⊂ P /U . By the settled reductive case, all such S ’s are (P /U )(k )-
conjugate. Also, P (k ) � (P /U )(k ) because P = L nU . Therefore, we can reduce to
considering those S for which S is equal to a fixed S 0 ⊂ P /U for a fixed maximal split k -
torus S0 ⊂ P . Hence, S ⊂ S0nU . But rational conjugacy is already known for semidirect
products of a split torus against a split connected unipotent linear algebraic k -group,
as we saw in the proof of Theorem 7.1.1. �

We want to refine some of the conclusions above. For instance, we showed that
P = ZG (S ) · Ru ,k (P ) for a minimal parabolic k -subgroup P of a connected reductive
k -group G , but we want to upgrade this to a semidirect product (e.g., that is useful for
calculations with rational points).

Example 7.4.2. We have GLn = SLn ·Gm with Gm embedded diagonally, but this is rarely
an equality at the level of rational points: the subgroup SLn (k )Gm (k )⊂GLn (k ) consists
of the elements whose determinant is an nth power inside k×.

Proposition 7.4.3. Let G be a connected reductive k -group, S ⊂ G a maximal split k -
torus, and P ⊂ G a minimal parabolic k -subgroup such that S ⊂ P . Let U = Ru ,k (P )
(which is k -split).

Then P = ZG (S )nU ; i.e., ZG (S )∩U = 1 as k -group schemes.

Proof. Since U is normal in P and S ⊂ P , certainly S normalizes U . Thus, ZG (S )∩U
coincides with the S-centralizer U S in U under the conjugation action of S on U . For
general reasons U S is smooth and connected because we can express it in terms of a
torus centralizer:

ZSnU (S ) = S ×U S

and for any torus acting on a connected linear algebraic group we know that the cen-
tralizer is always smooth and connected.
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But U S is normal in ZG (S ) because U is normal in P and moreover ZG (S )⊂ P . Thus,
U S is a connected normal unipotent linear algebraic k -subgroup of ZG (S ). Since ZG (S )
is connected reductive, this forces U S = 1. �

Example 7.4.4. We claim that there exist connected semisimple groups G with a non-
trivial unipotent normal (infinitesimal) subgroup scheme. To make sense of this as-
sertion, recall that by [SGA3, XVII, Def. 1.1], an affine k -group scheme of finite type is
called unipotent if over k it admits a composition series whose successive quotients
are subgroup schemes of Ga . By [SGA3, XVII, Theorem 3.5(i)⇔(v)], this is equivalent
to being a k -subgroup scheme of the upper-triangular unipotent subgroup of GLn for
some n > 0.

Assume char(k ) = 2 and consider the non-degenerate quadratic space (V , q ) over k
with V = k 2n+1 and q = x 2

0 + x1 x2 + . . .+ x2n−1 x2n . The associated symmetric bilinear
form Bq on V has defect space V ⊥ equal to the line k e0 since char(k ) = 2, with induced

non-degenerate bilinear form B q on V /V ⊥ ' k 2n that is symplectic (as char(k ) = 2).
Consider the natural map

SO(q ) = SO2n+1→ Sp2n = Sp(V /V ⊥, B q )

induced by passage to the quotient by V ⊥ (preserved by the smooth SO(q ) via consid-
eration of ks -points). The kernel group scheme is









1
α2 1
... 0

...
α2 0 . . . 1









'α2n
2

This is commutative, unipotent, and non-trivial (and non-central; e.g., it does not lie
inside any maximal torus).

Corollary 7.4.5. In the setting of Proposition 7.4.3, we have NG (S )∩P = ZG (S ). Moreover,
for any λ ∈ X∗(S ) such that P = PG (λ)we have ZG (S ) = ZG (λ).

Remark 7.4.6. The existence ofλ as above is guaranteed by Theorem 6.1.1 (applied with
any maximal k -torus T ⊂ P containing S , since any k -rational cocharacter of T must
be valued in S by maximality of S as a k -split subtorus of T ). The equality NG (S )∩P =
ZG (S ) is Step 0 towards the general Bruhat decomposition asserting the bijectivity of the
natural map

NG (S )(k )/ZG (S )(k )' P (k )\G (k )/P (k )
(namely, the Corollary asserts that only the identity coset on the left side goes over to
the identity double-coset on the right side). The finite group NG (S )(k )/ZG (S )(k ) is called
the relative Weyl group, and later we will relate it to the Weyl group of a “relative root
system” associated to the S-action on Lie(G ).

Proof. We know that P = ZG (S )nU , so NG (S )∩P = ZG (S )n(NG (S )∩U ). Hence, we want
to prove

NG (S )∩U = 1.

What can we say about this intersection?
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Note that NG (S ) ∩U ,→ NG (S )/ZG (S ) since we know that ZG (S ) ∩U = U S = 1, and
the target is finite étale because it embeds as a finite type k -subgroup of the étale auto-
morphism scheme AutS/k (as discussed in the first course). That forces the intersection
NG (S )∩U to be finite étale. But it is also stable under S (it is straightforward to check
that conjugation by S stabilizes NG (S )), and S is connected.

A smooth connected group can only act trivially on a finite étale group (by contrast,
Gm -scaling on Ga restricts to a nontrivial action on the finite group scheme αp when
p = char(k )> 0), so NG (S )∩U is centralized by S . Thus, NG (S )∩U = ZG (S )∩U = 1.

Finally, we pick λ ∈ X∗(S ) such that P = PG (λ), so Ru ,k (P ) =UG (λ). Clearly ZG (S ) ⊂
ZG (λ), yet P = ZG (S )nRu ,k (P )by minimality of P (see Proposition 7.4.3), so the dynamic
equality PG (λ) = ZG (λ)nUG (λ) forces ZG (S ) = ZG (λ). �

8. STRUCTURE THEORY OF REDUCTIVE GROUPS I

8.1. Main goals. We explain the goals for the structure theory of connected semisimple
groups G over a field k .

I. (RELATIVE ROOT SYSTEMS) Let S be a maximal split k -torus (we now know that this
is unique up to G (k )-conjugacy.) We define a set

kΦ :=Φ(G ,S ) = {non-trivial S-weights on g} ⊂ X(S )−{0}.

This is a root system spanning X(S )Q (that breaks down for reductive G if there are non-
trivial central split tori, but the semisimplicity of G rules out that possibility). However,

• the root system kΦ can be non-reduced (when S is not a maximal k -torus)
• for a ∈ kΦ, the weight space ga ⊂ g can be huge,
• the k -anisotropic group M := ZG (S )/S is a “black hole” in the sense that one

can’t say much about its structure. (We callD(M /ZM ) the anisotropic kernel.)

Note that kΦ = ; ⇐⇒ G = ZG (S ) ⇐⇒ S = 1 (because ZG is finite). The handout
“Compactness and anisotropicity” proves:

Theorem 8.1.1. For k a local field (allowing R), a connected reductive k -group G is k -
anisotropic if and only if G (k ) is compact.

Remark 8.1.2. A deeper fact is that for non-archimedean k and “absolutely simple”
G (i.e., G is connected semisimple and nontrivial with Gk having no non-trivial con-
nected proper normal subgroup), G is k -anisotropic exactly for central quotients of al-
gebraic k -groups of units with reduced norm 1 in central division algebras over k . The
case k =R is exactly the classical and highly-developed story of connected compact Lie
groups.

An important global counterpart to this beyond the scope of the present course is:

Theorem 8.1.3. For k a global field, G is k -anisotropic if and only if G (AK )/G (k ) is com-
pact.

Remark 8.1.4. Connected reductive groups over finite fields k always have a Borel k -
subgroup, so they have non-central split k -tori.
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Example 8.1.5. (Example of large root spaces, repeated from Example 5.2.13) For k ′/k a
finite separable extension and G ′ a split connected semisimple k ’-group (e.g. SLn ), and
T ′ ⊂G ′ a split maximal k ′-torus, consider G := Rk ′/k (G ′). The k -group G is connected
semisimple since

Gks
'

∏

σ : k ′,→ks /k

G ′⊗k ′,σ ks

is connected semisimple of dimension [k ′ : k ]dim(G ′), and likewise Rk ′/k (T ′) of dimen-
sion [k ′ : k ]dim(T ′) is a k -torus that is maximal in G . The maximal split subtorus S has
dimension dim(T ′) (since the canonical Gm ⊂ Rk ′/k (Gm ) is an isogeny complement to
the norm-1 subtorus of Rk ′/k (Gm ) that is k -anisotropic); for example, if T ′ 'Gn−1

m is the
diagonal of SLn over k ′ then S (k ) is the “k -diagonal” in SLn (k ′).

Later on we will analyze this construction in more detail and show that the k -torus
S is maximal split in G and that the restriction map X(T ′) → X(S ) (which has image
[k ′ : k ]X(S ), as we can see by computing with the k ′-split T ′ replaced by Gm ) induces
an isomorphism X(T ′)Q = X(S )Q. Moreover, we will see that g is naturally identified
with the Lie algebra over k (not just vector space over k ) underlying g′, under which
the k -subspaces corresponding to the T ′-root lines over k ′ are the S-root spaces, so

kΦ is identified with Φ(G ′, T ′) via restriction X(T ′)Q ' X(S )Q and all S-root spaces have
dimension [k ′ : k ].

Since the preceding example is not absolutely simple (i.e., over k it has nontrivial
connected proper normal subgroups) when k ′ 6= k , the higher dimension of its root
spaces may not be so interesting. In the next example, which is absolutely simple, there
are nonetheless 2-dimensional root spaces.

Example 8.1.6. (Example of non-reduced root systems) Fix k ′/k a quadratic separa-
ble extension and {1,σ} = Gal(k ′/k ). For n ≥ 2 and 0 ≤ q ≤ n/2, consider the non-
degenerate hermitian form

h : (k ′)n × (k ′)n → k ′

(i.e., h (~x , ~y ) is linear in ~x andσ-semilinear in ~y , and h (~y , ~x ) =σh (~x , ~y )) given by

h (~x , ~y ) = ~x T





1q

ε1q

diag(ci )



σ(~y )

where σ(ci ) = ci (ensuring the hermitian property) and
∑n−2q

i=1 ci xiσ(xi ) has no non-
trivial zeros (“anisotropic”).

Consider the special unitary group G = SU(h ); this is a k -subgroup of Rk ′/k (SLn ) and
is a k ′/k -form of SLn (see Exercise 3 in HW 7 of the first course). We will later show that
this has q -dimensional maximal split k -torus

S =





t
t −1

1
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with diagonal t ∈Gq
m and that

kΦ=

¨

Cq , n = 2q

BCq , n > 2q

where BCq is the unique non-reduced irreducible root system of rank q .

II. (PARAMETRIZATION OF PARABOLIC k -SUBGROUPS) The G (k )-conjugacy classes of
parabolic k -subgroups are labelled by subsets I ⊂∆, where∆ is a basis of kΦ. One can
even write down an explicit cocharacter λI such that PI = PG (λI ), and PI ⊂ PJ ⇐⇒ I ⊂
J . In particular, P; is a minimal parabolic k -subgroup of G (and it contains S ).

Moreover, we have a bijection

{min. parabolic k -subgroups ⊃ S}↔{pos. systems of roots Φ+ ⊂k Φ}
given by P 7→Φ(P,S ).

III. (RELATIVE WEYL GROUP) Let N := NG (S ) and Z := ZG (S ), so N /Z is a finite con-
stant k -group since it is a finite type subgroup of the constant automorphism scheme
AutS/k =GL(X(S ))k (see Exercises 3 and 4 of Homework 6 of the first course).

We will see that the finite relative Weyl group k W := N (k )/Z (k ) ⊂ Autk (S ) coincides
with (N /Z )(k ) (which is remarkable because it doesn’t follow from cohomological rea-
sons; typically H1(k , Z ) 6= 1) and that

k W =W (kΦ) := 〈ra 〉a∈∆
inside GL(X(S )). By design each reflection ra on X(S )Q will arise from N (k ), but it is not
evident that every element of k W arises from W (kΦ).

IV. (BRUHAT DECOMPOSITION) The natural map

NG (S )(k )
ZG (S )(k )

→ P;(k )\G (k )/P;(k )

is bijective; i.e.,

G (k ) =
∐

w∈W (kΦ)

P;(k )nw P;(k )

where nw ∈N (k ) is a representative for w . Moreover, the locally closed subsets P;nw P;
(orbits for P;×P; acting on G via (p , p ′).g = p g p ′−1) are pairwise disjoint, with

(P;nw P;)(k ) = P;(k )nw P;(k ).

For split G these locally closed sets cover G and in fact constitute a stratification (with
closure relations among the strata given by the Bruhat order on the Weyl group). But
in general we only get a covering at the level of k -points, so the Bruhat decomposition
has only group-theoretic rather than geometric meaning beyond the split case.

V. (TITS CLASSIFICATION) The possibilities for G up to k -isomorphism will be deter-
mined by the following data (and some relations among them which we omit here):

• the anisotropic kernelD(M /ZM ) for M := ZG (S )/S (anisotropic with trivial cen-
ter, by design);
• Gks

(equivalent to a root datum);
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• a continuous Gal(ks /k )-action on the Dynkin diagram Dyn(Gks
).

In the split case the anisotropic kernel is trivial (as holds even in the quasi-split case,
since a Levi factor ZG (S ) of a minimal parabolic k -subgroup is obviously a torus when
the minimal parabolic is a Borel), and the Galois action on the diagram is trivial in the
split case.

The merit of this approach is that it enables one to sometimes prove that certain
constructions based on linear algebra structures (quadratic forms, hermitian forms,
central simple algebras, etc.) exhaust all possibilities for a given root datum over ks .
The most important case is when G is absolutely simple, and a precise understanding
of Autks

(Gks
) is essential to making exhaustive lists of possibilities.

To illustrate, for n ≥ 2 and Gks
of type Bn with trivial center, the absence of nontrivial

diagram automorphisms will underlie the proof that the possibilities are exactly SO(q )
for non-degenerate (V , q ) of dimension n , with SO(q ) ' SO(q ′) if and only if (V , q ) is
conformally equivalent to (V ′, q ′). On the other hand, for type Dn (informally, twisted
forms of SO2n ) with n ≥ 3, the possibilities are more complicated because the Dynkin
diagram admits a nontrivial diagram automorphism.

The starting point for the Tits classification is the “Existence/Isomorphism Theo-
rem”. A crude formulation of this remarkable theorem is that there is a bijection

�

split connected reductive k -groups
	

/' ↔{root data}/'

along with a description of Autk (G ) in terms of (G /ZG )(k ) and diagram automorphisms
(upon fixing a split maximal k -torus). In particular, for any connected reductive group
G over k there exists a (unique) split k -descent of Gks

; this is really amazing.
The upshot is that if we can understand the split groups and their automorphisms,

then we can hope to describe their Galois twists and thereby find all possibilities. This
becomes a nontrivial problem in Galois cohomology, guided by the Galois action on the
diagram and knowledge of the relationship between relative and absolute roots (i.e., the
root systems for G and Gks

).

Remark 8.1.7. The book [Spr] proves the Existence and Isomorphism Theorems by a
method with heavy computations that works only over algebraically closed fields. An
alternative proof of the Isomorphism Theorem (determining a split group by its root
datum, up to isomorphism) due to Steinberg [St] works over any field, or one can use
descent theory to deduce the Isomorphism Theorem over general fields from the case
of algebraically closed fields (see the proof of [CGP, Thm. A.4.6]).

But all proofs of the Existence Theorem are very hard (especially to handle the excep-
tional groups in all characteristics, which is the crux of the problem). In [C1, App. D], the
Existence Theorem is proved over C by an analytic method (building on results for Lie
algebras in characteristic 0 and on the theory of compact Lie groups), and in [C1, §6.3]
this is used to deduce a version of the Existence Theorem over Z following the method
of Demazure in [SGA3, Exp. XXV] (based on birational group laws over Dedekind do-
mains), from which the result follows over general fields via scalar extension. This Ex-
istence Theorem over Z is one the main results in [SGA3]. The method is very abstract
but also rather clean (when based on the dynamic method over rings, as in [C1]).
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There are a variety of alternative approaches over fields due to Steinberg, Chevalley,
Lusztig, and others, often working directly with Z-structures on Lie algebras. But ul-
timately the Bruhat–Tits structure theory for reductive groups over non-archimedean
local fields rests on a robust theory of reductive group schemes over discrete valua-
tion rings (possibly of mixed characteristic), and to work with such integral models the
framework of SGA3 is essential.

8.2. Central isogeny decomposition for semisimple groups. Root systems will turn
out to classify split connected semisimple groups “up to central k -isogeny”. The notion
of “central quotient” for general connected linear algebraic groups is not stable under
composition (consider any nilpotent connected nontrivial linear algebraic group that is
non-commutative, such as any smooth connected unipotent group). We will soon see
that in characteristic p > 0 even the notion of central isogeny is not preserved under
composition, but let’s first prove that everything works well in the reductive case for all
characteristics:

Proposition 8.2.1. For central quotient maps

G ′′
f ′
−→G ′

f
−→G

between connected reductive k -groups, the composite map f ◦ f ′ : G ′′ � G has central
kernel. Also, if M ⊂ ZG is a closed k -subgroup then

ZG /M ,→ ZG /M

Proof. The first assertion is easily deduced from the second (as the second essentially
says that under a central quotient the center does not become “larger than expected”).
So we focus on the second assertion, and we can assume k = k since the formation of
the scheme-theoretic center of a linear algebraic group commutes with any extension
of the ground field. In Corollary 2.4 of the “Basics of reductive groups” handout there is
a description of the center in the connected reductive case over an algebraically closed
field:

ZG =
⋂

T⊂G

T

where T varies through the set of maximal tori of G .
(This description of ZG uses crucially that G is reductive! The main content is that

all points of the intersection, valued in any k -algebra A, centralize the A-scheme GA .
That intersection scheme centralizes each T , so it suffices to show that maximal tori
generate G in the sense of linear algebraic groups. Consider the closed linear algebraic
subgroup N generated by all maximal tori. This is clearly normal, so G /N is connected
reductive but contains no nontrivial tori by design, so G /N is unipotent. Reductivity
then forces G /N = 1, which is to say N =G as desired.)

But for M ⊂ ZG we have a bijection between the sets of maximal tori

{T ⊂G }↔{T ⊂G /M }
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via

T 7→ T /M

π−1(T )← [ T

for the quotient mapπ: G →G /M . Thus, for formula for ZG /M in terms of intersecting
such T ’s yields that the inclusion ZG /M ⊂ ZG /M is an equality. �

Remark 8.2.2. The preceding proof shows that what really matters about reductivity is
that it ensures generation by tori (over algebraically closed fields). Hence, if we seek
an example beyond the reductive case for which the formation of the center “grows”
under a central quotient map we are led to search among connected unipotent linear
algebraic groups.

Consider the connected unipotent Heisenberg group

G =U3 =











1 x y
1 z

1











⊂GL3

over any field k of characteristic p > 0. Note that ZG is the copy of Ga in the upper
right corner, the quotient by which is the direct product of the two Ga ’s coming from
the other matrix entries, so we have a short exact sequence

1→Ga →G →Ga ×Ga → 1

This recovers our earlier observation (valid in any characteristic) with nilpotent con-
nected linear algebraic groups that the second statement in Proposition 8.2.1 can fail
for non-reductive groups.

For a counterexample to the second assertion in Proposition 8.2.1 using central iso-
genies among connected linear algebraic groups in characteristic p > 0, consider the
commutative diagram

1 // Ga
// G // Ga ×Ga

// 1

1 // αp
//?�

OO

ker FG /k
//

?�

OO

αp ×αp
//?�

OO

1

in which the bottom row is the induced diagram among Frobenius kernels of the corre-
sponding groups in the top row. The bottom row is left exact a priori, and by counting
orders of finite k -group schemes it is short exact because by inspection ker FG /k has
order p 3 for G =U3 (or more generally the infinitesimal Frobenius kernel of a smooth
k -group of dimension d has order p d since the relative Frobenius map for a smooth
k -scheme of pure dimension d is finite flat with constant degree p d , as we verify via an
étale-local calculation to reduce to the case of an affine space).

The key feature to prove is the centrality of the k -subgroup scheme

αp ×αp = (ker FG /k )/αp ⊂G /αp .

Once this is known, the isogeny FG /k : G →G (p ) with visibly non-central kernel will be
expressed as a composition of central isogenies G →G /αp →G /ker FG /k =G (p ).
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To justify the centrality claim made above, observe that for any k -algebra A and A-
valued point

h =





1 u ∗
1 v

1



 ∈ (ker FG /k )(A)

with u , v ∈ A satisfying u p = v p = 0, and for any

g =





1 x y
1 z

1



 ∈G (A)

we have

hg h−1 = g ·





1 0 z u − x v
1 0

1



 ∈αp (A)⊂ ZG (A),

so consideration with fppf group sheaves shows that the k -subgroup schemeαp ×αp ⊂
G /αp is indeed central.

Discussion of semisimplicity. Recall that for C-linear representations of a finite
group, we have a decomposition

V =
⊕

V ei
i

for pairwise non-isomorphic irreducible Vi (and ei > 0), but only the isotypic subrepre-
sentations Wi = V ei

1 ⊂ V and their associated multiplicities ei are intrinsic; there is no
intrinsic choice of Vi as a subrepresentation of V when ei > 1.

Similarly, for abelian varieties A over an arbitrary field k we know from the graduate
course on abelian varieties that there is a k -isogeny (“Poincaré complete reducibility”
over k )

A ∼
∏

Aei
i

for pairwise non-isogenous k -simple Ai (with ei > 0), but only the isotypic abelian sub-
varieties Bi = im(Aei

i → A) and their associated multiplicities ei > 0 are intrinsic; there
is no intrinsic choice of a k -isogenous quotient of Ai inside A when ei > 1.

In these cases, for e > 1 we have GLei
(C) acts on V ei

i creating many interactions
among the factors Vi when ei > 1, and likewise GLei

(Z) acts on Aei
i creating many in-

teractions among the factors Ai when ei > 1. In particular, there are many inclusions
Vi ,→Vi ×Vi of representation spaces and Ai ,→ Ai ×Ai of abelian varieties that are not
the images of factor inclusions (e.g., the diagonal homomorphism in each case). But for
non-commutative G there are no “obvious” automorphisms of G ×G beyond swapping
factors, and likewise no evident normal subgroups other than G ×1 and 1×G .

Example 8.2.3. The diagonal ∆G ⊂ G ×G is not normal in G ×G whenever G is not
commutative! (Hint: Consider conjugation against 1× g non-central g .)

In contrast with the preceding examples, over any field k connected semisimple k -
groups admit a canonical central isogeny decomposition. Let’s first illustrate the result:
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Example 8.2.4. For G = SLn ×µn SLn or SO10×µ2 Sp6 (gluing factors along the evident
anti-diagonal central inclusions of µn and µ2 respectively), the only non-trivial proper
normal connected linear algebraic k -subgroups of G are the evident “factors”.

The “central isogeny decomposition” for connected semisimple k -groups will be
proved later via Galois descent from the split case over ks , and it goes as follows:

Theorem 8.2.5. Let G be a connected semisimple k -group G , and {Gi } its set of minimal
non-trivial smooth connected normal k -subgroups (all semisimple by normality, since
for any smooth connected normal k -subgroup N ⊂G the solvable radical of Nk is stable

under all G (k )-conjugations and hence is contained inRu (Gk ) = 1). The following hold:

(1) the set {Gi } is finite and these pairwise commute, with the multiplication homo-
morphism

∏

Gi →G a central k -isogeny;
(2) each Gi is k -simple;
(3) the smooth connected normal k -subgroups of G are exactly

NJ = 〈Gi 〉i∈J

for subsets J ⊂ I . Moreover, NJ ⊂NJ ′ if and only if J ⊂ J ′ (so Gi ⊂NJ if and only
if i ∈ J ).

We call the k -subgroups Gi the “k -simple factors” of G . The precise formulation of
the full result in the split case makes it possible to prove the general result because we
can use Galois descent to pull everything down from the split case applied to Gks

. (Note
that since normality is not transitive in non-commutative groups, it is not a tautology
that each Gi is k -simple!)

To prove the theorem we will begin by settling the split case via input from the theory
of root systems, such as an “irreducible decomposition” theorem for root systems. So
now we digress to review some more facts concerning root systems.

9. ROOT SYSTEMS

9.1. Decompositions of root systems.

Definition 9.1.1. For root systems (V ,Φ) and (V ′,Φ′), their direct sum is (V ⊕V ′,Φ
∐

Φ′).
We say that a root system (W ,Ψ) is reducible if it is isomorphic to such a direct sum with
V , V ′ 6= 0, and (W ,Ψ) is irreducible if it’s not (0,;) and is not reducible.

Example 9.1.2. For a central isogeny

f : G ′×G ′′�G

of split connected semisimple k -groups, with corresponding k -isogeny of split maxi-
mal k -tori

T ′×T ′′� T

(so f −1(T ) = T ′×T ′′ since ker f is central), we have Φ(G , T ) =Φ(G ′×G ′, T ′×T ′′) inside
X(T )Q = X(T ′)Q⊕X(T ′′)Q by the known invariance of the formation of root systems with
respect to central quotients.

Clearly Φ(G ′×G ′′, T ′×T ′′) =Φ(G ′, T ′)
∐

Φ(G ′′, T ′′), so we conclude that the root sys-
tem Φ(G , T ) is the direct product of the root systems Φ(G ′, T ′) and Φ(G ′′, T ′′) via the
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equality X(T )Q = X(T ′)Q⊕X(T ′′)Q. (We use the standard abuse of notation that Φ(G , T )
may denote the ordered pair (X(T )Q,Φ(G , T ))without warning.)

Example 9.1.3. We will prove later that for a split semisimple pair (G , T ), the following
conditions are equivalent: G is k -simple, Gk is k -simple, and Φ(G , T ) is irreducible.
Thus, the irreducibility of a root system is a combinatorial replacement for simplicity
(in the sense of smooth connected normal subgroups) for split connected semisimple
groups.

Now it is time to record some facts concerning the decomposition of root systems.
These are all proved in [Bou, VI, §1.2] (largely relying on [Bou, IV, V], where the main
work of the proofs is often found).

Proposition 9.1.4. Every root system (V ,Φ) is uniquely a direct sum of irreducible root
systems (Vi ,Φi ). Here, “uniqueness” means that the subspaces Vi ⊂ V (and so subsets
Φi =Vi ∩Φ)are uniquely determined.

This is much stronger than the uniqueness aspect of irreducible decomposition for
characteristic-0 representations of a finite group, or of the isogeny decomposition for
an abelian variety, insofar as even in the presence of multiplicities the actual subspaces
Vi ⊂V that arise are uniquely determined.

Proposition 9.1.5. For irreducible (V ,Φ), the action of the Weyl group W (Φ) on V is ab-
solutely irreducible.

9.2. Euclidean structure on root systems. The absolute irreducibility of the W (Φ)-
action for irreducible (V ,Φ) explains the role of Euclidean geometry in the study of root
systems over R (even though there is no axiom concerning a preferred inner product in
the definition of a root system or of irreducibility of root systems). To explain this, first
note that since W (Φ) is a finite group, by averaging we obtain a W (Φ)-invariant positive-
definite symmetric bilinear form V ×V →Q (or equivalently a W (Φ)-invariant positive-
definite quadratic form q : V → Q). Such a bilinear form is non-degenerate, and so it
corresponds to a W (Φ)-equivariant isomorphism V ' V ∗. Hence, by Schur’s Lemma
(due to the absolute irreducibility!), such an equivariant isomorphism is unique up to
Q×-scaling.

Thus, for irreducible root systems (V ,Φ) there is a unique homothety class of non-
degenerate W (Φ)-invariant bilinear forms on V , so it is well-posed to speak of ratios
of (squared) root-lengths q (a )/q (b ) for a , b ∈Φ and any W (Φ)-invariant nonzero (nec-
essarily definite) quadratic form q : V → Q. Irreducible root systems that are reduced
have at most two root lengths (see [Bou, VI, §1.4, Prop. 12]). Hence, for reduced and ir-
reducible root systems with at least two (and hence exactly two) root lengths it is always
well-posed to speak of a root being “long” or ”short”.

Working over R (so positive elements have square roots), we can uniquely normalize
a W (Φ)-invariant nonzero Q : VR→ R by the requirement that the shortest root-length
is 1. (This involves replacing an initial choice of q by q (a0)−1/2 ·q for a0 ∈Φwith short-
est q -length.) Consequently, any root system admits a canonical Euclidean structure
on its realification. This explains why it is meaningful to draw pictures of irreducible
rank-2 root systems with specified Euclidean structure, and more generally to express
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the study of irreducible root systems in terms of the Euclidean language of reflection
groups, even though there is no Euclidean structure specified in the initial definition of
a root system as in [Bou]. This makes contact with other references that use Euclidean
structure right from the beginning of the study of root systems. Scaling the inner prod-
uct has no effect on the angle between two roots, so that notion is the same regardless
of the choice of W (Φ)-invariant q above.

Remark 9.2.1. For an arbitrary (not necessarily irreducible) root system (V ,Φ) there is
a “canonical” W (Φ)-invariant positive-definite bilinear form BΦ : V ×V →Q, given by

BΦ(v, v ′) =
∑

a∈Φ
〈v, a∨〉 · 〈v ′, a∨〉

where 〈v,`〉 := `(v ) for ` ∈ V ∗. Indeed, BΦ is visibly bilinear, and it is W (Φ)-invariant
since the effect of a reflection rb on a coroot a∨ is to bring it to the coroot rb (a )∨; i.e.,
such reflections applied to V have the effect on BΦ of permutting the terms in the defin-
ing sum.

The positive-semidefiniteness of BΦ is clear, and positive-definiteness holds because
the coroots span V ∗.

To summarize, we have just seen that if a root system (V ,Φ) is irreducible then the
W (Φ)-action on V is absolutely irreducible over Q, so the W (Φ)-invariant symmetric
isomorphism V ' V ∗ is unique up to Q×-scaling, and the corresponding symmetric
bilinear form form (−,−): V ×V →Q is unique up to Q>0-scaling as a positive-definite
form.

What about a root system which is not irreducible? In general, if (Vi ,Φi ) are the irre-
ducible components of (V ,Φ) then via the decomposition

V =
⊕

Vi

we have a decomposition of Weyl groups

W (Φ) =
∏

W (Φi ).

(To see this recall that from the very construction of a direct sum of roots systems, a
reflection corresponding to a root in Φi has no effect on the Φ j for j 6= i . Thus we
see explicitly that the Weyl group decomposes.) Therefore, if B : V ×V → Q is a non-
degenerate symmetric bilinear form invariant under W (Φ) then the induced isomor-
phism V ' V ∗ of W (Φ) =

∏

W (Φi )-representations must carry Vi to V ∗i (by looking at
the W (Φi )-isotypic decompositions). So necessarily Vi is B -orthogonal to Vj for j 6= i
and B is the orthogonal sum of the W (Φi )-invariant symmetric non-degenerate forms
Bi : Vi ×Vi →Q.

Lemma 9.2.2. If we fix such B : V ×V → Q (positive-definite) then under the induced
isomorphism V 'V ∗, for each root a ∈Φ the coroot a∨ ∈Φ∨ ⊂V ∗ corresponds to

a ′ :=
2a

B (a , a )
=

2a

||a ||2B
.

Remark 9.2.3. This formula “explains” why a 7→ a∨ is usually not additive.
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Proof. Without loss of generality, we work in VR. By W (Φ)-invariance, the action of
W (Φ) is orthogonal. (We originally defined a reflection to be an involution that is the
identity on a hyperplane and negation on the quotient. Since we now have a Euclidean
structure on which W (Φ) acts orthogonally, the reflections in W (Φ) are “orthogonal re-
flections” in the usual sense.)

For a ∈Φ, we have by definition

ra (x ) = x −〈x , a∨〉a (9.2.1)

for a∨ ∈V ∗R . On the other hand, we have the classical formula for reflection: if u ∈VR is
a unit vector orthogonal to the hyperplane ker(a∨R ) of ra -fixed points then

ra (x ) = x −2(x ·u )u . (9.2.2)

From this we see that u ∈R× ·a (comparing (9.2.1) and (9.2.2) for x chosen generically
so that 〈x , a∨〉, x · u 6= 0). Hence, u = ±a/||a ||, and comparing the formulas (9.2.1) and
(9.2.2) again gives

〈x , a∨〉a =
x ·2a

||a ||2
a .

Thus, the linear functional a∨ ∈V ∗R is given by dot product against 2a/||a ||2. �

Example 9.2.4. For the root system A2 corresponding to SL3 we have c ∨ = 2c when the
Euclidean structure is normalized to make all roots unit vectors.

Example 9.2.5. For the root system B2 = C2 arising from SO5 and Sp4 we havec ∨ = 2c
for c short and c ∨ = c for c long (with length

p
2) when shortest roots are given length

1; see Figure 9.2.5.
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FIGURE 9.2.1. The root system B2 = C2 depicted in black (with short
roots of length 1) and its dual in red.

Lemma 9.2.2 implies that Φ∨ spans V ∗ over Q, so (V ∗,Φ∨) forms a root system with
coroots (a∨)∨ := a , called the dual root system. Since a/||a ||2 has length 1/||a ||, passage
to the dual root system “interchanges” the long and short roots when there are two
root-lengths.

We have noted and used that the Weyl group acts absolutely irreducibly on the un-
derlying vector space for an irreducible root system, but how transitive is the Weyl ac-
tion on the set of roots? The answer is: as transitive as possible. This is the first of the
following two important properties of irreducible root systems:

Proposition 9.2.6. [Bou, VI, §1.3, Prop. 11] The group W (Φ) acts transitively on the set
of roots of a common length.

Proposition 9.2.7. [Bou, VI, §1.4, Prop. 12] If an irreducible root system Φ is reduced,
then there are at most two root lengths, and in such cases the ratio of square root-lengths
(long divided by short) is 2 or 3.

9.3. Simply connected groups. Let Φ = Φ(G , T ) for a split semisimple pair (G , T ). We
have the finite index inclusions

ZΦ⊂ X := X(T )⊂ (ZΦ∨)∗

with the latter Z-dual to the finite-index inclusion

ZΦ∨ ⊂ X∗(T ) =: X ∨.

(Recall that coroots rationally span the dual Q-vector space.) Hence, there are only
finitely many possibilities for X(T ), namely the intermediate groups between ZΦ and
(ZΦ∨)∗. The lattice ZΦ is denoted Q and called the root lattice, and the dual lattice (ZΦ∨)∗

is denoted P and called the weight lattice (“poid” is French for “weight”).
We have seen that the formation ofΦ(G , T ) is invariant under central isogeny (but not

under general isogenies; recall the exceptional isogeny SO2n+1→ Sp2n in characteristic
2; we will later see that SO2n+1 has root system Bn whereas Sp2n has root system Cn ,
and these are not isomorphic for n > 2).
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For any (G , T ) and intermediate lattice Q ⊂ X ′ ⊂ X(T ), the corresponding finite sub-
groupµ⊂ T corresponding to the finite quotient X(T )/X ′ is central in G since it is killed
by all roots (as the restriction Φ|µ ⊂ X(µ) = X(T )/X ′ is trivial since Q ⊂ X ′). Hence, the
central quotient G /µwith split maximal torus T /µhas root systemΦ realizing X ′ as the
character lattice for T /µ. A calculation similar to that in Example 2.1 of the handout
on root data shows that X(T /ZG ) =Q . Furthermore, ZG is Cartier dual to X /Q .

In the proof of Proposition 2.5 of the handout on root data it is shown that ra∨,a (b ∨) =
ra (b )∨ ∈ Φ∨ for all a , b ∈ Φ, so for X equal to either of the two extremes P and Q the 4-
tuple (X ,Φ, X ∨,Φ∨) really is a root datum. Hence, the Existence Theorem ensures that
both extremes arise from actual pairs (G , T ), so taking X = P then implies by the pre-
ceding considerations that every group X between P and Q does arise from some split
pair (G , T ).

To summarize, for a central isogeny G � G satisfying T � T we have X(T ) ,→ X(T )
with finite index, and under central isogenies X moves around between Q and P ex-
hausting all possibilities, with P being the “biggest” possibility and Q the smallest.

Definition 9.3.1. A split connected semisimple k -group G is simply connected if X = P
(equivalently, Φ∨ spans X∗(T )), and the fundamental group of G is the Cartier dual of
P /X . More generally, a connected semisimple k -group is simply connected when Gks

is so.

There are a few reasons that these are appropriate definitions. Firstly, if k = C then
π1(G (C)) = Hom(P /X , C×) (the essential case is X = P ). This can be proved in at least
two ways: using maximal compact subgroups and Lie theory (see [C1, Prop. D.4.1]) or
using the Riemann Existence Theorem that finite-degree covering spaces of the analyti-
fication of a finite type C-scheme have a unique compatible finite étale algebraizations
[SGA1, Exp. XII, Thm. 5.1] Beware however that this algebraic definition is not compat-
ible with the usual one for real Lie groups. For instance, SL2(R) = SO2(R)×R2 as man-
ifolds, so π1(SL2(R)) = Z, but SL2 is “simply connected” as a connected semisimple R-
group.

Next, and perhaps more compellingly, if G is simply connected then it has a mapping
property with respect to central covers that is reminiscent of the classical definition of
being simply connected and doesn’t refer to a maximal torus:

Proposition 9.3.2. Let G be a connected semsimple k -group that is simply connected.
For any k -homomorphism f : G →H to a smooth affine k -group and H ′�H a central
extension of H by a k -group scheme µ of multiplicative type, there exists a unique k -
homomorphism f ′ : G →H ′ lifting f :

H ′

����
G

∃!
>>

// H

Before we prove this result, we note that the case H = G subsumes the definition
of “simply connected” in the split case granting the Existence Theorem, since if G is
connected semisimple and split then we can apply the mapping property over k with
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H =G and H ′→H the central isogenous cover of degree [P : X ] corresponding to the
root datum using character lattice P to get a homomorphic section, forcing [P : X ] = 1
(i.e., G is simply connected). The mapping property over k similarly forces G to be
simply connected without a split hypothesis, using Corollary 9.3.3 below.

Proof. The uniqueness of such a lift follows from G being perfect and smooth. Indeed,
the difference between any two lifts G → H ′ lands in ker(H ′→ H ), which is central in
H ′. The centrality implies that this difference is actually a group homomorphism. But
since G =DG , an abelian quotient of G must be trivial.

With uniqueness established, Galois descent implies that for the purpose of showing
existence, we can assume without loss of generality that k = ks . The advantage of this
setting is that [G (k ),G (k )] ⊂G is Zariski-dense and hence (by reducedness) schemati-
cally dense.

Schematic density is preserved by base change against any k -algebra (such as the
artin local ring k ′ ⊗k k ′ for a finite extension k ′ of k ), so we can use fppf descent to
reduce to the existence over k . (The point of passing to k is to guarantee that the un-
derlying reduced scheme of a group scheme of finite type is a subgroup). The schematic
density ensures he uniqueness of such a lift over bases which are not necessarily fields,
such as the artin rings that come up for fppf descent from a finite extension of k . This
uniqueness comes from the same argument as before: the discrepancy of two such lifts
would be a homomorphism to a commutative group scheme, and that is trivial due to
the extension of a schematically dense collection of commutator points over any k -
algebra.

Now with k = k , consider the central extension G ′ := f −1(H ′) of G by a k -group
scheme µ= ker(H ′�H ) of multiplicative type:

G ′

��

// H ′

����
G // H

This reduces us to the case H = G and H ′ = G ′, and we want to find a homomorphic
section. We can replace G ′ with D(G ′red)

0 (as the latter certainly maps onto G ). Now
we have reduced to the case where G ′ is perfect, smooth, and connected. If G ′ were
reductive (hence semisimple) then we would be done since the central kernel µwould
have to be finite yet the hypothesis on G ensures that it admits no central isogeny of
degree > 1 from a connected semisimple group. Since µ is of multiplicative type and
the quotient G ′/µ=G is reductive, the unipotent radical of G ′ is forced to be trivial. �

Corollary 9.3.3. Let G be a connected semisimple k -group. Up to unique isomorphism,
there exists a central isogeny π : eG → G with connected semisimple eG that is simply
connected. This is initial among all central extensions of G by a k -group scheme of mul-
tiplicative type. In particular, eG is functorial with respect to isomorphisms in such G .

We call kerπ is the fundamental group of G , recovering Definition 9.3.1 for split G .

Proof. The uniqueness assertions permit us to use Galois descent to reduce to the case
k = ks , so G is split. The Existence Theorem then provides a central isogeny onto G



REDUCTIVE GROUPS OVER FIELDS 81

from a simply connected eG . It suffices to show that for any surjection q : G ′ � G of
affine k -group schemes of finite type with central kernel µ of multiplicative type, there
is a unique k -homomorphism eG → G ′ over G . It is equivalent to say that the central
extension eG ×G G ′ of eG by µ admits a unique section, which in turn is the special case
H =G in Proposition 9.3.2. �

Example 9.3.4. For SLn with n ≥ 2,

SLn ⊃

��

T = {diag}

��
PGLn ⊃ T

we have the finite-index inclusion

X(T ) = (Zn )Σ=0 ,→ (Zn )/∆= X(T ).

obtained by the recipe in Example 2.1 of the handout on root data applied to the derived
group SLn and central quotient PGLn of GLn .

Explicitly, the description of the character group of the diagonal of GLn implies that
for the derived group GLn a character of T is of the form





t1
...

tn



 7→
∏

t ai
i

for ~a ∈ Zn that only matters modulo the diagonal since
∏

ti = 1. (We are just passing
to character lattices on the exact sequence 1→ T →Gn

m →Gm → 1 whose right map is
multiplication.) Similarly, character of T is exactly a map





t1
...

tn



 7→
∏

t ai
i

that is well-defined (i.e., unaffected by scaling all ti ’s against a common unit) precisely
when

∑

ai = 0.
Using these explicit descriptions, the set of roots

Φ= {ei − e j mod∆}

spans X(T ) over Z (consistent with the fact that PGLn has trivial center) and the set of
coroots

Φ∨ = {e ∗i − e ∗j }

spans the dual X∗(T ) = ((Zn )∗)Σ=0 of X(T ), affirming that SLn is simply connected.

Remark 9.3.5. The preceding example is part of the type-An−1 case in the handout on
root systems for split classical groups. In particular, it is verified there by computing
∆∨ that the groups Sp2n for n ≥ 2 (type Cn ) are also simply connected and that special
orthogonal groups SO2n+1 for n ≥ 2 (type Bn ) and SO2n for n ≥ 3 (type Dn ) have a
degree-2 simply connected central cover. The simply connected double cover of SON
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is denoted SpinN , and it naturally extends to a central double cover PinN →ON ; all of
these double covers can be constructed explicitly by using Clifford algebras.

A general discussion of Spin groups, Pin groups, and related notions (e.g., the spinor
norm) associated to non-degenerate quadratic spaces is given over any ring in [C1,
App. C], building on a development there of orthogonal and special orthogonal groups
over any ring (which is also given in Appendix A of the notes for the first course).

9.4. Weyl chambers. For split reductive (G , T )we have

W (Φ(G , T ))⊂
NG (T )(k )
ZG (T )(k )

=: W (G , T )

(all sitting inside GL(X(T ))) as the subgroup generated by the reflections ra , where

W (D(ZG (Ta )),Ta ) = {1, ra } ⊂W (G , T ).

We want to prove that this is an equality (and likewise for relative roots kΦ = Φ(G ,S )
more generally). This will use Euclidean geometry to relate different-looking notions
of “positive systems of roots”.

We know that W (G , T ) acts simply transitively on the set of Borel k -subgroups con-
taining T . We’ll show that W (Φ(G , T )) acts simply transitively on the set of Weyl cham-
bers. So we need to relate Weyl chambers and Borel subgroups, and that will go through
two notions of “positive systems of roots”. The punchline will be that via the inclusion
between the two types of Weyl groups, they compatibly act simply transitively on “the
same thing” and hence the inclusion between these groups is an equality:

�

Weyl chambers in X(T )R
	

{Borel k -subgroups⊃ T }

§

combinatorial notion of
positive roots Φ+ ⊂Φ

using a root basis

ª

Theorem

(in Bourbaki)

¦

dynamic notion of
positive roots Φ+⊂Φ

©

.

Remark 9.4.1. The overall method will apply verbatim to pairs (G ,S ) in general (S a
maximal split k -torus, and using minimal parabolic k -subgroups containing S in place
of the Borel k -subgroups containing T ) once we show that the subset kΦ := Φ(G ,S ) ⊂
X(S ) is a root system in its Q-span and that the minimal parabolic k -subgroups P ⊃ S
have the “expected” dynamic characterization (using λ ∈ X∗(S )∩Q · kΦ non-vanishing
on all relative roots) to get

W (kΦ) =
NG (S )(k )
ZG (S )(k )

inside GL(X(S )),

To carry out our plan, we shall introduce Weyl chambers and related notions for an
arbitrary root system (V ,Φ) (possibly reducible or non-reduced) so that we can apply
it later to kΦ (that we have noted can be non-reduced for special unitary groups even
over k =R). For a ∈Φ, let

Ha := ker(a∨R )⊂VR
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be the hyperplane of ra -fixed points (so Ha = (Ra )⊥ = Hq a for any q ∈ Q× such that
q a ∈ Φ). The roots ±a lie in distinct connected components of VR −Ha ; i.e. ±a lie on
“opposite sides” of Ha .

Definition 9.4.2. A Weyl chamber for (V ,Φ) is a connected component of VR−
�⋃

a∈ΦHa

�

.

It is not at all evident a-priori how to describe such connected components in terms
of choices of signs for each root (i.e., which collections of choices correspond to a con-
nected component?), so this is one reason that passing to VR in place of V is very help-
ful: we can use topological conditions to define concepts that at the outset would be
difficult to describe in explicit purely algebraic terms.

Theorem 9.4.3. [Bou, VI, §1.5, Thm. 2]We have:

(1) W (Φ) acts simply transitively on the set of Weyl chambers C , and each C has the
form

C = {v ∈VR | 〈v, a∨i 〉> 0 [⇐⇒ (v, ai )> 0]}

where {ai } are exactly the non-divisible roots a such that ∂ C ∩Ha has non-empty
interior in Ha and a is on the same side of Ha as C is. Also,

∂ C =
⋃

i

(∂ C ∩Hai
), C = {v ∈VR | 〈v, a∨i 〉 ≥ 0}.

(These Hai
are called the “walls” of C .)

(2) The set {ai } is a Q-basis for (V ,Φ). (This is called a “base” or “root basis” or “set of
simple positive/dominant” roots.) Furthermore, W (Φ) has a presentation

W (Φ) = 〈ra | r 2
a = 1, (ra rb )

ma b = 1〉a ,b∈∆

whereÝ(a , b ) =π− π
ma b

, with ma b ∈ {2, 3, 4, 6}. (A group with such a presentation
is called a “Coxeter group”.)

Example 9.4.4. There are six distinct Weyl chambers for the root system A2.

In this case W = 〈ra , rb 〉= S3 with (ra rb )3 = 1.
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Example 9.4.5. For the root system B2 =C2, there are 8 Weyl chambers.

In this case the Weyl group admits a description W = S2 n (Z/2Z)2 with S2 generated
by the reflection ra in the short simple root and (Z/2Z)2 generated by the reflections
rb , r2a+b in the long positive roots.

9.5. Root bases.

Theorem 9.5.1. [Bou, VI, §1.6, Thm. 3] If∆⊂Φ is a base, then

Φ⊂ Z≥0∆t (−Z≥0)∆.

In other words, when a root is written in terms of a base then all coefficients are
integers, with the nonzero coefficients having the same sign. In particular, ∆ is a Z-
basis of the root lattice Q = ZΦ, so if (G , T ) is a split semisimple pair with root system Φ
then ZG = 1 if and only if∆ spans X(T ).

Definition 9.5.2. The subset Z≥0∆ is denoted R+(C ) or R+(∆), and called the positive
system of roots associated to C (or to∆; we can reconstruct C from∆).

Remark 9.5.3. The Coxeter matrix of Φ is (ma b )a ,b∈∆. This is a symmetric matrix.

Corollary 9.5.4. [Bou, VI, §1.7, Cor. 1] A subset Ψ ⊂ Φ is a positive system of roots in the
above sense if and only if Ψ is closed and {Ψ,−Ψ} is a partition of Φ. In such cases, the C
such that Ψ =R+(C ) is unique.

Example 9.5.5. If λ ∈ V ∗ is regular (i.e. non-zero on all roots) then Φλ>0 is evidently
closed and together with its negative partitions Φ. Hence Φλ>0 = R+(C ) for some C . In
fact, since ∆ is a Q-basis of V every R+(∆) has the form Φλ>0 for some regular λ ∈ V ∗.
(For instance, one could take λ to be the sum over the dual basis to∆.)

Thus, the dynamic notion of “positive system of roots” that we have met in the study
of Borel subgroups of split connected reductive groups coincides with Bourbaki’s notion
defined in terms of Weyl chambers (which in turn admits a combinatorial characteri-
zation in terms of closedness and giving a partition up to signs).
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Now we return to studying Φ = Φ(G , T ) for a split reductive pair (G , T ). We already
know that there is a bijection

{Borels⊃ T }↔{Φ+ ⊂Φ}
B 7→Φ(B , T )

with compatible actions of W (G , T ) on the set of Borels containing T and of W (Φ) on
the set of positive systems of roots. Each action is simply transitive: for the left side this
uses the general k -rational conjugacy results that we have already proved and that

NG (T )(k )∩B (k ) = ZG (T )(k ),

(a special case of equality NG (S )(k )∩P (k ) = ZG (S )(k ) for S a maximal split torus and P
a minimal parabolic k -subgroup containing S ). For the right side, the result expresses
the fact from Bourbaki that W (Φ) acts simple transitivity on the set of Weyl chambers.
Hence, we get the desired equality of Weyl groups!

Interesting uses of∆. For inductive arguments, it is useful to have:

Proposition 9.5.6. Assume Φ is reduced. For a ∈∆,

ra (Φ
+−{a }) =Φ+−{a }.

Proof. We have Φ+ ⊂ Z≥0∆ and ra (x ) ∈ x +Za . All nonzero∆-coordinate of ra (x ) have
the same sign, and only the “a -component” has changed. If x 6= a then x has pos-
itive coordinate along another element of ∆ (since Φ is reduced), so the nonzero ∆-
coordinates of ra (x )must all be positive. �

Also, we have the following:

Proposition 9.5.7. [Bou, VI, §1.6, Cor. ,1] For a ∈Φ+−∆, there exist a ′, a ′′ ∈Φ+ such that
a = a ′+a ′′.

This gives an “additive characterization” of ∆ ⊂ Φ+. It will underlie the proof (in
Proposition 9.6.6) for reducedΦ that the Dynkin diagram Dyn(Φ) (to be defined in §9.6)
is connected if (and only if) Φ+ is irreducible.

Some useful results. Let (V ,Φ) be a root system. We have seen that the Weyl group
W is generated by reflections through root hyperplanes associated to a root basis ∆
(i.e., reflections in the hyperplanes giving the walls of a Weyl chamber), underlying a
description of W as a (finite) Coxeter group with a presentation given in terms of the
Coxeter matrix. Moreover, for irreducible Φ we noted earlier that the W -action on Φ is
transitive on the set of roots of a given length.

Here’s an important result that encodes a root system in terms of the minimal pos-
sible amount of information:

Proposition 9.5.8. [Bou, VI, §1.5, Prop. 15 and Corollary] For reduced Φ, W .∆ = Φ (i.e.
every root lies in a root basis), and Φ is determined up to isomorphism by the Cartan
matrix (〈a , b ∨〉)a ,b∈∆ in the following strong sense: if (V ′,Φ′) is a reduced root system with
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root basis∆′ then for any bijection of sets f :∆→∆′ respecting the Cartan matrices, the
resulting Q-linear isomorphism

V =Q∆ 'Q∆
′
=V ′

carries Φ onto Φ′.

Remark 9.5.9. The Cartan matrix is generally not symmetric away from the case when
Φ is simply laced (all roots with the same length). The Dynkin diagram Dyn(Φ) will be
a useful visual way to encode the same information as in the Cartan matrix or Coxeter
matrix.

Here is a natural question, leading us to the notion of “associated coroot basis” (in
the reduced case). First, some setup. Suppose ∆ is a root basis of Φ, with associated
positive system of roots Φ+, so we can write Φ+ = Φλ>0 for some regular λ ∈ V ∗. (Of
courseλ is not unique.) Choose a W -equivariant identification V 'V ∗ via a symmetric
positive-definite W -invariant bilinear form B as usual.

The linear form λ ∈ V ∗ corresponds to some v ∈ V = (V ∗)∗. This v is regular for Φ∨

since 〈v, a∨〉= 〈a ,λ〉·(2/B (a , a )). Thus, we can form a positive system of coroots (Φ∨)+ :=
(Φ∨)v>0. Our question is this: can the root basis corresponding to (Φ∨)+ be described
directly in terms of∆ (without reference to the auxiliary non-canonical choice of λ)?

The answer is yes whenΦ is reduced: the root basis (usually called a “coroot basis”) is
∆∨ := {a∨}a∈∆. Detailed hints for how to prove this are given in [C1, Exer. 1.6.17(i)-(iii)].
If you think about it, even the fact that∆∨ is a root basis forΦ∨ at all is not so clear, since
the association from roots to coroots is generally not additive. The Cartan matrix of Φ∨

relative to ∆∨ is the transpose of that for (Φ,∆). (The reducedness hypothesis cannot
be dropped: if Φ is not reduced, say b = 2a then a∨ = 2b ∨, so a∨ cannot be in a root
basis since elements of root bases are non-divisible.)

The root lattice and weight lattices can be explicitly described in terms of∆ and∆∨

respectively:
Q = ZΦ=

⊕

a∈∆
Za

and the dual lattice
P = (ZΦ∨)∗ =

⊕

b∈∆
Z(b ∨)∗,

where {(b ∨)∗} is the dual basis in V to the Q-basis∆∨ of V ∗. Clearly the matrix of the in-
clusion Q ,→ P with respect to these bases is the Cartan matrix. The group structure of
P /Q (hence of the center in the simply connected case, and of the fundamental group
in the adjoint case) is given in the extensive Tables at the end of [Bou].

Definition 9.5.10. We call (b ∨)∗ the fundamental weights (with respect to the choice of
∆). These are the “highest weights” for the fundamental representations.

For split semisimple pair (G , T ) we have Q ⊂ X(T ) ⊂ P . By the Existence Theorem,
we saw just above Definition 9.3.1 that every group X between P and Q arises as X(T )
for some central isogenous quotient of such the pair (G ′, T ′) satisfying X(T ′) = P , which
is to say for simply connected G ′ (by definition). In particular, the following conditions
on G are equivalent:
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• G is simply connected,
• ∆∨ spans X∗(T ) (equivalently, X∗(T ) = ZΦ∨),
• the natural map

∏

b∈∆Gm → T defined by (yb ) 7→
∏

b ∨(yb ) is an isomorphism.

Corollary 9.5.11. Let G be a connected semisimple group that is simply connected. For
any k -torus T ′ ⊂G , the connected semisimple groupsD(ZG (T ′)) is simply connected.

In particular, Levi factors of parabolic k -subgroups of G have simply connected de-
rived groups, and if G has a split maximal k -torus T then for each a ∈ Φ(G , T ) and
codimension-1 subtorus Ta := (ker a )0red ⊂ T the subgroup D (ZG (Ta )) = 〈Ua ,U−a 〉 is SL2

rather than PGL2.

Remark 9.5.12. The analogue for “adjoint type” (i.e. trivial center) is false. For a coun-
terexample, in the split case with T ′ = (ker a )0red the k -group D(ZG (T ′)) that is isomor-
phic to SL2 or PGL2 is always SL2 when G is the adjoint-type PGLn with n ≥ 3.

The details of the proof of Corollary 9.5.11 are given in [C1, Exer. 6.5.2(iv)]. Here we
just sketch the main ideas.

Idea of proof. Let T be a maximal k -torus containing T ′. Without loss of generality
k = ks , so T is split. Hence, T =

∏

b∈∆ b ∨(Gm ). For any “generic” λ′ ∈ X∗(T ′) (i.e.,
pairing non-trivially with all non-trivial T ′-weights on Lie(G )) we see by comparison of
Lie algebras that the inclusion of smooth connected k -subgroups ZG (T ′)⊂ ZG (λ′).

The intersection S := T ∩ (D(ZG (T ′))) is a maximal k -torus in D(ZG (T ′)) because
rather generally if H is a connected linear algebraic k -group with smooth connected
normal k -subgroup N (such as H = ZG (T ′) and N =D (H )) then for every maximal k -
torus T ⊂H the (scheme-theoretic) intersection T ∩N is a maximal k -torus of N ; see
[CGP, Cor. A.2.7] for a (simple and self-contained) proof after first trying to make your
own proof as an exercise.

The torus intersection S ⊂ T =
∏

b∈∆Gm then turns out to be a subproduct

T ∩ (D(ZG (T
′))) =

∏

b∈∆
〈λ′,b 〉=0

Gm .

One deduces that the elements of ∆ orthogonal to λ′ constitute a root basis for the
connected semisimple group D(ZG (T ′)) (with its split maximal torus S ). Hence, X∗(S )
is spanned by the coroots, soD(ZG (T ′)) is simply connected. �

The point is that we’re building things inside a torus T via intersection, and the struc-
ture of a k -subgroup of T can be probed with cocharacters of T . This situation cannot
be similarly probed by characters, which is informally the reason that the proof does
not adapt to the opposite extreme in which the property of being simply connected is
replaced with the property of having trivial center (and we know it really cannot adapt
to that property, due to Remark 9.5.12).

Remark 9.5.13. We say that a connected reductive group G over a field k is of adjoint
type when ZG = 1. The reason for the terminology is that the inclusion ZG ⊂ kerAdG is
an equality of group schemes for any connected reductive k -group G .
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This is easy to prove in characteristic 0 using the faithfulness of the Lie-algebra func-
tor for connected algebraic groups in characteristic 0 (and Cartier’s theorem on the
smoothness of algebraic groups over fields of characteristic 0). But in characteristic
p > 0 this equality of group schemes is rather specific to the reductive case: there
are smooth non-commutative 2-dimensional unipotent groups in characteristic p with
trivial adjoint representation! These matters are discussed fully in the handout on the
adjoint kernel.

The hard part of the proof that ZG = kerAdG is to show that the conjugation action
on kerAdG by a maximal torus is trivial. That would imply kerAdG is contained in the
schematic centralizer of T , but ZG (T ) = T and the kernel of AdG |T is easily described
in terms of roots by the very definition of roots.

9.6. Dynkin diagrams.

Definition 9.6.1. Let (V ,Φ) be a reduced root system with root basis ∆. The Dynkin
diagram of Φ is an “oriented weighted graph” (some edges having multiplicity and di-
rection):

• the vertex set is∆,
• an edge joins distinct a , b ∈∆precisely when 〈a , b ∨〉 6= 0 (equivalently, 〈b , a∨〉 6=

0; i.e. a and b are not orthogonal),
• if an edge joins a and b (so by non-orthogonality they lie in the same irreducible

component and hence have an intrinsic ratio between their lengths), and we re-
label so that ||a ||< ||b || in case of distinct root lengths, then the edge multiplicity
is

〈b , a∨〉
〈a , b ∨〉

=
||b ||2

||a ||2
∈ {1, 2, 3},

with the direction pointing towards the shorter root when there are distinct root
lengths.

Example 9.6.2. The Dynkin diagrams for A2, B2, and G2 are depicted below.
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Remark 9.6.3. The ratio of squared root lengths as above is the number of times a can
be added to b to obtain another root, as is apparent in the figures above.

For distinct a , b ∈∆we have

〈a , b ∨〉= 2
||a ||
||b ||

cos(Ý(a , b ))

(vanishing precisely when a and b are not adjacent vertices). If a and b are adjacent
then (Za +Zb )∩Φ is a reduced rank-2 root system with root basis {a , b } consisting of
non-orthogonal roots, so this rank-2 root system is irreducible. Indeed, if it would be
reducible then there are two irreducible components each of rank 1, giving a root basis
consisting of two orthogonal roots, yet all root bases are “created equal” through the
action of the Weyl group, so they cannot consist of orthogonal roots since {a , b } is a
root basis.

By Euclidean plane geometry, the reduced and irreducible root systems of rank 2 are
completely determined in [Bou, VI, §3]. From inspection of the possibilities we see for
non-orthogonal a , b ∈∆ that

Ý(a , b ) =π−
π

ma ,b
=







2π/3 · − ·
3π/4 · ⇒ ·
5π/6 ·Ö ·

where ma ,b is the order of ra rb . Thus, Dyn(Φ) encodes the Coxeter and Cartan matrices,
so it determines (V ,Φ) up to isomorphism by Proposition 9.5.8.

The Coxeter matrix determines the presentation for W (Φ) as a finite Coxeter group.
These are classified in [Bou, VI, §4.1] when Dyn(Φ) is connected (permitting inductive
arguments with subdiagrams for making a determination of all possibilities). By Eu-
clidean geometry [Bou, VI, §4.2] finds a list containing all possibilities for connected
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Dyn(Φ).

One can directly construct all of these root systems inside suitable Rn ’s [Bou, VI, §4.4-
4.14] (determining much related information along the way, such as the fundamental
weights, the structure of P /Q , etc.), so all of these possibilities really occur.

In Proposition 9.6.6 we will prove the crucial fact that Dyn(Φ) is connected whenever
the reduced root system Φ is irreducible (the converse is obvious: if Φ is a direct sum
of non-empty root systems Φ′ and Φ′′ then by orthogonality considerations we see that
Dyn(Φ) is the disjoint union of Dyn(Φ′) and Dyn(Φ′′). Hence, the above is a list of all
reduced irreducible root systems (up to isomorphism; note that B2 =C2).

In the handout on classical groups, it is worked out that the root systems of types A,
B, C, and D arise from specific split classical groups: SLn+1 is type An (n ≥ 1), SO2n+1

is type Bn (n ≥ 2), Sp2n is type Cn (n ≥ 2), and SO2n is type Dn (n ≥ 3). The equality of
root systems B2 =C2 corresponds to a low-rank isomorphism Sp4 /µ2 ' SO5 explained
in linear algebraic terms in [C1, Ex. C.6.5].
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Convenient low-rank conventions for some special diagram names are inspired by
isomorphisms or central isogenies among low-rank members of the classical families
(and also reasonable in terms of the pictures of the graphs). See [C1, Ex. C.6.2, C.6.3,
C.6.5] for justification of the following isomorphism or central isogeny claims via calcu-
lations with Z-groups (to make characteristic-free arguments„ especially to avoid spe-
cial treatment of characteristic 2):

• define B1 to be A1 because PGL2 ' SO3 through “PGL2-conjugation” on the
3-dimensional space sl2 = glTr=0

2 leaving invariant the determinant as a non-
degenerate split quadratic form in 3 variables;
• define C1 to be A1 because Sp2 = SL2 (determinant on the space Mat2 is a sym-

plectic form in the ordered pair of columns in k 2);
• define D2 to be A1 ×A1 because the action of SL2×SL2 on the 4-dimensional

space Mat2 through left and right multiplication (i.e., (g , g ′)M = g M g ′−1) visi-
bly leaves invariant the non-degenerate split quadratic form det : Mat2→ k in 4
variables, thereby defining a homomorphism SL2×SL2 → SO(Mat2, det) = SO4

that is the quotient by the central diagonally embedded µ2;
• define D3 to be A3 because by definition of the determinant in terms of top ex-

terior powers, the natural action of SL4 on the 6-dimensional V =∧2(k 4) leaves
invariant the natural non-degenerate split quadratic form V →∧4(k 4) defined
by q (v ) = v ∧ v , yielding a homomorphism SL4→O0

6 = SO6 that is the quotient
by the central µ2.

The non-reduced irreducible root systems should not be overlooked! To describe
the possibilities, we first need to record a few facts concerning reduced root systems.
A reduced irreducible root system such that (i) some ratio of squared root lengths is
equal to 2 and (ii) all roots of some length are pairwise orthogonal (ruling out F4, whose
diagram has a pair of adjacent short roots and a pair of adjacent long roots) must be
either Bn and Cn for some n ≥ 1, and these types do satisfy both conditions (using
inspection of the construction to verify (ii)). Moreover, an inspection of the Plates at
the end of [Bou] shows the curious fact that the root systems Cn (n ≥ 1, where C1 means
A1) are precisely the reduced irreducible root systems for which there is a root that is
non-trivially divisible inside P : its long roots are twice primitive vectors in the weight
lattice P .

Feeding this information into [Bou, VI, §1.4, Prop. 13, Prop. 14], which relates non-
reduced root systems to reduced root systems (using the non-divisible roots, or the
non-multipliable roots), it follows that for each n ≥ 1 up to isomorphism there is exactly
one rank-n non-reduced irreducible root system: it is “Bn ∪C′′n where the long roots of
Bn are the short roots of Cn and double the short roots of Bn are the long roots of Cn ,
so it is denoted BCn .

The elementary divisors of the Cartan matrix describe the group structure of P /Q ,
and this group is the Cartier dual of ZG for split connected semisimple G in the simply
connected case with an irreducible (and reduced) root system. Let us elaborate on this
to explicitly describe ZG in each such case (granting the Existence and Isomorphism
Theorems). Consider the parametrization of a split maximal torus T via cocharacters
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given by the coroots associated to a root basis:

∏

a∈∆∨
Gm ' T ⊃ ZG

(ya ) 7→
∏

a∨(ya ).

How do we describe ZG ⊂ T in terms of such a cocharacter parameterization? Let’s first
work out the type-A case via matrices, and then turn to the unified approach through
the structure of P /Q = (Z∆∨)∗/(Z∆) (as tabulated in Plates I through IX at the end of
[Bou]).

Example 9.6.4. Consider G = SLn (n ≥ 2) with split diagonal torus T . This is type
An−1, with P /Q cyclic of order n (dually ZG = µn , as we know). Let’s use ∆ corre-
sponding to the positive system of roots associated to the upper triangular Borel sub-
group B ⊃ T , so ∆∨ consists of the cocharacters a∨i = e ∗i − e ∗i+1 : Gm → T given by
y 7→ diag(1, . . . , 1, y , 1/y , 1, . . . , 1)with y in the i i -entry.

We have ZG =µn as scalar matrices:









ζ
ζ

...
ζ









,→ (Gn
m )

det=1.

But these n matrix entries certainly aren’t the coroot coordinates (there are n − 1 ele-
ments of∆∨ since this is type An−1).

The point

(ζ,ζ2, . . . ,ζ(n−1)) ∈G∆
∨

m ,

is the coroot coordinatization of a∨1 (ζ
1)a∨2 (ζ

2) . . .= diag(ζ, . . . ,ζ) ∈ T for ζ ∈µn . The way
we illustrate this coordinatization of ZG via the Dynkin diagram is:

For the additional classical types and exceptional cases E6 and E7 the centers are
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described as follows:

For E8, F4, and G2 the root lattice and weight lattice coincide, so the center is trivial (i.e.,
the simply connected group with each of these root systems is also of adjoint type).

Remark 9.6.5. The strongest formulation of the Isomorphism Theorem gives an in-
terpretation of diagram automorphisms: these are the automorphisms of the triple
(G , B , T ) when G is simply connected, and the group of such automorphisms maps
isomorphically onto Autk (G )/(G /ZG )(k ). In particular, as automorphisms these do not
arise from the group G /ZG of “geometrically inner” automorphisms.

For example, the evident involution of the An−1-diagram (n ≥ 2) has the effect of in-
version on the coroot parameterization of the center µn , so an automorphism of SLn

inducing this could not arise from inner automorphisms when n ≥ 3 (as inner automor-
phisms are always trivial on the center!). In contrast, Autk (SL2) = PGL2(k ) = (SL2 /µ2)(k ),
so all automorphisms of SL2 are geometrically inner.

Likewise, the involutions of the E6-diagram (with center µ3) and the Dn -diagram
(with center µ4 or µ2×µ2, depending on the parity of n) for n 6= 4, as well as any non-
trivial diagram automorphism in the “triality” case D4, are nontrivial on the coroot pa-
rameterizations of their centers by inspection in each case.

We now take care of a loose end in our preceding discussion of the classification of
reduced root systems, showing that connectedness of the diagram encodes irreducibil-
ity of the root system.

Proposition 9.6.6. Assume that Φ is reduced. Then Dyn(Φ) is connected if and only if Φ is
irreducible.

Proof. IfΦ is reducible then Dyn(Φ) is obviously disconnected. The converse is the hard
part. Choose a root basis∆ for Φ+. Suppose Dyn(Φ) is disconnected; then we can par-
tition ∆ =

⊔

∆i via connected components (so each ∆i is non-empty and there are at
least two i ’s). We have

QΦ=
⊕

a∈∆
Qa =

⊕

Vi where Vi =
⊕

a∈∆i

Qa .



94 LECTURES BY BRIAN CONRAD, NOTES BY TONY FENG

Let Φi = Φ∩ (Z∆i ) ⊃ ∆i . Each (Vi ,Φi ) is a root system, by inspection of the reflection
formula

ra (b ) = b −〈b , a∨〉a
with 〈b , a∨〉 ∈ Z. Also, the roots in∆i are orthogonal to those in∆ j for any j 6= i by the
meaning of edges (or lack thereof!) in the diagram. Clearly∆i is a root basis of Φi , so it
defines a positive system of roots Φ+i . We have

⊔

Φ+i ⊂ Φ
+, and will show that equality

occurs, so taking into account negation would give that Φ is the direct sum of the Φi ’s,
contradicting the assumption that Φ is irreducible.

So we assume that there exists a ∈ Φ+ not in any Φ+i and seek a contradiction. Cer-
tainly a /∈ ∆, so we can write a = a ′ + a ′′ for a ′, a ′′ ∈ Φ+ (Proposition 9.5.7). Choose
such an a with minimal total sum of ∆-coordinates. By this minimality we must have
a ′ ∈Φ+i and a ′′ ∈Φ+j for some i , j , and necessarily i 6= j (or else a would be inΦ+i ). Then

Φ 3 ra ′′ (a ) = a −〈a , (a ′′)∨〉a ′′ = a ′+a ′′−〈a ′+a ′′, (a ′′)∨〉a ′′.

Since a ′ and a ′′ are in distinct components we have 〈a ′, (a ′′)∨〉= 0. Thus,

Φ 3 ra ′′ (a ) = a ′+a ′′−〈a ′′, (a ′′)∨〉a ′′ = a ′−a ′′,

so we have found a root whose∆-coordinates of are mixed signs (a positive coordinate
along∆i , and a negative coordinate along∆ j ), an absurdity. �

10. STRUCTURE OF REDUCTIVE GROUPS II

10.1. Central isogeny decomposition. As an application of the theory of root systems,
we are ready to prove Theorem 8.2.5, reproduced below.

Theorem 10.1.1. Let G be a connected semisimple k -group G , and {Gi } its set of min-
imal non-trivial smooth connected normal k -subgroups (all semisimple by normality,
since for any smooth connected normal k -subgroup N ⊂G the solvable radical of Nk is

stable under all G (k )-conjugations and hence is contained inRu (Gk ) = 1). The following
hold:

(1) the set {Gi } is finite and these pairwise commute, with the multiplication homo-
morphism

∏

Gi →G a central k -isogeny;
(2) each Gi is k -simple;
(3) the smooth connected normal k -subgroups of G are exactly

NJ = 〈Gi 〉i∈J

for subsets J ⊂ I . Moreover, NJ ⊂NJ ′ if and only if J ⊂ J ′ (so Gi ⊂NJ if and only
if i ∈ J ).

To provide more motivation, first we shall deduce two striking corollaries and then
we will take up the proof of the theorem.

Corollary 10.1.2. Let G be a connected reductive group over a field k , and let N be a
smooth connected normal k -subgroup of G .

(i) If N ′ is a smooth connected normal k -subgroup of N then N ′ is normal in G .
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(ii) If G is semisimple then there is a unique smooth connected normal k -subgroup
N ⊂G commuting with N such that the natural homomorphism N ×N →G
is an isogeny (in fact, it is a central isogeny).

Proof. First consider connected semisimple G . By Theorem 8.2.5, we have N = 〈Gi 〉i∈J

for a unique subset J ⊂ I . The multiplication map
∏

i∈J Gi → N is surjective and it
has finite central kernel since even

∏

i∈I Gi → G has finite central kernel. In particu-
lar,

∑

i∈J dimGi = dim N . The Gi ’s for i ∈ J are certainly minimal nontrivial smooth
connected normal k -subgroups of N (as they are minimal as such in G ), and Theo-
rem 8.2.5 applied to N implies by dimension considerations that there are no others.
Hence, {Gi }i∈J is the output of Theorem 8.2.5 applied to N .

In the setting of (i) for semisimple G , we can apply the same conclusion with N ′ in
the role of N and with N in the role of G , so N ′ must be generated by Gi ’s for i varying
through some subset of J . This implies that N ′ is normal in G , so (i) is proved when G
is semisimple.

In general, if G is reductive then G is a central isogenous quotient of its maximal cen-
tral k -torus Z and its semisimple derived group D (G ). Likewise, N inherits reductivity
from G (as we may check over k ), so it is a central isogenous quotient of its maximal
central k -torus S and its semisimple derived group D (N ). By normality of N in G and
the compatibility of the formation of S with respect to any extension of the ground field
it follows that the torus S inherits normality in G from that of N . Thus, the torus S must
be central in G (as G is connected), so S ⊂ Z . Likewise N ′ is a commuting quotient of
its maximal central torus S ′ that must be contained in S (so S ′ ⊂ Z ) and its semisim-
ple derived group D (N ′). Since D (N ) is normal in D (G ) (due to normality of N in G )
and D (N ′) is likewise normal in D (N ), the settled semisimple case implies that D (N ′)
is normal in D (G ). But G = Z ·D (G ) with Z central, and S ′ ⊂ Z , so N ′ = S ′D (N ′) is
normal in G as desired. This proves (i) in general.

In the setting of (ii), our description of the possibilities for N applies to any possibility
for N , so it follows that the only possibility for N is 〈Gi 〉i∈I−J and this clearly does work
(and gives a central isogeny since

∏

i∈I Gi →G is a central isogeny). This proves (ii). �

For connected semisimple G , the k -subgroups Gi ⊂G are called the k -simple factors
of G . In general these are not direct factors, but in two important cases they are:

Corollary 10.1.3. If G is connected semisimple then the central isogeny f :
∏

Gi →G is
an isomorphism if G is either simply connected or of adjoint type (in which case each Gi

inherits the same property).

Proof. If G is simply connected then we know that there is no nontrivial central isogeny
onto G from another connected semisimple group. This settles the simply connected
case.

Suppose instead that ZG = 1. To prove f is an isomorphism, by the centrality of ker f
note that ker f ⊂

∏

ZGi
. Hence, to prove ker f = 1 (so f is an isomorphism) it suffices

to directly prove that ZGi
= 1 for each i . But Gi commutes with G j for all j 6= i , so ZGi

commutes with G j for all j . The faithful flatness of
∏

j∈I G j →G then implies that ZGi

centralizes G , so ZGi
⊂ ZG = 1 as desired. �
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Remark 10.1.4. The significance of Corollary 10.1.3 is addressed in the handout on sim-
ple isogeny factors: in both the simply connected and adjoint-type cases, to each class
of which a general connected semisimple k -group is canonically related via a central
k -isogeny, the group G admits an isomorphism to Rk ′/k (G ′) for a canonically associated
pair (k ′/k ,G ′) consisting of a finite étale k -algebra k ′ and a smooth affine k ′-group G ′

whose fiber G ′i over each factor field k ′ of k is a connected semisimple ki -group that is
absolutely simple.

This explains the essential role of the absolutely simple case (over finite separable
extensions of k ) in the study of general connected semisimple groups over k . More
specifically, constructions as in Example 8.1.5 (but without the split hypothesis im-
posed there) are more ubiquitous than one might have initially expected.

10.2. Proof of Theorem 8.2.5. The general case can be deduced from the split case;
this is explained in the handout on simple isogeny factors via arguments with Galois
descent. Here we will focus on the split case, so suppose G admits a split maximal k -
torus T ⊂G . The key tool in the proof is the irreducible decomposition of root systems.

The idea is to build the Gi ’s directly from the irreducible components Φi of Φ(G , T ),
and they will be k -split with root system Φi . Thus, the k -simplicity of each Gi will re-
duce to proving the general fact that when Φ is irreducible then G is k -simple (and so
absolutely simple, since Φ never changes under field extension in the split case). Such
k -simplicity will ultimately rest on a nontrivial fact in the theory of root systems: if (V ,Φ)
is an irreducible root system then W (Φ) acts irreducibly (even absolutely irreducibly)
on V .

Let Φ=Φ(G , T ), and V = XQ for X = X(T ), so V is spanned by Φ (as G is semisimple).
Let ∆ be the base for a positive system of roots Φ+ ⊂ Φ, and consider the irreducible
decomposition

(V ,Φ) =
⊕

i∈I

(Vi ,Φi ),

under which∆ decomposes as
∐

∆i for a base∆i of Φ+i =Φi ∩Φ+.
We want to define Gi = 〈Ua 〉a∈Φi

. The problem is that it is hard to prove much using
this definition, so we’re going to take a different approach, using torus centralizers and
various commutators instead. Informally, we want

∏

Gi → G to be a central isogeny,
so we know that the tori should match up:

∏

Gi

��

⊃
∏

Ti

����
G ⊃ T

We’ll first build the Ti ’s and define Gi =D(ZG (T ′i ))where T ′i = 〈Tj 〉 j 6=i .
One could try to define these tori Ti ⊂ T using quotients of X , but this leads to

confusion because the character lattice is contravariant (and may lead to some mild
headaches since X /

∑

j 6=i ZΨ j may have nonzero torsion. Hence, it is more useful to
use cocharacters, so we’ll build Ti ⊂ T using coroots for Φi .
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Consider the isogeny

G∆m → T

(ya ) 7→
∏

a∨(ya )

Letting Ti = Im (G∆i
m → T ), we have a factorization

G∆m �
∏

Ti � T

of an isogeny into a composition of surjections, so the second map
∏

Ti → T induced
by multiplication must be an isogeny, with X∗(Ti )Q =Q∆∨i =QΦ∨i .

Define T ′i = 〈Tj 〉 j 6=i ⊂ T , so
T ′i ×Ti → T

is an isogeny. Set Gi = D(ZG (T ′i )). It is not yet clear that Ti ⊂ Gi , nor that T ′i is the
maximal central torus in ZG (T ′i ) (in general, a torus need not be the maximal torus in
its centralizer: this fails for the centralizer of a maximal split torus in any quasi-split
group that is not split).

The roots of Gi = D(ZG (T ′i )) relative to its split maximal torus intersection with T
are the same as the T -roots of ZG (T ′i ). (Note that Gi is normalized by T , since it is a
characteristic subgroup of ZG (Ti ) ⊃ T .) The T -roots for ZG (T ′i ) are the T -roots for G
that are trivial on T ′i = 〈Tj 〉 j 6=, so the T -roots for ZG (T ′i ) are exactly the roots a ∈Φ such
that 〈a , b ∨〉= 0 for all b ∈

∐

j 6=i Φ j . Via the decomposition XQ = X(T ′i )Q⊕X(Ti )Q we have
shows that Φi ⊂ X(Ti )Q, so X(Ti )Q ⊃QΦi = Vi . Passing to the direct sum over all i yields
an equality, so X(Ti )Q =Vi inside XQ =V .

It is clear from the irreducible decomposition that the set of such a is exactly Φi .
Hence, the T -root groups for ZG (Ti ) are the Ua ’s for a ∈Φi (in view of the unique char-
acterization for root groups, those of ZG (Ti ) and G for a common T -root must coin-
cide). Thus, the split derived group Gi is generated by the Ua ’s for a ∈ Φi , and its asso-
ciated coroots must coincide with those for (G , T ) relative to a (as each is determined
by 〈Ua ,U−a 〉 and its intersection with T ). It follows that Gi contains 〈a∨(Gm )〉a∈Φi

= Ti ,
and as such Ti must be a split maximal torus of Gi . By dimension reasons with tori, it
follows that T ′i must exhaust the maximal central torus in ZG (T ′i ).

Lemma 10.2.1. If i 6= j then Gi commutes with G j .

Proof. It is enough to show that [Ua ,Ub ] = 1 for a ∈Φi and b ∈Φ j . We can pick Φ+ such
that a ∈Φ+i and b ∈Φ+j . Then

(Ua ,Ub )⊂
∏

c∈(a ,b )

Uc

where (a , b ) =Φ∩ (Z>0a +Z>0b ) = ; because Φ=
∐

Φi ⊂
⊕

Vi . �

This shows that we have a multiplication homomorphism
∏

Gi

f
����

⊃
∏

Ti

����
G ⊃ T
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so (ker fk )
0
red has no non-trivial torus, hence is trivial (because it is normal in a reductive

group). Therefore, ker f is finite; i.e. f is an isogeny.

Lemma 10.2.2. The subgroup scheme ker f ⊂
∏

Gi is central.

Proof. For a k -algebra R , consider (g i ) ∈ (ker f )(R ) so g −1
i =

∏

j 6=i g j inside G (R ). Then
g i commutes with (Gi )R (as each (G j )R does) and also with (G j )R for all j 6= i , so by the
faithful flatness of

∏

i ′∈I Gi ′�G , we have g i ∈ ZG (R ). �

It remains to show:

Proposition 10.2.3. We have:

(1) each Gi is k -simple (even absolutely simple),
(2) each smooth connected N /G is of the form 〈Gi 〉i∈J for J = {i ∈ I |Gi ⊂N }, and

N ∩Gi is finite for all i /∈ J .

Remark 10.2.4. The second part implies that the Gi are the minimal nontrivial smooth
connected normal k -subgroups (as we wanted them to be). This finally provides a de-
scription of the Gi that doesn’t mention T !

Proof. Let’s first show that (1) =⇒ (2). Choose N ⊂G as in (2), with N 6= 1 without loss
of generality. It suffices to show that some Gi ⊂N , since we can then induct, by passing
to the quotient G /Gi .N /Gi with minimal normal subgroups G j :=G j /G j ∩Gi (central
isogenous quotients of G j , hence with the same root system as G j relative to the image
of Tj ). The main point, left to the reader to check by going back to the definitions, is

that Φ(G /Gi , T /Ti ) =
∐

j 6=i Φ j and that {G j } j 6=i is the output of our main construction
applied to G /Gi relative to its split maximal k -torus T /Ti .

Now we find some Gi contained in N , granting (1). Certainly N is not central in G
since ZG is finite and the smooth connected N is nontrivial, so there exists some Gi0

which doesn’t commute with N . Consider [Gi0
, N ], which is non-trivial by assumption.

It is a smooth connected normal subgroup of G , and it is contained in both N and Gi0

by the normality of each in G . By (1), the containment [N ,Gi0
] ⊆ Gi0

is therefore an
equality, so Gi0

= [N ,Gi0
]⊂N .

It remains to show (1). Renaming Gi as G , we reduce to the following lemma. �

Lemma 10.2.5. If Φ is irreducible then G is absolutely simple over k .

Proof. Without loss of generality assume k = k . Consider N /G a nontrivial smooth
connected normal k -subgroup. Note that R(N ) is solvable connected normal in G ,
which is connected semisimple, soR(N ) = 1; i.e. N is also semisimple.

The goal is to show that N =G . We’ll do this by showing that a maximal torus for N is
one for G as well. This will conclude the proof, because then the maximal torus image
of T in the connected semisimple group G /N is trivial, forcing G /N = 1; i.e., N =G .

Pick a maximal torus S ⊂N (so S 6= 1, since N 6= 1) and extend it to a maximal torus
T ⊂ G ; note that S ⊂ T ∩N ⊂ ZS (N ) = S so T ∩N = S . Thus, NG (T )(k )-conjugation
preserves T ∩N = S , and so NG (T )(k ) naturally acts on X(S ). The quotient map

X(T )Q� X(S )Q 6= 0.
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is clearly equivariant for the natural action of W (G , T ) =W (Φ) on X(T )Q. But as a rep-
resentation space for W (Φ), we know that X(T )Q is (absolutely) irreducible since Φ is
irreducible (Proposition 9.1.5), so this forces S = T . �

10.3. Bruhat decomposition. Let G be a connected reductive group over k , S ⊂ G a
maximal split k -torus, and P ⊂ G a minimal parabolic k -subgroup such that S ⊂ P .
Then N :=NG (S ) ⊃ ZG (S ) =: Z and P = Z nU for U =Ru ,k (P ), which is k -split (as the
smooth connected unipotent k -groups UG (λ) built by the dynamic method for smooth
connected affine G and nontrivial cocharacters λ are always k -split). We consider the
relative Weyl group k W :=N (k )/Z (k ) that is always a finite group (being contained in
(N /Z )(k )with N /Z a finite type k -subgroup of the étale automorphism scheme of S ).

We want to show:

Theorem 10.3.1 (Relative Bruhat decomposition). We have that

(1) the natural map k W → P (k )\G (k )/P (k ) is bijective,
(2) the finite k -group N /Z is constant and the natural map N (k )/Z (k )→ (N /Z )(k )

is bijective.

Remark 10.3.2. The relative Bruhat decomposition is not a “geometric” result: this
equality at the level of rational points does not correspond to a stratification of G except
in the split case. However, we make the following remarks.

(i) In (1) one has the stronger disjointness property that the locally closed subva-
rieties {P nw P }w∈k W inside G are pairwise disjoint; this is proved in §3 of the
handout on the relative Bruhat decomposition.

(ii) The constancy of N /Z in (2) is easy: this finite type k -group scheme is a k -
subgroup of the étale (locally finite type) automorphism scheme AutS/k that is
constant since S is split (it is represented by GLn (Z) if S 'Gn

m ).
But the equality in (2) is less clear. The proof uses that NG (S )∩P = ZG (S ) to

show that N (k )/Z (k ) and (N /Z )(k ) compatibly act simply transitively on the set
of minimal parabolic k -subgroups of G containing S . (Note the analogy with
our proof of such an equality in the split case, though at present we have not yet
proved that Φ(G ,S ) is a root system inside its Q-span in X(S )Q.) This argument
is given in §4 of the handout on the relative Bruhat decomposition.

(iii) In the split case (2) is immediate from Hilbert 90 (since Z is a split torus in
such cases), but its validity beyond the split case is remarkable because often
H1(k , Z ) 6= 1 when G is not split. Examples with non-split quasi-split G (so Z
even a torus), including some absolutely simple cases, are given in §5–§7 of the
handout on the relative Bruhat decomposition.

The proof of the Bruhat decomposition in the general case involves passage to prob-
lems over k that are solved using the Bruhat decomposition over k (with Borel sub-
group). Hence, we’ll treat the split case first (aside from some gritty group-theoretic
calculations that are presented in full in the handout on the geometric Bruhat decom-
position), and then turn to the general case.
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Proof of split case. Now assume that S is a maximal k -torus of G , so we denote it as T .
Let Φ = Φ(G , T ) and W := W (Φ) = N (k )/Z (k ). For w ∈ W , let nw ∈ N (k ) be a repre-
sentative (the choice of which will be easily seen not to matter in what follows). Let
Φ+ = Φ(B , T ), and let ∆ be the corresponding root basis. We need to show that the
B (k )-double cosets B (k )nw B (k ) for w ∈W (which clearly do not depend on the choice
of nw ) form a pairwise disjoint cover of G (k ). Note that for disjointness it is enough to
check over k .

Define C (w ) = B nw B , the B×B -orbit of nw in G under the action (b , b ′).g = b g b ′−1,
so C (w ) is naturally a smooth locally closed subvariety of G . We call C (w ) the Bruhat
cell for w . It suffices to prove:

(i) the C (w )’s are pairwise disjoint (as locally closed subschemes of G ),
(ii) the subschemes C (w ) cover G (which is sufficient to check on k -points, as each

C (w ) is locally closed), so G (k ) is the disjoint union of its subsets {C (w )(k )}w∈W ,
(iii) the natural inclusion B (k )nw B (k )⊂C (w )(k ) is an equality.

We first dispose of (iii) using the product structure of open cells for G relative to
the borus (B , T ). The point is to remove as much of the redundancy as possible in the
description of points in B n B by moving parts of the left B into the right one. Recall that

B = T nU

for U :=Ru ,k (B ) =
∏

a∈Φ+Ua , with multiplication of the positive root groups taken in
any order (Theorem 5.3.6). Since nw normalizes T , we have.

B (k )nw B (k ) =U (k )nw B (k )

Next observe that Ua nw = nw Uw−1(a ) for any a ∈ Φ, so if w−1(a ) is positive then we can
move it across as well. This motivates us to define

Φ+w = {a ∈Φ
+ |w−1(a ) ∈Φ+}

Φ′w = {a ∈Φ
+ |w−1(a ) ∈−Φ+}

(We writeΦ′w rather thanΦ−w to avoid notational confusion: one can make the analogue
of Φ+w for Φ− := −Φ+ in place of Φ+, but this does not agree with Φ′w .) These are closed
subsets ofΦ+, so by Theorem 5.3.6 we have smooth connected k -subgroups UΦ′w ,UΦ+w ⊂
U that are respectively directly spanned (in any order) by the root groups for Φ′w ,Φ+w .

Clearly we have U =UΦ′w ×UΦ+w via multiplication, so

B (k )nw B (k ) =UΦ′w (k )nw B (k ).

This has all redundancy removed, by applying the following proposition on k -points.

Proposition 10.3.3. The multiplication map

UΦ′w nw ×B →C (w )

is an isomorphism of k -schemes.

This implies that C (w )/B 'UΦ′w nw ' A
#Φ′w
k is an affine space, so the Bruhat decom-

position thereby provides a covering of G /B by affine spaces. A result in the theory of
root systems (see Remark 1.1 in the handout on the geometric Bruhat decomposition
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for the Bourbaki reference) gives that #Φ′w coincides with the minimal length `(w ) of w
as a word in the generating set {ra }a∈∆ of the Coxeter group W .

Proof. Running the preceding calculation on k -points with k in place of k gives an
equality

C (w ) = B nw B =UΦ′w nw B

of smooth locally closed subschemes of G (as such an equality holds if it does on k -
points), so it suffices to show that the multiplication morphism

UΦ′w nw ×B →G

(whose image is C (w )) is a locally closed immersion.
It is harmless to first apply left multiplication by n−1

w , which turns this into the mul-
tiplication map

Uw−1(Φ′w )×B
mult−−→G .

Since w−1(Φ′w )⊂−Φ
+, this is subsumed by the direct product structure of the open cell:

Uw−1Φ′w ×B
� _

��

//

��

G

U−Φ+ ×T nUΦ+ // G

with the bottom side an open immersion and the left side a closed immersion. �

Using Proposition 10.3.3, to complete the proof of the Bruhat decomposition in the
split case it remains to prove that the C (w )’s are pairwise disjoint and cover G at the
level of k -points. Hence, we may and do now assume k = k . We give some highlights,
and refer to the handout on the geometric Bruhat decomposition for the omitted de-
tails (especially for certain intricate group-theoretic manipulations). In the following
discussion, we work throughout with k -points.

Since C (w ) and C (w ′) are B -double cosets, if they intersect non-trivially at all then
they are equal. So let’s first address why C (w ) = C (w ′) are not disjoint, then w ′ = w .
Since nw ′ ∈ C (w ′) = C (w ) =UΦ′w nw B , there exist u ∈UΦ′w and b ∈ B such that nw ′ =
unw b . Recall that B = T nU with U =UΦ′w ×UΦ+w via multiplication. It is therefore not
surprising that

UΦ+w =U ∩nw B n−1
w ,

and the relation nw = u−1nw ′b
−1 then implies

UΦ+w = u−1UΦ+
w ′

u

inside U .
The T -weights on Lie(U ) are nontrivial and linearly independent with 1-dimensional

weight spaces, so an inductive argument using the descending central series of the
nilpotent U ensures that if two smooth connected T -stable subgroups of U are conju-
gate then they are actually equal inside U (see Lemma 2.2 in the handout on the geo-
metric Bruhat decomposition). Hence, UΦ+w =UΦ+

w ′
. Comparing T -weights then gives
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Φ+w =Φ
+
w ′ inside Φ+, so Φ′w =Φ

′
w ′ by passing to complements inside Φ+. But then

w−1(Φ+) =Φ+w
∐

−Φ′w =Φ
+
w ′

∐

−Φ′w ′ =w ′
−1(Φ+),

so w ′ =w by the freeness of the W -action on the set of positive systems of roots (equiv-
alently, on the set of Weyl chambers).

Finally, we check that the inclusion
∐

C (w ) ⊂ G just established (say on k -points
with k = k ) is actually an equality. The idea is to show that

∐

C (w ) is stable under
G (k )-stable inside G , by checking this for enough subgroups of G (k ).

In the special case that the connected reductive G has rank 1 (i.e., its derived group
is SL2 or PGL2), so W has order 2 and the maximal central torus lies in every Borel sub-
group, it is an elementary calculation with SL2 that the Bruhat decomposition holds
for G . This applies in general to the rank-1 connected reductive subgroups ZG (Ta ) for
a ∈Φ+. Combining the settled rank-1 case with some clever but long group theory cal-
culations (given in the proof of Proposition 2.4 in the handout on the geometric Bruhat
decomposition) resting on

(i) root group commutation formulas,
(ii) the equality ra (Φ+−{a }) =Φ+−{a } for all a ∈∆,

one finds that ZG (Ta ) ·C (w )⊂C (w )∪C (ra w ) for all w ∈W and a ∈∆.
It follows that

⋃

w∈W C (w ) is stable under left multiplication by 〈ZG (Ta )〉a∈∆. But
this latter group coincides with 〈ZG (Ta )〉a∈Φ+ because W (∆) = Φ+ and W is generated
by the reflections {ra }a∈∆ admitting “Weyl element” representatives in D (ZG (Ta )) for
a ∈ ∆. Consideration of Lie algebras shows that the subgroups ZG (Ta ) ⊂ G for a ∈ Φ+
generate G , so we conclude that

⋃

w∈W C (w ) is stable under left multiplication by G ,
forcing this union to be equal to G . �

Having finished our discussion of the proof of the Bruhat decomposition in the split
case, before we turn to the general case we record a few consequences of wide interest
in the split case:

I. (BRUHAT STRATIFICATION) The geometrically reduced Zariski closure C (w ) is B×B -
stable (check on geometric points), so this closure is a union of Bruhat cells (as we may
check on geometric points, using the Bruhat decomposition!). Thus, {C (w )}w∈W is a
stratification of G , and likewise for the affine spaces C (w )/B inside G /B .

The Bruhat cells C (w ′) appearing in the closure of C (w ) are described by the “Bruhat
order” on W (with respect to {ra }a∈∆, where ∆ is the root basis for Φ+ = Φ(B , T )). Re-
mark 1.2 in the handout on the geometric Bruhat decomposition provides further dis-
cussion of this and relevant literature references (in [Bou] and [Spr]).

II. (KNESER–TITS PROPERTY) Suppose G is connected semisimple, split, and sim-
ply connected. The k -group isomorphism G∆m ' T defined by (ya ) 7→

∏

a∨(ya ) gives
T (k ) = 〈a∨(k×)〉a∈∆ upon passage to k -points. But 〈Ua ,U−a 〉 = D(ZG (Ta )) ' SL2 (not
PGL2) since we proved the derived group of any torus centralizer is a simply connected
semisimple group is always simply connected (see Corollary 9.5.11). Consequently,
a∨ : Gm →〈Ua ,U−a 〉 is identified with t 7→ diag(t , 1/t ), and the classical fact that SL2(k )
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is generated by U ±(k ) for any field k implies that Ua (k ) and U−a (k ) generate the group
D (ZG (Ta )) that contains a∨(k×). Hence, it follows that T (k )⊂ 〈Ua (k )〉a∈Φ.

It now follows from the Bruhat decomposition and the equality B (k ) = T (k )U (k )with
U =

∏

a∈Φ+Ua via multiplication in any fixed ordering of Φ+ that G (k ) is generated by
the subgroups Ua (k ) for a ∈ Φ and a choice of representative nw for each w ∈W . But
W is generated by the ra ’s for a ∈∆, so we can take such nw ’s to be words in choices of
representatives for these ra ’s. By design we can pick the representative for ra to corre-
spond to the standard Weyl element in SL2(k ) via an identification of SL2 with the group
D (ZG (Ta )) whose k -points are generated by Ua (k ) and U−a (k ). That is, we can choose
the nra

∈ 〈Ua (k ),U−a (k )〉 for each a ∈∆. Summarizing we have proved:

Theorem 10.3.4 (Chevalley). For split simply connected G , as above, G (k ) = 〈Ua (k )〉a∈Φ.

It follows that G (k ) coincides with its subgroup G (k )+ generated by the subgroups
Ru ,k (B )(k ) for B varying through all Borel k -subgroups B ⊂ G (or even just two such
B ’s, namely one Borel and its “opposite” relative to a fixed split maximal torus in the
initial choice of Borel k -subgroup). This latter property makes sense to contemplate
more widely for possibly non-split simply connected groups over fields, using minimal
parabolic k -subgroups. The equality of G (k ) and G (k )+ is the Kneser–Tits Conjecture,
which we address more fully in §3 of the handout on Tits systems.

III. (TITS SYSTEMS AND SIMPLICITY RESULTS) Using the gritty group-theoretic calcula-
tions in the proof of the Bruhat decomposition, one can verify that (B (k ), N (k ),{ra }a∈∆)
is a “Tits system” (or “BN-pair”) for G (k ) (a concept that is defined and explored in the
handout on Tits systems). The interest in this is that Tits developed a uniform method
to prove essentially all known simplicity results for matrix groups (including for all fi-
nite simple groups of Lie type), based on a short list of group-theoretic axioms, and
his method is applicable whenever one has a Tits system (but determining the specific
subquotient proved to be simple via his method generally entails some additional work;
e.g., one needs to address a version of the Kneser–Tits property).

The original proofs of simplicity results for G (k )/ZG (k ) with split simply connected
and k -simple connected semisimple k -groups G used tedious case-by-case analysis,
and Tits united these results into a common formalism. The proof that G (k )/ZG (k ) is a
simple abstract group for split simply connected and k -simple connected semisimple
groups G is given in §2 of the handout on Tits systems, with the exceptions that such
simplicity fails for SL2(F2), SL2(F3)/F×3 , and Sp4(F2)' S6 (so the proofs require extra care
over fields of sizes 2 and 3 to navigate around the counterexamples). The method of
proof involves knowledge of the full classification of connected Dynkin diagrams (es-
pecially the nature of the diagrams that are not simply laced).

Let us now take up the proof of Theorem 10.3.1 in general:

Proof. We shall address (1), with (2) treated in the handout on the relative Bruhat de-
composition (see Remark 10.3.2).

First we discuss injectivity for (1). That is, given n , n ′ ∈N (k ) such that

n ′ = (p ′)−1np for some p , p ′ ∈ P (k ),
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we need to show that n−1n ′ ∈ Z (k ).
Since Z = N ∩P (Corollary 7.4.5), it is enough to show that n−1n ′ ∈ P (k ). We have

the maximal split torus S ⊂ P , and S ′ := p ′S (p ′)−1 ⊂ P is another maximal torus in P .
The idea is to establish a refined conjugacy statement for maximal split tori. Let

H = 〈S ,S ′〉 ⊂ P = Z nU .

Observe that under the projection to the connected reductive k -group Z = ZG (S ), the
subgroup S maps to a central maximal split torus, so this is the only maximal split k -
torus in S due to centrality (and the known k -rational conjugacy for maximal split k -
tori in connected reductive k -groups); this just recovers the proof that ZG (S )/S is k -
anisotropic. It follows that the k -split torus S ′ also maps into S under this projection.
Hence, H → Z has image equal to S .

Lemma 10.3.5. We have S ′ = hSh−1 for some h ∈H (k ).

Proof. We know that S ⊂H ⊂ S nU , so H = S nU ′ for U ′ =H ∩U (a smooth connected
unipotent group since it is a direct factor scheme of the smooth connected H and is
a k -subgroup of U ). In particular, S is a maximal k -torus of H (so S ′ is as well, for
dimension reasons).

By definition S ′ = p ′S (p ′)−1 with p ′ ∈ P (k ) = Z (k )nU (k ), so S ′ is U (k )-conjugate to S
(because the Z (k )-component of p ′ commutes with S , so conjugation by it doesn’t do
anything to S ).

On the other hand, S ′,S ⊂ H are maximal k -tori, so Sk and S ′
k

are conjugate under

H (k ), and hence under U ′(k ) (because conjugation by the S (k )-factor doesn’t do any-
thing to Sk ).

We have thus produced u ∈U (k ) and u ′ ∈U ′(k ) such that

uS u−1 = S ′, u ′Sk (u
′)−1 = S ′

k
.

These points of U (k ) and U ′(k ) are off by an element of NG (S )(k ), and since everything
is happening in P they are even off by something in (NG (S ) ∩ P )(k ) = ZG (S )(k ). But
ZG (S )∩U = 1 (as P = ZG (S )nU ), so u = u ′. Thus, we get an element u =U (k )∩U ′(k ) =
U ′(k )⊂H (k ) that conjugates S to S ′. �

We now return to the proof of the theorem. Thanks to the Lemma, we have

hSh−1 = S ′ = p ′S (p ′)−1

for some h ∈H (k ). Then h−1p ′ ∈N (k )∩P (k ) = Z (k ), so p ′ = h z for some z ∈ Z (k ).
Also, since n ′ normalizes S we have by the definition of S ′ and the choices of p and

p ′ that
S ′ := p ′S (p ′)−1 = p ′n ′S (n ′)−1(p ′)−1 = npSp−1n−1 ⊂ nP n−1.

which implies that H ⊂ nP n−1 (obviously S ⊂ nP n−1, since S is normalized by n and
S ⊂ P , and S ′ ⊂ nP n−1 by the preceding calculation). Thus, h = np ′′n−1 for some
p ′′ ∈ P (k ).

We may now write
np (n ′)−1 = p ′ = h z = np ′′n−1z ,
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so
P (k ) 3 (p ′′)−1p = n−1z n ′ = (n−1n ′)((n ′)−1z n ′)

with ((n ′)−1z n ′) ∈ Z (k ) ⊂ P (k ). We may finally conclude that n−1n ′ ∈ P (k ). This com-
pletes the proof that the map in Theorem 10.3.1(1) is injective.

For surjectivity, the crucial step is the following important general fact:

Theorem 10.3.6. For parabolic k -subgroups Q ,Q ′ ⊂G , the intersection Q∩Q ′ is smooth
and connected, it contains a maximal split k -torus of G .

This Theorem is remarkable even for Borel subgroups when k is algebraically closed,
and that special case will be a consequence of the Bruhat decomposition over alge-
braically closed fields (part of the settled split case). It is at this step that the proof
of the relative Bruhat decomposition uses the split case.

Proof. First assume k is algebraically closed, and consider Borel subgroups B , B ′ ⊂G ,
so B ′ = g B g −1 for some g ∈G . It is an instructive exercise using the Bruhat decompo-
sition for g relative to B (and a choice of maximal torus of B ) to prove B ∩B ′ contains
a maximal torus T ′ of G ; see the proof of Proposition 2.2 of the handout on the relative
Bruhat decomposition for this calculation. Once that is done, for any two parabolic
subgroups Q ,Q ′ ⊂ G we choose Borel subgroups B ⊂Q and B ′ ⊂Q ′ to obtain a max-
imal torus T ⊂ G contained in B and B ′, hence also contained in Q and Q ′. But then
Q = PG (λ) for some λ ∈ X∗(T ), so Q ∩Q ′ = PQ ′ (λ) as schemes, and this inherits smooth-
ness and connectedness from Q ′! That settles the case over algebraically closed fields.

Now consider general k . Since (Q ∩Q ′)k =Qk ∩Q ′
k

is k -smooth and connected by the

preceding conclusions, Q∩Q ′ is k -smooth and connected. It remains to find a maximal
split k -torus of G contained in Q ∩Q ′, and for that purpose we may pass to minimal
Q and Q ′. But the Levi decomposition ZG (S )nU for minimal parabolic k -subgroups
implies that every maximal k -torus T in such a k -subgroup automatically contains a
maximal split k -torus in G (as any such T maps isomorphically onto its maximal torus
image in the connected reductive quotient ZG (S ), so the maximal split subtorus of T
has the same dimension as S and hence is maximal in G ). Consequently, we can forget
about seeking a maximal split k -torus (a notion very sensitive to extension on k ) and
instead aim to show that the smooth connected affine group Q∩Q ′ contains a maximal
k -torus of G , or in other words that its maximal k -tori have the same dimension as
those of G . Grothendieck’s theorem on maximal tori in smooth affine groups (such as
Q ∩Q ′!) thereby reduces our task to the settled case of ground field k (over which Qk
and Q ′

k
are generally not minimal, but that doesn’t matter). �

Using Theorem 10.3.6, we now prove the surjectivity of the map in Theorem 10.3.1(1).
That is, for g ∈ G (k ) we seek n ∈ N (k ) such that n ∈ P (k )g P (k ). We apply Theorem
10.3.6 to P and g P g −1 to get a maximal split k -torus S ′ ⊂ G contained in both P and
g P g −1. Consequently, the maximal split k -tori S , S ′, g −1S ′g of G are contained in P .

We know that maximal split k -tori in a parabolic k -subgroup of a connected reduc-
tive k -group are k -rationally conjugate (Proposition 7.4.1), so there exist p1, p2 ∈ P (k )
such that

p−1
1 S ′p1 = S = p2(g

−1S ′g )p−1
2 .
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Hence, n := p−1
1 (g p−1

2 ) conjugates S into S ′ into S . It follows that n ∈ N (k ), yet clearly
n ∈ P (k )g P (k ). �

11. RELATIVE ROOT SYSTEMS AND APPLICATIONS

11.1. Goals. Let G be a connected reductive k -group and S ⊂ G a maximal split k -
torus. Let kΦ denote the setΦ(G ,S ) of non-trivial S-weights on g. We call kΦ the relative
root system of S , although we have yet to prove that it really is a root system inside its
Q-span in X(S )Q.

Remark 11.1.1. Note that

kΦ= ; ⇐⇒ ZG (S )⊂G has full Lie algebra

⇐⇒ S ⊂G central (e.g., this means S = 1 when G is semisimple),

⇐⇒ G has no proper parabolic k -subgroups.

Consequently, to keep the story interesting, we assume below that S is not central
(and the reader who dislikes that is welcome to keep track of ; and {0} in various places).
We want to:

(i) show that kΦ is a root system (possibly non-reduced) in its Q-span inside X(S )Q;

(ii) relate kΦ to the “absolute roots” Φ(Gks
, Tks
) ⊂ X(Tks

)� X(Sks
) = X(S ) for a maximal

k -torus T ⊃ S (e.g., can we relate a basis k∆⊂ kΦ to a basis∆ of Φ?);

(iii) define kΦ
∨ ⊂ X∗(S )−{0}making (X(S ), kΦ, X∗(S ), kΦ

∨) a root datum.
This is a challenge since there is no SL2-crutch! For instance, the weight spaces ga

for a ∈ kΦ can be huge. We’ll use dynamics to make root groups Ua , which can be non-
commutative for multipliable a ∈ kΦ. We preview some applications:

(1) prove Cartan’s Theorem that G (R) is connected in the analytic topology for G
a connected semisimple R-group that is simply connected in the sense of al-
gebraic groups (in contrast, PGL2m (R) is disconnected since the determinant
carries it continuously onto R×/(R×)2 = {±1}).

(2) a natural bijection

{parabolic k -subgroups⊃ S}↔{parabolic subsets of kΦ},

and more generally

{parabolic k -subgroups}/G (k )-conj.↔{subsets of k∆},

and P = Q if (and only if) P (k ) = Q (k ); i.e. parabolic k -subgroups are deter-
mined by their k -points inside G (k ) (remarkable for finite k , as we cannot use
Zariski-density),

(3) establish the Tits–Selbach classification of k -forms in the semisimple case.

Example 11.1.2. For type An−1, two classes are:
• SLd (D ) for a central division algebra D over k with dimk D = m 2 where

d m = n ,
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• SU(h ) for n-dimensional hermitian spaces (V ′, h )over quadratic Galois ex-
tensions k ′/k .

Are there more possibilities? How do we know if we have found an exhaustive
list of constructions over a given field?

11.2. Examples. We’ll first look at three classes of examples for which kΦ can be seen
directly (all details are in the handout on “Relative roots”.)

Example 11.2.1 (Weil restriction). Let k ′/k be finite separable and G ′ a connected re-
ductive group over k ′, G =Rk ′/k (G ′). The main case to keep in mind is where G ′ is split.
It is proved in §6 of the Relative Bruhat handout that we have a bijection

{maximal k ′-tori of G ′}↔{maximal k -tori of G }
T ′ 7→Rk ′/k (T

′)

from which is obtained a correspondence at the level of maximal split tori

{maximal split k ′-tori of G ′}↔{maximal split k -tori of G }
S ′ 7→ S ⊂Rk ′/k (S

′)

(with S defined to be the maximal split k -subtorus of Rk ′/k (S ′), do dimS = dimS ′).
The bijection of Lie algebras

g′ = ker(G ′(k ′[ε])→G ′(k ′)) = ker(G (k [ε])→G (k )) = g

is a k -linear isomorphism, and it is an instructive exercise to check that this is compat-
ible with Lie brackets.

Also, we have a homomorphism X(S ′) → X(S ) defined as follows. For a character
a ′ : S ′ → Gm , the Weil restriction Rk ′/k (a ′) is valued in Rk ′/k (Gm ), so its restriction to
S is valued in the maximal split k -subtorus Gm ⊂ Rk ′/k (Gm ); i.e., this restriction is a

character of S . The resulting map X(S ′)
∼−→ X(S ) defined by

a ′ 7→ (Rk ′/k (a
′)|S : S

a−→Gm ⊂Rk ′/k (Gm ))

is easily checked to be bijective (hint: reduce to the case S ′ =Gm ).

Proposition 11.2.2. The isomorphism X(S ′)' X(S ) identifies Φ(G ′,S ′)with Φ(G ,S ) under
which g′a ′ = ga for a ′ 7→ a . In particular, dimk ga = [k ′ : k ]dimk ′ g

′
a ′ (so dimk ga = [k ′ : k ]

for all a ∈Φ(G ,S ) if G ′ is split).

The large root spaces (over k ) in the preceding example are not impressive since the
root spaces are secretly 1-dimensional over an extension field.

Example 11.2.3. Let G = SLn (D ) for D a finite-dimensional central division algebra over
k . This is the algebraic group of units of reduced norm 1 in Matn (D ) =Matn (k )⊗k D .
The tensor decomposition (or more canonically the inclusion of k into the center of D )
provides a natural k -subgroup SLn ⊂G .

Letting S = (Gn
m )

det=1 be the split diagonal k -torus in SLn , we then have S ⊂ SLn (D ).
One finds that ZG (S ) is the “diagonal” subgroup

{(d1, . . . , dn ) ∈ (D ×)n |
∏

Nrd(d j ) = 1}
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whose quotient modulo S is k -anisotropic (since D ×/Gm is k -anisotropic, as D is a
central division algebra). This shows that S really is a maximal k -split torus, and it is
easy to verify that kΦ=Φ(SLn ,S ) =An−1 with ga =D as a k -group.

The preceding large root spaces might still be considered unimpressive, since the
root spaces are naturally 1-dimensional over the division algebra D .

Example 11.2.4. Let G = SU(h ) for an n-dimensional hermitian space (V ′, h ) over qua-
dratic Galois extensions k ′/k with h having its isotropic part of k ′-dimension 2q , so
anisotropic part of k ′-dimension n − 2q ≥ 0. In this case the absolute root system Φ is
of type An−1, but the system of relative roots is

kΦ=

¨

Cq n = 2q ,

BCq n > 2q .

Note in particular that the absolute and relative root systems have a rather huge differ-
ence in their ranks (especially for q near n/2).

For n = 2q , the root spaces are k ′-lines. For n > 2q , root spaces for non-multipliable
roots are k ′-lines whereas ga is a k ′-vector space of dimension n − 2q (not naturally a
line over an extension field when n > 2q +1) for multipliable a .

This completes our warm-up, and it is time to dive into setting up the general theory.

11.3. Basic properties.

Lemma 11.3.1. The subset kΦ⊂ X(S ) is stable under negation.

Proof. Pick a maximal k -torus T ⊃ S , so we can consider the restriction to S of the
adjoint action of T on g, compatible with the natural quotient map

X(Tks
)� X(Sks

) = X(S ).

This restriction carries Φ into kΦ∪{0} by coarsening the decomposition

gks
= g

Tks
ks
⊕

�

⊕

b∈Φ
(gks
)b

�

to a weight space decomposition relative to Sks
(under which some absolute root lines

are lumped together and some may fall into g
Sks
ks
= (gS )ks

). This shows that every root in

kΦ is the restriction of an absolute root.
For a ∈ kΦ, pick a ′ ∈ Φ such that a ′|Sks

= aks
. Then −a ′|Sks

= (−a )ks
, so −a ∈ kΦ since

(gks
)−a ′ 6= 0 (as −a ′ ∈Φ). �

We next seek na ∈ NG (S )(k ) whose effect on X(S )Q (necessarily preserving kΦ) is a
reflection negating a (among other desirable properties). Recall that for the absolute
root system, we found such na by explicitly computing (as SL2 or PGL2) the derived
group of the centralizer of the codimension-1 torus killed by a . We’ll adopt a similar
strategy here, but replacing the explicit computation of a derived group with a study of
proper parabolic k -subgroups.

Define
Ga = ZG (Sa )⊃ S



REDUCTIVE GROUPS OVER FIELDS 109

where Sa := (ker a )0red ⊂ S is the codimension-1 subtorus of S killed by the nontrivial
character a . Note that

Lie(Ga ) = gSa = gS ⊕

�

⊕

b∈kΦ∩Qa

gb

�

.

Where is the reflection of X(S ) negating a going to come from? Another way of de-
scribing the reflection arising in the SL2 and PGL2 cases is that it swaps the two Borels
containing the diagonal torus. We know in general that NG (S )(k )/ZG (S )(k ) acts simply
transitively on the set of minimal parabolic k -subgroups containing S (this was part of
the proof that k W = (N /Z )(k ) in the handout on Relative Bruhat Decomposition). We
shall apply this general fact to the pair (Ga ,S ) using:

Lemma 11.3.2. There exist exactly two proper parabolic k -subgroups P±a ⊂Ga contain-
ing S, with

Lie(P±a ) = gS ⊕

�

⊕

b∈kΦ∩Q>0(±a )

gb

�

.

Proof. Consider P ⊂G a proper parabolic k -subgroup containing S . Choose a maximal
k -torus T ⊂ P containing S . Since we know that the dynamic method produces all
parabolics (Theorem 6.1.1), we have P = PGa

(λ) for some λ: Gm → T over k , which
necessarily factors through S because S is maximal split:

Gm
λ //

  

T

S
?�

OO

Let S ′a 'Gm ⊂ S be an isogeny complement to Sa ⊂ S . At the level of character groups,
this induces a finite-index inclusion

X(S ) ,→ X(S ′a )⊕X(Sa ). (11.3.1)

Passing to Z-duals of (11.3.1) gives a finite-index inclusion

X∗(S
′
a )⊕X∗(Sa ) ,→ X∗(S )

Replacing λ by λn for positive n doesn’t affect PG (λ), so doing this with sufficiently di-
visible n allows us to arrange that λ ∈ X∗(S ′a ) ⊕ X∗(Sa ). But the X∗(Sa )-component of
such a cocharacter is irrelevant for the dynamic method since Sa ⊂Ga is central (so it
doesn’t affect the outcome of conjugation against λ). Hence, we may further arrange
that λ ∈ X∗(S ′a ) = Z.

Certainly λ is nonzero (as P 6= G ), so there are at most two different possibilities of
PGa
(λ) (because replacing λ with λm for any positive integer m has no effect), namely

PGa
(λ±) for λ± =±1 ∈ Z. The pairings 〈a ,λ±〉 are nonzero since λ±(Gm ) = S ′a is not killed

by a , and these have opposite signs, so the corresponding Lie algebras for PGa
(λ±) are

as expected. �
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We can now produce a “reflection in a ” inside W (G ,S )are follows. Applying to (Ga ,S )
the result from the relative Bruhat decomposition that k W acts simply transitively on
the set of minimal parabolic k -subgroups containing S , we see via Lemma 11.3.2 that
NGa
(S )(k )/ZGa

(S )(k ) has size 2. Labelling its elements as {1, ra }, we see that ra has order
2 and that for a representative na ∈NGa

(S )(k ) the effect of na -conjugation on S is trivial
on the central Sa ⊂Ga and induces inversion on the 1-dimensional quotient S/Sa 'Gm

(because it swaps Pa and P−a ). Thus, ra really is a reflection on X(S ) and its negates a .
This reflection of X(S ) in a comes from W (Ga ,S ), but we really want one coming from

W (G ,S ). Note that ZGa
(S ) = ZG (S ) since anything centralizing S certainly centralizes Sa

and hence lies in Ga , so {1, ra }=W (Ga ,S ) ,→W (G ,S ). (Later we’ll show that the group
inclusion 〈ra 〉a∈kΦ ⊂W (G ,S ) is an equality, relating algebraic groups to Coxeter groups
beyond the split case.)

To prove that kΦ is a root system in its own Q-span inside X(S )Q, it will be useful to
first describe this Q-span in a manner reminiscent of the split case. Let S0 ⊂ G be the
maximal split central k -torus, so S0 ⊂ S by maximality of S . Let S ′ = (S ∩DG )0red be the
maximal k -subtorus of S insideDG =: G ′.

Lemma 11.3.3. We have:

(1) the k -torus S ′ is a maximal split k -torus in G ′;
(2) the natural map S0 × S ′ → S is an isogeny, and the resulting equality X(S )Q =

X(S0)Q⊕X(S ′)Q puts kΦ inside X(S ′)Q;
(3) Q · kΦ= X(S ′)Q.

Example 11.3.4. Before proving this lemma, we give an example to show that S ∩DG
can be disconnected (or non-reduced), so it is really necessary to pass to (S ∩DG )0red.
The key issue is that a maximal split k -torus S is generally not its own centralizer and
correspondingly can fail to contain ZG .

Let (V ′, h )be a hermitian space of even dimension n ≥ 4 over k relative to a quadratic
Galois extension k ′/k , and assume it is isotropic but not “split” (i.e. n > 2q > 0 in the
notation of §4 of the handout on relative root systems). Consider the description of
SU(h ) and a suitable “diagonal” maximal split k -subtorus S ′ of dimension q in terms
of matrices in §4 of the handout on relative root systems, with the upper-left corner
stabilizing the 2q ×2q isotropic part of the hermitian form and the lower-right corner
stabilizing the k -anisotropic part.

We thereby see that the central µ2 ⊂ SU(h ) (recall n is even) is not contained in S ′

(since S ′ is trivial in the lower-right part), so for G :=Gm ×µ2 SU(h )we have S =Gm ×S ′

with S ′ the maximal split in SU(h ), but S ∩DG =µ2 ·S ′ ⊂ SU(h ) is a direct product of µ2

and S ′.

Proof. Pick a maximal k -torus T ⊂ G containing S . For Z ⊂ G the maximal central
torus, we have a central isogeny

π: Z ×G ′→G ,

and a maximal k -torus of Z ×G ′ is given byπ−1(T ) = Z ×T ′ for T ′ := T ∩DG a maximal
torus ofDG .
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The isogeny Z × T ′ → T induces an isogeny between between maximal split k -
subtori:

S0×T ′0 → S

where T ′0 is the maximal split k -subtorus of T ′. We have S ′ ⊂ T ∩DG = T ′ as a split k -
subtorus, so we certainly have S ′ ⊂ T ′0 . Also, T ′0 is contained inside the maximal k -split
subtorus of T , which is S , so T ′0 ⊂ (S ∩DG )0red = S ′; i.e. T ′0 = S ′. This establishing (2).

Now by dimension reasons we get S ′ ⊂DG is maximal split (otherwise since S0∩DG
is finite we could use dimension considerations to see that combining a bigger split
k -torus with S0 gives a split k -torus inside G properly containing S , a contradiction).
Hence, (1) is established.

Finally we show (3). Now we have X(S )Q = X(S0)Q⊕X(S ′)Q and kΦ|S0
= 1 by centrality

of S0 inside G . Since the projection from X(S )Q into the two direct summands arise from
restriction of characters on S to characters on subtori of S , we have kΦ⊂ X(S ′). We want
this inclusion to be an equality after tensoring with Q.

The quotient X(S ′)Q/Q ·k Φ corresponds to a torsion-free quotient of the correspond-
ing lattice X(S ′) (namely, the quotient of X(S ′)/Z·kΦmodulo its torsion subgroup). That
in turn corresponds to the maximal k -subtorus S ′′ ⊂ S ′ killed by kΦ. We want to show
that S ′′ = 1.

Note that ZG (S ′′)has Lie algebra gS ′′ = g since by design kΦ|S ′′ = 1. Hence, the smooth
connected k -group ZG (S ′′)must exhaust G . This shows that S ′′ ⊂ ZG , so S ′′ ⊂ S0. But
we chose S ′′ ⊂ S ′, so S ′′ ⊂ S0 ∩S ′ yet this intersection is finite by (1), so S ′′ = 1. �

Our aim is to show that (X(S ′))Q, kΦ) is a root system. For this we need to exhibit a
cocharacter a∨ ∈ X∗(S ′)⊂ X∗(S ) such that ra : X(S )' X(S ) is given by

ra (x ) = x −〈x , a∨〉a for all a ∈ kΦ.

The reason to seek a∨ ∈ X∗(S ′) is to guarantee the integrality 〈b , a∨〉 ∈ Z (and to ensure
that the Q-span of the coroots will coincide with X∗(S ′)Q). The formula for ra on X(S )
says that at the level of S we have

ra (s ) = s/a∨(a (s ))

or in other words that the map s 7→ s/ra (s ) factors through a :

S

##

a // Gm
a∨ // G

S/ker a

;;

Hence, we want to show that ra |ker a is the identity automorphism. By design ra comes
from NGa

(S )(k ), so it is trivial on the torus Sa = (ker a )0red that is central in Ga . But
we need to show that ra |ker a is the identity automorphism of ker a , and that is much
stronger than on Sa because ker a could be disconnected or non-reduced.

Warning 11.3.5. In the proof of 5.8 of the big paper on reductive groups in IHES 27 by
Borel and Tits, they built a∨ merely in X∗(S )Q and to prove 〈b , a∨〉 ∈ Z for all b ∈ kΦ their
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argument has a gap when Qa ∩ kΦ 6⊂ Za (e.g., it can happen that a/2 ∈ kΦ, and before
establishing the root system property we can’t rule out even worse divisibilities).

To prove ra restricts to the identity on ker a (allowing that ker a might be non-smooth
in positive characteristic), we will need to form schematic centralizers against ker a .
The Galois-theoretic method of constructing schematic centralizers against smooth
subgroups in the first course does not help with the subgroup scheme ker a that might
be non-reduced. (A priori ker a might be non-reduced in any positive characteristic,
though after the root system property is established we know this only happens in char-
acteristic 2 since by inspection of the reduced irreducible root systems every root is
primitive in the weight lattice except that long roots are divisible by 2 in the weight
lattice for type C.)

Remark 11.3.6. The fact that ra is a reflection on X(S )Q that negates a , acts trivially on
the subspace X(S0)Q, and preserves the finite spanning set kΦ of the complementary
space X(S ′)Q determines ra . Indeed, if r ′a is another such reflection then ra r ′a is unipo-
tent inside GL(X(S )Q) yet also of finite order (since only finitely many linear automor-
phisms of X(S )Q act trivially on X(S0)Q and preserve the finite set kΦ), so it is trivial; i.e.,
r ′a = ra .

Proposition 11.3.7. We have
ra |ker a = Id .

We’ll prove this by building the reflection ra using a finer centralizer than Ga , namely

Ga := ZG (ker a )0.

Making sense of such a centralizer is subtle since ker a could be non-reduced. Thus, we
now digress to discuss some general facts concerning scheme-theoretic centralizers.
Digression on centralizers. For affine k -group schemes G of finite type and closed
k -subgroup schemes H ⊂G , the centralizer functor is

Z G (H ): R 7→ {g ∈G (R ) | g centralizes HR }.

The handout “Reductive centralizer” gives several non-trivial results concerning this
functor:

(1) The construction of a representing closed k -subgroup scheme ZG (H )⊂G with

Lie(ZG (H )) = gH

is provided by Proposition 1.1. The idea of the construction is to consider the
conjugation-action map

α : H ×G →G ×G

(h , g ) 7→ (hg h−1, g ),

a closed immersion. For each element of the ideal in k [H ]⊗k k [G ] = k [H ×G ]
for α−1(∆G /k ), consider its k [G ]-coefficients with respect to a k -basis of k [H ]
(viewed as a k [H ]-basis of k [H ×G ]). The ideal in k [G ] generated by such coef-
ficients gives a closed subscheme of G that does the job.
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(2) Assume G is smooth. For closed k -subgroup schemes M ⊂ G of multiplica-
tive type (such as a torus, or µn with n > 0 possibly divisible by char(k )), the
centralizer ZG (M ) is smooth due to the infinitesimal criterion (which is suf-
ficient to check over k ). The proof comes down to the fact that, as for tori,
finite-dimensional representations of M are completely reducible over an al-
gebraically closed field; see Exercise 3 in HW8 of the previous course for the
method.

If char(k ) = p > 0 and M = µp then Lie(M ) is a line in g whose nonzero ele-
ments X are semisimple (as we can realize G inside some GLn , and then M =µp

is contained in a torus of that GLn ). The k -group scheme ZG (M ) coincides with
the construction ZG (X ) considered in classical treatments (we do not need this
fact; see [CGP, Prop. A.8.10(3)] for a proof).

(3) Finally, if G is connected reductive and M is inside a torus of G then ZG (M )0

is reductive. (This reduces to an SL2-calculation, given in §2 of the handout
“Reductive centralizer”.) The hypothesis that M is contained in a torus of G
can fail (see Example 1.2 of the handout “Reductive centralizer” for counterex-
amples with special orthogonal groups), and the reductivity conclusion holds
without that torus hypothesis but the proof is much more difficult (see [CGP,
Prop. A.8.12], which rests on hard input from étale cohomology or geometric
invariant theory characterizing reductivity in an entirely novel manner).

The upshot is that Ga = ZG (ker a )0 makes sense and is reductive (and contains S ).
Then we have

Φ(Ga ,S ) = Za
⋂

kΦ

since

Lie(Ga ) = gker a = gS ⊕

�

⊕

b∈kΦ∩Za

gb

�

,

the point being that a character of S lies in Za if and only if it kills the group scheme
ker a ; note that in contrast, Lie(Ga ) involves all elements of kΦ that are rational multi-
ples of a .

Our earlier considerations for rank-1 groups apply to Ga just as they do to Ga . Hence,
we obtain an inclusion of relative Weyl groups

{1, era }=W (Ga ,S ) ,→W (Ga ,S ) = {1, ra }

since Ga ⊂ Ga and obviously ZGa
(S ) = ZGa

(S ) = ZG (S ) (since anything centralizing S
also centralizes ker a and thus lies inGa . It follows that ra = era comes from NGa

(S )(k )⊂
NG (S )(k ), so ra |ker a = era |ker a = Id. This completes the proof of Proposition 11.3.7.

As an application of the cocharacters a∨, we can prove that (X(S ′)Q, kΦ) is a root
system. The only thing remaining to be checked is that a∨ comes from the X∗(S ′)Q-
component under the decomposition

X∗(S )Q = X∗(S
′)Q⊕X∗(S0)Q

for each a ∈ kΦ. For a ′ := a |S ′ , under the inclusion W (DG ,S ′) ,→W (G ,S ) (which makes
sense because S0 is central, so everything normalizing/centralizing S ′ trivially also nor-
malizes/centralizes all of S0 ·S ′ = S ) we get ra ′ 7→ ra by the unique characterization of
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ra (Remark 11.3.6). Thus, the cocharacter (a ′)∨ ∈ X∗(S ′) ⊂ X∗(S ) also computes ra , so
a∨ = (a ′)∨ ∈ X∗(S ′) as desired.

For the root system (X(S ′)Q, kΦ), the associated reflections

ra ∈GL(X(S ′)Q)×GL(X(S0)Q)⊂GL(X(S )Q)

and coroots a∨ ∈ X∗(S ′) ⊂ X(S ) are as above. By [Bou, VI, §1.1, Lemma 2] (a general
lemma concerning root systems), each (a ′)∨ ∈ X∗(S ′)Q determines a ′ hence also a (since
the triviality of a |S0

implies that a is determined by a |S ′ = a ′). Hence we have an injec-
tion kΦ ,→ X∗(S ′)⊂ X∗(S ) onto a subset of non-zero elements denoted kΦ

∨.

Proposition 11.3.8. The 4-tuple (X(S ), kΦ, X∗(S ), kΦ
∨) is a (possibly non-reduced) root da-

tum.

Proof. It only remains to check that the dual reflections (ra )∨ ∈ GL(X∗(S )) actually pre-
serve the coroots kΦ

∨. (The reflections ra on X(S ) preserve kΦ by construction, since
the reflections were constructed from NG (S )(k ) and hence preserve anything intrinsic
to the pair (G ,S ).)

More generally, we claim that for any n ∈NG (S )(k ), the map

n .(a∨): t 7→ na∨(t )n−1

coincides with (n ·a )∨, using the NG (S )(k )-action on X(S ), which preserves kΦ. The key
point is to show that

n ra n−1 = rn ·a .

To establish this equality, we can use either the construction or the unique characteri-
zation of these reflections (see Remark 11.3.6). �

11.4. Parametrization of parabolics. Next we will prove two important results:

Theorem 11.4.1. Let G be a connected reductive group over k and S ⊂G a maximal split
torus. The map P 7→ kΦP :=Φ(P,S ) is an inclusion-preserving bijection

{parabolic k -subgroups ⊃ S}↔{parabolic subsets of kΦ}.

We will also (later) describe the inverse map in terms of an “explicit” dynamic de-
scription upon fixing a minimal parabolic P0 ⊂ P containing S .

Remark 11.4.2. Recall that for a root system (V ,Φ), a parabolic subset is a subset Ψ ⊂ Φ
that is closed and satisfies Ψ ∪ (−Ψ) =Φ, and early in §6.3 we saw that it is equivalent to
say Ψ = Φλ≥0 for some λ ∈ V ∗. Thus, comparing minimal objects on both sides of the
bijection relates minimal P ⊃ S to positive systems of roots in kΦ.

The next result we state only informally at the moment.

Theorem 11.4.3. We can describe an explicit roots basis k∆ ⊂ kΦ using a choice of root
basis∆⊂Φ :=Φ(Gks

, Tks
) for a maximal k -torus T of G containing S.

Definition 11.4.4. We call Φ the set of absolute roots, relative to the choice of T .
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This has two spectacular consequences. First, by using Theorem 11.4.3 and some ad-
ditional ideas, one recovers a classical result of Cartan originally proved by Riemannian
geometry:

Theorem 11.4.5 (Cartan). Let G be a connected semisimple R-group. If G is simply con-
nected then G (R) is connected for the analytic topology.

The Borel–Tits proof is in the “Cartan connectedness” handout. It is very easy in the
split case (using Chevalley’s Proposition 2.5 in the handout on the geometric Bruhat
decomposition), so the real content is beyond the split case. The argument uses highest
roots in a clever manner to establish that in the simply connected case X∗(S ) is spanned
over Z by kΦ

∨ (not obvious beyond the split case!). This in turn allows one to eventually
(after some group-theoretic calculations) reduce to the case of the split group SL2.

Theorem 11.4.6. The natural inclusion W (kΦ)⊂W (G ,S ) is an equality.

Proof. The group W (G ,S ) and its subgroup W (kΦ) act compatibly and simply transi-
tively on the minimal members of the two respective sides of the “parabolic bijection”
in Theorem 11.4.1 above. (The “simply transitive” property for W (kΦ) is a general fact
in the theory of root systems, and for W (G ,S ) it was shown in the proof of Proposition
4.2 in the handout on the relative Bruhat decomposition.) �

Proof of Theorem 11.4.1. We already know that any such P has the form

P = PG (λ) for λ ∈ X∗(S )

(i.e. arises from the dynamic method, which allows us to arrange λ to be valued in any
desired maximal k -torus T of P , such as one containing S , and then would be valued
in the maximal split subtorus S of T ), so

kΦP :=Φ(P,S ) =Φ(G ,S )λ≥0 is parabolic in kΦ.

This shows that the map P 7→ kΦP makes sense into the intended target and is surjec-
tive.

For the injectivity and the inclusion-preserving property, it is enough to show that
for any two parabolic k -subgroups Q ,Q ′ ⊃ S we have

Q ⊂Q ′ ⇐⇒ Φ(Q ,S )⊂Φ(Q ′,S ). (11.4.1)

The direction =⇒ is obvious (as in such cases Lie(Q )⊂Lie(Q ′)). For the other direction,
suppose Φ(Q ,S ) ⊂ Φ(Q ′,S ). We’ll show that Qks

⊂ Q ′ks
by using that (11.4.1) is already

known in the split case (such as over ks ), so then Q ⊂Q ′ as desired.
Pick a maximal k -torus T of G containing S . We claim that T ⊂ Q ,Q ′, so it makes

sense to try to show that

Φ(Qks
, Tks
)⊂Φ(Q ′ks

, Tks
)

(from which the settled split case, over ks , then gives Qks
⊂Q ′ks

). Indeed, we can write
Q = PG (µ) for µ ∈ X(S ), so Q ⊃ ZG (µ)⊃ ZG (S )⊃ T , and likewise Q ′ ⊃ T .

We need a way to constructΦ(Qks
, Tks
) fromΦ=Φ(Gks

, Tks
)andΦ(Q ,S ), so then we can

hope to bootstrap the hypothesis Φ(Q ,S )⊂Φ(Q ′,S ) into the analogous containment for
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absolute roots. To give the recipe, note that sinceQ = PG (µ) for someµ ∈ X∗(S )⊂ X∗(Tks
),

we have

Φ(Qks
, Tks
) = {a ∈Φ | 〈a ,µ〉 ≥ 0}.

Now comes the main point: since µ is a cocharacter valued in S , the pairing 〈a ,µ〉 only
involves a through its restriction a |Sks

∈ X(Sks
) = X(S ) that lies in Φ(G ,S )∪ {0}. Recall

also that the restriction-to-S map Φ(GKs
, Tks
)→ Φ(G ,S )∪ {0} hits everything in Φ(G ,S ).

Therefore

Φ(Qks
, Tks
) = {a ∈Φ : a |Sks

∈Φ(G ,S )µ≥0 ∪{0}}= {a ∈Φ : a |Sks
∈Φ(Q ,S )∪{0}}.

�

Remark 11.4.7. Since minimal parabolic sets of roots in a root system are exactly the
positive systems of roots (why?), we obtain a bijection

{minimal parabolic k -subgroups ⊃ S}↔{positive systems of roots in kΦ}.

Corollary 11.4.8. Fix a minimal parabolic k -subgroup P0 ⊂ G . Every G (k )-conjugacy
class of parabolic k -subgroups of G contains a unique member Q ⊃ P0. (Such Q are
called “standard” with respect to P0.)

Proof. Any parabolic k -subgroup contains a minimal one, so by G (k )-conjugacy of the
minimal parabolic k -subgroups every G (k )-conjugacy class contains a standard mem-
ber. It remains to show that if Q ,Q ′ ⊃ P0 are parabolic k -subgroups and Q ′ = g Q g −1 for
some g ∈G (k ) then Q ′ =Q .

We have P0 ⊂Q and also g P0g −1 ⊂Q ′. These are two minimal parabolics in Q ′, con-
tainingRu (Q ′) (since any parabolic subgroup of Q ′ contains the unipotent radical, as
we may check over k by reasoning with Borel subgroups), andRu (Q ′) is k -split by the
dynamical description of Q ′. (Here we are abusing notation by writing Ru (Q ) rather
than Ru ,k (Q ), but this is harmless since Ru ,k (Q )k =Ru (Qk ) due to the dynamical de-
scription of parabolic k -subgroups of connected reductive k -groups.) Hence, by work-
ing in the connected reductive k -group Q ′/Ru (Q ′) (which has the expected k -points,
by the split property forRu (Q ′)) we see that that g P0g −1 is Q ′(k )-conjugate to P0.

If we modify g on the left by an element ofQ ′(k ) then no harm is done, so by adjusting
g in that we we can arrange that g P0g −1 = P0. But then g ∈ P0(k ) by Chevalley’s self-
normalizing theorem for parabolic k -subgroups of connected linear algebraic groups,
so g ∈Q (k ). Thus, Q ′ = g Q g −1 =Q . �

Fix S ⊂ P0, so kΦ
+ :=Φ(P0,S )⊂ kΦ is a positive system of roots for kΦ, and let k∆⊂ kΦ

+

be the associated root basis. Then Q 7→Φ(Q ,S ) is an inclusion-preserving bijection

{Q ⊃ P0}↔{parabolic subsets Ψ ⊂ kΦ containing kΦ
+}.

By [Bou, VI, §1.7, Prop. 20, Lemma 3], such Ψ are exactly the subsets kΦ
+∪ [I ] for a sub-

set I ⊂ k∆ (that is moreover unique), where [I ] := (Z · I )∩ kΦ. Informally, this says that
standard parabolic k -subgroups are obtained from the minimal P0 by permitting nega-
tive relative roots supported only in specific directions relative to the relative root basis
attached to P0. (We cannot yet express this in terms of root groups as we would do in
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the split case since we haven’t yet defined the notion of “root group” for a relative root!
That concept will be treated soon.)

Since kΦ∪ [I ]⊂ kΦ∪ [I ′] if and only if I ⊂ I ′ (for subsets I , I ′ ⊂ k∆, we conclude that

k PI ⊂ k PI ′ ⇐⇒ I ⊂ I ′,

so we have an inclusion-preserving bijection

{standard Q}↔{subsets of k∆}. (11.4.2)

(The uninteresting cases I = ; and I = k∆ correspond toQ = P0 andQ =G respectively.)
In particular, the number of standard parabolic k -subgroups, and hence the number of
G (k )-conjugacy classes of parabolic k -subgroups, is 2#k∆ = 2rk (D (G ) where rk (D (G )) is
the k -rank of D (G ) (as we have shown that S ′ := (S ∩D (G ))0red is a maximal split k -torus
in D (G )).

Example 11.4.9. Let G = GLn , and take S to be the split diagonal torus, so X(S ) = Zn

via diagonal matrix entries (indexed by 1, . . . , n moving from upper-left to lower-right).
Take Φ+ corresponding to the upper triangular Borel subgroup B containing S , so its
associated root basis is

(Zn )Σ=0 ⊃∆= {ei − ei+1}1≤i≤n−1 = {1, . . . , n −1}

for the standard basis {ei } of Zn . There are 2n−1 parabolic k -subgroups containing B .
What are they?

Consider the “staircase” subgroups whose stairs begin and end at positions on the
diagonal (corresponding to preservation of a flag relative to the standard basis), such
as this:





























∗ ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗

∗ ∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ ∗ . . . ∗ ∗

∗ . . . ∗ ∗
... ∗ ∗

∗ ∗
∗ ∗





























(Staircases whose stairs do not begin and end on the diagonal don’t correspond to pre-
serving a standard flag and correspondingly aren’t stable under matrix multiplication!)

The negative root groups contained in such a standard parabolic correspond to sums
of negative simple roots−(e j −e j+1) (1≤ j ≤ n−1) for consecutive sequences of indices
j strictly between the indices i ∈ {1, . . . , n − 1} for which positions i and i + 1 on the
diagonal straddle opposite sides of a corner in the staircase at vertex (i , i +1). In other
words, if {b1, . . . , br } is the sequence of column positions just before vertical drops in
the staircase (so {2, 5, . . . , n−2} in the picture above, and br < n in general) then I is the
complement in {1, . . . , n − 1} since the negative root groups correspond to the vertices
of the stairs strictly “between” the vertical drops). The above construction yields 2n−1

distinct standard parabolic subgroups, so that exhausts the all possibilities.
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It follows from the preceding example that for a vector space V of dimension n ≥ 2,
parabolic subgroups of GL(V ) are in bijection with increasing flags of nonzero proper
subspaces of V via the formation of stabilizers of flags. (It is clear that we can recon-
struct the flag from its stabilizer by identifying the subspaces stable under such a flag,
via inspection in the standard cases. The empty flag corresponds to GL(V ) itself, and a
full flag corresponds to Borel subgroups.) The maximal (proper) parabolic subgroups
correspond to maximal proper subsets of the root basis ∆, or equivalently comple-
ments of subsets of∆whose complement is minimal non-empty, so these correspond
to flags with exactly one step: stabilizers of nonzero proper subspaces.

The handout “Standard parabolic subgroups” gives a thorough description (building
on the earlier handout on root systems for classical groups) of parabolic k -subgroups of
SO(q ) for non-degenerate quadratic spaces (V , q ) of dimension≥ 3 and of the symplec-
tic group Sp2n for n ≥ 1. These are the stabilizers of flags of isotropic nonzero subspaces
(and maximal parabolic k -subgroups are related to stabilizers of nonzero isotropic sub-
spaces) Here, “isotropic” means that the symplectic form vanishes on the subspace in
the case of Sp2n and that the quadratic form vanishing on the subspace for SO(q ).

12. THE ∗-ACTION AND TITS–SELBACH CLASSIFICATION

12.1. Link between absolute and relative roots. Choose a maximal split k -torus S ⊂G
and minimal parabolic k -subgroup P ⊃ S . Pick a maximal k -torus S ⊂ T ⊂ P and a
Borel ks -subgroup Tks

⊂ B ⊂ Pks
. Inside the absolute root system Φ = Φ(Gks

, Tks
) we

have a positive system of roots Φ+ = Φ(B , Tks
). Let ∆ be the basis of Φ+. We are going

to use∆ to a construct the basis of kΦ=Φ(G ,S ) corresponding to its positive system of
roots Φ(P,S ) =: kΦ

+. (Keep in mind that we chose B inside Pks
.)

Since Sks
⊂ Tks

, we have a surjective restriction map

X(Tks
)→ X(Sks

) = X(S )

carryingΦ into kΦ∪{0}, hitting all of kΦ. This carriesΦ+ into kΦ
+∪{0} since B ⊂ Pks

. Let
∆0 = {a ∈∆: a |Sks

= 1}. Let k∆ be the image of∆−∆0 in kΦ, so k∆⊂ kΦ
+ since B ⊂ Pks

(and kΦ
+ =Φ(P,S ), Φ+ =Φ(B , Tks

)).

Lemma 12.1.1. The parabolic subset Φ(Pks
, Tks
)⊂Φ coincides with Φ+ ∪ [∆0].

Proof. Any parabolic subset containing Φ+ has the form Φ+ ∪ [I ] for a unique subset
I ⊂∆ (by the general description of parabolic sets of roots containing a positive system
of roots), and Φ(Pks

, Tks
) is such a subset since P is parabolic and B ⊂ Pks

. Our task is to
show that the unique such I corresponding to Φ(Pks

, Tks
) is∆0.

For any subset J of∆, the set J is characterized in terms ofΦ+∪[J ] as those elements
of∆whose negative also lies in Φ+∪ [J ]. Hence, I is the set of elements a ∈∆ such that
−a ∈ Φ(Pks

, Tks
). Since P = ZG (S )nU with Uks

⊂Ru (B ) (as B is a Borel ks -subgroup of
Pks

), we have Φ(Uks
, Tks
) ⊂ Φ(B , Tks

) = Φ+. Clearly −∆ is disjoint from Φ+, so I is the set
of a ∈∆ such that

−a ∈Φ(ZG (S )ks
, Tks
) = {b ∈Φ : b |Sks

= 1},

which is to say a ∈∆0. �
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Remark 12.1.2. A refinement of the preceding argument shows that∆0 is a basis of the
root system Ψ :=Φ(ZG (S )ks

, Tks
), as follows.

First, we claim that Ψ = [∆0] inside X(Tks
). Clearly [∆0] ⊂ Ψ ⊂ Φ(Pks

, Tks
), so any a ∈

Ψ − [∆0] lies in Φ(Uks
, Tks
) ⊂ Ψ+ and thus has a positive ∆-coefficient outside ∆0. But

then −a 6∈Φ+ ∪ [∆0] =Φ(Pks
, Tks
), contradicting that −a ∈Ψ. This proves that Ψ = [∆0].

But ∆0 is contained in the positive system of roots Ψ ∩ Φ+, so clearly Ψ ⊂ Z≥0∆0 ∪
Z≤0∆0. Hence, since ∆0 is also linearly independent, it is a basis of Φ(ZG (S )ks

, Tks
) by

[Bou, VI, §1.7, Cor. 3].

Proposition 12.1.3. The set k∆ defined above is the basis of kΦ
+.

To prove this result, we may assume that G is semisimple since kΦ=Φ(D(G ),S ′) un-
der the identification X(S )Q = X(S0)Q ⊕X(S ′)Q. Indeed, by commutativity of G /D (G ) it
follows that the action of S = S ′ ·S0 on the Lie algebra Lie(G /D (G )) =Lie(G )/Lie(D (G )) is
trivial. Thus, the S-root spaces inside Lie(G ) all lie inside Lie(D (G )), where they coincide
with the S ′-root spaces.

Since Φ⊂ Z≥0∆∪Z≤0∆, applying restriction gives

kΦ⊂ Z≥0(k∆)∪Z≤0(k∆). (12.1.1)

But we arranged G to be semisimple, so kΦ spans X(S )Q and hence k∆ spans X(S )Q. In
particular, #k∆≥ dimS with equality if and only if k∆ is Q-linearly independent.

By [Bou, VI, §1.7, Cor. 3], it follows from (12.1.1) and the containment k∆⊂ kΦ
+ that

k∆ is a basis if it is linearly independent. Thus, if we can prove dimS ≥ #k∆ then
we will be done. This reverse inequality will be establishing by using a remarkable
construction, the so-called (continuous) ∗-action of Γk := Gal(ks /k ) on the basis ∆ of
Φ(B , Tks

) =Φ+ ⊂Φ. (This is a surprising notion because beyond the quasi-split case the
subset Φ(B , Tks

) is never stable under the natural action of Γk on Φ! Why not?) We now
digress to define the ∗-action, then use it to prove that dimS ≥ k∆, and finally explore
the deeper significance of the ∗-action in the context of the Tits–Selbach classification
for connected semisimple groups over general fields.

12.2. The ∗-action. We define the ∗-action of Γ =Gal(ks /k ) on∆ (as a diagram, not just
as a set of vertices) satisfying the following two key properties.

(*1) The restriction map∆
res−→ k∆∪{0} is Γ -invariant (so all fibers, and in particular

∆0, are Γ -stable).
(*2) The action “detects fields of definition for parabolics”. More precisely, a para-

bolic ks -subgroup Q ⊃ Pks
⊃ B corresponds to a unique subset of∆ containing

∆0 via (11.4.2) and Lemma 12.1.1, so that subset has the form∆0 t∆′ for some
∆′ ⊂∆−∆0. The property of interest is that Q is defined over k (i.e. come from
parabolic k -subgroups of G , necessarily containing P ) if and only if∆0t∆′ ⊂∆
is Γ -stable, or equivalently the subset∆′ ⊂∆−∆0 is Γ -stable.

Granting these two properties, we establish the reverse inequality

dimS ≥ #k∆

(and hence finish the proof of Proposition 12.1.3) as follows. Since dimS is the size of a
basis of the relative root system (as we have arranged G to be semisimple), by (11.4.2)
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we have

2dimS ≥ #{Q ⊃ P over k}.

Condition (*2) above gives another way to describe the right side: it is the number of
Γ -stable subsets of∆−∆0. But a Γ -stable subset is exactly a (possibly empty!) union of
Γ -orbits, so the number of Γ -stable subsets is 2#{Γ -orbits}, so

2dimS = #{Q ⊃ P over k}= 2#{Γ -orbits}.

Now by (*1) the number of Γ -orbits is at least the number of fibers of the Γ -invariant
surjection∆−∆0� k∆, and the number of such fibers is obviously #k∆. So we conclude
that

2dimS = #{Q ⊃ P over k}= 2#{Γ -orbits} ≥ 2#k∆.

This gives the reverse inequality dimS ≥ #k∆, forcing all inequalities to be equalities
throughout, so in addition to completing the proof of Proposition 12.1.3 we obtain:

Corollary 12.2.1. The fibers of∆−∆0� k∆ are exactly the Γ -orbits away from∆0.

Before we define the ∗-action, let’s show how it works in a special case (to be revisited
from a broader point of view in our discussion of the Tits–Selbach classification):

Example 12.2.2. Let G = SU(h ) for a “maximally split” hermitian (V ′, h ) of dimension
n > 2 over a quadratic Galois extension k ′/k . That is, n = 2q is even and

h =
q
∑

i=1

(xi y q+i + xq+i y i ).

Such G is quasi-split, and n −1= 2q −1≥ 3. The absolute diagram (for∆) is An−1:
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The ∗-action of Γ goes through the quotient Gal(k ′/k ) acting through flipping around
the central vertex a , and the quotient∆−∆0� k∆modulo Γ is depicted below.

(The emptiness of∆0 expresses that G is quasi-split.)
How do we determine the edges (with multiplicity) in k∆; e.g., that there is a dou-

ble edge between the respective images a of a and b of b and b ′, with a long and b
short? Rather than get involved with a general method, we explain a hands-on argu-
ment in this case for analyzing the relationship between a and b (with the others easier
to analyze by a similar method). The quotient map ∆ = ∆−∆0 → k∆ corresponds to
restriction of characters along the inclusion Sks

,→ T , so b and b ′ restrict to a common

character b distinct from the restriction a of a , The subset {a , b , b ′} clearly spans an A3

root system. The roots appearing are a , b , b ′, a + b + b ′, as evidenced by the concrete
model with SL4:







b a + b a + b + b ′

a a + b ′

b ′







The images in kΦ of the roots shown in the above SL4 picture are a , b , a + b , a +2b .
Recall that in any irreducible (possibly non-reduced) root system, for any two roots

c and c ′ the pairing 〈c , c ′∨〉 is negative to the largest integer j ≥ 0 such that c + j c ′

is a root. (This was noted long ago, as an immediate consequence of inspection of

the rank-2 root systems A1 ×A1, A2, B2, and G2.) Hence, 〈a , b
∨
〉 = −2. Analyzing the

other edges similarly, we obtain that kΦ is of type Cq (seen in a more explicit manner
by arguments with big matrices in the handout on relative root systems), for which the
Dynkin diagram is as shown above with the vertex set k∆.

Remark 12.2.3. Any finite set with a continuous action of Γ corresponds canonically to a
finite étale k -scheme. The finite set∆ equipped with the ∗-action has associated finite
étale k -scheme with an intrinsic meaning in terms of G without reference to a preferred
choice of tori or Borel ks -subgroup or minimal parabolic k -subgroup: it is the “scheme
of Dynkin diagrams” in the sense of SGA3 (see the end of the ∗-action handout for a
reference). This is a fancy way of expressing an alternative and more widely-known
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Kottwitz method (described near the start of §12.4) for removing the apparent depen-
dence on auxiliary choices.

The group Γ acts on X(Tks
) via scalar extension along k -automorphisms of ks , and us-

ing inversion on Γ we likewise get an action (on the left!) on X∗(Tks
) that makes the pair-

ing of characters and cocharacters Γ -invariant. For T ′ = T ∩D (G ) and the maximal cen-
tral k -torus Z , these actions preserve the decompositions X(Tks

)Q = X(T ′ks
)Q ⊕X(Zks

)Q
and the analogue for cocharacters. Moreover, these actions factor through Gal(K /k )
for any finite Galois extension K /k splitting T , so they are continuous.

Note that Γ preserves the finite subsetΦ and is compatible with the natural action on
W (Φ) = NG (T )(ks )/T (ks ) = ND (G )(T ′)(ks )/T ′(ks ) and the W (Φ)-action on X(Tks

)Q, so by
consideration of reflections in X(T ′ks

) = Q ·Φ the action on X∗(T ′ks
) preserves Φ∨ via the

relation (γ.a )∨ = γ.a∨ for any a ∈Φ.

Easy case of ∗-action. Suppose G is quasi-split, so P is a Borel k -subgroup (and B =
Pks

). The action on Φ certainly preserves Φ+ = Φ(B = Pks
, Tks
), and so must preserve its

basis∆. That resulting action of Γ on∆ is easily checked to be through diagram auto-
morphisms (since it respects pairings of roots and coroots), and to satisfy the desired
properties.

In general, for γ ∈ Γ clearly γ(Φ+) ⊂ Φ is a positive system of roots, so there exists a
unique wγ ∈W (Φ) =NG (T )(ks )/T (ks ) such that wγ(γ(Φ+)) =Φ+, and so

wγ(γ(∆)) =∆.

Beware that generally wγ does not arise from NG (T )(k ). Note also that away from
the quasi-split case some wγ must be non-trivial. Indeed, wγ = 1 for all γ if and only
if ∆ is Γ -stable, or equivalently Φ+ is Γ -stable, yet γ(Φ+) = Φ(γ∗(B ), Tks

) for any γ ∈ Γ , so
wγ = 1 precisely when γ∗(B ) = B inside Gks

. Hence, that holds for all γ precisely when
B is defined over k , which is just another way to say that G is quasi-split.

Lemma 12.2.4. The map
Γ ×X(Tks

)→ X(Tks
)

defined by γ ∗a = wγ(γ(a )) preserving ∆ is a left action. The induced left action (via the
dual representation) on X∗(Tks

) preserves∆∨ via the relation (γ ∗a )∨ = γ ∗a∨.
By compatibility with the pairings of characters and cocharacters, this gives a left Γ -

action on the Dynkin diagram.

Proof. By definition-chasing, this comes down to establishing the equality

wγ′γ =wγ′ ·γ′(wγ)

in W (G , T ) =W (Φ). That in turn can be verified by applying both sides to the positive
system of roots γ′γ(Φ+). �

The quotient map X(Tks
) � X(Sks

) = X(S ) is certainly invariant for the natural Γ -
action on the source (why?), and it is also visibly invariant by the induced action of
NZG (S )(T )(ks ) on the source (why?), so to prove invariance of the restriction map ∆→
k∆∪{0}with respect to the ∗-action on the source it suffices to prove:
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Proposition 12.2.5. Each wγ can be chosen to arise from NZG (S )(T )(ks ).

Proof. The point is that γ(Φ+) is not an arbitrary positive system of roots inside Φ: it
satisfies

γ(Φ+)⊂ γ(Φ(Pks
, Tks
)) =Φ(Pks

, Tks
).

Thus, γ(Φ+) corresponds to a Borel ks -subgroup of Gks
contained in Pks

and containing
Tks

. Since P = ZG (S )nU , NZG (S )(T )(ks ) acts transitively on the set of Borels of Pks
con-

taining Tks
because this can be checked modulo Uks

(as Uks
is contained in every Borel

ks -subgroup of Pks
, and Pks

/Uks
= ZG (S )ks

is reductive). �

Corollary 12.2.6. Such wγ are generated by reflections in∆0.

Proof. The root system Φ(ZG (S )ks
, Tks
) has∆0 as a basis by Remark 12.1.2. �

This establishes property (*1) formulated near the start of §12.2. What about prop-
erty (*2)? Consider Q ↔∆0t∆′. What subset of∆ corresponds to γ∗(Q )⊃ γ∗(Pks

) = Pks
?

Proposition 12.2.7. We haveγ∗(Q )↔∆0t(γ∗∆′) = γ∗(∆0t∆′)). In particular, γ∗(Q ) =Q
if and only if γ ∗∆′ =∆′, so Q is defined over k if and only if ∆′ is Γ -stable under the ∗-
action.

Proof. For the full proof see §2 of the ∗-action handout. The key is to show that γ∗(∆′)⊂
γ(∆′)+Z∆0, which ultimately follows from Corollary 12.2.6 due to the general reflection
formula ra (b ) = b −〈b , a∨〉a ∈ b +Za for a , b ∈Φ. �

We end our initial discussion of the ∗-action with an overview of its role in the def-
inition of the Langlands dual group. Let R = (X(Tks

),Φ, X∗(Tks
),Φ∨) be the associated

root datum over ks . In the quasi-split case, we have seen that the ∗-action of Γ on the
based root datum (R ,∆) is induced by the natural Γ -action on X(Tks

). In general, this
action has significance going beyond its role in the Tits–Selbach classification: it also
underlies the definition of the Langlands dual group, as we now sketch.

Let B ⊂Gks
be the unique Borel ks -subgroup containing Tks

such that Φ(B , Tks
) is the

positive system of roots with basis∆, and let {Xa }a∈∆ be a pinning (i.e., choice of basis
of ga for each a ∈∆). The Isomorphism Theorem gives that the natural map

Autks
(Gks

, Tks
,{Xa }a∈∆)→Aut(R ,∆)

is bijective. That is, every automorphism of the based root datum uniquely lifts to a
ks -automorphism of the “pinned” split reductive pair.

Since∆ is a basis of X((T /ZG )ks
), any change in (T ,∆) is attained by composing with

the effect of an element of (G /ZG )(ks ) unique modulo (T /ZG )(ks ) (exercise!). Thus,
the lifting of Aut(R ,∆) into Aut(Gks

) via a pinning is well-defined up to the effect of
(G /ZG )(ks ). (This is the main content of the fact that the automorphism scheme AutG /k

has identity component G /ZG and component group that is a ks /k -form of Aut(R ,∆).)
Now suppose k is a local or global field, and let Wk be the Weil group of k . Let L G 0 be

the unique pinned connected reductive C-group whose root datum is equipped with an
identification with the dual root datum R∨ = (X∗(Tks

),Φ∨, X(Tks
),Φ). The ∗-action defines

a composite homomorphism

ρ : Γ →Aut(R∨,∆∨) ,→Aut(L G 0)
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whose second step rests on the choice of pinning of L G 0 (applying the preceding dis-
cussion with k =C), so the L G 0(C)-conjugacy class of this homomorphism is indepen-
dent of all choices. If k ′/k is a finite Galois subextension of ks such that Gk ′ is split then
Gal(ks /k

′) acts trivially on∆ under the ∗-action as defined above, so ρ factors through
Gal(k ′/k ). The Langlands dual is the disconnected locally algebraic group

L G := Γ n L G 0;

this group is only well-defined up to L G 0(C)-conjugation. (The main content occurs “at
finite level”, using the typically disconnected linear algebraic C-group Gal(k ′/k )nL G 0.)
Hence, the notion of L G 0(C)-conjugacy class of continuous homomorphism

φ : Wk → L G (C)

over the natural map Wk → Γ is intrinsic to the k -group G . Such conjugacy classes, or
variants with Wk replaced by the Weil–Deligne group, are of central importance in the
Langlands Program. (If G is a split group then L G = Γ × L G 0 and such φ are exactly
conjugacy classes of continuous homomorphisms Wk → L G 0(C).)

Example 12.2.8. In the special case that G is a k -torus T , so there are no absolute roots
and the ∗-action is just the natural Γ -action on X(Tks

), we have L T = Γ n ÒT where the
dual torus ÒT is Hom(X(Tks

), Gm ) on which Γ acts via the natural action on the geometric
character lattice. The homomorphismsφ : Wk → L T (C) = ΓnÒT (C)have second compo-
nent that is exactly a continuous 1-cocycle f : Wk → ÒT (C), and the effect of composing
φ with a ÒT (C)-conjugation is exactly to change f by a 1-coboundary.

Note that if T splits over a finite Galois extension k ′/k inside ks /k then the ∗-action
on Gal(ks /k

′) is trivial, so f |Wk ′ is just a continuous homomorphism by another name.
But the target of f is commutative, so f must kill the commutator subgroup of Wk ′ .
By the construction of Wk using class formations in [AT, Ch. XV] (the only unified ap-
proach that treats all local and global fields on an equal footing and provides the only
known definition for Wk when k is a number field), the quotient of Wk modulo the com-
mutator subgroup of Wk ′ is the group Wk ′/k that is naturally a topological extension of
Gal(k ′/k ) by A(k ), where A(k ) =A×k /k

× in the global case and A(k ) = k× in the local case
(this extension representing the fundamental class associated to k ′/k ). That is, such
1-cocycles f arise from 1-cocycles Wk ′/k → ÒT (C).

An early verification of Langlands [La, Thm. 2] was that for any local field k there is
a “natural” isomorphism from H1

cont(Wk , ÒT (C)) onto the group continuous homomor-
phisms T (k )→ C×, and that for any global field k there is a “natural” surjection with
finite (explicitly described) kernel from H1

cont(Wk , ÒT (C)) onto the group of continuous
homomorphisms T (Ak )/T (k )→ C×. These “natural” maps are specific constructions
(satisfying good properties), called Langlands duality for tori, and for T =Gm by design
this recovers the construction made via Artin reciprocity maps in class field theory.

12.3. Relative root groups. As a companion to the use of the relative root system to
keep track of parabolic k -subgroups, there is a theory of (high-dimensional, and pos-
sibly non-commutative) relative root groups. These satisfy many of the familiar prop-
erties of root groups in the split case, including to give a concrete description of Levi
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factors and unipotent radicals of parabolic k -subgroups. We will record the main re-
sults (which are unsurprising once the definitions are given) and refer to the handout
“Tits systems and Root groups” for the proofs.

But first we address a loose end from our earlier discussion of Levi factors of para-
bolic subgroups: we know that if P is a parabolic k -subgroup of a connected reductive
k -group G and U :=Ru ,k (P ) is the split k -descent of its geometric unipotent radical (by
writing P = PG (λ) for a k -homomorphism λ : Gm →G we have U =UG (λ)), there exists
a k -subgroup L such that L→ P /U is an isomorphism, or equivalently L nU = P ; e.g.,
for a dynamic description PG (λ) of P we can take L to be ZG (λ). The k -isomorphism
class of L is obviously intrinsic (after all, L → P /U is an isomorphism!), but as a k -
subgroup of P how are the different choices related to each other?

In view of the use of Levi factors for calculations in representation theory, it would
be best if all such L are related through P (k )-conjugacy, or equivalently (!) through
U (k )-conjugacy. Fortunately, this is true in the following more precise form:

Proposition 12.3.1. The action of U (k ) on the set of Levi factors of P is simply transitive.
Moreover, every maximal k -torus T of P is contained in a unique Levi factor of P .

Some Levi k -subgroups arise by the dynamic method, so the U (k )-conjugacy im-
plies that all Levi k -subgroups arise by the dynamic process!

Proof. In view of the uniqueness assertion, by Galois descent it suffices to treat the sit-
uation over ks ; i.e., we now may and do assume k = ks , so all k -tori are split. We shall
first prove that any maximal k -torus T ⊂ P lies in a unique Levi factor L . Since T is
maximal in P , we can write P = PG (λ) for some λ ∈ X∗(T ). Hence, ZG (λ) is a Levi factor
of P containing T . To prove that there is at most one L containing T , we shall describe
any such L directly in terms of T and P .

Consider the set Φ(L , T ) of nontrivial T -weights that occur on Lie(L ). We have L '
P /U , so Φ(L , T ) = Φ(P /U , T ) is independent of L inside X(T ). Let Ψ denote this subset
of Φ = Φ(G , T ). For each a ∈ Ψ, the a -root group for the connected reductive L with
respect to T is the same as for G by uniqueness of root groups (as T -stable smooth
connected unipotent k -subgroups exhibiting a specific root line as their Lie algebra).
But L is is generated by T and the root groups Ua for a ∈Ψ =Φ(P /U , T ). The latter is a
description of L in terms of just P and T , establishing the uniqueness of L .

Since all maximal (split) k -tori of P are P (k )-conjugate, the preceding uniqueness
result implies that all Levi factors of P are P (k )-conjugate to each other, and so are
U (k )-conjugate to each other. It remains to show that if u ∈ U (k ) normalizes a Levi
factor L then u = 1. For any x ∈ L (k )we have u x u−1 ∈ L (k ), so u (x u−1 x−1) ∈ L (k ). But
U is normal in P , so u (x u−1 x−1) ∈U (k ). Since L ∩U = 1 it follows that u x u−1 x−1 = 1,
which is to say that u centralizes L (k ). Since L (k ) is Zariski-dense in L (as k = ks ),
we have u ∈ ZG (L )(k ) ⊂ ZG (T )(k ) for a maximal k -torus T ⊂ G . But ZG (T ) = T , so
u ∈ T ∩U = 1. �

Example 12.3.2. Consider G containing a split maximal k -torus T , and let I be a sub-
set of a basis ∆ of a positive system of roots Φ+ for Φ := Φ(G , T ). Let B be the Borel
k -subgroup containing T for which Φ+ := Φ(B , T ). For the parabolic k -subgroup k PI
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containing B we have Φ(k PI , T ) = Φ+ ∪ [I ], so the unique Levi k -subgroup L I contain-
ing T satisfies Φ(L I , T ) = [I ] (argue exactly as in Remark 12.1.2).

We can describe L I explicitly as follows. Consider the subtorus TI = (∩a∈I ker a )0red ⊂
T . The connected reductive k -group ZG (TI ) containing T is generated by T and the
root groups Ua for roots a trivial on TI , which is to say a ∈ [I ] (as I is part of a basis∆ for
Φ). But by the same reasoning L I is generated by the same subgroups since Φ(L I , T ) =
[I ]. Hence, L I = ZG (TI ).

Writing k PI = PG (λ) for some λ ∈ X∗(T ), so UI :=Ru , k (k PI ) =UG (λ), we have UI =
∏

a∈Φ(UI ,T )Ua (with multiplication in any order) by Theorem 5.3.6 applied to A = Φλ>0

with A j its singleton subsets (Φ is reduced!), and the collection of roots Φ(UI , T ) is ex-
actly Φ+− [I ] because k PI =Φ+ ∪ [I ] and Φ(L I , T ) = [I ].

We would like to push Example 12.3.2 beyond the split setting, to describe k PI in
terms of specific root groups Ua attached to relative roots a ∈ kΦ and the centralizer
of a specific subtorus SI ⊂ S . But to do this we first need to define what Ua means
beyond the split case! Recall that in the split case we use a dynamical construction,
namely U〈a 〉(G ) to define Ua , and then used SL2-calculations to deduce that Ua is a 1-
dimensional vector group. Moreover, dynamical principles (and not SL2-calculations
as in standard textbooks) were used to deduce directly spanning results and commu-
tation relations among root groups, sometimes relying on reducedness of Φ to ensure
any two distinct roots inside a positive system of roots are linearly independent.

Provided that we are attentive to whether roots are divisible or multipliable (or nei-
ther), much of the previous work carries over unchanged to the general case, including
the definition of Ua : define it to be U〈a 〉(G ). There are some new features:

(i) without the SL2-crutch, we don’t immediately see whether or not Ua is a vec-
tor group (is it even commutative?), nor if so whether it has a preferred linear
structure (a genuine issue in higher dimensions since in characteristic p > 0 the
k -group G2

a has non-linear automorphisms such as (x , y ) 7→ (x + y p , y )),
(ii) The set of S-weights on Lie(Ua ) is kΦ∩Z≥0a by design, and this is {a , 2a } when

a is multipliable, so this Lie algebra can be larger than a single weight space.

The groups SU(h ) exhibit all of these issues (including thatUa can be non-commutative
for multipliable a ).

Fortunately, dynamical methods (having nothing to do with reductive groups) in
[CGP, §3.3] dispose of all of these problems: Ua is always a vector group when 2a 6∈ kΦ,
and in the multipliable case (so U2a is a vector group, as 4a 6∈ kΦ!) the vector group U2a

is a central k -subgroup of Ua with Ua/U2a also a vector group, and moreover that all of
these vector groups admit a unique S-equivariant linear structure. These matters are
discussed at length in the handout “Tits systems and root groups”, the upshot of which
is that (with a bit more work required in a few places) one has reasonable analogues
of all of the familiar features of root groups from the split case, so here we just wish to
highlight two aspects:

(1) For I ⊂ k∆, the parabolic k -subgroup k PI has a unique Levi k -subgroup L I ⊃ S
(improving on Proposition 12.3.1!) and both L I andUI are described by the ana-
logue of Example 12.3.2 using S and k∆ and the set of non-divisible elements
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of kΦ
+− [I ]. (This “direct spanning” description of UI is crucial for calculations

in the foundations of Bruhat–Tits theory.)
(2) If G is semisimple, k -simple, and isotropic then kΦ is irreducible (often non-

reduced!) and G is generated by the relative root groups Ua for a ∈ kΦ. The
proof of this result is much harder than its counterpart in the split case (as the
structure of ZG (S ) a mystery, and we cannot increase k since that may change
the relative root system and ruin the maximality of S ).

For k -simple isotropic G , the simply connected central cover of G is also k -simple.
Hence, by Corollary 1.2 in the handout on simple isogeny factors, that cover has the
form Rk ′/k (G ′) for a canonically determined finite separable extension k ′/k and con-
nected semisimple k ′-group G ′ that is absolutely simple and simply connected.

The relative root datum of Rk ′/k (G ′) is identified with that of G ′ (see §2 of the hand-
out on relative root systems), so for the purpose of describing the possibilities for con-
nected semisimple groups over a field in terms of the relative root system and ∗-action
on the absolute diagram (and perhaps further information), the essential case is that
of absolutely simple groups (which are moreover simply connected).

12.4. Tits-Selbach classification. Let G be a connected semisimple k -group, S ⊂G a
maximal split k -torus.

Theorem 12.4.1. If S is maximal (as a k -torus) in G then the reduced root datum R (G ,S )
is a complete isomorphism invariant.

By “complete invariant” we mean that every reduced root datum actually arises from
a split reductive pair over k (the Existence Theorem) and that two split connected re-
ductive k -groups are isomorphic if their root data are isomorphic (the Isomorphism
Theorem).

In the general case, we get the following data from G :

(1) The Dynkin diagram Dyn(G ) with ∗-action given by Γ =Gal(ks /k ). A priori this
depends upon a choice of S ⊂ T ⊂ P and Tks

⊂ B ⊂ Pks
. However, we can sup-

press the auxiliary choices by using either of the following viewpoints:
• the finite étale k -scheme of Dynkin diagrams, or
• the “Kottwitz method”: if T ′ and T ′ks

⊂ B ′ ⊂ Pks
are another pair for the

same S and P then there exists g ∈ G (ks ) such that B ′ = g B g −1 and T ′ks
=

g Tks
g −1, with g unique up to right multiplication against B ∩NG (T )ks

=
Tks

, so the isomorphism of diagrams ∆(B , Tks
) ' ∆(B ′, T ′ks

) induced by g -
conjugation is independent of the choice of g . This independence ensures
that it is compatible with the ∗-actions on both sides, and likewise if we
vary the initial pair (S , P ). This canonically identifies all such diagrams (i.e.,
we can declare Dyn(G ) to be the inverse limit of all diagrams∆(B , Tks

)along
these specified canonical Γ -compatible diagram isomorphisms as we vary
(B , T ) and then vary (S , P )).

The significance of a viewpoint that avoids reliance on a specific choice of aux-
iliary data is that it makes the ∗-action of Γ on Dyn(G ) functorial with respect to
any k -isomorphism in G . That is, if f : G ′ 'G is a k -isomorphism then we get
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a canonically associated diagram isomorphism Dyn( f ) that is compatible with
∗-actions on both sides.

(2) M =D(ZG (S )/S )ad is k -anisotropic connected semisimple of adjoint type.
(3) There are canonical identifications

∆0 := {a ∈∆ | a |Sks
= 1}

� _

��

Dyn(M )� _

��
∆ Dyn(G )

inducing a canonical inclusion Dyn(M ) ,→ Dyn(G ) which is Γ -invariant. This
is not obvious because the ∗-action depends on the Weyl action, but follows
from Proposition 12.2.5, which says that wγ in the definition of the ∗-action on
Dyn(G ) comes from NZG (S )(T )(ks ).

Example 12.4.2. Let D be a central division algebra over k of dimension d 2, and G =
SLm (D ). Then G is of type An−1 where n =md . The maximal split torus S is of dimen-
sion m , consisting of the diagonal scalars in

S =























GL1

GL1
...

GL1























⊂















g ∈









D D . . . D
D D . . . D
...

...
...

...
D D D D









|Nrd(g ) = 1















where Nrd : Matm (D ) → k is the reduced norm and D is the affine ring scheme as-
sociated to D (i.e., represents the functor on k -algebras given by A   A ⊗k D ). The
centralizer ZG (S ) is then the diagonal matrices:

ZG (S ) =























D ×

D ×

...
D ×
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D D . . . D
D D . . . D
...

...
...

...
D D D D























.

Therefore M = (D ×/GL1)m .
The Dynkin diagram is depicted below, with roots in∆0 circled and the roots in∆−∆0
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marked with black dots:

The Γ -action is trivial. We have∆0 =Am
d−1 and k∆=Am−1.

From G we get a 4-tuple (R ,τ, M , j )where

• R is a semisimple root datum,
• τ is a continuous action of Γ on Dyn(R ),
• M is a k -anisotropic group of adjoint type,
• j : (Dyn(M ),∗) ,→ (Dyn(R),τ) is a Γ -invariant inclusion.

There is an evident notion of isomorphism among such 4-tuples, and the isomorphism
class of the 4-tuple we obtain from G is easily checked (do it!) to be independent of all
choices; i.e., it only depends on the isomorphism class of G .

Remark 12.4.3. The k -group M is a mystery over general fields, usually entailing in-
volvement of central division algebras, anisotropic quadratic or hermitian forms, and
so on (e.g., for a general field k , Br(k )[2]may contain classes of central division algebras
beyond dimension 4). Over local and global fields this data is understood via class field
theory.

The main result announced by Tits [T, 2.7.1] and completed by Selbach [Sel] is:

Theorem 12.4.4 (Relative Isomorphism Theorem). The association from G to this 4-
tuple is injective on isomorphism classes.

On its own, the statement of this theorem is not as useful as it may seem to be (in
contrast with the split case), since to actually determine which 4-tuples can arise over
a given k generally entails a lot of effort specific to a given root system. In practice, the
importance of this theorem is two-fold:

(i) it provides a useful framework to organize the information that arises in the
analysis of possible k -groups with a given absolute semisimple root datum,
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(ii) knowledge of the proof of the theorem (in the format we will describe it), espe-
cially the idea of “reduction of the structure group”, helps very much to system-
atically analyze what G may occur.

I’ve not been able to understand Tits’ original exposition of his proof, but I am certain
that his cocycle manipulations should amount to an alternative formulation of what
is done in the proof-sketch below. (A difference between Tits’ approach and the one
sketched below is that Tits uses the idea of the automorphism variety of a split group
over k whereas we will work throughout with the automorphism variety of a given con-
nected semisimple k -group G that is typically not split.)

Idea of proof. The slogan is “reduction of the structure group”! We will need to use
degree-1 non-abelian Galois cohomology; this is a systematic technique for working
with torsors under smooth affine groups over a field, and is set up in [Se, Ch.,I, §5.1–
§5.5]. We will explain the basic idea behind this formalism, and then indicate how it is
used.

Suppose G and G ′ give isomorphic 4-tuples. By the Isomorphism Theorem over ks ,
the identification of their absolute root data implies that G ′ks

'Gks
. Thus, there is some

finite Galois extension K /k inside ks /k (such as any that splits choices of maximal k -
tori in G and G ′) such that G ′K ' GK as K -groups. This says that G ′ can be obtained
from G by modifying the Galois descent datum

{ϕγ : γ∗(GK )'GK }γ∈Gal(K /k )

which reconstructs G from GK . (Any K /k -descent datum on an affine scheme is always
effective, via Galois descent for the coordinate ring.)

Upon fixing a K -isomorphism f : G ′K 'GK , a descent datum {ϕ′γ} encoding G ′ as a
K /k -form of G is given by

ϕ′γ : γ∗(GK )' γ∗(G ′K )'G ′K 'GK

(using the k -descent G ′ of G ′K for the middle isomorphism). We can write ϕ′γ = c (γ)ϕγ
for a unique K -automorphisms c (γ) : GK 'GK , and the condition that ϕ′ be a descent
datum (given that ϕ is one) is exactly that c is a 1-cocycle:

c (γ′γ) = c (γ′) ◦γ′∗(c (γ))

for all γ,γ′ ∈Gal(K /k ).
The notion of non-commutative cohomologous 1-cocycles as defined in [Se, Ch. I,

§5] encodes exactly the effect on c of changing ϕ and ϕ′, so the resulting pointed set
H1(K /k ,AutK (GK )) classifies isomorphism classes of k -groups G ′ that become isomor-
phic to G over K (i.e., G ′K ' GK ). To remove the dependence on the choice of finite
Galois subextension K ⊂ ks over k , we pass to the limit and impose an appropriate
continuity condition on the 1-cocycles to arrive at a pointed set

H1(ks /k ,Autks
(Gks
))

that classifies isomorphism classes of k -groups which become isomorphic to G over
ks (or equivalently, by the Isomorphism Theorem in our connected semisimple setting,



REDUCTIVE GROUPS OVER FIELDS 131

have the same absolute root datum as G ). Our task is to use an isomorphism of 4-tuples
to show that the class in this H1 corresponding to G ′ is trivial.

At this point, we need a useful way to describe Autks
(Gks
). Remarkably, the automor-

phisms of a connected semisimple group are classified by a (possibly disconnected)
linear algebraic group:

Proposition 12.4.5. For a connected semisimple k -group G , the functor on k -algebras
A   AutA(GA) is represented by a smooth affine k -group AutG /k whose identity compo-
nent is G ad =G /ZG via the conjugation action on G .

In the split case, the finite étale component group is the constant k -group associated to
the group of diagram automorphisms that respect the root datum (i.e., automorphisms
of the diagram ∆ so that the resulting permutation automorphism of Q∆ = X(T )Q for a
split maximal k -torus T preserves X(T )).

What is ultimately needed for our purposes over fields is much less than Proposition
12.4.5; we just need a way to describe all automorphisms in the split case (such as over
ks ) in terms of both the action of points of G ad over specific fields and appropriate
diagram automorphisms (which are “lifted back” to automorphisms of Gks

by using
the notion of a pinning on a split reductive pair), and this must all be done functorially
with respect to extension of the ground field (such as through automorphisms of ks as a
ground field). For k -split G this special case of Proposition 12.4.5 can be deduced from
the Isomorphism Theorem in [C1, (1.5.2)–Prop. 1.5.5] over algebraically closed fields k
(for which G ad(k ) =G (k )/ZG (k )) and then [C1, (7.1.2)–(7.1.3)] over arbitrary fields; the
general case can then be deduced via Galois descent.

The proof of the full statement of Proposition 12.4.5 requires the theory of reductive
groups over rings (not a surprise, since it concerns a functor on k -algebras), and is given
in [C1, Thm. 7.1.9].

Remark 12.4.6. Diagram automorphisms are the same as automorphisms of the root
system, by Proposition 9.5.8. In the simply connected and adjoint-type cases the root
datum is determined by the root system (i.e., either X = ZΦ or X ∨ = ZΦ∨), so in such
cases that are split the component group of AutG /k is the constant group associated to
the group of diagram automorphisms.

Likewise, in cases where the fundamental group of the root system is cyclic (such
as for type A) it is automatic that every lattice between the root lattice and the weight
lattice is preserved by every automorphism of the root system (since a subgroup of a
cyclic group is uniquely determined by its size). Thus, in such cases that are split again
the component group is the group of diagram automorphisms. Cyclicity fails for type
D2n , for which it is (Z/2Z)2; see [C1, Ex. 1.5.2] for further discussion of this case. (Keep
in mind that if G is not absolutely simple then the group of diagram automorphisms
may involve isomorphisms between different irreducible components of the diagram!)

Example 12.4.7. Consider G = SLn with n ≥ 2. The adjoint quotient SLn/µn = PGLn =
GLn/Gm acts on SLn in the natural way, and the diagram An−1 has no nontrivial diagram
automorphisms when n = 2 and has exactly one when n > 2. If n > 2 then transpose-
inverse is an automorphism that does not arise from the adjoint quotient since its effect
on the center µn is inversion, which is nontrivial when n > 2! In contrast, for n = 2,
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transpose-inverse on SL2 is induced by conjugation against the standard Weyl element.
Thus, AutSL2 /k = PGL2 and if n > 2 then AutSLn /k = PGLn n (Z/2Z).

In general, if G is a smooth affine k -group then the pointed set H1(ks /k ,G (ks )) has
a useful geometric description that suppresses the mention of ks , much as étale coho-
mology over a field can be more convenient than Galois cohomology by avoiding the
need to work with a separable closure.

More specifically, there is a natural bijection of pointed sets

θ : {right G -torsors over k}/isom.'H1(ks /k ,G (ks ))

by assigning to any right G -torsor X the class of the 1-cocycle c arising from a choice of
base point x0 ∈ X (ks ): the ks -isomorphism of right torsors f : Gks

' Xks
via f (g ) = x0.g

yields an automorphism of right torsors

Gks
' γ∗(Gks

)
γ∗( f )
' γ∗(Xks

)' Xks

f −1

' Gks

that must be left multiplication by some unique c (γ) ∈ G (ks ) for each γ ∈ Gal(ks /k ).
One checks without difficulty that c is a continuous 1-cocycle and that passing to a
cohomologous 1-cocycle is exactly the same as changing the choice of x0 ∈ X (ks ).

The procedure X 7→ c defines θ as a map of pointed sets, and Galois descent in the
affine setting ensures that θ is bijective. The viewpoint of torsors artfully avoids any
mention of ks , and so it is often convenient to define the notation

H1(k ,G ) := {right G -torsors over k}/isom.

with functoriality in k via scalar extension and functoriality in G via a “pushout” con-
struction; see [C1, Ex. 2.4.11],

As a specific case of interest, the set of isomorphism classes of connected semisimple
k -groups with the same absolute root datum as G is given by the pointed set

H1(k ,AutG /k ).

In explicit terms, if H is such a k -group then composition of isomorphisms with au-
tomorphisms makes the Isom-scheme Isom(G , H ) (a Galois-twisted form of the affine
AutG /k ) into an AutG /k -torsor, and that is the torsor assigned to H .

Coming back to our situation of interest, here is how we use the assumption of iso-
morphic 4-tuples. The hypothesis of isomorphic absolute root data for G ′ and G yields
a class [G ′] ∈ H1(k , AutG /k ) whose triviality is equivalent to G ′ being k -isomorphic to
G . That is, this puts our task into a cohomological framework. The hypothesis that the
isomorphism of absolute root data can be chosen compatibly with Galois actions on
the diagrams for G and G ′ (i.e., “the same τ”) implies after some work that [G ′] arises
from H1(k ,G ad) via the natural pushout map H1(k ,G ad)→ H1(k ,AutG /k ) (that is gen-
erally not injective). This is a first “reduction of the structure group”. The existence of
a k -isomorphism M 'M ′ compatible with j and j ′ allows one to shrink the structure
group further, and get that [G ′] arises from H1(k , ZZG (S )/ZG ) (with ZZG (S )/ZG ⊂G ad).

Now a miracle happens: as k -groups we have

ZZG (S )/ZG '
∏

a∈k∆

Rka /k (Gm ),
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for finite separable extensions ka/k . (Explicitly, ka can be realized inside ks as the fi-
nite extension of k corresponding to the open stabilizer inside Gal(ks /k ) for a point
in the fiber over a for the quotient map ∆−∆0 � k∆.) The key fact underlying this
miracle is that the surjective map∆−∆0→ k∆ is the quotient by the ∗-action that tran-
sitively permutes simple absolute roots restricting to a given simple relative root, and
that for a finite subextension K /k inside ks /k , RK /k (Gm ) corresponds to a geometric
character group that is a permutation representation of Gal(ks /k ). A detailed explana-
tion is given in the proof of [CP, Prop. 6.3.12], which is written in the wider context of
pseudo-reductive groups and so simplifies a lot for reductive groups (e.g., the purely
inseparable extensions which arise are all trivial and the notation there has the follow-
ing meaning in our situation: M = ZG (S ), C is a maximal k -torus T in M , ZG ,C = T /ZG ,
and ker q = kerρ = ZZG (S )/ZG ).

Having reduced the structure group so much that [G ′]arises from the degree-1 Galois
cohomology of a direct product of “induced tori”, we are done by Shapiro’s Lemma and
Hilbert 90! �

Example 12.4.8. Here is an application of the technique of reduction of the structure
group: we will show that if G is a non-split form of the group G2 over a field k then G
must be anisotropic. In other words, the irreducible relative root system kΦ must be
empty rather than of rank 1. Here is the absolute diagram∆:

Suppose to the contrary that kΦ = Φ(G ,S ) has rank 1 (so it is A1 or BC1, but we do
not need that). There are no nontrivial diagram isomorphisms, so the ∗-action must
be trivial. Hence, ∆0 is one of the two vertices and the other restricts on S to give the
unique vertex in k∆. Since there are no diagram automorphisms and G2 has trivial cen-
ter, so G2 is its own automorphism scheme, the k -group G is classified by an element
[G ] ∈ H1(k , G2). We will prove that [G ] is trivial by performing reduction of the struc-
ture group (guided by such reduction steps in the proof of the Relative Isomorphism
Theorem).

Let c ∈∆ be the vertex not in∆0. (If we label the absolute diagram with a as the long
root and b as the short root then necessarily c = a because if c = b then the highest
absolute root 2a + 3b for G2 would restrict to 3c |S , an absurdity since roots are never
multipliable by 3 in a root system. But it does not matter for the argument that we can
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identify c .) The minimal parabolic k -subgroup of G corresponding to k∆ therefore
corresponds to the standard parabolic k -subgroup P = k Pc ⊂G2.

The Galois-twisting by points in G2(ks ) that builds G from the split group G2 therefore
can be given by conjugation against points in G2(ks ) that normalize Pks

. By Chevalley’s
Theorem from the first day of the course, P (ks ) is the normalizer of Pks

inside G2(ks ).
Hence, the 1-cocycle for G can be arranged to be valued in Pc (ks ), which is to say [G ]
comes from H1(k , Pc ). That provides a first reduction of the structure group. A second
reduction is achieved by:

Lemma 12.4.9. Let P be a parabolic k -subgroup in a connected reductive k -group, with
U = Ru ,k (P ). For any Levi k -subgroup L ⊂ P , the natural map H1(k , L )→ H1(k , P ) is
bijective.

Proof. Identifying L with P /U provides a natural map f : H1(k , P ) → H1(k , L ) that is
surjective (using H1(k , L ) → H1(k , P ) arising from the inclusion of L into P ). We will
show that f is actually bijective, from which the desired result is then immediate.

The technique of twisting by torsors (cocycle-twisting in more classical language)
implies that all elements of the fiber of f through a P -torsor ξ arise from H1(k ,Uξ) for a
certain Galois-twisted form Uξ of U . But whether or not a smooth connected unipotent
k -group is k -split is unaffected by separable extension of the ground field (this is part of
Tits’ structure theorem for unipotent groups; see the compatibility with separable ex-
tension at the end of Theorem 3.7 in the handout on the structure of solvable groups).
Thus, since (Uξ)ks

'Uks
is ks -split, it follows that Uξ is k -split. Hence, Uξ has a com-

position series whose successive quotients are vector groups over k , so H1(k ,Uξ) = 1.
This implies that the surjective f has singleton fibers and so is bijective as claimed. �

Now we know that [G ] arises from H1(k , Lc ) for a Levi k -subgroup Lc of Pc . Note
that Lc is split (we are working inside the split G2, after all), and it has root system with
basis {c } of size 1. Since Lc is split, the quotient torus Lc /D (Lc ) is a split torus and
so has vanishing H1 by Hilbert 90. Thus, the natural map H1(k ,D (Lc ))→ H1(k , Lc ) is
surjective, so we achieve yet another reduction of the structure group: [G ] arises from
H1(k ,D (Lc )).

But what is D (Lc )? This is a split connected semisimple group of rank 1, so it is either
SL2 or PGL2. In fact, it must be SL2. This could be seen by a direct argument with root
groups, but here is a reason based on general principles applicable more widely: Levi
subgroups of parabolic subgroups are always given by torus centralizers (these always
arises as ZG (λ)), and in a connected semisimple group that is simply connected the
derived group of any torus centralizer is always simply connected by Corollary 9.5.11!
Since G2 is simply connected, that rules out PGL2 and so D (Lc ) = SL2. But H1(k , SLn ) = 1
for any n ≥ 2 due to the exact sequence of pointed sets

GLn (k )
det→ k×

δ→H1(k , SLn )→H1(k , GLn )

along with the surjectivity of the determinant and the vanishing of H1(k , GLn ) (as all
vector bundles on Spec(k ) are free!). Thus, H1(k , SL2) = 1, so we are done.

The moral is that the classification of forms involves systematic reduction of the
structure group.
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