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1. THE LANGLANDS CORRESPONDENCE

1.1. Introduction. The notion of “automorphy” refers to automorphic forms – we say
that a geometric object, a Galois representation, etc. is automorphic if its L-function
agrees with the L-function of an automorphic form. When such results are available,
they are extremely powerful. For example, if an L-function agrees with that of an auto-
morphic form, we can construct a meromorphic continuation with the expected sort of
functional equation to the entire complex plane. These methods are behind the proof
of Fermat’s Last Theorem, the Sato-Tate conjecture, and many more things.

However, it was not until the work of Wiles in the 1990’s that we had many results
at all establishing automorphy of interesting Galois representations. The principal tool
here is automorphy lifting. The basic principle is that we consider a Galois represen-
tation ρ : GQ → GL2(Q`) and consider the reduction mod `, i.e. ρ : GQ → GL2(F`). In
many cases of interest, we can define and prove a notion of automorphy for these
"mod `" representations. Then, we prove a "lifting" theorem that allows us to show
that this implies automorphy for the "mod `n " representations for each n . Since the
Z`-representation is defined as the inverse limit of the Z/`n representations (and the
Q` representation is obtained from this by inverting `), this gives us automorphy of the
full thing.
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2 LECTURES BY RICHARD TAYLOR

1.2. The global Langlands correspondence for GLn . In the next sections we will ex-
plain the following conjecture, which is basic to the whole subject.

Conjecture 1.2.1 (Langlands Correspondence for GLn over F ). Let F be a number field.
Fix an identification ι : Q` ' C. Then there exists a bijection between the following two
sets:

• Algebraic cuspidal automorphic representations π=⊗′vπv of GLn (AF ).
• Irreducible algebraic `-adic representations r of GF :=Gal(F /F ).

Furthermore, this bijection satisfies the following compatibilities with the local Lang-
lands correspondences at each finite place.

(1) For each finite place v of F , the local Langlands correspondence relates πv to
r |GFv

. More precisely, we require:

rec(πv ) =WD(r |GFv
).

(2) If τ: F ,→Q` is given, then HTτ(r ) =−HCι◦τ(π∞). Here, HT denotes the Hodge-
Tate weights and HC denotes the Harish-Chandra weights.

Remark 1.2.2. The two sets have the same cardinality for trivial reasons, so the com-
patibility with the local theory is crucial. This is what allows us to show an equality of
L-functions!

1.3. Automorphic forms. Now, we will define the various terms appearing in Conjec-
ture 1.2.1. The ring of adeles AF is defined as the restricted product

∏′
v Fv , and we

topologize GLn (AF ) by viewing it as an open subset of An 2+1
F (the last coordinate is det−1

– this is like how we topologize the ideles by the embedding x 7→ (x , x−1) of A× into A2).
We let A∞F =

∏′
v finite Fv and F∞ =

∏

v |∞ Fv , so AF =A∞F × F∞ and

GLn (AF ) =GLn (F∞)×GLn (A
∞
F ).

Now, we can define the space of cuspidal automorphic forms for GLn :

Definition 1.3.1. The space A0(GLn (F )\GLn (AF )) of cuspidal automorphic forms for
GLn is defined to be the set of functionsϕ : GLn (F )\GLn (AF )→C satisfying the follow-
ing conditions:

(i) ϕ is smooth, i.e. there is an open subset W ⊆GLn (A∞F ) such that the restriction of
ϕ to W ×GLn (F∞) factors through the projection to GLn (F∞) via a smooth map
between the manifolds GLn (F∞) and C. In other words, ϕ is locally constant in
the finite places and smooth in the infinite places.

(ii) ϕ is GLn (ÓOF )×U∞-finite. In other words, the space of right translates of ϕ under
GLn (ÓOF )×U∞ is finite-dimensional. Here, ÓOF is the profinite completion of OF ,
i.e.

ÓOF =
′
∏

v finite

OF,v ,

and
U∞ =

∏

v |∞
Uv ,
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where Uv is a maximal compact subgroup of GLn (Fv ), required to be O(n )when v
is real and U(n )when v is complex.

(iii) ϕ is z-finite (in the same sense of finite as in the previous condition). Here, z is the
center of the universal enveloping algebraU of the Lie algebrag := (Lie GLn (F∞))⊗
C, and Lie GLn (F∞) acts on ϕ by the formula:

(Xϕ)(g ) =
d

d t
ϕ(g exp(t X )) |t=0

We extend the action to g by C-linearity and then toU (by the universal property
ofU - i.e. it’s the universal associative algebra containing g).

Note that

g=Matn×n (F∞)⊗R C=Matn×n (F ⊗Q C) =
∏

τ: F ,→C
1

Mn×n (C) =:
∏

τ: F ,→C

gτ.

We similarly haveU =⊗τUτ and z=⊗τzτ.
Harish-Chandra showed that zτ ' C[x1, . . . , xn ]Sn . This isomorphism is char-

acterized by the fact that on the irreducible representation of GLn with highest
weight given by a1 ≥ a2 ≥ · · · ≥ an , then the corresponding character of zτ sends

{x1, . . . , xn} 7→ {a1+
n −1

2
, a2+

n −3

2
, · · · , an +

1−n

2
}.

(iv) ϕ is slowly increasing. This means that there exist real constants C , s such that

|ϕ(g )| ≤C ‖g ‖s for all g ∈GLn (AF ).

Here, for g = (gv ∈GLn (Fv ))v , we define the norm

‖g ‖ :=
∏

v

max1≤i , j≤n{|(gv )i , j |v , |(gv )
−1
i , j |v }

where (gv )i , j are the matrix coordinates.
(v) ϕ is cuspidal. We define the block upper-triangular unipotent subgroup

Nm =
§�

1m ∗
0 1n−m

�ª

for 0<m < n . As m varies, we run through the set of unipotent radicals of repre-
sentatives of each conjugacy class of maximal parabolic subgroups.

The condition that ϕ is cuspidal says that for each 0 < m < n and each g ∈
GLn (AF ), we have:

∫

Nm (F )\Nm (AF )
ϕ(ug ) d u = 0

Remark 1.3.2. Sometimes one wants to discuss automorphic forms which are not nec-
essarily cuspidal (e.g. modular forms which are not cusp forms). These are essentially
functions on GLn (F )\GLn (AF ) satisfying conditions (i) to (iv) above, except that one
often wants to strengthen the growth condition (iv) in this case.
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1.4. Automorphic representations. The spaceA0(GLn (F )\GLn (AF )) is not quite a rep-
resentation of the group GLn (AF ). This is due to the fact that ifϕ is U∞-finite, then the
translate of ϕ by g ∈ GLn (F∞) is g U∞g −1-finite, and not necessarily U∞-finite. How-
ever, it admits an action of GLn (A∞F )×U∞ as well as an action of g. These are related
by the fact that the differential of the U∞ action is the restriction of the g-action to
Lie(U∞), i.e.

g (Xϕ) = (ad(g∞)(X ))(gϕ) for g ∈GLn (A
∞
F )×U∞ and X ∈ g.

By replacing the space A0(GLn (F )/GLn (AF )) by a Hilbert space completion, we can
get an honest representation of GLn (AF ). However, we then have to worry about the
topology of the vector space, so it is a trade-off.

1.4.1. Now look back at Conjecture 1.2.1. On one side of this correspondence, we
have the set of algebraic cuspidal automorphic representations π=

⊗′
v πv of GLn (AF ).

These live inside the spaceA0(GLn (F )\GLn (AF ))of cuspidal automorphic forms, which
carries a canonical structure of a (GLn (A∞F )×U∞,g)-module. This space decomposes
discretely as

⊕

π with π ranging through the set of irreducible cuspidal automorphic
representations, each appearing exactly once (this is the "Multiplicity One" theorem,
which is true for GLn but not for other reductive groups).

1.4.2. Let π be one of these irreducible pieces. We can write π =
⊗′

v πv . For each fi-
nite v , πv is an irreducible representation of GLn (Fv ), which is also smooth and admis-
sible. The condition of being smooth means that the stabilizer of every vector is open,
and the condition of being admissible means that the space of vectors fixed by a given
non-empty open subset of GLn (Fv ) is finite-dimensional. For each infinite v , πv is an
irreducible admissible (gv ,Uv )-module. Here, admissibility means that the Uv -isotypic
components of πv are finite dimensional.

What does it mean to say thatπ=
⊗′

v πv ? How do we make sense of an infinite tensor
product? For all but finitely many v 2, the representation πv is unramified (or "spheri-

cal") meaning that the space of GLn (Ov )-fixed points πGLn (Ov )
v is non-zero. In fact, this

implies (by commutativity of the local spherical Hecke algebra GLn (Ov )\GLn (Fv )/GLn (Ov ))
that πGLn (Ov )

v is one-dimensional. We choose (non-canonically!) a basis vector ev for
this space for each v . Now, we can define the infinite tensor product:

′
⊗

v

πv := lim−→
S

#S<∞
S⊃all archimedean/ramified v

⊗

v∈S

πv .

The maps in the direct system are defined for each S ⊆ T by the map:
⊗

v∈S

πv →
⊗

v∈T

πv : ⊗v∈S xv 7→ (⊗v∈S xv )⊗ (⊗v∈T−S ev ).

Varying the choices of ev amounts to scaling these maps, so we get an isomorphic infi-
nite tensor product.

2We will abbreviate this as "almost all v " throughout.
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1.4.3. Now, the center of the universal enveloping algebra of GLn (F∞) is z=
⊗

τ: F ,→C zτ,
and this acts on π by scalars. There’s an isomorphism zτ ' C[x1, . . . , xn ]Sn , so these
scalars give us a multiset of n complex numbers, called the Harish-Chandra param-
eters of π∞ and denoted HCτ(π∞). This allows us to make the following definition.

Definition 1.4.1. We say that π is algebraic if HCτ(π∞)⊆ Z for each τ. We say that π is
regular if HCτ(π∞) has n distinct elements for each τ.

Remark 1.4.2. The condition that π is regular and algebraic is equivalent to the con-
dition that π is cohomological, which means that it appears in the Betti cohomology
of the symmetric space GLn (F )\GLn (AF )/K for some choice of compact subgroup K
(e.g. for n = 2 and F =Q, this is a modular curve, with level specified by the choice of
K ). This means that the regular algebraic representations are accessible via topology.
In general, very little can be said if we do not make these assumptions on π.

1.5. The Galois side. Now, we have defined the objects appearing on the "automor-
phic" side of the global Langlands correspondence. On the other side, we have the
"Galois" side. We consider the profinite absolute Galois group

GF :=Gal(F /F ) = lim←−
[E :F ]<∞

Gal(E /F )

and its `-adic representations (for ` some prime number). These are defined to be con-
tinuous homomorphisms r : GF →GLn (Q`).

The group GF as an abstract profinite group is extremely complicated - for example,
by work of Thompson, the monster group is a quotient in infinitely many ways! How-
ever, we can consider the decomposition subgroups GFv

=Gal(Fv /Fv ) ,→GF . These are
well-defined only up to conjugation by GF (the injection is determined by choosing a
place of F over v , and GF permutes these). These decomposition groups are much sim-
pler - they are pro-solvable. Thus, the representation theory of GF is more manageable
if we take into account this family of subgroups.

1.5.1. The Weil group. It turns out to be convenient to replace the decomposition group
Fv by the Weil group WFv

. To define this, we consider the geometric Frobenius automor-
phism Frobv of the residue field k (v ) at v . This is the inverse of the map α 7→α#k (v ) (the
latter is called the arithmetic Frobenius). There is an isomorphism

Gk (v )
∼−→ bZ= lim−→

m

Z/mZ

which sends Frobv to 1 (we say that Gk (v ) is pro-cyclic with generator Frobv ). An au-

tomorphism of F v induces an automorphism of the residue field k (v ), so we have a
canonical surjection GFv

→ Gk (v ). The kernel is called the inertia group Iv . Thus, we
have a short exact sequence (which splits, but non-canonically):

0 // Iv
// GFv

// Gk (v )
// 0

By modifying this exact sequence slightly, we obtain the Weil group:

0 // Iv
// WFv

v // FrobZ
v ' Z // 0
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In other words, the Weil group is the subgroup of GFv
which acts by integer powers of

the Frobenius on k (v ). We topologize it via the above exact sequence: we require that
Iv is an open subgroup, so WFv

is homeomorphic to Iv ×Z with the discrete topology on
Z. The map v : WFv

→ Z is called the valuation map.

1.5.2. Weil-Deligne representations.

Definition 1.5.1. Let V be a vector space over a field L of characteristic 0.3 A Weil-
Deligne representation (abbreviated "WD-representation") of WFv

on V is a pair (ρ, N )
with ρ : WFv

→ GL(V ) a map with open kernel (i.e. it is continuous with respect to the
discrete topology on V ) and N an endomorphism of V which satisfies:

ρ(σ)Nρ(σ)−1 = #k (v )−v (σ)N

for all σ ∈WFv
. This condition implies that N is nilpotent (by examining its eigenval-

ues).

This definition is somewhat strange, but it allows us to ignore the topology of V . This
means that the notion is the same over C and over Q`. In addition, there are only finitely
many choices of N (up to isomorphism) for a fixed ρ, so the N can be thought of as an
additional finite bit of combinatorial data.

Definition 1.5.2. We say that a WD-representation (ρ, N ) is Frobenius-semisimple if
ρ(Φ) is semisimple (i.e. it is diagonalizable over L) for any lift Φ ∈WFv

of Frobv . This is
equivalent to requiring that ρ be semisimple in the abelian category of WD represen-
tations.

We say that (ρ, N ) is semisimple if it is Frobenius-semisimple and N = 0.

Proposition 1.5.3. Given a WD-representation (ρ, N ), there exists a unique unipotent
u ∈ GL(V ) which commutes with N and ℑ(ρ) and such that (ρu−v (σ), N ) is Frobenius-
semisimple. We call this the Frobenius semi-simplification of (ρ, N ).

Proposition 1.5.4 (Local Langlands Correspondence). For a finite place v , there exists
a natural bijection:

¦

irred. smooth rep’ns
of GLn (Fv ) over C

© rec−→
§n-dim Frob-semisimplel

WD-rep’ns
of WFv over C

ª

.

Note that we need to say what "natural" means for this to have much meaning (in
particular, the L-functions and ε-factors on both sides match, there is compatibility
between the various n , etc.).

Example 1.5.5. For n = 1, this is essentially the content of local class field theory: the
Artin map gives an isomorphism

ArtFv
: F ×v

∼−→W ab
Fv

which sends uniformizers to lifts of Frobv . Then we have rec(χ) = χ ◦Art−1
Fv

for χ a
character (i.e. a 1-dimensional representation) of F ×v .

3the characteristic 0 condition is not technically relevant to the definition, but all known applications are
in this setting.



AUTOMORPHY LIFTING 7

1.6. `-adic representations. We have almost finished explaining Conjecture 1.2.1. It
remains to discuss “irreducible algebraic `-adic representations”.

Definition 1.6.1. An `-adic representation GF → GLn (Q`) is a continuous representa-
tion (with the profinite topology on the domain, and the `-adic topology on the target).
We say that an `-adic representation r : GF →GLn (Q`) is algebraic (which is often called
“geometric” in the literature) if:

(1) For almost all v , r is unramified at v , meaning r (IFv
) = {1}.

(2) For all v | `, r |GFv
is “de Rham” (a notion that we will take as a black box). We

emphasize that this is a purely local constraint.

Remark 1.6.2. Any representation that comes from the `-adic cohomology of algebraic
varieties satisfies these two conditions. Fontaine-Mazur conjectured that the converse
is true.

1.6.1. The associated Weil-Deligne representation. Suppose v - `. Fix φ ∈ WFv
lifting

Frobenius. Then there is a map

t : IFv
� Z`,

which is unique up to multiplication by Z×` . Then there exists a unique WD represen-
tation (ρ, N ) such that

r |WFv
(σ) =ρ(σ)exp(t`(φ

−v (σ)σ)N ) for allσ ∈WFv
. (1.6.1)

What’s surprising about this? The representation r is continuous with respect to the
profinite topology on GFv

and the `-adic topology on GLn (Q`), while ρ is continuous

with respect to the profinite topology on IFv
and the discrete topology on GLn (Q`). So

the conversion (1.6.1) strips out the `-adic topology.
This construction appears to depend on the choices of φ and t , but up to isomor-

phism it is actually independent of these choices. Since the notions of C and Q`-valued
WD representations are identified by the choice of ι, this provides a translation between
WD representations over C and Q`.

Remark 1.6.3. For v | `, there is still a way to define a good notion of Weil-Deligne
representation WD(r |GFv

), but it no longer determines r |GFv
.

1.6.2. Hodge-Tate weights.

Definition 1.6.4. The cyclotomic character

ε` : GF → Z×`

is characterized by the property that forσ ∈GF and ζ a `-power root of unity,

σ(ζ) = ζε`(σ).

This is continuous and algebraic, and unramified away from `. Furthermore, for v | `
we have

ε`(Frobv ) = #k (v )−1.
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For τ: F ,→Q`, the closure of the image is Fv for some v | `. We want to define its set
of Hodge-Tate weights, HTτ(r ). To do this, we take r |GFv

and tensor it with a power of

the cyclotomic character εi
`, and extend scalars:

(r |GFv
εi
`⊗τ,Fv

F v )

which has an action of Q` ⊗τ,Fv
F v . This has a semi-linear action of GFv

, via r on the
first factor and the Galois action on the second. Hence we can take GFv

-fixed points.
Tate proved that

dimQ`
(r |GFv

εi
`⊗τ,Fv

F v )
GFv ≤ n (1.6.2)

(Equality holds for algebraic r .) Then HTτ(r ) is a multiset of integers in which i ∈ Z has
multiplicity equal to dimQ`

(r |GFv
εi
`⊗τ,Fv

F v )GFv .
Thus for v | `, we have attached “discrete” invariants WD(r |GFv

) and HTτ(r ). These
don’t determine everything – there are continuous families of possible r .

Both the analytic and Galois-theoretic world are very big, but the algebraic stuff in-
side them looks kind of discrete (and this discrete stuff should be related to motives
defined over F ).

1.7. What is known?

1.7.1. The case n = 1. There is one case where Conjecture 1.2.1 is entirely known, namely
the n = 1 case. Let me explain the association χ 7→ r`,ι(χ). In this case there is no com-
plication at∞, so a cuspidal automorphic representation of GL1 (what we denoted by
π above) is the same as a continuous character

χ : AF /F ×→C×.

The “algebraic condition” says that χ |(F ×∞)0 , note that (F ×∞)
0 is a product of copies of C×

and R×, looks like

x 7→
∏

τ: F ,→C

τ(x )−nτ .

The Harish-Chandra parameters are then HCτ(χ) = {−nτ}.
Remark 1.7.1. The continuous characters χ : AF /F × → C× are called Grossencharac-
ters.

We were going to explain how to produce the 1-dimensional algebraic `-adic repre-
sentation rχ . First we’ll define another eχ : A×F →C×, given by

eχ :=χ(x )
∏

τ: F ,→C

τ(x∞)
nτ . (1.7.1)

What properties does eχ have? It is no longer trivial on F ×. However, it does at least

take F × into Q
×

. The continuity of χ implies that it is invariant by some open compact
subgroup U ⊂ A×F , so eχ is invariant by U · (F ×∞)

0. Now, a fundamental fact is that any
such quotient

A×F /F ×U · (F ×∞)
0

is actually finite. So the eχ is actually valued in Q
×

, even on A×F .
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We then use ι−1 ◦ eχ : Q
×
,→Q

×
` . We want it to be invariant under F ×, and we have the

freedom to modify the component at `. Therefore, we write down

χ (`) : A×F /F ×→Q
×
`

by

x 7→ ι−1 ◦ eχ(x )
∏

τ: F ,→Q`

(τx`)
−nι◦τ . (1.7.2)

Since this only involved the components above `, it’s still going to be invariant under
(F ×∞)

0, so the character will factor through

χ (ι) : A×F /F ×(F ×∞)0→Q
×
` .

Theorem 1.7.2. We have commutative diagrams

ArtF : A×F /F ×(F ×∞)0 G ab
F

ArtFv
: F ×v W ab

Fv

∼

∼

for v -∞ and

ArtF : A×F /F ×(F ×∞)0 G ab
F

ArtFv
: F ×v /(F

×
v )

0 G ab
Fv

∼

∼

for v |∞.

Here ArtF and ArtFv
are the global and local Artin maps. Finally, we set

r`,ι(χ) =χ
(ι) ◦Art−1

F .

In summary, the content of the Langlands correspondence for n = 1 is essentially
the content of class field theory.

1.7.2. Results for CM fields. The conjecture has two directions: going from (a) auto-
morphic representations to (b) Galois representations, or the other way. The course
is going to be about going from (b) to (a), but I will first make some comments about
going from (a) to (b); we do not currently have any way to get (b) → (a) without first
knowing (a)→ (b).

Beyond n = 1, the only cases where we know anything are when F is a CM field.

Definition 1.7.3. A number field F is a CM field if there exists c ∈ Aut(F ) such that for
all τ: F ,→ C, we have c ◦ τ = τ ◦ c . (In other words, there’s a well-defined complex
multiplication no matter how you put F into C.)4

Remark 1.7.4. Evidently the automorphism c must have order 2. We can define F + =
F {1,c }; then F + is totally real and [F : F +] = 1 or 2.

4Under this definition, totally real fields are also CM fields, although some people like to exclude this case.
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Suppose thatπ is a regular algebraic cuspidal automorphic representation of GLn (AF )
(to recall the definition, see Definition 1.4.1).5 It is then a theorem that there exists an
`-adic representation r`,ι(π): GF →GLn (Q`) such that for v - `,

rec(π)ss ∼= ιWD(r`,ι(π)|GFv
)ss

and if πv is unramified, then so is ιWD(r`,ι(π)|GFv
).6 In particular, we know that r`,ι(π)

is unramified almost everywhere. However, we don’t know that r`,ι(π)|GFv
is de Rham.

1.7.3. Self-dual representations. We can do much better with more hypotheses. Sup-
pose F is CM and π is regular algebraic. Suppose χ : A×F +/(F

+)×→C× is a grossenchar-
acter such that if F is complex then χv (−1) is independent of v |∞, and

πc ∼=π∨⊗ (χ ◦NF /F + ◦det). (1.7.3)

This is some sort of self-duality condition.
Then there exists r`,ι(π): GF →GLn (Q`) an algebraic `-adic representation such that

(1) For all v , rec(πv ) = ιWD(GFv
)F −ss (conjecturally this semisimplicity is automatic),

(2) For all τ: F ,→Q`, HCι◦τ(π∞) =−HTτ(r`,ι(π)).

1.7.4. A remark on the proofs. The idea in §1.7.3 is to use the Arthur-Selberg trace for-
mula to move to a unitary group, which has a Shimura variety.

This doesn’t work for §1.7.2. The Galois representations there are not found in the
cohomology of any particular motive, but pieced together from representations mod
`n coming from motives.

1.7.5. Base change. What is base change? Given a Galois representation of GF , you can
restrict to GE for a field extension E /F , and then go back to an automorphic repre-
sentation for GLn (E ). Is there a way to realize this directly at the level of automorphic
representations?

This is very difficult, but sometimes possible. It was done by Langlands for GL2 and
generalized to GLn by Arthur-Clozel.

Remark 1.7.5. Although the plausibility argument at the beginning was only for alge-
braic representations, the method works for all automorphic representations.

Theorem 1.7.6. Suppose E /F is a finite solvable Galois extension of CM fields.

(1) If π is a cuspidal automorphic representation of GLn (AF ), then there exists n =
n1+ . . .+nr , with each ni ∈ Z>0, and cuspidal automorphic representationsπi of
GLni

(AE ), such that:

rec(πv )|WEw

∼=
⊕

i

rec(πi ,w ) for all w | v ,

and
HCτ(π∞) =

∐

i

HCτ(πι,∞) for all τ: E ,→C,

5We know almost nothing outside of the regular case.
6An unramified Weil-Deligne representation (ρ, N ) is one with N = 0 and ρ unramified.
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(2) If r is a regular algebraic `-adic representation GF → GLn (Q`) with r |GE
irre-

ducible, then r is automorphic if and only if r |GE
is automorphic.

(3) Ifπ is a cuspidal automorphic representation of GLn (AE ) then there exists n1, . . . , nr ∈
Z>0 with n1+ . . .+nr = n [E : F ] and cuspidal automorphic representations πi of
GLni

(AF )

⊕i rec(πi ,v ) =
⊕

w |v
Ind

WFv
WEw

rec(πw )

and
∐

i

HCτ(πi ,∞) =
∐

τ: E ,→C
eτ|F =τ

HC
eτ(π∞) for all τ: E ,→C,

(4) If r is an algebraic irreducible GE →GLn (Q`) and IndGF
GE

r is irreducible, then r is

automorphic if and only if IndGF
GE

is automorphic.

The upshot for us is that we can freely make solvable base change to simplify our
lives, which we will repeatedly do.

1.8. Mod-` representations. We have said what it means for an `-adic representation
r : GF →GLn (Q `) to be automorphic, but we want to introduce the notion of automor-
phy for a mod ` representation

r : GF →GLn (F`).

Note that any such r will automatically be unramified at almost all places. Also there
is no longer a notion of “de Rham over v | `”, so there’s no obvious obstruction for all
such r to be “algebraic” (what is commonly called “geometric”).

Any `-adic representation r : GF →GLn (Q`) can be conjugated by some g ∈GLn (Q`)
such that

g r g −1 : GF →GLn (OQ`
).

We then define the reduction of r to be

r := (g r g −1 mod m)ss.

Here the ss standards for semisimplification, and is necessary to make this well-defined
(a priori it depends on g ).

Definition 1.8.1. We say that r is automorphic if there exists an algebraic `-adic repre-
sentation r : GF →GLn (Q`)which is automorphic, whose reduction is r .

Automorphy lifting theorems, which are the subject of this course, are of the form:
given an `-adic representation r such that r is automorphic, plus hypotheses, conclude
that r is automorphic.

Potential automorphy lifting theorems are of the form: given an `-adic representa-
tion r such that r is automorphic, plus hypotheses, conclude that there exists a finite
Galois extension E /F such that r |GE

is automorphic.
In practice, many desirable consequences of automorphy are already implied by po-

tential automorphy.
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2. AN AUTOMORPHY LIFTING THEOREM FOR TOTALLY REAL FIELDS

2.1. Main Theorem. We begin by stating the main theorem that we will spend the next
few weeks working to prove.

Theorem 2.1.1. Assume ` > 2, and fix ι : Q`
∼−→ C. Let F be a totally real field, and

r : GF →GL2(Q`) is a regular, algebraic `-adic representation. Suppose there exists a reg-
ular algebraic cuspidal automorphic representation π of GL2(AF ) such that

• r`,ι(π)∼= r ,
• HTτ(r`,ι(π)) =HTτ(r ) for all τ: F ,→Q`.

Assume furthermore:

(1) r |GF (ζ`)
is irreducible.

(2) ` is unramified in F and r is crystalline at all v | ` (equivalently, WD(r |GFv
) is

unramified for all v | `).
(3) For all v | `, πv is unramified (which is equivalent to rec(πv ) being unramified).
(4) There exists a such that HTτ(r )⊂ {a , a +1, a +2, . . . , a + `−2} for all τ: F ,→Q`

(“Fontaine-Laffaille case”).

Then r is automorphic.

2.2. Modularity of elliptic curves. Before moving on to the proof, we give an applica-
tion.

Corollary 2.2.1. Suppose E /F is an elliptic curve over a totally real field F .

(1) There exists a finite, totally real Galois extenson F ′/F such that E ×F F ′ is auto-
morphic.

(2) L (E , s ) (defined for Rep s > 3/2) has meromorphic continuation to C, and satis-
fies a functional equation

Λ(E , s ) =±N 1−sΛ(E , 2− s ),

where Λ(E , s ) = L (E , s )(2π−s Γ (s ))[F :Q], and N is the conductor of E .

To E and a place v of F , there is a Weil-Deligne representation WD(E ×F Fv ), which is
defined over Q (and even “morally defined over Q”). Consider the `-adic GF -representation
H 1(E ×F F ; Q`). This is dual (as a GF -representation) to the Tate module V`(E ).

Proposition 2.2.2 (Fontaine). There is a 2-dimensional (Frobenius-semisimple) Weil-
Deligne representation WD(E /Fv )defined over Q, such that for any ` and any embedding
j : Q ,→Q`,

j (WD(E /Fv ))∼=WD(H 1
ét(E ×F F ; Q`)|GFv

).

You can think of this as saying that the `-adic representations are “independent of
`”. Conjecturally, an analogue holds for any motive.

Example 2.2.3. This representation captures geometric properties of E . For example,

• E has good reduction at v if and only if WD(E /Fv ) is unramified.
• E has multiplicative reduction at v if and only if WD(E /Fv )∼= (ρ, N )where ρ is

unramified and N =
�

0 1
0 0

�

.
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• E has potentially good reduction at v if and only if N = 0.

Definition 2.2.4. We say that E is automorphic if there exists an algebraic cuspidal au-
tomorphic representation π such that:

(1) WD(E /Fv )∼= rec(πv ) for all v ,
(2) HCτ(π∞) = {0,−1} for all τ: F ,→C.

By Proposition 2.2.2, this is equivalent to the automorphy of V`(E )∨ for one `, and to
the automorphy for all `. We define the L-function of E to be

L (E , s ) =
∏

v

det(1−#k (v )−s Frobv )|−1
WD(E /Fv )

IFv ,N=0 .

For almost all v (namely the unramified ones), the local factor is
�

1−Tr(Frobv ) ·#k (v )s +#k (v )1−2s
�−1

.

Furthermore,

#E (k (v )) = 1+#k (v )−Tr(Frobv ).

Note that we need to take fixed points for IFv
to get an action of Frobv ∈WFv

/IFv
.

Remark 2.2.5. There are other ways to write down the Euler factors at “good” places,
but the only way I know to define the “bad” factors is via Galois representations.

2.3. Proof of Corollary 2.2.1. We’ll first show how to deduce Corollary 2.2.1 from The-
orem 2.1.1.

2.3.1. Initial reduction. We can assume that E doesn’t have CM over F , i.e. End(E /F ) =
Z. This is because the CM case is easy.

2.3.2. Auxiliary elliptic curve. Next choose E0/Q a CM elliptic curve, which has CM by
an imaginary quadratic field M . There exists an algebraic Grossencharacterχ : A×M /M

×→
C× such that

V`(E0)
∨ ∼= Ind

GQ

M r`,ι(χ).

For some choice of τ: M ,→C, it will be the case that HCτ(χ) = {−1} and HCτ(χ) = {0}.

2.3.3. Modular curves. Now choose odd primes `1,`2 such that:

• E0, E have good reduction at the `i ,
• `1,`2 are unramified in F ,
• E [`2]|GF (ζ2)

is irreducible. (This is satisfied for almost all `2, by Serre’s theorem
that GF �Aut(E [`]) for almost all `, since E doesn’t have CM.)
• E0[`1]|GF (ζ`1

)
is irreducible. (This should be true for all but finitely many `1; it’s

at least easy to see that it’s true for all `1 inert in M .)

Let X /F be the moduli space for elliptic curves A together with isomorphisms (as
group schemes over F , i.e. as GF -modules)

j1 : E0[`1]
∼−→ A[`1],

j2 : E [`2]
∼−→ A[`2].
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Remark 2.3.1. After base changing to C, the associated complex-analytic variety is
Γ (`1`2)\H. Hence X is geometrically irreducible. I don’t know a proof of this fact that
doesn’t use our knowledge of the associated complex-analytic variety.

2.3.4. Points over local fields. We are going to define some local points on X .

• If v | `1, choose a finite unramified extension L ′v /Fv such that GL ′v acts trivially
on E [`2] and E0[`2]. Then E0 gives a point on X (L ′v ), since we can take j1 =
Id: E0[`1] = E0[`1] and j2 : E [`2]

∼−→ E0[`2].
• Similarly, if v | `2 we choose a finite unramified extension L ′v /Fv such that GL ′v

acts trivially on E [`1] and E0[`1]. Then E gives a point in X (L ′v ).

Let Ωv ⊂ X (L ′v ) be the locus of (A, j1, j2) where A has good reduction. (Note that
the triviality of the Galois action on the torsion implies that the reduction is already
semistable – no additive reduction – so the good reduction property is exactly detected
by integrality of the j -invariant.)

2.3.5. Points over global fields. We now state a result that tells us that we can find a
rational point over a global field satisfying certain desired local conditions.

Proposition 2.3.2 (Moret-Bailly). Let K avoid/K be a finite Galois extension of number
fields. Let S be a finite set of places of K . Let S be a finite set of places of K . If v ∈ S, let
L ′v /Kv be a finite Galois extension.

Let X /K be a smooth and geometrically connected variety. Suppose that for all v ∈ S,
there exists a non-empty subset Ωv ⊂ X (L ′v )which is Gal(L ′v /Kv )-invariant. Then: there
exists L/K which is finite and Galois, and linearly disjoint from K avoid, a point p ∈ X (L ),
and isomorphisms Lw

∼= L ′v for all w | v ∈ S, such that p ∈ Ωv ⊂ X (Lw ) ∼= X (L ′v ) for all
w | v ∈ S.

We apply this with:

• K = F ,
• S = {v |∞`1`2},
• L ′v = L ′v if v | `1`2,
• L ′v =R if v |∞. (Note that this guarantees that L is also totally real.)
• Ωv as above. For v -∞, we know thatΩv is non-empty because we’ve designed

it to contain (E0, j1, j2) or (E1, j1, j2). For w |∞, we need to know that X (R) 6=. In
the R case, we need to match the complex conjugations. The point here is that
complex conjugation is an element of GL2(F`1

) with order 2 and determinant
−1, and there is only one conjugacy class of such elements. Hence a point is
given by, for example, taking E = E0, j1 = Id, and j2 to be an isomorphism which
necessarily exists by the preceding considerations.
• K avoid = F (E [`1`2], E0[`1`2],ζ`1`2

). The point of this is to preserve the irreducibil-
ity hypothesis on the residual Galois representation, and that for a field linearly
disjoint from K avoid, the Galois action doesn’t change.
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So we get that there exists a finite Galois and totally real extension L/K , and an el-
liptic curve A/L , with isomorphisms

j1 : E0[`1]
∼−→ A[`1],

j2 : E [`2]
∼−→ A[`2].

such that A has good reduction above `1`2. In particular, A[`1] is irreducible as a repre-
sentation of GL (ζ`1 )

and A[`2] is irreducible as a representation of GL (ζ`2 )
.

2.3.6. Base change for grossencharacters. We are then going to use Theorem 2.1.1 to
deduce that A is automorphic over L from the fact that E0 is automorphic over L (using
j1), and then that E is automorphic over L from the fact that A is automorphic over L
(using j2).

We explain this carefully. Recall that since E0 has CM by the imaginary quadratic field
M , we can use CM theory to show that there exists a grossencharacterχ : A×M /M

×→C×

and an embedding τ: M ,→C such that HCτ(χ∞) = {−1}, HCτ(χ∞) = {0}, and

Ind
GQ

GM
rι,`(χ)' (V`E0)

∨.

Now, this tells us that:

(V`E0)
∨|GL
' IndGL

GM L
(rι,`(χ)|GM L

) = IndGL
GM L

rι,`(χ ◦NM L/M ).

The second equality is by compatibility of the Artin map with the norms. Furthermore,
since M L/L is certainly solvable, the base change theorems we discussed in §1.7.5 im-
ply that IndGL

GM L
rι,`(χ ◦NM L/M ) is automorphic, i.e.

IndGL
GM L

rι,`(χ ◦NM L/M ) = rι,`(π0)

for some regular algebraic cuspidal automorphic representation π0 of GLn (AL ) such
that HCτ(π0,∞) = {0,−1} for all τ: L ,→C.

2.3.7. Transferring automorphy. Now, we apply Theorem 2.1.1 to the representation
r = (V`1

A)∨, using that

r = (A[`1])
∨ ' E0[`1]

∨ ' rι,`1
(π0),

so we have automorphy mod `. We check that the various conditions in the theorem are
satisfied by construction of A. This gives us a regular algebraic cuspidal automorphic
representation π1 of GL2(AL ) such that rι,`1

(π1) ' (V`1
A)∨. We then proceed similarly

with (V`2
A)∨.

2.3.8. We record the following:

Proposition 2.3.3. If r, r ′ are two semi-simple algebraic `-adic representations of GF ,
then the following are equivalent:

(i) r is isomorphic to r ′.
(ii) WD(r |GFv

)'WD(r ′|GFv
) for all v .

(iii) WD(r |GFv
)'WD(r ′|GFv

) for all but finitely many v .
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Proof. We just need to show that (iii)=⇒ (i). This hypothesis implies that for almost all
v , r |GFv

is unramified and we have:

tr r (Frobv ) = tr[WD(r |GFv
)(Frobv )] = tr[WD(r ′|GFv

)(Frobv )] = tr r ′(Frobv ).

Now, the Cebotarev density theorem tells us that if FS is the maximal extension of F
unramified outside of S and GS is its Galois group, then the set of Frobenius elements
Frobv for v 6∈ S is dense in GS . Hence tr r = tr r ′, and then r ' r ′ by semisimplicity. �

2.3.9. Application to L-functions. We now explore an important consequences of Corol-
lary 2.2.1.

Corollary 2.3.4. The L-function L (E , s ) (defined forℜs > 3/2) has a meromorphic con-
tinuation to C and satisfies a functional equation:

L (E , s ) = εN 1−s L (E , 2− s )

Here, L (E , s ) = L (E , s )(2π−s Γ (s ))[F :Q], N ∈ Z>0 is the conductor of E , and ε=±1.

Proof. Consider the fields F ⊆ Fi ⊆ L with L/Fi solvable. There exists a regular algebraic
cuspidal automorphic representation πi of GL2(AFi

) such that rec(πi ,v ) ' WD(E /Fi ,v )
for all v and HCτ(πi ,∞) = {0,−1} for all τ by the solvable base change theorems. In
other words, r`(πi ) = (V`E )∨|GFi

.
As a consequence, (by the definition of the L-functions on each side), we have

L (πi , s ) = L (EFi
, s ) = L ((V`E )

∨|GFi
, s ).

2.3.10. Brauer induction. Now, a theorem of Brauer tells us that there exists ni ∈ Z and
χi : Gal(L/Fi )→Q

×
such that

∑

i

ni IndGal(L/F )
Gal(L/Fi )

χi = 1 (2.3.1)

in the Grothendieck ring of representations of the finite group Gal(L/F ), where the
right hand side of (2.3.1) is the trivial representation. We can replace the finite group
Gal(L/F ) with GF and Gal(L/Fi ) with GFi

, and the statement is still true. This implies
that:

(V`E )
∨ '

∑

i

ni IndGF
GFi
[χi ⊗ ((V`E )∨|GFi

)]

'
∑

i

ni IndGF
GFi
(χi ⊗ r`(πi ))

'
∑

i

ni IndGF
GFi
(r`(π

′
i )).

Now, we have r`(χ)⊗ r`(π)' r`(π⊗ (χ ◦det)) =: r`(π′i ).
We can appeal to the following (easy) properties of L-functions:

(i) L (r ⊕ r ′, s ) = L (r, s )L (r ′, s ).
(ii) L (IndGF

GF ′
r, s ) = L (r, s ).

These imply that:

L (E , s ) = L ((V`E )
∨, s ) =

∏

i

L (π′i , s )ni .
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2.3.11. Now, we have that L (πi , s ) = (2π−s Γ (s ))[Fi :Q]L (πi , s ). Taking dimensions in
(2.3.1), we see that 1 =

∑

i ni [Fi : F ] and therefore that [F : Q] =
∑

i ni [Fi : Q]. This
implies that we also have:

L (E , s ) =L ((V`E )
∨, s ) =

∏

i

L (π′i , s )ni .

Now, the L-function of an automorphic representation may be written as a certain in-
tegral. This can be used to show that L (πi , s ) has analytic continuation to C with a
functional equation:

L (πi , s ) = εN 1−s
i L (πi , 2− s ),

for ε = ±1 and Ni ∈ Z>0. This implies that L (E , s ) has meromorphic continuation (no
longer necessarily analytic, since the ni could very well be negative) to all of C, and
multiplying the functional equations tells us that:

L (E , s ) =

�

∏

i

εni

��

∏

i

N ni
i

�1−s

L (E , 2− s ).

�

2.4. Initial Reductions. We begin with some reductions towards the proof of Theorem
2.1.1.

2.4.1. We can assume that a = 0 by replacing r with r ⊗εa
` andπ byπ⊗|det |a . (In our

convention, the cyclotomic character has Hodge-Tate weight −1.)

2.4.2. We get rid of ramification. More precisely, we will reduce to the case where:

• for all v , WD(r |Gv
)ss is unramified, i.e. the Weil-Deligne representation (ρ, N ) is

unramified.
• For all v , rec(πv )ss is unramified. (By what we know about the Local Langlands

correspondence, this is equivalent to πv having a non-zero fixed vector under
the Iwahori subgroup. This is called the “semistable case”.)
• We may assume that [F : Q] is even.
• We may assume that if πv is ramified, then ` | #k (v )×.

To get these reductions, we use solvable base change (§1.7.5) and the following lemma.

Lemma 2.4.1. Let S be a finite set of places of a number field K . For each v ∈ S let L ′v /Kv

be a finite Galois extension. Then there is a finite solvable Galois extension L/K such that
if w | v ∈ S, then Lw

∼= L ′v as a Kv -algebra. Moreover, if K avoid/K is any finite extension
then we can choose L to be linearly disjoint from K avoid.

This is a consequence of class field theory; we will omit the proof.

Remark 2.4.2. The statement of Proposition 2.3.2 looks similar, but there are a couple
of major differences. Here we are not asking for existence of rational points. On the
other hand, we are demanding that the global extension be solvable.
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To get the claimed reductions, we look at the finitely many places where WD(r |GFv
)ss

is ramified. Since the image of inertia is finite, we can make a finite local extension
killing it. The same argument applies for rec(πv )ss. The even-ness of the global degree
is easy to arrange – we can just make all the local extensions have even degree. Finally,
we can make unramified local extensions to get the cardinality of the residue field to be
as desired.

The hypotheses of the theorem will still obviously be satisfied, except for the condi-

tion that r |GF (ζ`)
is irreducible. To arrange this, we take K avoid to be F

ker r
(ζ`). Since r

factors through Gal(K avoid/F ), the linear disjointness in the diagram

L K avoid

L K avoid

K

implies that Gal(L K avoid/L )∼=Gal(K avoid/K ), hence the image of r |GL (ζ`) is unchanged.

2.4.3. We will show that we may assume det r = det r`(π). Indeed,

HTτ(det r ) =
∑

h∈HTτ(r )

h =
∑

h∈HTτ(r`(π))

h =HTτ(r`(π)).

Henceψ= (det r )(det r`(π))−1 is a character with HTτ(ψ) = {0} andψ≡ 1 (mod mQ`
), so

thatψ has finite image. The reason is that the corresponding Grossencharacter

ψ0 ◦ArtF : F×\A×F /(F
0
∞)
×U →C×

is U`-invariant for an open subgroup of Z×p (by the fact that the Hodge-Tate weight is 0),
so the double coset space only has finite order.

Sinceψ≡ 1 (mod mQ`
), thenψhas `-power order, say `a . Furthermore, since WD(r |GFv

)
and πv were unramified, we even know that ψ is crystalline. (Determinants of crys-
talline representations are crystalline, and tensor products of crystalline are crystalline.)
Therefore, it is unramified (think to our explicit construction of the WD representation

for a Grossencharacter). Then φ = ψ
1−`a

2 has the properties that φ has finite image
(hence is crystalline with Hodge-Tate weight 0),φ ≡ 1 (mod mQ`

), andφ2 =ψ.

Replacing r by r ⊗φ−1 doesn’t change the mod ` representation, or any of the hy-
potheses, so the theorem applied to it would show that it is automorphic. But they
are the same after a finite abelian base change trivializing the finite-order characterφ.
Hence, by solvable base change (§1.7.5), the question of automorphy is equivalent for
r and r ⊗φ−1.

2.4.4. Finally, we reduce to showing thatπv is unramified everywhere. To arrange this,
we will follow the steps:

(i) Show that we may assume rec(πv ) has N = 0 everywhere.
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(ii) We then repeat the argument of §2.4.2 to ensure that rec(πv ) is unramified every-
where. The point is that performing a base change cannot kill N , but if we already
know that N = 0, then a solvable base change can kill off the ramification.

Why not skip §2.4.2 and directly do §2.4.4 (whose conclusion is stronger)? The reduc-
tion (i) will actually be quite non-trivial, and for it we’ll need the earlier steps.

We will first explain (i). Something new is happening here, because we can’t just
make a base change (N doesn’t change under base change). For the first time, we will
need to use the theory of congruences between automorphic forms. Since automor-
phic forms are analytic objects, to get started with congruences we will need an alge-
braic theory of automorphic forms, and this will require a big digression.

3. AUTOMORPHIC FORMS FOR QUATERNION ALGEBRAS

3.1. The Jacquet-Langlands correspondence. Let D be the quaternion algebra with
center F , ramified exactly at all∞ places (this exists since we have arranged [F : Q] to
be even). This means that for v |∞, Dv

∼=H and for v -∞, Dv
∼=M2×2(Fv ).

We will define a space of automorphic forms on D ×,

A0(D
×\(D ⊗F AF )

×,χ)

where χ : A×F /F × → C×. This is the set of functions ϕ : D ×\(D ⊗F AF )× → C× with the
same conditions as before: smooth, D ×∞-finite (this is simpler because the group is
compact mod center), no growth conditions because the space is compact, and

ϕ(g z ) =χ(z )ϕ(g ) for all z ∈A×F .

Using the trace formula, Jacquet-Langlands proved:

Theorem 3.1.1 (Jacquet-Langlands). There is a decomposition

A0(D
×\(D ⊗F AF )

×,χ)∼=
⊕

πD

where πD is an irreducible representation of (D ⊗AF )×, fitting into one of the following
two cases:

• πD =φ ◦det (where det is what is usually called the “reduced norm”) whereφ is
a Grossencharacter F×\A×F →C× withφ2 =χ , or
• πD ∼= π∞ ⊗πD

∞ where π is a cuspidal automorphic representation of GL2(AF )
such that HCτ(π∞) = {1+nτ+ sτ, sτ}with nτ ∈ Z≥0 and sτ ∈C, and

πD
∞ =

⊗

τ: F ,→R

�

Symnτ (C2)⊗ (det)sτ+1/2
�∨

and any such π occurs as long as χπ∞ =χ with HCτ(χ) = {1+nτ+2sτ}.

3.2. A model for modular forms. We are now going to look at a specific space of mod-
ular forms insideA0(D ×\(D ⊗F AF )×,χ).
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3.2.1. Let
k := {(nτ, mτ) |τ: F ,→R ; nτ ∈ Z≥0, mτ ∈ Z}

for some choice of mτ, nτ such that w := 1+nτ+2mτ is independent of τ. We think of
k as the “weight” of the modular forms that we will eventually define.

Definition 3.2.1. Let χ : A×F /F × → C× be a continuous Grossencharacter, such that
χ |(F ×∞)0 =Nm1−w

F /Q , i.e.

χ(x ) =
∏

τ: F ,→R

(τx )1−w

for x ∈ (F ×∞)
0. (Unless w is independent of τ, there aren’t going to be any modular

forms.) Set

Sk ,χ (C) =HomD×∞ (
⊗

τ: F ,→R

(Symnτ (C2)⊗ (det)mτ )∨,A0(D
×\(D ⊗A)×,χ)).

This has an action of GL2(A∞F )
∼= (D ⊗A∞F )

×.

3.2.2. The Jacquet-Langlands correspondence. Jacquet-Langlands gave a description
of the space Sk ,χ (C) (deduced from Theorem 3.1.1). There are two pieces.

(1) The first piece is a direct sum overπ, regular cuspidal aglebraic representations
of GL2(AF ), of

π∞⊗ ||det ||mτ .

(In the notation of Theorem 3.1.1, sτ+1/2 is what we’re now calling the integer
mτ. So sτ should be a half integer.)

The π appearing are constrained by the conditions that

HCτ(π∞) = {nτ+mτ+1, mτ}
and

χπ =χ || · ||−1.

Remark 3.2.2. For the representation Symn (C2) of GL2(C), the Harish-Chandra
parameter is {(n + 1/2,−1/2)}, while the highest weight is (n , 0). So you see a
shift here. The shifts appearing in the theory are not just an artifact of poor
presentation, but a fundamental fact of life.

(2) The second piece is a direct sum of φ∞ ◦det, for φ : A×F /F ×→ C× with φ2 = χ ,
if nτ = 0 for all τ.

3.2.3. For a finite open subgroup GL2(A∞F ), we will write Sk ,χ (U , C) := Sk ,χ (C)U . We
claimed that we would be able to give an algebraic model for this, and we are going to
justify that now.

Lemma 3.2.3. We have an isomorphism of Sk ,χ (C)with the space of functions

ϕ : D ×\(D ⊗AF )
×→

⊗

τ

Symnτ (C2)⊗ (det)mτ

such that

• ϕ(g h ) = h−1ϕ(g ) for h ∈D ×∞,
• ϕ(g z ) =χ(z )ϕ(g ),
• ϕ is invariant under right translation by some open compact subgroup of GL2(A∞F ).
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Proof. Let’s write Sk ,χ (C)′ for the space in question in Lemma 3.2.3. Let’s show how to
go from ϕ ∈ Sk ,χ (C)′ to F ∈ Sk ,χ (C).

Looking at the definition of Sk ,χ (C), fromϕ we need to build a function that takes in
λ ∈ (

⊗

τSymnτ (C2)⊗ (det)mτ )∨ and g ∈ (D ⊗AF )× and spits out a number. Well, for any
such g we get ϕ(g ) ∈

⊗

τSymnτ (C2)⊗ (det)mτ . Then we set

F (λ)(g ) =λ(ϕ(g )).

The inverse is easy to write down. Then you check that the conditions match up, i.e.
the D ×∞-linearity on one side translates into the first condition. �

3.2.4. We now rewrite Sk ,χ (C)′ in a way that parallels the maniuplations in §1.7.1.

Lemma 3.2.4. We have an isomorphism of Sk ,χ (C)with the space of functions

f : (D ⊗A∞F )
×→

⊗

τ

Symnτ (C2)⊗ (det)mτ

such that

• f (δg ) =δ f (g ) for all δ ∈D ×,
• f (g z ) = eχ(z ) f (g ) for all z ∈ (A∞F )

×,
• f is invariant under translation by some open compact subgroup.

Here eχ is as in (1.7.1); it is the same operation in taking an algebraic Grossencharacter
to eχ : A×F →C× that factored through the infinite component.

Proof. Let Sk ,χ (C)′′ be the space of functions in question. We will compare it to the
Sk ,χ (C)′ model from Lemma 3.2.3.

Given ϕ ∈ Sk ,χ (C)′, we make f by sending g ∈ (D ⊗AF )×

f (g ) := g∞ϕ(g )

Is it well-defined? For h ∈D ×, g h 7→ g∞hϕ(g h ) = g∞ϕ(g ).
In the other direction, we send f to (g 7→ g −1

∞ f (g∞)).
�

The latter description works with Q or Q` instead of C (since we have purged appear-
ances of D ×∞). This gives a way to make sense of Sk ,χ (Q`) or Sk ,χ (Q), which are “forms”

of Sk ,χ (C), in the sense that after tensoring up to C via Q ,→ C or Q`
∼−→ C they recover

Sk ,χ (C).

3.2.5. Now we basically undo the condition from before to get the `-adic version.

Lemma 3.2.5. We have an isomorphism of Sk ,χ (Q`)with the space of functions

ϕ : D ×\(D ⊗A∞F )
×→

⊗

τ: F ,→Q`

Symn (Q
2
`)⊗ (det)mτ

satisfying the conditions:

• ϕ(g z ) = χ (`)(z )ϕ(g ) for all z ∈ (A∞F )
×, where χ (`) is the `-adic character associ-

ated to χ in (1.7.2).
• There exists an open compact subgroupU ⊂GL2(A∞F ) such thatϕ(g u ) = u−1

` ϕ(g )
for all u ∈U .
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Proof. The bijection is defined by taking f to the functionϕ(g ) = g −1
` f (g ). The inverse

takes ϕ to the function g 7→ g`(ϕ(g )). �

3.3. Integral models for automorphic forms. Now we’re in better position to talk about
integrality of automorphic forms. (Before, it would have been problematic if δ had a
non-integral part at `.)

Since χ (`) is continuous, it has finite image, so there exists a finite extension L/Q`
such that χ (`) : (A∞F )

×→O ×L =O
×. We may also assume that L ⊃τ(F ) for all τ.

Suppose that pr`(U )⊂GL2(OF,`). (We can always guarantee this by passing to a sub-
group of finite index.) Let A be anO -algebra. Then we can define a notion of “A-valued
automorphic forms for D ”, namely the space of functions

ϕ : D ×\(D ⊗A∞F )
×→

⊗

τ: F ,→Q`

Symnτ (A)⊗ (det)mτ

such that

• ϕ(g z ) =χ (`)(z )ϕ(g ) for all z ∈ (A∞F )
×,

• There exists an open compact subgroupU ⊂GL2(A∞F ) such thatϕ(g u ) = u−1
` ϕ(g )

for all u ∈U .

3.3.1. What acts on Symnτ (A2)⊗ (det)mτ? This is slightly tricky, as we have to pay at-
tention to denominators. More precisely, we need χ (`)(z ) and u−1

` to act on Symnτ (A)⊗
(det)mτ . Answer:

• GL2(A
∞,`
F )×GL2(OF,`) for any O -algebra A.

• If A is an L-algebra, we also get an action of GL2(F`).
• Finally, we get an action of GL2(F`)∩M2×2(OF,`) for all A if mτ ≥ 0 for all τ. This

satisfies

(h ·ϕ)(g ) = h`ϕ(g h ).

Taking U -invariants, we can identify Sk ,χ (AF )U with the finite-dimensional space

⊕

g∈D×\(D⊗A∞F )×/U

 

⊗

τ: F ,→Q`

Symnτ (A2)⊗ (det)mτ

!U ·(A∞F )
×∩g −1D×g

by sending

ϕ ∈ Sk ,χ (AF )
U 7→ (ϕ(g ): g ∈D ×\(D ⊗A∞F )

×/U ).

(Check that the image is fixed by the action of u z ∈U (A∞F )
×, which is via χ (`)(z )−1u`.)

The point is that the double coset space D ×\(D ⊗A∞F )
×/U is just a finite set.

3.4. Growth with level structures. We now discuss the “growth” of the spaces of mod-
ular forms Sk ,χ (A)U with the level structure U .
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3.4.1. Sufficiently small arithmetic groups. Define∆g ,U by the exact sequence

0→ F ×→U · (A∞F )
× ∩ g −1D ×g →∆g ,U → 0.

So∆g ,U is both compact and discrete, hence finite.

Definition 3.4.1. We will call U sufficiently small for ` if ` - #∆g ,U for all g .

Assume that U is sufficiently small and that A is noetherian. Then we have the fol-
lowing facts:

(1) Sk ,χ (A)U is a finite A-module, and if A is an integral domain then it’s torsion-
free.

(2) If B/A is flat, then Sk ,χ (A)U ⊗A B
∼−→ Sk ,χ (B )U . (Indeed, the invariants are the

kernel of a certain map, and flat extensions commute with taking kernels.)
(3) If U is sufficiently small for `, then Sk ,χ (A)U is a projective A-module and

Sk ,χ (A)
U ⊗A B

∼−→ Sk ,χ (B )
U for all B/A.

To see this, use the idempotent e = (
∑

δ∈∆g ,u
δ)#∆−1

g ,u , which projects onto the

U -fixed part. Hence the U -fixed part is a summand whenever #∆g ,u is invert-
ible. Since Sym2(A) is free, after tensoring with B it’s still free, and the U -fixed
part is a summand of a free module, hence projective.

Lemma 3.4.2. Suppose either

(1) [F (ζ`) : F ]> 2, or
(2) [F (ζ`) : F ] = 2 and there exists v0 - ` such that (Tr uv0

)2 ≡ 4 det uv0
for all u ∈U .

Then U is sufficiently small for `.

Remark 3.4.3. The second condition is satisfied, for example, when U = Iw1
v0
×U v0 ,

where Iw1
v0

is
§

g ∈GL2(OF,v0
): g ≡

�

a b
a

�

(mod v0)
ª

.

It seems like a really technical condition, but sometimes it’s really necessary to push
things as far as you can. For example, in Wiles’ proof of Fermat’s Last Theorem he
needed to work with `= 2, where the first criterion (1) really isn’t enough.

Proof. Suppose forδ ∈D ×,g −1δg maps to an element of order ` in∆g ,u . In other words,
δ` ∈ F ×.

We will use the following basic facts about quaternion algebras:

• There is an involution ∗: D →D , for which F = {δ ∈D : δ∗ =δ}.
• We have Tr(δ) =δ+δ∗ and detδ=δδ∗.

Now consider (δ/δ∗)` = 1. If δ/δ∗ = 1 then δ ∈ F ×, which contradicts its order being
` in ∆g ,U . Hence δ/δ∗ is an `th root of unity. So D contains F (ζ`), but a quaternion
algebra can only contain quadratic field extensions of its center. This proves (1).

For (2), the same argument implies that [F [δ/δ∗] : F ] = 2. In OF [δ]=F [δ/δ∗] (equality
because both have degree 2 over F ), we have (δ) = (δ∗), as δ/δ∗ is a root of unity. The
assumption v0 - ` implies that v0 is unramified in F [δ/δ∗]. So we can alter δ by an
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element of F × to make it a unit at v0 (using that v0 is unramified and considering the
split/inert cases). By assumption,

(δ+δ∗)2 ≡ 4δδ∗ (mod v0)

i.e. (δ−δ∗)≡ 0 (mod v0). Since δ∗ is a unit at v0, we can divide to conclude that

δ/δ∗ ≡ 1 (mod v0).

But since it’s also an `th root of unity with v0 - `, it’s actually equal to 1. �

3.4.2. It’s often important to know a statement of the form: for U ⊃V , Sk ,χ (A)V is free
over A[U /V ]. This tells you that as you varying V , the growth of the space of automor-
phic forms (and congruences between such) is as big as it could be. The next lemma is
a precise form of this statement.

Lemma 3.4.4. Suppose U .V , and U /V has `-power order and U is sufficiently small
for `. If A is a local O -algebra, then Sk ,χ (A)V is a finite free module over

A[U · (A∞F )
×/V · (A∞F )

×] = A[U /V (U ∩ (A∞F )
×)],

and the map Sk ,χ (A)V
TrU /V−−−→ Sk ,χ (A)U factors through an isomorphism

Sk ,χ (A)
V /U

∼−→ Sk ,χ (A)
U .

Proof. The second part is automatic from the freeness. For the first, we write

S V
k ,χ =

⊕

g∈D×\(D⊗A∞F )×/V ·(A
∞
F )×
(
⊗

τ

Symnτ (A2)⊗ (det)mτ )V ·(A
∞
F )
×∩g −1D×g

The key is to split this up according to U :
⊕

g∈D×\(D⊗A∞F )×/U ·(A
∞
F )×

⊕

h∈D×\D×g U ·(A∞F )×/V ·(A
∞
F )×
(
⊗

τ

Symnτ (A2)⊗ (det)mτ )V ·(A
∞
F )
×∩h−1D×h

(3.4.1)
We have

F × ⊂V · (A∞F )
× ∩h−1D ×h ⊂U · (A∞F )

× ∩h−1D ×h

but our assumptions imply both that [U · (A∞F )
× ∩ h−1D ×h : F ×] is coprime to ` and

[U · (A∞F )
× ∩h−1D ×h : V · (A∞F )

× ∩h−1D ×h ] is a power of `, so the latter index must be
equal to 1.

Next we rewrite the double coset decomposition

D ×\D ×g U · (A∞F )
×/V · (A∞F )

× =D × ∩ g (A∞F )
×g −1\g U (A∞F )

×/V · (A∞F )
×

= g (g −1D ×g ∩U (A∞F )
×\U · (A∞F )

×/V · (A∞F )
×

= g (g −1D ×g ∩V (A∞F )
×\U · (A∞F )

×/V · (A∞F )
×

= g (U · (A∞F )
×/V · (A∞F )

×).
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So we can rewrite the sum as
⊕

g∈D×\(D⊗A∞F )×/U ·(A
∞
F )×

⊕

u∈U ·(A∞F )×/V ·(A
∞
F )×
(
⊗

τ

Symnτ (A2)⊗ (det)mτ )u
−1(U ·(A∞F )

×∩g −1D×g )u

=
⊕

g∈D×\(D⊗A∞F )×/U ·(A
∞
F )×

⊕

u∈U ·(A∞F )×/V ·(A
∞
F )×

u−1(
⊗

τ

Symnτ (A2)⊗ (det)mτ )(U ·(A
∞
F )
×∩g −1D×g )

=
⊕

g∈D×\(D⊗A∞F )×/U ·(A
∞
F )×

A[U · (A∞F )
×/V · (A∞F )

×]⊗A (
⊗

τ

Symnτ (A2)⊗ (det)mτ )(U ·(A
∞
F )
×∩g −1D×g )

�

Remark 3.4.5. Morally, what’s going on is that

D ×\GL2(A
∞
F )/V (A

∞
F )
×→D ×\GL2(A

∞
F )/U (A

∞
F )
×

is an étale cover (with group U (A∞F )
×/V (A∞F )

×) when the things are small enough. The
statement is that H 0 upstairs is a free module over H 0 downstairs (since everything is
0-dimensional).

In higher dimensional cases, you have more cohomology to worry about, but you
still have a statement at the level of complexes.

3.5. Hecke operators. We have an action of GL2(A
∞,`
F )on Sk ,χ (A). When we take Sk ,χ (A)U ,

we lose the group action. But we have something left, which is the action of Hecke op-
erators. So that’s what we’ll explain next.

Let S be a finite set of primes such that U ⊃GL2(ÒO S
F ), where

ÒO S
F =

∏

v /∈S

OF,v .

Hence U contains something of the form GL2(ÒO S
F )× (US ⊂

∏

v∈S GL2(Fv )).

3.5.1. If U g U =
∐

g i U is a double coset, then its action on f ∈ Sk ,χ (A)U is defined by

(U g U ) · (ϕ) =
∑

g iϕ

Note that g iϕ itself is not fixed by U (it’s fixed by g i U g −1
i ) but the sum is fixed by U .

Another way of presenting this is:

(U g U ) · (ϕ) =
1

d h (U )

∫

GL2(A∞F )
IU g U (h )h ·ϕd h .

Definition 3.5.1. We define the Hecke algebra TS
k ,χ (U , A) ⊂ EndA(Sk ,χ (A)U ) to be the

subalgebra generated by operators Tv associated to the double coset

U
�

$v

1

�

=
�

1
$v

�

U ∪
∐

x∈OF,v /($v )

�

$v α
0 1

�

for v /∈ S .
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3.5.2. Commutativity. It’s easy to check that the Hecke algebra TS
k ,χ (U , A) is commu-

tative. This is essentially because the generators Tv are supported at different v , and
hence don’t interact with each other. It is a finite A-module if A is Noetherian, because
it’s a subalgebra of the whole endomorphism algebra, which is evidently a finite free
A-algebra.

3.5.3. Change of base. Recall that for flat B/A, we have Sk ,χ (A)U ⊗A B ∼= Sk ,χ (B )U . This
induces a map

TS
k ,χ (U , A)⊗A B � TS

k ,χ (U , B ).

(When you can get a map between Hecke algebras, surjectivity is usually evident, as
the generators are defined already in TS

k ,χ (U , A). It’s getting a map at all that can be
tricky.) If U is sufficiently small with respect to `, then the same thing is true without
the flatness assumption, since we still know that Sk ,χ (A)U ⊗A B ∼= Sk ,χ (B )U in this case
(§3.4).

Example 3.5.2. A typical application is: A =O and B =O /$ the residue field.

Without the hypothesis that U is sufficiently small, Sk ,χ (B )U can be “bigger” than
Sk ,χ (A)U ⊗A B , so you have no map of Hecke algebras (relations in the smaller space
need not be satisfied in the bigger space).

Lemma 3.5.3. If A� B and A is noetherian, then the kernel of the map

TS
k ,χ (U , A)⊗A B � TS

k ,χ (U , B )

is nilpotent.

Proof. Let I = ker(A � B ). Suppose T ∈ TS
k ,χ (U , A) maps to 0 in TS

k ,χ (U , B ). Then
T Sk ,χ (A) ⊂ I Sk ,χ (A), hence T n EndA(Sk ,χ (U , A)) ⊂ I n EndA(Sk ,χ (U , A)) for all n . By the
Artin-Rees Theorem, for n � 0 we get

T n ∈ I n EndA(Sk ,χ (U , A))∩TS
k ,χ (U , A)⊂ I TS

k ,χ (U , A).

This is what it means for T n to become 0 in TS
k ,χ (U , A)⊗A B . �

This implies that the two sides have the same maximal ideals, for example. Now,
since TS

k ,χ (U ,O ) is a finite O -module, we have

TS
k ,χ (U ,O )∼=

⊕

m

TS
k ,χ (U ,O )m.

Then we can also break up

Sk ,χ (O )U =
⊕

m

Sk ,χ (O )Um .

3.5.4. We fix ι : Q` ∼=C so that we can base change to C. Upon doing so, we find that

TS
k ,χ (U , C)∼=

∏

Ak ,χ (U )

C×
∏

Ck ,χ (U )

C (3.5.1)

where the two products are indexed by:
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(1) Ak ,χ (U ) runs over cuspidal automorphic representations π of GL2(AF ) satisfy-
ing
• HCτ(π∞) = {mτ+nτ+1, mτ},
• χπ =χ || · ||−1, and
• (π∞)U 6= 0.

The point is that Tv will act as a scalar on (πv ⊗ |det |1/2v )
GL2(Ov ), and the isomor-

phism sends Tv to that scalar.
(2) If nτ = 0 for all τ, then we get a second product over Ck ,χ (U ), which indexes

Hecke charactersφ : A×F /F ×→C× satisfying
• φ2 =χ and
• φ(detU ) = {1},

which sends Tv to (1+#k (v ))φ($v ).
Why is the map surjective? Suppose it landed in a subalgebra, which would be de-

fined by two coordinates being equal. That would mean something like: you have two
automorphic representations π,π′ with the same Tv -eigenvalues for almost all v . But
this forces π=π′ by strong multiplicity one.

3.6. Unramified representations. In terms of Galois representations, the scalars ap-
pearing in (3.5.1) are:

(1) In the first product, Tv is sent to the eigenvalue of Tv on (πv |det |1/2v )
GL2(Ov ), which

is the trace of rec(πv )(Frobv ).
(2) In the second product, Tv is sent to the quantity (1+#k (v ))φ($v ), which coin-

cides with rec(φv )(Frobv ) + (rec(φv )| · |−1
v )(Frobv ).

3.6.1. Classification of unramified representations. We want to explain more about this.

There is a classification of local representations πv such that πGL2(Ov )
v 6= 0, which are

called “unramified” or “spherical”. They are all of the form πv
∼= IndGL2(Fv )

B (Fv )
(χα × χβ ).

Here,

• B is the Borel subgroup

B =
§�

∗ ∗
0 ∗

�ª

⊂GL2(Fv ).

• χα×χβ is the character

χα×χβ
�

a b
d

�

=αv (a )β v (d ).

The GL2(Fv )-representation IndGL2(Fv )
B (Fv )

(χα × χβ ) refers to the normalized induction
from B to GL2(Fv ), which is the space of locally constant functions

§

ϕ : GL2(Fv )→C: ϕ
��

a b
0 d

�

g
�

= (α#k (v )−1/2)v (a )(β#k (v )1/2)v (d )
ª

.

Remark 3.6.1. If χα/β = | · |±1/2 then this is reducible, and there will be a 1-dimensional
irreducible subspace or quotient. If πv is the local component of a cuspidal represen-
tation, then this will never happen.
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3.6.2. The Galois representation associated to IndGL2(Fv )
B (Fv )

(χα×χβ ) is unramified, with

rec(πv )(Frobv ) =
�

α
β

�

.

3.6.3. Hecke eigenvalues. Let’s think about what the representation IndGL2(Fv )
B (Fv )

(χα×χβ )
looks like. By the Iwasawa decomposition, we have

GL2(Fv ) = B (Fv )GL2(Ov ).

This makes it clear that there is only a one-dimensional space of functions on GL2(Fv )
that transform in a prescribed way under the left action of B (Fv ) and right action of

GL2(Ov ). We pin down a generator ϕ0 ∈ IndGL2(Fv )
B (Fv )

(χα×χβ ), defined by:

ϕ0

��

a b
d

�

k
�

= (α#k (v )−1/2)v (a )(β#k (v )1/2)v (d )

(in other words, ϕ0 is the invariant function normalized to be 1 on GL2(Ov )). Let’s cal-
culate the Hecke action on this function. We know from the 1-dimensionality of the
GL2(Ov )-fixed vectors that

Tvϕ = tvϕ0,

for some scalar tv . To calculate it, we can evaluate at 1, as

tv = Tvϕ0(1).

We explained last time that Tv is associated to the double coset

GL2(Ov )
�

$v

1

�

GL2(Ov ) =
�

1
$v

�

GL2(Ov )∪
∐

a∈OF,v /($v )

�

$v a
0 1

�

GL2(Ov ).

Hence

Tvϕ(1) =ϕ0

�

1
$v

�

+
∑

a∈k (v )

ϕ0

�

$v a
0 1

�

=β#k (v )1/2+#k (v )(α#k (v )−1/2)

= #k (v )1/2(αv +βv )

= #k (v )1/2 Tr(rec(πv )(Frobv )).

3.7. Galois representations in the Hecke algebra. Using ι : Q` ∼= C, we can replace all
occurrences of C with Q`. Now we have a representation

r :=
∏

r`,i (π)×
∏

(r`,i (φ)⊕ε−1
` r`,i (φ)): GF →GL2(T

S
k ,χ (U ,Q `))

which for all v ∈ S , v - `, has

Tr r (Frobv ) = [Tr(r`,ι(π)(Frobv ), r`,ι(φ)(Frobv ) +#k (v )r`,i (φ)(Frobv )] = Tv

in terms of the identification (3.5.1).
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Remark 3.7.1. The fact that the traces are valued in the smaller algebra TS
k ,χ (U ,O )

will often imply, by general principles, that the Galois representation is even valued
in TS

k ,χ (U ,O ). Then one can ask questions about congruences, which will introduce
more power and subtleties.

3.8. Generalizations to nebentypus. The theory discussed above has a version adapted
to a “nebentypus” character. Letψ: US →µ∞(Q`)be a character, valued inO ∗, such that

ψ|US∩A×F,S
=χ |US∩A×F,S

.

In analogy to Lemma 3.2.5, we define

Sk ,χ (A)
U ,ψ = {ϕ ∈ Sk ,χ (A): u`ϕ(g u ) =ψ(u )ϕ(g ): u ∈U }.

We then get an action of TS
k ,χ (U ,ψ, A) on Sk ,χ (A)U ,ψ. Analogously to (3.5.1), there is

a decomposition

TS
k ,χ (U ,ψ, C) =

∏

π

× . . . (3.8.1)

3.8.1. Using the theory of congruences, we can relate this Hecke algebra to the one
without Nebentypus. We’ll explain this now. Suppose U is sufficiently small for ` and
ψ is of `-power order. We know from Lemma 3.5.3 that there is a map

TS
k ,χ (U ,OQ`

)⊗F`� TS
k ,χ (U , F`)

with nilpotent kernel. The analogous fact holds forψ:

TS
k ,χ (U ,ψ,OQ`

)⊗F`� TS
k ,χ (U ,ψ, F`)

is a surjection with nilpotent kernel. Since `th roots of 1 are just 1 in characteristic `,
the targets are the same.

TS
k ,χ (U ,OQ`

)⊗F` TS
k ,χ (U ,ψ,OQ`

)⊗F`

TS
k ,χ (U , F`) TS

k ,χ (U ,ψ, F`)

3.8.2. Suppose you have a map

θ : TS
k ,χ (U , Q`)→Q`

sending TS
k ,χ (U ,OQ`

)→OQ`
. Then there exists

θ ′ : TS
k ,χ (U ,ψ,OQ`

)→Q`
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which is congruent mod mQ`
. Indeed, by reducing θ mod mQ`

we get a character

θ : TS
k ,χ (U ,OQ`

)⊗F`→ F`. Such a character descends uniquely over any nilpotent ker-
nel, giving

TS
k ,χ (U ,OQ`

)⊗F` TS
k ,χ (U ,ψ,OQ`

)⊗F`

F` TS
k ,χ (U , F`) TS

k ,χ (U ,ψ, F`)
θ

Chasing through the diagram, we get a character

θ
′
: TS

k ,χ (U ,ψ,OQ`
)⊗F`→ F`.

3.8.3. Then we get an integral lift by the going-down theorem, applied to the finite flat
map

Spec TS
k ,χ (U ,ψ,OQ`

)

Spec OQ`
.

Namely, viewing kerθ
′

as an ideal of TS
k ,χ (U ,ψ,OQ`

) lying over mQ`
⊂OQ`

, we have

p kerθ
′

TS
k ,χ (U ,ψ,OQ`

)

(0) mQ`
OQ`

so we can find p ⊂ kerθ
′

lying over (0) ⊂ OQ`
. Since TS

k ,χ (U ,ψ,OQ`
)/p is finite and an

integral domain over OQ`
, they must be equal.

To summarize, we have established the following:

Theorem 3.8.1. Suppose π is a regular algebraic cuspidal automorphic representation
of GL2(AF ). Let U be a sufficiently small for `, open compact subgroup of GL2(A∞F ) such
that πU 6= 0 and let S be a sufficiently large finite set of primes such that GL2(ÒO S

F )⊂U .
Let ψ be a finite `-power order character of US such that χπ|US∩(A∞F )× =ψ|US∩(A∞F )× . If

r`(π) (the mod ` representation associated to π) is irreducible, then there exists a regular
algebraic cuspidal automorphic representation π′ of GL2(AF ) such that

• HC(π∞) =HC(π′∞),
• χπ =χπ′ ,
• r`(π)∼= r`(π′),
• (π′)U ,ψ 6= 0.
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Indeed, by (3.8.1) the characterθ ′ corresponds to either aπ′ or aφ. But the latter case
has a reducible residual representation, so it is ruled out (as the residual representation
of θ ′ is automatically irreducible, being isomorphic to r`(π).

4. COMPLETION OF THE REDUCTION STEPS

We now return to the setting of Theorem 2.1.1. Recall the reductions we have made
in §2.4.

4.1. Setup. We will now complete the proof of reduction §2.4.4.

4.1.1. Let π be our regular cuspidal automorphic representation. Let S be the finite
set of places such that πv is ramified exactly when v ∈ S . In §2.4 we have already made
some reductions so that we can assume that πIwv

v 6= {0} and that #k (v ) ≡ 1 (mod `) for
all v ∈ S . Recall that

Iwv =
§�

a b
c d

�

∈GL2(OF,v ) | v (c )> 0
ª

,

and the condition that πIwv
v 6= {0}when πv is ramified tells us exactly that

rec(πv )'
�

ρ,
�

0 1
0 0

��

with ρ unramified.

4.1.2. We want to apply Theorem 3.8.1 to obtain aπ′ with r`(π)' r`(π′) such thatπ′v is
potentially unramified for all v , i.e. rec(π′v ) = (ρ, 0) for some ρ (possibly ramified). We
will choose some auxiliary prime v0 6∈ S with v0 - 2`, and let S ′ = S ∪{v0}. Let

U =

�

∏

v∈S

Iwv

�

× Iw1
v0
×GL2(

dOS ′
F )

where

Iw1
v0
=
§�

a b
c d

�

| v0(c )> 0, v0(
a

d
−1)> 0

ª

.

This implies that U is sufficiently small for `.

4.1.3. We choose a character

ψ=
∏

v∈S

ψv :
∏

v∈S

Iwv →µ`∞ ,

defined by

ψv

��

a b
c d

��

=ψ′v (
a

d
) (4.1.1)

withψ′ some non-trivial `-power order character (note that we reduced to ` | #k (v ) for
all v ∈ S , so some suchψ′ exists).

Now, Theorem 3.8.1 tells us that there exists π′, a regular algebraic cuspidal auto-
morphic representation of GL2(AF ) such that:

• π′ is unramified away from S ′

• χπ′ =χπ
• HCτ(π′∞) =HCτ(π∞) for all τ
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• r`(π)' r`(π′)
• (π′)U ,ψ 6= {0}

4.2. Local representations with Iwahori fixed vector. We have a classification of the
possible local representations:

Proposition 4.2.1 (Classification of representations with Iwahori fixed vectors). If π′ is
a cuspidal automorphic representation of GL2(AF )

7 and (π′v )
Iw1

v 6= {0}, then either:

(i) rec(π′v ) = (χ1⊕χ2, 0)with χi a tamely ramified character of WFv
. Equivalently,

π1
v = IndGL2(Fv )

B (Fv )

�

(χ1 ◦Art), (χ2 ◦Art)
�

.

(ii) rec(π′v ) = (ε`χ ⊕χ ,
�

0 1
0 0

�

) with χ a tamely ramified character of WFv
(and ε` the

cyclotomic character). Equivalently, π′v is a subquotient of

IndGL2(Fv )
B (Fv )

�

(χ ◦Art), (χ ◦Art)| · |v )
�

.

Let v ∈ S ′. Since Iw1
v is the kernel ofψv inside Iwv and (π1

v )
Iwv ,ψv 6= (0) for v ∈ S ′, we

have (π′v )
Iw1

v 6= {0} for all v ∈ S . Hence Proposition 4.2.1 applies. To prove that part (i)
of the reduction in §2.4.4 can be arranged, we need to rule out possibility (ii). So let’s
analyze that case.

4.2.1. We have:

IndGL2(Fv )
B (Fv )

�

(χ ◦Art), (χ ◦Art)| · |v )
�

=
�

ϕ : GL2(Fv )→C |ϕ(b g k ) = (χ ×χ)(b )ψv (k )ϕ(g ) for all b ∈ B (Fv ), k ∈ Iwv

	

.

We can apply the Cartan decomposition for GL2(Fv ), which says that GL2(Fv ) = B (Fv )GL2(OFv
).

This lets us rewrite the above as

IndGL2(Fv )
B (Fv )

�

(χ ◦Art), (χ ◦Art)| · |v )
�

=
�

ϕ : GL2(k (v ))→C |ϕ(b g k ) = (χ ×χ)(b )ψv (k )ϕ(g ) for all b ∈ B (k (v )), k ∈ Iwv

	

.

4.2.2. Combining this with the Bruhat decomposition

GL2(k (v )) = B (kv )
∐

B (k (v ))
�

0 1
1 0

�

B (k (v ))

exhibits IndGL2(Fv )
B (Fv )

�

(χ ◦Art), (χ ◦Art)| · |v )
�

as a direct sum of two pieces:

(1) The space of functions ϕ : B (k (v ))→C such that

ϕ(b g k ) = (χ ×χ)(b )ψv (k )ϕ(g ).

In particular, a necessary condition for this to be non-zero is that

χ(b ) := (χ ×χ)(b ) =ψv (b ) for all b ∈ B (k (v )).

7We only need to assume that the local representation πv has certain nice properties that are always sat-
isfied by local parts of cuspidal automorphic representations - e.g. being smooth and admissible
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Applying this to

b =
�

x
y

�

=⇒ χ(x y ) =ψ′v (x/y )

by the choice of the auxiliary characterψ in (4.1.1), which forcesψ to be trivial
– contradiction.

(2) The space of functions

ϕ : B (k (v ))
�

0 1
1 0

�

B (k (v ))→C

such that

ϕ(b g k ) = (χ ×χ)(b )ψv (k )ϕ(g ).

In this case, we have

ϕ

��

x 0
0 y

��

0 1
1 0

��

=χ(x y )ϕ
��

0 1
1 0

��

=ψ′v (y /x )ϕ
��

0 1
1 0

��

which again leads to a contradiction.

4.3. Summary of progress. Now, we have reduced Theorem 2.1.1 to the following:

Theorem 4.3.1. Fix some ι : Q`
∼−→ C. Suppose F is totally real and 2 | [F : Q]. Suppose

r : GF → GL2(O) is a regular algebraic `-adic representation, where O = OL for a finite
extension L/Q`, and τF ⊆ L for all τ: F ,→Q`, and O/λ= F. Suppose that there exists a
regular algebraic cuspidal automorphic representation π of GL2(AF ) such that:

• r := r mod λ' r`(π),
• HTτ(r`(π)) =HTτ(r ) for all τ: F ,→Q`,
• r`(χπ) = det r .

Furthermore, suppose that:

(1) r |GF (ζ`)
is irreducible.

(2) For all v , πv and WD(r |GFv
)ss are unramified, and that #k (v ) ≡ 1 (mod `) for any v

such that WD(r |GFv
) is ramified.

(3) ` is unramified in F and HTτ(r )⊆ {0, 1, 2, . . . ,`−2} for all τ.

Then r is automorphic.

We will first prove Theorem 4.3.1 under the simplifying assumption that WD(r |GFv
)

is itself unramified for all v . This is sometimes called the "minimal case". In practice,
the assumption on ramification is frequently too restrictive to be useful, but it demon-
strates the main ideas of the proof in general.

5. SETUP FOR AUTOMORPHY LIFTING

5.1. Taylor-Wiles primes. Now, if ßFrobv0
∈WFv0

lifts Frobv0
, then r`(π′)(ßFrobv0

)has eigen-

values α and α · (#k (v0)) for some α. Thus, r`(π)(Frobv0
) has eigenvalues α and #k (v0)α.
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Hence

(tr r`(π)(Frobv0
))2 =α2(1+#k (v0))

2

= [det r`(π)(Frobv0
)](1+#k (v0))(1+#k (v0)

−1)

= [det r`(π)(Frobv0
)](1+ε`(Frobv0

))(1+ε−1
` (Frobv0

)).

If there is someσ ∈GF such that:

(tr r`(π)(σ))
2 6≡ [det r`(π)(σ)](1+ε`(σ))(1+ε−1

` (σ)) (5.1.1)

then by the Chebotarev density theorem, then there will be infinitely many v /∈ S ∪ {`}
such that this congruence doesn’t hold forσ= Frobv ∈GFv

.

5.1.1. We want to rule out the possibility that the congruence

(tr r`(π))
2 ≡ [det r`(π)](1+ε`)(1+ε−1

` ) (5.1.2)

holds on all of GF . We will need the following group-theoretic lemma:

Lemma 5.1.1. If G ⊆ GL2(F`) is a subgroup such that for all g ∈ G , the characteris-
tic polynomial of g is (x − α)2 for some α, then up to conjugation, we may take G ⊆

F`
×
�

1 F`
0 1

�

and G is abelian.

On GF (ζ`), (5.1.2) implies

(tr r`(π))
2 = 4 det r`(π),

so r`(σ)has eigenvaluesα,β with (α+β )2 = 4αβ , so (α−β )2 = 0 soα=β . Hence Lemma
5.1.1 implies in this case that

r`(π)(GF (ζ`))⊆ F`
×
�

1 F`
0 1

�

.

This leads to two possibilities:

• r`(π)(GF (ζ`))⊆ F`
×

, and therefore r`(π)(GF ) is abelian, so r`(π) is reducible, giving
a contradiction.
• r`(π)(GF (ζ`)) fixes a unique line L ⊆ F`

2
. As GF (ζ`) is normal in GL , we see that

GF also fixes this line. But this implies that r`(π) is reducible, again giving us a
contradiction.

5.1.2. We make the following definition.

Definition 5.1.2. Suppose r : GF →GL2(F`) is a representation.

(1) We call v nearly harmless for r if
• v - `,
• r is unramified at v , and
• if α,β are the roots of the characteristic polynomial of r (Frobv ) then α/β 6=

#k (v )±1, i.e. (5.1.1) holds forσ= Frobv .
(2) We call v harmless if it is nearly harmless and #k (v ) 6≡ 1 (mod `).

As discussed above, these conditions are frequently satisfied:
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Lemma 5.1.3. Assume ` 6= 2. Then:

(1) If r is irreducible, there exists infinitely many nearly harmless primes for r .
(2) If either [F (ζ`) : F ] > 2 and r is irreducible or r |GF (ζ`)

is irreducible, then there exist
infinitely many harmless primes for r .

The proof uses the following classification of the possible projective images of r :

Lemma 5.1.4. If r is irreducible, the projective image of r via the map GL2(F`)� PGL2(F`)
is, up to conjugation, one of the following possibilities:

• A4,
• S4,
• A5,
• PSL2(F`r ),
• PGL2(F`r ),
• A subgroup of the “normalizer of the split Cartan,” NPGL2

(T ).

5.1.3. Let L be a finite extension of Q`, O = OL its ring of integers, and F = O/λ its
residue field.

Lemma 5.1.5. Suppose A is a (mA-adically) complete noetherian local O-algebra with
residue field F and that r : GF →GL2(A) is a continuous representation. If v is harmless
for r := r (mod m)A , then r is unramified at v .

Here, by saying that A is a local O-algebra, we mean that O→ A is a local homomor-
phism: mA lies over λ. Furthermore, we require Oλ→ A/mA to induce an isomorphism
of residue fields F

∼−→ A/mA . Examples of such A include O , and O[[x ]].

Proof. Let I ⊆mA be the ideal of A generated by the entries of r (σ)−Id asσ runs over the
inertia subgroup IFv

. We want to prove that I = {0} by showing mA I = I , which suffices
by Nakayama’s lemma. We can replace A by A/mA I , so without loss of generality we
may assume that mA I = {0}.

There exists some unramified er : GFv
/IFv
→ GL2(A) such that er (mod I ) = r (mod I ),

defined by letting er (Frobv ) be any lift of (r mod I )(Frob v ). Writing down the condition
that r (στ) = r (σ)r (τ), we find that for anyσ ∈GFv

, we have

r (σ) = (1+α(σ)) · er (σ) = (1+α(σ) +ad(er (σ))(α(τ))) · er (στ).
This shows that α defines a cohomology class in H 1(GFv

, M2×2(I )), where GFv
/IFv

acts
on M2×2(I ) through er and the adjoint representation.

Now, we have an exact sequence of cohomology:

0→H 1(GFv
/IFv

, M2×2(I ))→H 1(GFv
, M2×2(I ))→H 1(IFv

, M2×2(I ))
GFv

=HomGFv
(IFv

, M2×2(I ))

=Hom(Z`(1), M2×2(I )).

(To see the last equality, note that M2×2(I ) is an `-group, so a map from IFv
to it fac-

tors through the maximal pro-` quotient. For v | p , we have a sequence of normal
subgroups GFv

. IFv
.PFv

with PFv
the wild inertia group. It is a pro-p group. We have

GFv
/IFv

' Gk (v ) = 〈Frobv 〉 ' bZ, and IFv
/PFv

=
∏

` 6=p Z`(1). The meaning of writing Z`(1)
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instead of Z` here is that ifσ ∈GFv
, its action by conjugation on IFv

corresponds to the
map τ 7→ ε`(σ)τ on Z`.)

Now, we have HomGFv
(Z`(1), M2×2(I )) = M2×2(I )(−1)GFv . We will see that there are

no invariants. Say r (Frobv ) has eigenvalues α,β . Then ad r has eigenvalues 1 (with
multiplicity 2) and (α/β )±1, so the assumption that v is harmless implies that

H 1(IFv
, M2×2(I ))

GFv = (adr )(−1)GFv ⊗F I = {0}.

The long exact sequence in cohomology them implies that there exists a cocycle β ∈
Z 1(GFv

/IFv
, M2×2(I )) and a ∈M2×2(I ) such that

α(σ)−ad(σ)(a ) +a =β (σ) for allσ ∈GFv
.

Now we have:

(1+a )r (σ)(1+a )−1 = (1+a )(1+α(σ))er (σ)(1−a )

= (1+a +α(σ)−ader (σ)(a ))er (σ)

= (1+β (σ))er (σ)

This is trivial on IFv
, so r is trivial on IFv

as well. �

5.2. The Galois deformation ring. We will consider a functor parametrizing certain
deformations of the Galois representation r , which turns out to be representable. More
specifically, consider the category CO ,F consisting of complete noetherian local O-algebras
with residue field F.

Definition 5.2.1. The Galois deformation functor from CO ,F to the category of sets is
defined by sending an O-algebra A to the set of equivalence classes of continuous rep-
resentations ρ : GF →GL2(A) such that:

(1) ρ =ρ (mod m)A = r .
(2) ρ is unramified at all v - `.
(3) For all v | `, ρ|GFv

is Fontaine-Laffaille ("FL").
(4) detρ = det r .

The equivalence relation on such ρ is defined by setting ρ ∼ρ′ if ρ = aρ′a−1 for some
a ∈GL2(A)with a ≡ Id (mod mA).

Proposition 5.2.2. The Galois deformation functor is representable by a ring R univ ∈
CO ,F and a r univ : GF → GL2(R univ) satisfying conditions (1)-(4) in Definition 5.2.1. The
universal property of (R univ,ρuniv) is that if ρ : GF → GL2(A) satisfies the conditions (1)-
(4), then there exists a unique local O-algebra homomorphism R univ → A which sends
ρuniv to a representation equivalent to ρ.

The proof of this proposition is essentially just algebra. The key inputs are the fol-
lowing:

• ZGL2(F)(Im (r )) = F×

• The FL objects are closed under the formation of subobjects and quotient ob-
jects.



AUTOMORPHY LIFTING 37

• For all number fields F ′ and all finite sets of prime S of F ′, if F ′S /F ′ is the maxi-
mal pro-` extension of F ′ unramified outside of S , then Gal(F ′S /FS ) is topologi-
cally finitely generated.

The last condition shows that R univ is noetherian.

5.3. Fontaine-Laffaille theory. We still need to define what it means for ρ|GFv
to be

Fontaine-Lafaille. We start by defining a category of "semi-linear" modules, which
Fontaine and Lafaille related to a category of `-adic representations of GFv

when v | `.
Definition 5.3.1. Let v | ` with Fv unramified over Q`. We define a category MFv ,
whose objects are finite modules M over OFv

⊗Z` O together with:

(1) A decreasing filtration by OFv
⊗Z`O-submodules Fili (M ) such that Fil0(M ) =M and

Fil`−1(M ) = 0.
(2) Maps Φi : Fili (M )→M which are Frob−1

` ⊗1-linear and such that Φi |Fili+1M = `Φ
i+1.8

(3)
∑

i Im (Φi ) =M .

The maps in the category MFv are OFv
⊗Z` O-linear maps which respect the filtration

and commute with the Φi ’s.

Proposition 5.3.2. MFv is an abelian category.

This is remarkable because filtered modules typically do not form an abelian cate-
gory. The relationship with Galois representations comes from:

Proposition 5.3.3. There exists a covariant functor GFv
from MFv to the category of

finite O-modules with a continuous action of GFv
such that:

• GFv
is fully faithful and exact.

• The essential image of GFv
is closed under direct sums, sub-objects, and quotients.

• For M ∈MFv ,

lengthO (M ) = [Fv : Q`]lengthO (GFv
(M )).

• IfΛ is a torsion-free finitely generated O-module with a continuous action of GFv
,

then Λ is in the image of GFv
if and only if Λ⊗O L is crystalline (equivalently, it is

de Rham and WD(Λ⊗O L ) is unramified) and

HTτ(Λ⊗O L )⊆ {0, . . . ,`−2} for all τ.

The proofs of both of the preceding propositions can be found in [FL92].
Remark 5.3.4. The Galois representations which are (conjecturally) associated to mo-
tives and algebraic automorphic representations are always de Rham, and this restric-
tion is needed to make many theorems work. The condition of being de Rham is a
characteristic 0 condition, obtained by considering Galois actions on vector spaces over
Q`. But when one wants to make Galois deformation arguments, it is necessary to con-
sider torsion coefficients. In general, it is difficult and highly non-explicit to impose the
de Rham condition for Galois representations with torsion coefficients - the Fontaine-
Laffaille case is one of the few where a direct construction is feasible.
8Here, Frob−1

` is the arithmetic Frobenius generating Gal(Fv /Q`), defined by requiring Frob−1
` α

∼= α`

(mod v ) for any α ∈OFv
. The Frob−1

` ⊗1-linearity says exactly that Φi ((α⊗β )m ) = (Frob−1
` α⊗β )Φ

i (m ).
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5.4. The map R → T. Now, choose a prime v0 which is harmless for r . Consider the
map sending A ∈ CO ,F (notation as in Definition 5.2.1) to the set of ρ : GF → GL2(A)
such that:

• ρ is unramified outside of `v0

• ρ = r .
• ρ is FL above `.
• detρ = det r

This functor is represented by a ring R univ
{v0}

. By Lemma 5.1.5, the above conditions imply

that ρ is unramified at v0, so we actually get an isomorphism R univ
{v0}

∼−→ R univ which is
compatible with the universal deformations.

Choose a finite set of primes S containing v0 and all primes above `.

5.4.1. Spaces of automorphic forms. Write the Hodge-Tate weights of r as

HTτ(r ) = {1+nτ+mτ, mτ} with nτ ≥ 0 and nτ, mτ ∈ Z.

Then we have HTτ(det r ) = {1+nτ+ 2mτ}. Since F is totally real, 1+nτ+ 2mτ =: w is
independent of τ. We will look at automorphic forms (in the sense of §3.3) Sk ,χ (U ,O)
with

• weight k = {(nτ, mτ)},
• algebraic Großencharacter χ satisfying r`(χ) = (det r )ε`, and
• open compact subgroup

U =GL2(ÓOF
v0 )× Iw1

v0
⊆GL2(A

∞
K )

Recall that Iw1
v0
=
§

g ∈GL2(OF,v0
) | g ≡

�

x y
0 x

�

(mod v0)
ª

. This ensures that U

is sufficiently small for v0.

5.4.2. The Hecke algebra. Look at the decomposition of the Hecke algebra for Sk ,χ (U ,O)
given by (3.5.1):

TS
k ,χ (U ,O)⊗Q`

∼−→
∏

π∈Ak ,χ (U )

Q`×
∏

φ∈Ck ,χ (U )

Q`.

This restricts to a map

TS
k ,χ (U ,O)→

∏

π′∈Ak ,χ (U )

OL ′ ×
∏

φ∈Ck ,χ (U )

OL ′ .

Here, L ′/L is a sufficiently large finite Galois extension such that the projection of TS
k ,χ (U ,O)

to each component of TS
k ,χ (U ,O) ⊗Q` is contained in OL ′ ⊆ Q`. In other words, we

choose L ′ such that for eachπ′ ∈ Ak ,χ (U ),φ ∈Ck ,χ (U ), the image of r`(π′): GF →GL2(Q`)

is contained in GL2(OL ′ ) and the image of r`(φ): GF →Q`
×

is contained in O×L ′ .
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5.4.3. Localizing the Hecke algebra. For eachπ ∈Ak ,χ (U ), consider the corresponding
map

TS
k ,χ (U ,O)→O� F

sending Tv to tr r`(π)(Frobv ). Its kernel is a maximal ideal m (it is a proper ideal since π
exists). We have that m= 〈λ, Tv − tr r (Frobv )〉v 6∈S .

Now, we localize TS
k ,χ (U ,O) at m. We claim that localization at m kills the factor OL ′

of TS
k ,χ (U ,O) corresponding to some φ ∈ Ck ,χ (U ) whenever r 6' r`(φ)⊕ r`(φ)ε`

−1, and

that it kills the factor OL ′ corresponding to π′ ∈ Ak ,χ (U )whenever r`(π′) 6' r`(π).
Our assumption that r is irreducible forces r 6' r`(φ)⊕ r`(φ)ε`

−1. Thus, there exists
some v 6∈ S such that

tr r (Frobv ) 6= tr
�

r`(φ)⊕ r`(φ)ε`
−1
�

(Frobv )

This follows from the fact that:
∏

σ∈Gal(L ′/L )

�

Tv −σ tr(r`(φ)⊕ r`(φ)ε
−1
` )(Frobv )

�

∈ TS
k ,χ (U ,O)−m

If it were inm, we would have tr r (Frobv )Tv−σtr(r`(φ)⊕r`(φ)ε−1
` )(Frobv )would be equal

to tr r (Frobv ).
What about π′ with r`(π′) ' r`(π)? If T 6∈ m, we would have α ∈ O − λ such that

T −α ∈m. This is a polynomial in the Tv ’s with O-coefficients. Reducing mod m means
that we reduce mod λ and replace Tv with r (Frobv ).

In the end, we get a decomposition:

TS
k ,χ (U ,O)m ,→

∏

π∈Ak ,χ (U )
r`(π)'r

OL ′

Moreover, we can consider the subring:

A :=

�

(xπ) ∈
∏

π

OL ′ | (xπ mod λ′) ∈ F is independent of π

�

We can see that TS
k ,χ (U ,O)m actually lands inside A, since the components (mod λ)

at each π are r`(π)(Frobv ) = r (Frobv ). Furthermore, A is a complete noetherian local
O-algebra with residue field F.

5.4.4. Galois representations. Given r`(π): GF → GL2(OL ′ ), we can consider the rep-
resentation GF → GL2(

∏

πOL ′ ), which factors through ρ : GF → GL2(A). Note: for all
v 6∈ S ,

• ρ is unramified at v ,
• trρ(Frobv ) is the image of Tv ∈ TS

k ,χ (U ,O)m in A, and
• ρ is FL at all v | `.

Suppose you have a continuous representation of GFv
, for v | `, on a finite O-module

M . We defined what it means for M to be Fontaine-Laffaille. Now, if ρ : GFv
→ GL2(R )

for R a complete noetherian local O-algebra with residue field F (which may very well
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not be finite over O), we say that ρ is Fontaine-Laffaille if for every open ideal I ⊆ R ,
r : GFv

→GL2(R/I ) is Fontaine-Laffaille.
Recall that we had the universal lift r univ : GF →GL2(R univ

{v0}
). By the universal property,

we have a map R{v0} → A which takes r univ to ρ. What is the image of this map? We
claim that it is exactly TS

k ,χ (U ,O)m. Indeed, since R univ
{v0}

is topologically generated by

tr r univ(Frobv ) for v 6∈ S , we see that the image is topologically generated by the Tv for
v 6∈ S , so it is TS

k ,χ (U ,O)m.
By looking at the functor parametrizing lifts of r which are furthermore unramified

at v0, we get a map R univ
{v0}
→R univ: since v0 is harmless for `, this is an isomorphism.

What is the kernel of the map R univ
{v0}
→ A? Equivalently, it is the kernel of the surjection

R univ
{v0}
� TS

k ,χ (U ,O), and also equal to the intersection:
⋂

π∈Ak ,χ (U )
r`(π)'r

ker(R univ→Q`)

Here, the map corresponding to the factor π takes r univ to r`(π). Note that this last
representation does not depend on S , so we will drop S from the notation. We will see
that this kernel is actually {0}. In other words:

Theorem 5.4.1. We have an isomorphism R univ ∼−→R univ
{v0}

∼−→ Tk ,χ (U ,O)m.

This theorem suffices to prove Theorem 4.3.1 on automorphy lifting. Indeed, con-
sider the map θ : R univ→O which takes r univ to r . The Theorem tells us that θ can be
thought of as a mapθ ′ : Tk ,χ (U ,O)m→O which sends Tv to tr r (Frobv ). Since Tk ,χ (U ,O)m
sits inside the product

∏

π∈Ak ,χ (U )
r`(π)'r

, there is some π ∈ Ak ,χ (U ) with r`(π) ' r such that

tr r (Frobv ) is equal to the eigenvalue of Tv on πv for all v . This implies (by Cebotarev
density) that r ' r`(π).
Remark 5.4.2. The above theorem is arguably Andrew Wiles’ key insight in proving the
modularity theorem. It says something much stronger than that suitable `-adic repre-
sentations are automorphic. It says that at an integral level, the ring R univ parametriz-
ing deformations of a mod `Galois representation and the ring Tk ,χ (U ,O)m parametriz-
ing deformations of a mod ` automorphic representation are actually isomorphic.

The next few sections build up to the proof of Theorem 5.4.1.

6. GROWTH OF AUTOMORPHIC FORMS

In this subsection we will prove Theorem 5.4.1.

6.1. Setup.

6.1.1. Taylor-Wiles primes. The proof will make use of choices of auxiliary primes.
Let Q be a set of primes with |Q | <∞ and such that Q does not contain v0 or any

prime above `. We further assume that if v ∈Q , then

• r (Frobv ) has distinct eigenvalues αv 6=βv , and
• #k (v )≡ 1 (mod `).
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6.1.2. Level structure. We consider groups:

U0,Q :=GL2

�

ÓOF
{v0}∪Q

�

× Iw1
v0
×
∏

v∈Q

Iwv

U1,Q :=GL2

�

ÓOF
{v0}∪Q

�

× Iw1
v0
×
∏

v∈Q

Iw`v

Here,

Iw`v :=
§

g ∈ Iwv | g mod v ≡
�

x y
0 z

�

, x/z has order prime to `
ª

.

We have Iw`v / Iwv , so U1,Q /U0,Q . Furthermore, we have:

U0,Q/U1,Q =:∆Q =
∏

v∈Q

Syl`(#k (v )×).

Here, Syl`(#k (v )×) is the Sylow `-subgroup and is cyclic.

6.1.3. Let S ⊇Q and consider T= Tk ,χ (U ,O)m. For v ∈Q , we have:

X 2−Tv X +#k (v )χ(πv ) ∈ T[X ]. (6.1.1)

By the assumptions in §6.1.1, modulo m this polynomial factors as (X − αv )(X − βv ).
Now, by Hensel’s lemma, we can also factor (6.1.1) as (X−Av )(X−Bv ) for unique Av , Bv ∈
T, which will then satisfy

• Av +Bv = Tv ,
• Av Bv = #k (v )χ(πv ),
• Av ≡αv (mod m), Bv ≡βv (mod m).

6.2. U -operators. For v ∈Q , we define a double coset

Uv =U0,Q

�

πv 0
0 1

�

U0,Q =
∐

α∈k (v )

�

πv eα
0 1

�

U0,Q

where eα is some lift of α. We can also write this with U1,Q instead of U0,Q . These are the
natural Hecke operators for the U0,Q level structure.

These decompositions of Uv show that the action of Uv on Sk ,χ (U0,Q , ), defined by
§3.5.1, is compatible with the action of Uv on Sk ,χ (U1,Q , ) with respect to the inclusion
Sk ,χ (U0,Q , )⊆ Sk ,χ (U1,Q , ).

We define eUQ :=O[Uv | v ∈Q ], and the maximal ideal nQ := 〈λ,Uv −αv : v ∈Q 〉 ⊂ eUQ .
We let UQ be the image of eUQ in End(Sk ,χ (U0,Q ,O)m), and use the same notation nQ for
its image in UQ .

Lemma 6.2.1. We have:

(1) There is an isomorphism

Sk ,χ (U0,Q ,O)⊕2
m

∼−→ Sk ,χ (U0,Q∪{v },O)m
by the map

(ϕ1,ϕ2) 7→ϕ1+
�

1 0
0 πv

�

ϕ2.
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(2) There is an isomorphism

Sk ,χ (U0,Q ,O)m,nQ

∼−→ Sk ,χ (U0,Q∪{v },O)m,nQ∪{v }

by the map

ϕ 7→ −Avϕ+
�

1 0
0 πv

�

ϕ.

Iterating (2), we get an isomorphism

Sk ,χ (U ,O)m
∼−→ Sk ,χ (U0,Q ,O)m,nQ

.

This is saying that after a suitable localization, we can treat U0,Q and U as being about
the same.

Corollary 6.2.2. Sk ,χ (U1,Q ,O)m,nQ
is a free O[∆Q ]-module, and its ∆Q -coinvariants are

isomorphic to Sk ,χ (U ,O)m.

Proof. We can apply Lemma 3.4.4 since U0,Q is sufficiently small for `. �

Therefore, it suffices to establish (1) and (2).

6.2.1. Proof of Lemma 6.2.1 (1). We will show that the same formula in (1) induces iso-
morphisms:

(a) Sk ,χ (U0,Q , Q`)⊕2
m � Sk ,χ (U0,Q∪{v }, Q`)m

(b) Sk ,χ (U0,Q , F`)⊕2
m ,→ Sk ,χ (U0,Q∪{v }, F`)m.

To see that these imply (1), we use the following simple algebra fact: If A, B are finite
free O-modules and f : A→ B is a homomorphism such that f ⊗O Q` is surjective and
f ⊗O F` is injective, then f is an isomorphism. This condition is equivalent to saying
that f ⊗O L is surjective and f ⊗O (O/λ) is injective. Then, we just apply the facts (cf.
§3.4.1) that Sk ,χ (U0,Q ,O)⊗O Q`

∼−→ Sk ,χ (U0,Q , Q`) (which is true simply because Q` is Z`-

flat) and Sk ,χ (U0,Q ,O)⊗O F`
∼−→ Sk ,χ (U0,Q , F`) because U0,Q is sufficiently small for `.

Now, we prove (a). We change coefficients to C for convenience. We have

Sk ,χ (U0,Q , C)m ∼=
⊕

π: r `(π)∼=r

(π∞)U0,Q ∼=
⊕

π: r `(π)∼=r

(π∞,v )U
v

0,Q ⊗πGL2(OF,v )
v .

(Here we used that since r is irreducible, the components corresponding to φ ∈ Ck ,χ

vanish upon localization at m). Similarly,

Sk ,χ (U1,Q , C)m ∼=
⊕

π: r `(π)∼=r

(π∞)U1,Q∪{v } ∼=
⊕

π: r `(π)∼=r

(π∞,v )U
v

1,Q ⊗πIwv
v .

It suffices to prove that

(πGL2(OF,v )
v )⊕2�πIwv

v

under the map

(φ1,φ2) 7→φ1+
�

1
πv

�

φ2.

We’ll do this by explicitly analyzing representations with Iwahori fixed vector.
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Fix some such π. There are two possibilities: πv is either ramified or unramified. If
πv is ramified, then

rec(πv )'
��

ε`φ 0
0 φ

�

,
�

0 1
0 0

��

with φ an unramified character. Thus, r`(π)(âFrobv ) has eigenvalues α and α#k (v ) for

any lift âFrobv ∈GFv
of Frobv . But r`(π) = r , which says that r (Frobv ) has eigenvalues α

and α#k (v ) =αwhich contradicts our assumptions on v in §6.1.1.
If πv is unramified, then it has the form

πv ' IndG (Fv )
B (Fv )
(ψ1,ψ2)

with ψ1,ψ2 unramified characters such that ψ1/ψ2 6' | · |±1
v . Using the Cartan decom-

position,
GL2(Fv ) = B (Fv )GL2(OF,v )

we find an isomorphism

π
GL2(OF,v )
v

∼−→C

by the map sendingφ toφ(Id).
Now using also the Bruhat decomposition, we get

GL2(Fv ) = B (Fv )Iwv

∐

B (Fv )
�

0 1
1 0

�

Iwv

which shows that
πIwv

v
∼−→C2

by the map sending
φ 7→ (φ(1),φ(w )).

Now we examine the map

�

IndG (Fv )
B (Fv )
(ψ1,ψ2)GL2(OF,v )

�⊕2
IndGL2(Fv )

B (Fv )
(ψ1,ψ2)Iwv

C2 C2

It is given by

(φ1,φ2) φ1+
�

1
πv

�

φ2

(φ1(Id),φ1(Id)) φ1(Id) +
�

1
πv

�

φ2(Id),φ1(w ) +
�

1
πv

�

φ2(w )

(φ1(Id) +#k (v )1/2ψ2(v ) ·φ2(1),φ1(1) +#k (v )−1/2ψ1(v ) ·φ2(Id))
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In other words, the map is given on C2 by applying
�

1 #k (v )1/2ψ2(v )
1 #k (v )−1/2ψ1(v )

�

(6.2.1)

and by the assumption of unramifiedness, this is invertible.
This completes the proof of (a). Next we turn to (b). Suppose you have (x1, x2) in the

kernel, so

x1 =−
�

1
πv

�

x2.

Let M ⊂ Sk ,χ (F`)be the GL2(Fv )-submodule generated by x1, and N the maximal GL2(Fv )-
submodule not containing x1. Then we have that (x1, x2) is in the kernel of the induced
map

�

(M /N )GL2(OF,v )
�⊕2→ (M /N )Iwv .

Now, by the classification of unramified represents, we have two possibilities for (M /N ):
(i) M /N ∼=ψ0 ◦det,

(ii) M /N ∼= IndGL2(Fv )
B (Fv )

(ψ1,ψ2)withψ1,ψ2 unramified andψ1 6=ψ2, which explicitly is
§

φ : GL2(Fv )→ F` :φ
�

x y
z

�

g ) =ψ1(x )ψ2(y )φ(g )
ª

.

(Since #k (v )≡ 1 (mod `), we can drop the normalizing factor.)

We’ll analyze these in turn. In case (ii), the same computation as before shows that
the map is given by (6.2.1), which since #k (v )≡ 1 (mod `) andψ1 6=ψ2 is invertible. In
case (i), we have M /N ∼= F` and the fact that its m-adic localization is non-zero shows
that the Hecke action is given by

Tv x = (#k (v ) +1)ψ(πv )x .

It also tells us that χ(πv ) =ψ2(πv ). Hence the Hecke eigenvalues αv ,βv satisfy

αv +βv = (#k (v ) +1)ψ(πv ) = 2ψ(πv )

and
αvβv = #k (v )χ(πv ) =ψ(πv )

2.

So αv ,βv are the roots of

x 2−2ψ(πv )x +ψ(πv )
2 = (x −ψ(πv ))

2

which implies that αv ≡βv , contradicting our assumptions in §6.1.1.
In case (ii),

6.2.2. Proof of Lemma 6.2.1 (2). Consider the diagram

Sk ,χ (U0,Q ;O )⊕2 Sk ,χ (U0,Q∪{v };O )

Sk ,χ (U0,Q ;O )⊕2 Sk ,χ (U0,Q∪{v };O )

Uv
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We claim that we can fill this in to a commutative diagram

Sk ,χ (U0,Q ;O )⊕2 Sk ,χ (U0,Q∪{v };O )

Sk ,χ (U0,Q ;O )⊕2 Sk ,χ (U0,Q∪{v };O )

Uv

with the dashed map being
�

Tv #k (v )χ(πv )
−1 0

�

(6.2.2)

Proof of claim. We can just check that the claimed formula works. We apply Uv to the
image of (ϕ1,ϕ2):

ϕ1+
�

1
πv

�

ϕ2
Uv7→

∑

α∈k (v )

�

πv α
1

�

ϕ1+
∑

α∈k (v )

�

πv α
1

��

1
πv

�

ϕ2

=
∑

α∈k (v )

�

πv α
1

�

ϕ1+
∑

α∈k (v )

�

πv απv

πv

�

ϕ2

= Tvϕ1−
�

1
πv

�

ϕ1+#k (v )χ(πv )ϕ2.

�

So Uv acts on Sk ,χ (U0,Q ;O )⊕2
m,nQ

∼−→ Sk ,χ (U0,Q∪{v };O )n,nQ
by

�

Av +Bv Av Bv

−1 0

�

. (6.2.3)

By splitting into the eigenspaces of the linear transformation (6.2.3), we get a decom-
position

Sk ,χ (U0,Q ;O )⊕2
m,nQ

∼=
§�

Avχ
−χ

�

: x ∈ Sk ,χ (U0,Q ;O )m,nQ

ª

⊕
§�

Bv x
−x

�

: x ∈ Sk ,χ (U0,Q ;O )m,nQ

ª

(6.2.4)
You have to be careful about direct sums because we are working integrally, but the
point is that

�

Av Bv

−1 −1

�

is invertible under our assumptions, which imply that Av −Bv reduces to a unit in F.
Localizing at (m,Uv − Av ) ⊂ T, we get that Uv − Bv is a unit since Av − Bv reduces to

a unit. So the second summand, which is the Uv = Bv eigenspace, disappears in the
localization. Conversely, if f (Uv ) /∈ (m,Uv − Av ) then writing f (X ) = (X − Av )q (X ) +Cv

with Cv /∈m, we find that f (Uv ) acts as Cv , which is a unit. Hence the localization does
nothing to the first summand, and we conclude that

Sk ,χ (U0,Q∪{v };O )n,nQ∪{v }

∼−→ (Sk ,χ (U0,Q ;O )⊕2
m,nQ
)nv
∼= Sk ,χ (U0,Q ;O )m,nQ

.

We have proved part (2).
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6.3. Adding level structure. Recall that we deduced from Lemma 6.2.1, by inductive
application of (2), that

Sk ,χ (U ;O )m ∼= Sk ,χ (U0,Q ;O )m,nQ
,

and that Sk ,χ (U1,Q ;O )m,nQ
is a finite free O [∆Q ]-module, which implies

(Sk ,χ (U1,Q ;O )m,nQ
)∆Q
∼= Sk ,χ (U ;O )m.

6.3.1. We’re now going to piece together the key picture in the patching argument. We
have T= Tk ,χ (U ;O )m acting on S = Sk ,χ (U ;O )m. We have∆Q acting on SQ = Sk ,χ (U1,Q ;O )m,nQ

�
S , which factors through an isomorphism

SQ

(SQ )∆Q
S∼

There’s the Hecke algebra TQ acting on SQ (the image of Tk ,χ (U1,Q ;O )m in the localized
EndO (Sk ,χ (U1,Q ;O )m,nQ

). Also we have a quotient map TQ � T, induced by the action on
S ,→ SQ .

SQ SQ x TQ

(SQ )∆Q
S S x T∼

6.3.2. We also have the universal deformation ring R univ
{v0}
= R univ, and in §5.4 we pro-

duced a map

R univ
{v0} =R univ� T= Tk ,χ (U ;O )m.

(The map is surjective because it hits the generators of T: in fact, Tr(Frobv ) 7→ Tv .)
The pair (R univ

Q∪{v0}
, r univ

Q∪{v0}
) = (R univ

Q , r univ
Q ) represents the functor on complete noe-

therian local O -algeras with residue field F, sending A to continuous representations
ρ : GF →GL2(A) such thatρ (mod mA) = r , ρ unramified away from 1, v0,Q andρ is FL
above `, modulo equivalence.

6.3.3. The key picture is the diagram

SQ SQ x TQ R univ
Q

(SQ )∆Q
S S x T R univ∼

Lemma 6.3.1. We have the following.

(1) If v ∈Q , then

r univ
Q |GFv

∼
�

ψα
ψβ

�
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where

ψα(Frobv )≡αv (mod m),

ψβ (Frobv )≡βv (mod m).

(2) If v ∈Q , then

O ×Fv
k (v )× ∆v

G ab
Fv

(R univ
q )× T×Q

ArtFv

ψα

and the resulting action of∆v agrees with that of the diamond operators.

In other words, we have O [∆Q ]→R univ
Q which induces the map∆Q → (R univ

Q )×. Also,

if aQ = 〈δ−1,δ ∈∆Q 〉 then R univ
Q /aQ =R univ. (Indeed, this quotient imposes that inertia

acts trivially, so it’s just saying that the representation is unramified at Q .)

Proof. (1) Let ßFrobv ∈GFv
be a lift of Frobv ∈Gk (v ). Consider the characteristic polyno-

mial of this lift. Modulo m, this factors as (X −αv )(X −βv ), so since R univ
Q is complete

we can apply Hensel’s Lemma to get a factorization

Charr univ
Q
(ßFrobv )(X ) = (X −A)(X −B )

with A, B ∈ R univ
Q reducing to αv ,βv . Because A − B /∈ mR univ

Q
, it is a unit, and we can

diagonalize this matrix. So we can assume that

r univ
Q (ßFrobv ) =

�

A
B

�

.

What we need is that r univ
Q (IFV

) is also diagonal. Since this acts trivially residually, it is a
pro-` group, hence factors through tame inertia. Let σ be a topological generator; we
need to show that r univ

Q (σ) is diagonal. We know that

r univ
Q (ßFrobvσßFrob

−1

v ) = r univ
Q (σ#k (v )).

Let I ⊂R univ
Q be the ideal generated by the off-diagonal elements of r univ

Q (σ). We want
to show that I = 0. It suffices to prove that mI = I . We’ll do this by showing that

r univ
Q (σ) (mod mI ) =:

�

x y
z w

�

also has z = y = 0 in R univ
Q /mI . Using the relation, we find that

�

x (B/A)y
(A/B )z w

�

=
��

x
w

�

+
�

0 y
z 0

��q

=
�

x q

y q

�

+q
�

0 y
z 0

�

.

The induction assumption allows us to assume that y , z ∈ I , and since we are working
modulo m we can replace A, B with αv ,βv and x , w with 1 (which are their reductions
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modulo m). So we get (βv /αv −q )y = 0 and (βv /αv −q )z = 0, but this forces y = z = 0
because

(βv /αv −q )≡βv /αv −1 6= 0 (mod m).

(2) We check that the two actions of ∆Q on SQ agree. The more obvious action just
comes from the fact that SQ = Sk ,χ (U1,Q ;O )m;nq

and U0,Q/U1,Q is ∆Q ; the other comes
from the Galois action.

It suffices to check this after tensoring up to C,

SQ =
⊕

π: r `(π)∼=r

(π∞⊗ ||det ||1/2)U1,Q
nQ

.

For v ∈Q , we may assume that π
Iw1

v
v 6= 0, otherwise it doesn’t contribute to the direct

sum. Hence, by the classification of such representations, we have thatπv is a subquo-
tient of

IndG (Fv )
B (Fv )
(θα×θβ ).

Then the semisimplification of the local Galois representation has the form

(r`(πv )|WFv
)ss = θα ◦Art−1

Fv
⊕θβ ◦Art−1

Fv

for tamely ramified θα,θβ . The reduction is unramified, and we can choose the labeling
so that θα(πv )≡αv (mod λ) and θβ (πv )≡βv (mod λ).

The action ofO [∆v ] on SQ is induced by the compositionO [∆v ]→R univ
Q → TQ comes

from θα. We have to compare this with the action of U0,Q/U1,Q on

IndGL2(Fv )
B (Fv )

(θα×θβ ⊗ ||det ||1/2)Iw1 ∼−→C2 (6.3.1)

where the identification is via

ϕ 7→ (ϕ(Id),ϕ(w )).

How does∆v act? A typical element of∆v is
�

δ
1

�

, δ ∈O ×F,v .

Then
�

δ
1

�

·ϕ(Id) =ϕ
��

δ
1

��

= θα(δ)ϕ(Id)

and
�

δ
1

�

·ϕ(w ) =ϕ
��

0 1
1 0

��

δ
1

��

=ϕ
��

1
δ

��

0 1
1 0

��

= θβ (δ)ϕ(w ).

So we found that δ acts as on (6.3.1) by the matrix
�

θα(δ)
θβ (δ)

�

with respect to the coordinates given by evaluation at Id and w . We have to show that
upon localization at nQ , it acts through θα.
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In conclusion, what we’ve computed is that

(Uv ·ϕ)(Id) =
∑

γ∈k (v )

ϕ

�

πv γ
0 1

�

#k (v )−1/2

= #k (v )θα(π) ·#k (v )−1/2 ·#k (v )−1/2 ·ϕ(Id)
= θα(πv )ϕ(Id)

and

(Uv ·ϕ)(w ) =
∑

γ∈k (v )

ϕ

�

0 1
πv eγ

�

#k (v )−1/2

=ϕ
��

1
πv

�

w
�

#k (v )−1/2+
∑

γ∈k (v )−0

ϕ

��

−γ−1πv 1
0 γ

��

1 0
πvγ

−1 1

��

#k (v )−1/2

= θβ (πv )ϕ(w ) +
∑

γ∈k (v )−0

θα(−γ−1πv )θβ (γ)#k (v )−1ϕ(Id)

= θβ (πv )ϕ(w ) +θα(−πv )#k (v )−1
∑

γ∈k (v )×

θβ

θα
(γ)ϕ(Id).

Hence Uv acts as
�

θα(πv ) 0
θα(−πv )#k (v )−1

∑

γ∈k (v )× (θβ/θα)(γ) θβ (πv )

�

If θβ/θα|∆v
= 1 then we win, as then∆v acts on the invariants by θα(δ) because θα =

θβ . Otherwise, we sum a non-trivial character and this bottom left entry becomes 0, so
Uv acts as

�

θα(πv ) 0
0 θβ (πv )

�

.

Then Uv − θβ (πv ), which is not in nQ hence acts as a unit in the localization, kills the
second factor and we find that δ ∈∆v acts on (C⊕2)nQ

by θα(δ). �

6.3.4. Let’s go back to the big picture:

SQ x TQ R univ
Q

S x T R univ

This saying that we pick a finite set of favorable (“Taylor-Wiles”) primes, and we simul-
taneously consider a Hecke algebra at the corresponding level and a Galois deformation
ring allowing ramification at these primes. This equips R univ

Q with the structure of an
O [∆Q ]-algebra.

We now know that SQ is finite free over O [∆Q ], and for aQ ⊂O [∆Q ] the augmentation
ideal, the trace map induces an isomorphism

Tr: SQ ,aQ

∼−→ S .
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We want to prove that R univ ∼−→ T. We don’t need to know anything more about au-
tomorphic forms, other than this paragraph. The moral is that “when you relax the
ramification, you see that S is as large as it could be”.

7. GALOIS DEFORMATION RINGS

7.1. Generators. We need to know something about the size of the rings R univ and
R univ

Q .

The universal deformation ring R univ
Q is a complete localO -algebra, say with maximal

ideal mQ .

Lemma 7.1.1. If R is a complete Noetherian ring over O , with maximal ideal m, then it
is topologically generated over O by dimF(m/(λ,m2)) elements.

Proof. Pick a basis r1, . . . , rn and lift them to eri ∈m. The choice of lifts defines a map

O [[x1, . . . , xn ]]→R .

Since R = lim←−R/mN , it suffices to prove that

O [[x1, . . . , xn ]]→R/mN .

We induct on N . We can approximate up to mN−1 by induction. So it suffices to show
that

(x1, . . . , xn )
N �mN /mN+1.

By Nakayama, it suffices to show that

(x1, . . . , xn )
N �mN /(λ,mN+1).

The induction hypothesis gives that

(x1, . . . , xn )
N−1�mN−1/mN .

and then we consider the diagram

(x1, . . . , xn )N−1⊗ (x1, . . . , xn ) mN−1/mN ⊗ (m/(λ,m2))

(x1, . . . , xn )N mN /(λ,mN+1)

�

7.2. The tangent space. We now analyze the space (mQ/(λ,m2
Q )).

Lemma 7.2.1. We have

HomF(mQ , (λ,m2
Q ), F)∼=HomO (R

univ
Q , F[ε]/ε2)

where the right hand side denotes local O -algebra homomorphisms.
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Proof. For α ∈HomO (R univ
Q , F[ε]/ε2), consider α|mQ

. Since α is a local homomorphism,

α|mQ
lands in εF, and we associate to it 1

εα|mQ
∈HomF(mQ , (λ,m2

Q ), F).
Conversely, we can send β to the homomorphism R univ

Q → F[ε]/ε2 taking

a
︸︷︷︸

∈O

+ b
︸︷︷︸

∈mQ

7→ a (mod λ) +β (b )ε.

�

7.2.1. Interpretation as deformations. The latter space HomO (R univ
Q , F[ε]/ε2) has an in-

terpretation in terms of deformations, by the universal property: it’s a subspace of the
deformations

GF →GL2(F[ε]/ε
2)

of the formσ 7→ (1+φ(σ)ε)r (σ). The condition for this to be a homomorphism is that

(1+φ(στ)ε)r (στ) = (1+φ(σ)ε)r (σ)(1+φ(τ)ε)r (τ).

Exercise 7.2.2. Check that this is equivalent to asking that

φ(στ) =φ(σ) +ad r (σ)φ(τ),

i.e. thatφ ∈ Z 1(GF ; ad r ).

We are now going to digest in these terms the other conditions that we imposed in
our deformations.

7.2.2. Fixed determinant. In our deformation problem we fixed the determinants of
the representations. This is equivalent to imposing

det(1+φ(σ)ε) = 1,

which amounts to Tr ad(σ) = 0. We let ad0(r )⊂ ad(r )be the subspace of trace 0 matrices.

7.2.3. Controlling ramification. We need the deformation to be unramified away from
Q and `. To encode this, we introduce some notation. Let FT be the maximal extension
of F unramified outside T , and we let GF,T = Gal(FT /F ). Then we are saying that φ
factors through GF,Q∪{`}.

7.2.4. Fontaine-Laffaille. We imposed that the deformations be Fontaine-Laffaille. We’ll
explicate this condition shortly.

7.2.5. Equivalence relation. We imposed an equivalence relation on lifts, declaring them
to be equivalent if they are conjugate by a matrix reducing to the identity over F.

In the case at hand, this means we mod out by conjugation by things of the form
1+aε for a ∈M2×2(F).

Exercise 7.2.3. Check that this conjugation takesφ to the function

σ 7→ a +φ(σ)−ad r (σ)a .

This amounts to the usual equivalence relation in Galois cohomology.
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Hence, the space HomO (R univ
Q , F[ε]/ε2)we’re interested in can be written as

{φ ∈ Z 1(GF,Q∪{`}, ad0 r ): (1+φε)r |GFv
is FL at all v | `}/(σ 7→ a +φ(σ)−ad r (σ)a )

= {[φ] ∈H 1(GF,Q∪{`}, ad0 r ): Res[φ]|GFv
is FL at all v | `}. (7.2.1)

7.2.6. Unraveling the FL condition. We want to explicate the FL condition.

Lemma 7.2.4. For all v | `, we have

H 1(GFv
, ad r )∼= Ext1

F[GFv ]
(r , r ). (7.2.2)

Proof. Indeed, a cocycle (1+φε)r is manifestly an extension of r by r ε, and this process
is reversible. �

Since ad r = ad0 r ⊕1, this decomposes as

H 1(GFv
, ad r )∼=H 1(GFv

; F)⊕H 1(GFv
; ad0 r ).

The Fontaine-Laffaille conditions says that

r |GFv
=G(M )

for M in MF /F, and G the Fontaine-Laffaille functor (§5.3). We consider Ext1
MF /F(M , M ),

which means the group of extensions up to equivalence (we aren’t ready to make a
statement that there are “enough injectives” in MF /F, which would be necessary to
define derived functors). The functor G induces a map

Ext1
MF /F(M , M )→ Ext1

F[GFv ]
(r , r ). (7.2.3)

The Fontaine-Laffaille condition means that the extension is in the image of this map.
The image of (7.2.3) is denoted H 1

f (GFv
, ad0 r ) under the identification (7.2.2).

It is a fact, which is maybe not adequately treated in the literature9, that

H 1
f (GFv

, ad r )∼=H 1
f (GFv

, ad0 r )⊕H 1(Gk (v ), F)
︸ ︷︷ ︸

1−dim

and H 1
f (GFv

, ad0 r ) =H 1(GFv
, ad0 r )∩H 1

f (GFv
, ad r ). Hence

dimF H 1
f (GFv

, ad0 r ) = dimF Ext1
MF /F(M , M )−1.

Therefore, the condition that [φ] ∈H 1(GF,Q∪{v }, ad0 r ) is Fontaine-Laffaille is the con-
dition that [φ] lies in

ker

�

H 1(GF,Q∪{v }, ad0 r )→
⊕

v |`
H 1(GFv

, ad0 r )/H 1
f (GFv

, ad0 r )

�

.

7.3. Dimension calculations. We are going to work towards calculating the dimension
of (7.2.1).

9The problem here is that the tensor product of two FL modules needn’t be FL again (the natural tensor
product filtration can become too long), but when it is it should be the case that G(M ⊗M ′) =G(M )⊗G(M ′).
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7.3.1. The case v | `: Fontaine-Laffaille theory. We now want to compute the dimen-
sion of the Galois cohomology groups H 1

f (GFv
, ad0 r ).

Let’s explicate the definition of the Fontaine-Laffaille category MF /F. When work-
ing with F-coefficients, we find that the definition in §5.3 amounts to just:

• M an F⊗Z` OFv
-module, with

• a filtration Fili such that Fil0 =M and Fil`−1 = 0, and
• a map

Φ• : gr•M
∼−→M

which is Id⊗Frob−1
` -linear.

Given an extension E ∈ Ext1
MF /F(M , M )

0→M → E →M → 0,

we can pick a splitting s : M → E which preserve the filtration. That is, s induces E ∼=
M ⊕M such that Fil(E ) = Fil(M )⊕Fil(M ). To complete this to an FL structure, we need
to give a map ΦE ∈HomFrob

F⊗OFv
(gr• E , E )which is Id⊗Frob−1

` -linear. It is required to have

the form

ΦE =
�

ΦM ∗
ΦM

�

so it is specified by the upper-right hand corner, which is a Φ ∈ HomFrob
F⊗OFv

(gr•M , M ).
Thus, we have a surjection

HomFrob
F⊗OFv

(gr•M , M )→ Ext1
MF /F(M , M )→ 0.

The different splittings which induce the same E are a torsor for homomorphisms
M → M that preserve the filtration, i.e. Fil0 Hom(M , M ). So extend to an exact se-
quence.

Fil0 Hom(M , M )→HomFrob
F⊗OFv

(gr∗M , M )→ Ext1
MF /F(M , M )→ 0.

A change in the choice of splitting amounts to multiplying E by a matrix of the form
�

1 ψ
1

�

which conjugates ΦE :
�

1 ψ
1

��

ΦM Φ
ΦM

��

1 −ψ
1

�

=
�

ΦM Φ+ψΦM −ΦMψ
ΦM

�

.

Therefore, the kernel of Fil0 Hom(M , M )→HomFrob
F⊗OFv

(gr∗M , M ) is the space ofψ: M →
M that commute with ΦM . This is just the space HomMF /F(M , M ). So we’ve produced
an exact sequence

0→HomMF /F(M , M )→ Fil0 HomF⊗OFv
(M , M )→HomF⊗OFv

(gr•M , M )→ Ext1
MF /F(M , M )→ 0.

What are the dimensions?

• We have dimF HomFrob
F⊗OFv

(gr∗M , M ) = 4[k (v ) : F]. This is because, after choosing

a basis for M , such a homomorphism can be specified by a 2× 2 matrix with
entries in k (v ), but then we take the dimension over F.



54 LECTURES BY RICHARD TAYLOR

• The assumption of distinct Hodge-Tate weights (and the fact that dimF r = 2)
implies that M has a filtration with two steps, so Fil0 Hom(M , M ) is the space of
upper-triangular matrices with entries in k (v ), hence has dimension 3[k (v ) : F].
• Finally, using the equivalence HomMF /F(M , M ) ∼=HomGFv

(r , r ) we find that it

has F-dimension 1+dim H 0(GFv
, ad0 r ).

In conclusion (using that the Euler characteristic of an exact sequence is 0), we’ve found
that

dim H 1
f (GFv

ad0 r ) = [Fv : Q`] +dim H 0(GFv
, ad0 r ). (7.3.1)

7.3.2. Selmer group formalism. Let T be a finite set of primes of a number field F . Let
M be an O [GF,T ]-module which is finite over O . Suppose that if p | #M then all v | p
are in T .

For all v | T , we suppose given a subspace Lv ⊂H 1(GFv
, M ). Set L = {Lv }.

Definition 7.3.1. We define H 1
L (GF,T ; M )⊂H 1(GF,T ; M ) to be the subspace of elements

whose image under the local restriction maps lie in Lv , i.e.

H 1
L (GF,T ; M ) = ker

�

H 1(GF,T ; M )→
⊕

v∈T

H 1(GFv
, M )/Lv

�

.

For M = ad0 r , we want to take

Lv =

¨

H 1
f (GFv

, r ) v | `,
H 1(GFv

, ad0 r ) v ∈Q .

Upshot: by §7.1, R univ
Q is topologically generated by dim H 1

L (GF,Q∪{`}, ad0 r ) elements.
Consider what happens if we change T to T ∪{v }, and we take

Lv =H 1(Gk (v ); M )⊂H 1(GFv
; M ).

Then we would have

H 1
L (GF,T ; M )→H 1

L ∪{Lv }(GF,T ∪{v }; M )

since the condition Lv imposes unramifiedness.

7.3.3. Galois cohomology of local fields. The cohomology of a local field behaves like
the cohomology of a compact 2-manifold. For example, if v is a finite place then we
have

H i (GFv
; M ) = 0, i > 2

H 2(GFv
; F(ε`))∼= F

and there is a form of Poincaré duality, which says that for M ∗(1) :=HomF(M , F(ε`)) the
pairing

H i (GFv
; M )×H 2−i (GFv

, M ∗(1))→H 2(GFv
; F(ε`))

∼−→ F

is perfect.
We regard H 0 as being “easy”. Then Poincaré duality makes H 2 similarly “easy”. So

the only mysterious group is H 1. However, information can be gotten from the Euler
characteristic formula.
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Theorem 7.3.2 (Tate). Let M be a F-vector space. We have

dimF H 1(GFv
; M ) = dimF H 0(GFv

; M ) +dimF H 0(GFv
; M ∗(1))+

¨

(dimF M )[Fv : Q`] v | `
0 v - ` .

Given Lv ⊂H i (GFv
; M ), we can define L⊥v ⊂H 2−i (GFv

, M ∗(1)) to be its annihilator. A
key property of this construction is that

H 1(Gk (v ); M )⊥ =H 1(Gk (v ); M ∗(1)).

Given Lv = (Lv ), we then define L ⊥ := (L⊥v ).

7.3.4. Galois cohomology of global fields. The cohomology of the groups GF,T behaves
like that of a 3-manifold with boundary, having boundary components for each v ∈ T
and each v | ∞. (For v ∈ T , the boundary components have cohomology like that of
GFv

.)
Poincaré duality for manifolds with boundary is more complicated, but whatever the

statements are, analogous ones are true here. In particular, Tate proved global duality
and Euler characteristic formulae. We’ll just state what we need (combining the duality
and Euler characteristic formulae).

Theorem 7.3.3 (Poitou-Tate). We have

−dim H 0(GF,T ; ) +dim H 1
L (GF,T ; M )−dim H 1

L ⊥ (GF,T ; M ∗(1))+dim H 0(GF,T ; M ∗(1))

=−
∑

v |∞
dim M GFv +

∑

v∈T

(dim Lv −dim H 0(GFv
; M )).

It is very difficult to calculate the dimensions of Selmer groups; this gives some in-
formation.

7.3.5. Putting things together. We have seen that R univ
Q is topologically generated by

dimF H 1
L (GF,Q∪{`}; ad0 r ) elements, where L has

Lv =

¨

H 1
f (GFv

; ad0 r ) v | `,
H 1(GFv

; ad0 r ) v ∈Q .

• At v |∞, we have r (c )∼
�

1
−1

�

hence

(ad0 r )(c )∼





1
−1

−1





so this contributes 1 for each such v .
• For v | `, we found [Fv : Q`] +dim H 0(GFv

; ad0 r ).
• Finally, for v ∈Q we get dim H 1(GFv

; ad0 r )−dim H 0(GFv
; ad0 r ). Since v - `, we

apply Theorem 7.3.2 to get that this is

dim H 2(GFv
; ad0 r ) = dim H 0(GFv

; (ad0 r )∗(1)).
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The assumption v ∈ Q implies ε`(Frobv ) = 1, so we can ignore the Tate twist.
Since

(ad0 r )(Frobv ) =





αv /βv

βv /αv

1





we see a contribution of 1, hence a total contribution of #Q from such v .
• dim H 0(GF T ; ad0 r ) = 0, because r is irreducible.
• dim H 0(GF T ; (ad0 r )(1)) = 0, because we can ignore the twist by passing up to

GF (ζ`), and r |GF (ζ`)
is irreducible.

The upshot is that

dimF H 1
L (GF,Q∪{`}; ad0 r ) = dimF H 1

L ⊥ (GF,Q∪{`}; (ad0 r )(1))+#Q . (7.3.2)

7.4. Preparations for patching.

7.4.1. Philosophy. ForQ = ;, if h 1 = dim H 1
L;
(GF,{`}; ad0 r )and h 2 = dim H 1

L ⊥
;
(GF,{`}; ad0 r (1)),

then (7.3.2) gives h 1 = h 2 and §7.1 shows that the universal deformation ring has the
form

R univ
; =O [[x1, . . . , xh ]]/( f1, . . . , fh 2 ).

Then you get that R univ = O , and you have R univ = O � T must be an isomorphism
since T is free over O .

We’re going to chooseQ so that h 1 and h 2 don’t change, but f1, . . . , fh 2 become “deeper”
in the augmentation filtration. The idea is that in a “limiting situation” (whatever that
means; a priori these rings for different Q don’t map to each other), they would be-
come 0, and R univ

∞ would become O [[x1, . . . , xh 1 ]]. This would map to T∞, and it would
automatically be an isomorphism if you knew that dim T∞ = h 1 + 1. This largeness of
dimension will come from the largeness of the TQ -module SQ .

7.4.2. Selection of Taylor-Wiles primes. The strategy we just explained requires that
(7.3.2) stay constant. So we need to choose Q so that dim H 1

L ⊥
Q

drops as we make #Q

bigger.

Proposition 7.4.1. Let s = dim H 1
L ⊥
;
(GF,{`}; ad0(r )(1)). For all m > 0 there exists Qm a set

of primes of F such that

(1) For v ∈ Qm , we have #k (v ) ≡ 1 (mod `m ), (so as m grows, the pro-` quotient
∆v � Z/`m Z gets bigger)

(2) r (Frobv ) has distinct eigenvalues αv 6=βv

(3) #Qm = s ,
(4) R univ

Q is topologically generated by r elements over O (note that R⊥; is generated
by this same number of elements).

Remark 7.4.2. Under (1)-(3), (4) is equivalent to

dim H 1
L ⊥

Qm

(GF,Qm∪{`}, ad0 r )(1)) = 0.
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Proof. We have to understand the cohomology group H 1
L ⊥

Qm

(GF,Qm∪{`}, ad0 r )(1)). Let’s

begin by explicating L ⊥
Qm

. For v ∈Qm , we have L ⊥
Qm ,v = 0.

By definition, we have an exact sequence

0→H 1
L ⊥

Qm

(GF,Qm∪{`}; ad0 r (1))→H 1
fL ⊥ (GF,Qm∪{`}; ad0 r (1))→

⊕

v∈Qm

H 1(Gk (v ); ad0(r )(1))

(7.4.1)
where

fLv =

¨

H 1
f (GFv

; ad0 r ) v | `,
H 1(Gk (v ); ad0 r ) v ∈Qm ,

hence

H 1
fL ⊥ (GF,Qm∪{`}; ad0 r (1)) =H 1

L ⊥
;
(GF,{`}; (ad0 r )(1)).

So we can rewrite (7.4.1) as

0→H 1
L ⊥

Qm

(GF,Qm∪{`}; (ad0 r )(1))→H 1
L ⊥
;
(GF,{`}; (ad0 r )(1))→

⊕

v∈Qm

H 1(Gk (v ); (ad0 r )(1)).

Since Gk (v )
∼= bZ, we can understand its Galois cohomology easily:

H 1(Gk (v ); ad0(r ))∼=
(ad0 r )(1)

(Frobv −1)(ad0 r )(1)
.

Since by assumption Frobv acts on ad0(r ) with eigenvalues αv /βv ,βv /αv , 1 with αv 6=
βv , we have dimF H 1(Gk (v ); ad0(r )) = 1. The assumption #k (v ) ≡ 1 (mod `m ) lets us ig-
nore the Tate twist; we’ll use this throughout to simplify the notation.

7.4.3. It’s easy to pick a bunch of v satisfying (2) and (3). To satisfy (4), we will find Qm

so that

H 1
L ⊥
;
(GF,{`}; (ad0 r )) ,→

⊕

v∈Qm

H 1(Gk (v ); ad0(r )). (7.4.2)

We can then throw away extra elements of Qm to achieve (1) as well.
To prove (7.4.2), we want to show that for all non-zero φ ∈ H 1

L ⊥
;
(GF,{`}; (ad0 r )), we

can find v such that φ restricts to a non-zero class in H 1(Gk (v ); ad0(r )), i.e. φ(Frobv ) /∈
(Frobv −1)ad0 r . We’ll do this using Chebotarev’s density theorem.

7.4.4. So it suffices to know that there exists some σ ∈GF (ζ`m ) such that

(i) r (σ) 6= 1 and has order coprime to ` (to get distinct eigenvalues),
(ii) φ(σ) /∈ (σ−1)ad0 r .

We’ll now digest this.

7.4.5. Write D = F
ker ad r

, a finite extension of F that trivializes ad r . Well argue that it
suffices to produceσ ∈Gal(D (ζ`m )/F (ζ`m )) such that

(i) σ 6= 1 and has order coprime to `,
(ii) ad0σ has eigenvalue 1 on 〈φ(GD (ζ`m ))〉 ⊂ ad0 r .
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Why? Pick a lift eσ ∈GF (ζ`m ) ofσ. Then take any τ ∈GD (ζ`m ) and consider

φ(τeσ) =φ(τ) +φ(eσ).

(We have τ ·φ(eσ) = φ(eσ) by the definition of D .) If φ(eσ) /∈ (σ− 1)ad0 r , then we win.
Otherwise φ(eσ) ∈ (σ−1)ad0 r , and we want to find τ such that φ(τ) /∈ (σ−1)ad0 r , for
then we can put τeσ into §7.4.4. So ifσ−1 is not invertible on ad0 r , then we win.

7.4.6. Let’s show that we can achieve (ii) in §7.4.5. What’s the content here? We’re in
trouble if 〈φ(GD (ζ`m ))〉= 0. We’ll show that the restriction map

H 1
L ⊥
;
(GF,{`}; (ad0 r )(1)) ,→H 1(GD (ζ`m ), (ad0 r )(1)) (7.4.3)

which rules this out. The kernel comes from H 1(Gal(D (ζ`m )/F ), ad0 r (1)) = 0, so we’ll
arrange that this is 0.

Then we’ll show that for any non-zero Gal(D (ζ`m )/F )-submodule W ⊂ ad0 r , there
existsσ ∈Gal(D (ζ`m )/F (ζ`m )) such that

• σ 6= 1 has order prime to `, and
• σ has an eigenvalue 1 on W .

7.4.7. We prove the second statement first. We know that ad0 r |GF (ζ`)
is semi-simple,

by a criterion of Serre (which says that a tensor product of semisimple representations
is semisimple if the dimension is small relative to `), because 2−1+2−1< `.

Then we have the the following possibilities:

• ad0 r |GF (ζ`)
is irreducible. In this case, any σ ∈ Gal(D (ζ`)/F (ζ`)) of order 6= 1

and coprime to ` will do. (If Gal(D (ζ`)/F (ζ`)) is an `-group, then (ad0 r )|GF (ζ`)
is

reducible.)
• Otherwise, ad0 r |GF (ζ`)

contains a 1-dimensional irreducible characterψ, which

forces r ∼= r ⊗ψ over GF (ζ`), withψ2 = 1 (by looking at determinants) andψ 6= 1
(because r |GF (ζ`)

is irreducible, and we’ve already stripped out the scalar auto-

morphisms in passing from ad r to ad0 r ).
Then there is a quadratic extension K /F (ζ`) (cut out by ψ) such that r ∼=

Ind
GF (ζ`)

GK
θ , and satisfying θ/θ τ 6= 1 where τ ∈ Gal(K /F (ζ`)) is the nontrivial el-

ement. Then

ad0 r =ψ⊕ Ind
GF (ζ`)

GK
(θ/θ τ).

– For W = F(ψ), anyσ ∈GK with θ (σ) 6= 1 will do.

– If W = Ind
GF (ζ`)

GK
θ/θ τ, anyσ ∈GF (ζ`)−GK acts through r by a matrix of the

form
�

0 1
∗ 0

�

hence has eigenvalues ±α. Then in ad0 r it has eigenvalues −1,−1,+1 and
ψ(σ) =−1, so there is a +1-eigenvalue in W .

– Finally, Ind
GF (ζ`)

GK
θ/θ τ could be reducible and W be 1-dimensional again.

Then W ∼= F(ψ′) and you argue as above.
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7.4.8. Now we show that H 1(Gal(D (ζ`m )/F ); ad0 r (1)) = 0, as promised in §7.4.6. We
use the inflation-restriction sequence repeatedly. First we look at field extensions

F ,→D (ζ`) ,→D (ζ`m ).

This gives the inflation-restriction sequence

0→H 1(Gal(D (ζ`)/F ), ad0 r (1))→H 1(Gal(D (ζ`m )/F ), ad0 r (1))→H 1(Gal(D (ζ`m )/D (ζ`)); ad0 r (1))GF .

We first analyze the last term. Since Gal(D (ζ`m )/D (ζ`)) acts trivially on ad0 r (1), it
can be understood as

HomGF
(Gal(D (ζ`m )/D (ζ`)); ad0 r (1))

Now, GF acts trivially on Gal(D (ζ`m )/D (ζ`)), since the latter injects into Gal(F (ζ`m /F (ζ`)),
and F (ζ`m ) is abelian over F . So this is just the same as

Hom(Gal(D (ζ`m )/D (ζ`)); ad0 r (1)GF ).

Next, note that ad0 r (1)GF = 0 otherwise we would have an isomorphism r ∼= r ⊗ε` with
trace 0, but we assumed r |GF (ζ`)

is irreducible.

It remains to show that H 1(Gal(D (ζ`)/F ), ad0 r (1)) = 0. For this we consider the inflation-
restriction sequence

0→H 1(Gal(D /F ), ad0 r (1)GD )→H 1(Gal(D (ζ`/F ), ad0 r (1))→H 1(Gal(D (ζ`)/D ), ad0 r (1)).

The last term H 1(Gal(D (ζ`)/D ), ad0 r (1)) is 0 because Gal(D (ζ`)/D ) has order prime
to `. For the first term, GD acts only through the cyclotomic character so we have
ad0 r (1)GD = 00 unlessζ` ∈D , in which case the first term becomes H 1(Gal(D /F ), ad0 r (1)).

We know something about Gal(D /F ), namely that it embeds in PGL2(F`). The possi-
bilities for its image are

A4 S4 A5 PSL2(F`r ) PGL2(F`r ) D2s (if ` - s )

Furthermore, if ζ` ∈D then Gal(D /F ) surjects onto Gal(F (ζ`)/F ). We examin the max-
imal abelian quotients of the above groups:

A4 S4 A5 PSL2(F`r ) PGL2(F`r ) D2s (if ` - s )
C3 C2 {1} {1} (unless (`, r ) = (3, 1)) {±1} {±1} or {±1}2

Since F is totally real, the Galois group in question is cyclic of even degree. So in the
case ζ` ∈D we must have Gal(D /F )∼= S4 or PGL2(F`r ) or D2s , and Gal(F (ζ`)/F )∼= C2. If
` > 3 is unramified in F , then [F (ζ`) : F ] = `−1, a contradiction.

If ` = 3 (so S4 = PGL2(F`), which we include because of its historical significance,
then we get H 1(Gal(D /F ); ad0 r (1)) = 0 if Gal(D /F ) =D2s . Otherwise, we use the group-
theoretic fact that H 1(PGL2(F`r ), ad0 r (1)) = 0 unless `r = 5.

�
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8. PATCHING

8.1. Summary. Let’s summarize where we are.
Write R∞ =O [[X1, . . . , X s ]] and Λ=O [[Zs

` ]] =O [[S1, . . . ,Ss ]].
We consider the space of modular forms of level Qm , denoted SQm

. This maps down
to S;. It has an action ofO [∆Qm

], which admits a surjection fromΛ. It also has an action
of the Hecke algebra TQm

. This actions are compatible with the map R univ
Qm
� TQm

. Since

RQm
is topologically generated by s elements, there exists R∞�R univ

Qm
.

Λ O [∆Qm
]

R∞ R univ
Qm

TQm
x SQm

R univ
; T; x S;

Here we have used dashed arrows to label “random” ring homorphisms, which exist
because the domains are free so we can construct them by making choices, but which
have no “natural” interpretation.

Recall that for the augmentation ideal a = 〈γ− 1: γ ∈ Zs
`〉 = (S1, . . . ,Ss ), we know that

SQm
is free over O [∆Qm

] and SQm
/a

∼−→ S;.
This is already more information than we really need. The key picture to extract is

Λ R∞ x SQm

R univ
; T; x S;

and SQm
is free over Λ/ker

�

Λ→O [∆Qm
]
�

. The kernel is contained in Im := 〈γ− 1: γ ∈
(`m Z`)s 〉, which has the property that Im → 0 in a sense; a precise statement is that

∩m Im = 0.

So the group rings are better and better approximations to Λ. We want to prove that
R univ
;

∼−→ T;.

8.2. Ultrafilters. We consider the power setP (Z≥0).
Definition 8.2.1. A filter is a setF of subsets of Z≥0 such that

(1) Z≥0 ∈F , ; /∈F ,
(2) If B ∈F and A ⊃ B , then A ∈F .
(3) A, B ∈F =⇒ A ∩B ∈F .

An ultrafilter has the additional property that

ifA ⊂ Z≥0 then either: A ∩F or Ac := Z>0−A ∈F . (8.2.1)

(Only one of A and Ac can be inF , since their intersection is empty.)
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Lemma 8.2.2. Another way to formulate the ultrafilter property is:

A ∪B ∈F =⇒ A ∈F or B ∈F . (8.2.2)

Proof. It is obvious that (8.2.2) implies (8.2.1). Conversely, if A ∪B ∈F , we can write

A ∪B = (Ac ∩B c )c ∈F .

Hence (Ac ∩B c ) /∈F , so either Ac /∈F or B c /∈F . �

Example 8.2.3. For m ∈ Z≥0, an ultrafilter isFm := {A ∈ Z>0 : m ∈ A}. This is a principal
ultrafilter.

Example 8.2.4. The “cofinite filter”Fcof := {A ⊂ Z>0 : #(Z>0−A)<∞} is a filter.

Lemma 8.2.5. An ultrafilterF is not principal if and only ifF ⊃Fcof.

Proof. The direction ⇐= is obvious. Conversely, ifF doesn’t contain the cofinite filter,
then there exists A ∈ F which is finite. Then A is a finite union of singletons, so by
(8.2.2) we get a singleton inF . �

Lemma 8.2.6. An ultrafilter is a maximal filter.

Proof. Suppose F is a maximal filter which is not an ultrafilter. Then there is A such
that A and Ac are both not inF . One checks thatF+ := {C ⊃ A∩B : B ∈F} is a filter. �

Lemma 8.2.7. Any filter is contained in an ultrafilter.

Proof. Zorn’s lemma. �

Corollary 8.2.8. Non-principal ultrafilters exist.

8.3. Products of Artinian rings. The point of ultrafilters is to describe the spectrum of
(infinite) products of rings. Suppose for all m ∈ Z>0 we have a local Artinian ring Rm ,
with maximal ideal mm , and consider R :=

∏

m Rm .
Given (xm ) ∈Rm , let

Z (xm ) = {m ∈ Z>0 : Xm ∈mm}.
This construction has the following properties:

(i) Z ((xm )+(ym ))⊃ Z (xm )∩Z (ym ) – this boils down to saying that if xm , ym ∈mm then
xm + ym ∈mm .

(ii) Z ((xm )(ym )) = Z (xm )∪Z (ym ) – this boils down to saying that if xm ym ∈mm , then
xm ∈mm or ym ∈mm .

For a subset A ⊂ Z>0, we introduce the idempotent

(eA)m =

¨

1m m ∈ A,

0m m /∈ A.

This construction has the following properties:

(1) Z (eA) = Ac ,
(2) eAeB = eA∩B , and
(3) eA∪B = eA + eB − eAeB .
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Given a prime ideal p⊂R , we define

F (p) = {Z (xm ): (xm ) ∈ p}.

Lemma 8.3.1. We haveF (p) = {Ac : eA ∈ p}.

Proof. The containment ⊃ is obvious. The converse is also quite obvious – from the
perspective of applying Z , we may as well assume replace any element of R by one
with only 0m ’s and 1m ’s. �

Lemma 8.3.2. For a prime ideal p⊂R ,F (p) is an ultrafilter.

Proof. We check off the list of conditions in Definition 8.2.1. For (1), we use that 0 ∈ p
and 1 /∈ p. For (2), we use that eB ∈ p =⇒ eA ∈ p for A ⊂ B , hence B c ∈ F (p) =⇒ Ac ∈
F (p). For (3), if eA ∈ p, eB ∈ p then eA∪B ∈ p, so Ac ∩B c ∈F (p).

For the ultrafilter property, we observe that

A ∪B ∈F (p) =⇒ eAc ∩B c = eAc eB c ∈ p =⇒ eAc ∈ p or eB c ∈ p.

�

Conversely, ifF is an ultrafilter then we define

p(F ) = {(xm ) ∈R : Z (xm ) ∈F}.

One checks that this is a prime ideal.

Theorem 8.3.3. This induces a bijection between ultrafilters on Z≥0 and prime ideals of
R .

We’ll be interested in this when Rm is independent of m , and has residue field F.

Example 8.3.4. The point is that there are some surprising points of R . For example, for
R =

∏

p Fp the principal ultrafilters correspond to projection to the factor p . However,
we know that there are non-principal ultrafilters, so let p be the corresponding prime.
What does R/p look like? We claim that it has characteristic 0.

We have a map Z→ R/p, and we want to show that it’s injective. If n went to 0, then
(n , n , . . . , n ) ∈ p. So

Z ((n , n , . . . , n )) = {p : p | n} ∈F (p).
If n 6= 0 then this is a finite set, and a non-principal ultrafilter cannot contain a finite
set.

Example 8.3.5. Suppose Rm = R0, independent of m , and R0/m0 is a finite field. Then
we claim that

(
∏

Rm )/p∼=R0/m0

for any p ∈ Spec R .
We certainly get a map R0 → (

∏

Rm )/p, coming from the diagonal map. This obvi-
ously sends m0 to p, so factors as

R0/m0→ (
∏

Rm )/p.
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It’s automatically injective because R0/m0 is a field. We just need to show surjectivity.
Suppose you have (xm ) ∈

∏

Rm . We need to find ey ∈R0 such that (xm − ey ) ∈ p for all m .
By definition, this is equivalent to

Z ((xm − ey )) = {m : xm − ey ∈mm}
?
∈F (p).

We can rewrite this as

{m : xm ≡ y (mod mm )}
?
∈F (p).

We can write
F 3 Z>0 =

⋃

y ∈R0/m0

{m ∈ Z>0 : xm ≡ y (mod m)}

since every xm is equivalent to some y .
Since this is just a finite union, as R0/m0 is itself finite, the definition of ultrafilter

implies that we can find y ∈R0/m0 such that

{m ∈ Z>0 xm ≡ y (mod m)} ∈F .

Example 8.3.6. Suppose Rm = R0 for all m and #R0 <∞. Then we claim that for any
prime ideal p in R , the diagonal map induces an isomorphism

R0
∼−→
�∏

Rm

�

p
.

We need to check that this is injective and surjective.
First we check injectivity. Suppose x /∈ 0 in R0 goes to 0, i.e. (x , x , . . .)/(1, 1, . . .) ∈ p.

In other words, there exists (ym ) /∈ p such that (ym x ) = 0. If ym /∈mm then ym is a unit,
hence x = 0. So if x 6= 0, then we must have ym ∈mm for all m , hence Z ((ym )) = Z>0 ∈F .
By definition this implies (ym ) ∈ p, contradicting (ym ) /∈ p.

Now for surjectivity. Suppose we’re given (xm )/(ym ) with Z (ym ) /∈ F . What does it
mean for x ∈ R0 to map to (xm )/(ym )? It means that (x ym zm ) = (xm zm ) for (zm ) /∈ p, i.e.
Z (zm ) /∈F .

For any x ∈ R0, consider {m : ym x = xm}. Since Z (ym ) /∈ F by definition, we have
Z (ym )c ∈ F . Now Z (ym )c is the set of indices where ym is a not in the maximal ideal,
hence a unit, so for each such index m ∈ Z (ym )c we can invert ym and find some x ∈R0

such that ym x = xm . This shows that

Z (ym )
c ⊂

⋃

x∈R0

{m : ym x = xm}.

This is a finite union since R0 is finite, hence there exists x ∈ R0 such that {m : ym x =
xm} ∈F . Fixing such an x . Choose (zm ) such that

zm =

¨

1 ym x = xm

0 ym x 6= xm

which tautologically satisfies (x ym zm ) = (xm zm ). Furthermore,

Z (zm ) = Z0−{m : ym x = xm}
︸ ︷︷ ︸

∈F

so Z (zm ) /∈F .
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8.4. Ultraproduct patching. We return to the situation

Λ R∞ x SQm

R univ
; T; x S;

where we set R∞ :=O [[X1, . . . , X s ]] and Λ=O [[S1, . . . ,Ss ]] .a= (S1, . . . ,Ss ). We know that

• SQm
/a

∼−→ S; and
• R∞�R univ

; factors through R∞/a.
• Finally, SQm

is finite free over Λ/ker
�

Λ→O [∆Qm
]
�

.

We want to package these into a statement that looks like the “m →∞” version of
the above, using ultraproducts.

Now, these aren’t finite cardinality rings, as we were working with before. But they
are inverse limits of rings of finite cardinality. So we choose an open ideal J /Λ; we will
mod out by J , which makes everything finite. Then we will take an ultraproduct and
localize, and then take an inverse limit over powers of J .

LetF be a non-principal ultrafilter on Z>0. Consider
∏

m

(O [∆Qm
]/J ). (8.4.1)

Note that O [∆Qm
]/J ∼=Λ/J for all but finitely many m . We claim that

�

∏

m

(O [∆Qm
]/J )

�

p(F )

∼=Λ/J . (8.4.2)

This is almost what we proved before in Example 8.3.6, up to finitely many factors. But
changing finitely many factors doesn’t affect non-principal ultrafilters – look back at
the proof in Example 8.3.6 to see that it still works after changing finitely many factors.
The point is that a non-principal ultrafilter behaves likes “m =∞”.

Define
S∞,J :=

∏

m

SQm
/J SQm

.

This is a module over (8.4.1), so we can localize at p(F ). By localizing the action of
(8.4.1) obtained level-wise, it has an action of (8.4.2):

Λ/J x S∞,J .

Proposition 8.4.1. We have the following

(1) S∞,J is free over Λ/J .

(2) S∞,J /a
∼−→ S;/J S;.

(3) If J ⊃ J ′ then the diagram commutes

S∞,J ′/J S∞,J

S;/J S;/J

∼
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(4) R∞ acts on S∞,J in a Λ/J -linear manner, and moreover the inflated Λ-action
factors through a map Λ→R∞. For J ⊃ J ′, the following diagram commutes:

R∞ x S∞,J ′

R∞ x S∞,J

(5) The action of R∞ is compatible with change of level, i.e. the following diagram
commutes:

R∞ x S∞,J

R univ
; x S;/J

Proof. Much of this is straightforward, so we’ll focus on the trickier aspects, which are
the proof of (1) and making the map Λ→ J in (4).

(1) Let d = rankO S;. We pick an isomorphism O [∆Qm
]d
∼−→ SQm

. Modding out by J ,
we get

(Λ/J )d � SQm
/J SQm

.

and
 

∏

Z>0

Λ/J

!⊕d

p(F )

→
�∏

SQm
/J SQm

�

p(F )
.

We claim that this is an isomorphism; we will check that it is injective and surjective.
For injectivity, suppose you had a tuple of the form

((x 1
m ), . . . , (x d

m )) · (ym )
−1 7→ 0

where Z (ym ) /∈F . Then there exists (zm ) /∈ p, i.e. Z (zm ) /∈F , such that (zm x 1
m , . . . , zm x d

m ) 7→
0 for all m . This implies zm x i

m = 0 for all i , m � 0 (since we know that eventually the
levelwise map is injective). We then define

z ′m =

¨

zm m � 0

0 otherwise,

so that (z ′m )(x
i
m ) = 0 for all i . But Z (z ′m ) /∈F because it differs from Z (zm ) by a finite set.

For (4): for k �J 0, we have

J ·T; ⊃mk
; T;

and
J ·S; ⊃mk

; S;.

Letm∞/R∞ the maximal ideal (λ, X1, . . . , X s ). For any fixed m ,mk
∞→ 0⊂ End(SQm

/J )
for sufficiently large k . But the tricky issue is that we need to make k uniform in m in
order to patch. The point is that the length of SQm

over Λ/J is uniformly bounded, so
that lets us choose a k that works uniformly in m .
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Now, as above we consider the products
�

∏

m

Λ/J

�

p(F )
=Λ/J .

and

S∞,J =

�

∏

m

SQm
/J

�

p(F )
.

For the same ultrafilterF , we get a prime p(F )′ ⊂R , and an action
�

∏

m

R∞/m
k
∞

�

p(F )′
x S∞,J .

And the same argument implies

R∞�R∞/m
k
∞
∼=
�

∏

m

R∞/m
k
∞

�

p(F )′
x S∞,J .

Since factor-wise we can chooseΛ→R∞/m
k
∞ compatibly with everything, we can then

lift it to Λ→R∞.
This is all compatible with

R univ
; /mk T;/mk x S;,J

(
∏

m R;/m
k )p(F )′ (

∏

m T;/mk )p(F )′ x (
∏

m S;/J )p(F )′

Putting this together, we get the desired statements. �

8.5. Completion of the proof. We will finally prove that R;
∼−→ T;.

Now define S∞ = lim←−J
S∞,J – this is finite free over Λ. We have by property (2) in

Proposition 8.4.1

S∞/a
∼−→ S;.

Also, R∞ acts on S∞, in a manner commuting with the Λ-action.

Λ R∞ x S∞

Λ/a R univ
; T; x S;

Now consider depthR∞ (S∞) – the longest regular sequence. Since the Λ-action on
S∞ factors through R∞, we obviously have

depthR∞ (S∞)≥ depthΛ(S∞).

But S∞ is finite free over Λ by Proposition 8.4.1 (1), so

depthΛ(S∞) = depthΛ(Λ) = s +1
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Since R∞ is noetherian local, and S∞ is finitely generated over R∞, we can apply the
Auslander-Buchbaum theorem, which says that

pdR∞ (S∞) +depthR∞ (S∞) = depthR∞ (R∞) = s +1.

As we already found that depthR∞ (S∞)≥ s +1, we must have

depthR∞ (S∞) = depthR∞ (R∞) = s +1

and
pdR∞ (S∞) = 0,

i.e. S∞ is already projective over R∞, hence free because R∞ is a local ring.
Now mod out by a: we get that S∞/a= S; is free over R∞/aR∞. But this action factors

throug
R∞/aR∞�R;� T;x S;.

So all these maps must also be injective, hence isomorphisms. We finally win.
We used here that R∞ is regular. We want to show that you can use less commutative

algebra to still deduce R; = T; (without the freeness of S; over T;). This is because one
doesn’t always have good control over (the analogue of) R∞.

We have

s +1= depthΛ(S∞)≤ depthR∞ (S∞)≤ dim R∞/AnnR∞ (S∞)≤ dim R∞ = s +1.

Hence we get equalities everywhere, including

dim R∞/AnnR∞ (S∞)≤ dim R∞.

As R∞ is a domain (obvious here, and will be true more generally), we haveAnnR∞ (S∞) =
0. Hence suppR∞ (S;) = Spec (R∞/a). Hence AnnR∞/a(S;) is nilpotent. As R∞/a∼=R;, we
deduce that ker(R;→ T;) is nilpotent. This is enough for applications to modularity, as
any closed point factors through the reduced subscheme.

9. BEYOND THE MINIMAL CASE

9.1. Back to the basic setup. We had been assuming that T = ;. Let’s now try to drop
this assumption and see where our argument fails. We had arranged that

• #T <∞, and for all v ∈ T we have #k (v )≡ (mod `), r |GFv
= 1.

• r |GFv
= 1.

• Forσ ∈ IFv
, the characteristic polynomial of r (σ) is (X −1)2, i.e. the action of IFv

is unipotent.

For v ∈ T , we take Uv to be Iwv instead of GL2(OF,v ). We use a new version of R univ
;

that allows deformations of r which may ramify at v ∈ T , but forces σ ∈ IFv
to have

characteristic polynomial (X −1)2 for v ∈ T .
We introduce analogous version R univ

Q . We find again there are maps

R univ
; T;

R univ
Q TQ
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What if we try to run the same argument? Looking at the tangent space, one gets

dim(mQ/(m
2
Q ,λ))

= dim H 1
L ⊥ (GF,Q∪{T }∪{`}; ad0 r (1))+#Q +

∑

v∈T

(dim Lv −dim H 0(GFv
; ad0 r ))

︸ ︷︷ ︸

used to be 0

.

Notice the new local term on the right; let’s try to calculate its contribution.
We need to describe the condition Lv on a first-order deformationσ 7→ (1+φ(σ)ε)r (σ),

so φ ∈ Z 1(GFv
; ad0 r ). The condition on IFv

is that the char poly is (X −1)2. This comes
out to

det(X Id2−r (σ)−εφ(σ)r (σ)) = (X −1)2.

But this turns out to be automatic from the condition Trφ(σ) = 0.
The upshot is that Lv is all of H 1(GFv

; ad0 r ). So the local contribution for each v ∈ T
is

(dim Lv −dim H 0(GFv
; ad0 r )) = dim H 0(GFv

; ad0 r (1)) = 3.

Now the argument breaks down, as we’re going to get Λ = O [[S1, . . . ,Ss ]] and R∞ =
O [[X1, . . . , X s , Y1, . . . , Y3#T ]]. The problem is that R∞ is too big.

Kisin realized how to deal with this. R∞ should have dimension s+1, but it should be
singular. We’re getting something too big because we’re estimating the tangent space
at singular points.

Kisin’s insight was that the Galois deformation ring is singular of dimension s+1, but
the singularities have a local origin. He proposes to solve this issue by working relative
to a local Galois deformation ring.

9.2. Framed deformation rings. We want to work with “Rr |univ
GFv

” for v ∈ T . Since the

residual representation is trivial, this doesn’t exist as a formal scheme (it has too many
automorphisms). A way to fix this is to look at framed deformations. We define a “uni-
versal lifting ring” R�r |GFv

. Here we do not mod out by conjugation. (We use the word

“lifting” to signify that it parametrizes actual homomorphisms, rather than merely “de-
formations” which parametrize homomorphisms up to conjugation.) So this is bigger
by 3 dimensions. In fact, morally one expects R�r |GFv

to be a power series ring in 3 vari-

ables over Rr |univ
GFv

.

9.2.1. The local lifting ring. We define a quotient Rv,1 to parametrize liftings such that
for allσ ∈ IFv

, the characteristic polynomial is (x −1)2. This is very concrete. Any such
representation is automatically tamely ramified, and tame inertia is easy to describe.
Such a lifting just amounts to giving Φ,Σ ∈GL2(A) such that

• Φ≡ Id2 (mod m),
• Σ≡ Id2 (mod m),
• ΦΣΦ−1 =Σ#k (v ),
• charΣ(X ) = (X −1)2.
• detΦ is fixed.
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Let Rloc = b⊗v∈T Rv,1. We have to pay attention to the difference between liftings and
deformations. The global deformation ring doesn’t admit a homomorphism from R loc

since it has only deformations at T , rather than liftings.

9.2.2. Global deformation ring framed at T . To amend this, we introduce a version of
the global ring that is framed at T . We define R�T

; to represent: pairs (ρ,{αv }) such that
ρ lifts r , satisfying previous conditions, and {αv } ∈ ker(GL2(A)→ GL2(F)), modulo an
equivalence relation: for any β ∈ ker(GL2(A)→GL2(F)),

(ρ,{αv })∼ (βρβ−1,{βαv }). (9.2.1)

Notice that α−1
v ρ|GFv

αv is a well-defined homomorphism. So we have a lifting at T ,

hence we get R loc→ R�T
;,1 and R loc→ R�T

Q ,1. (Here the subscript 1 refers to the condition

that anyσ ∈ IFv
for v ∈ T has characteristic polynomial (X −1)2, i.e. is unipotent.)

9.2.3. Framed vs unframed. What is the relation between R�T
; and R;? Suppose you

give r univ : GF → GL2(R univ
; ), and you want a framing at T . The framing looks like 4

variables for each v , but you lose one in the end because of the quotient effected by
taking β to be a scalar in (9.2.1). So you have a non-canonical presentation

R�T
Q ,1 ≈R univ

Q ,1 [[A1, . . . , A4#T−1]]. (9.2.2)

9.2.4. Framed modular forms. We need to increase our spaces of modular forms to
match (9.2.2). So we define

S�T
Q := SQ ⊗O O [[A1, . . . , A4#T−1]]

and

T�T
Q := TQ [[A1, . . . , A4#T−1]].

9.3. The patching argument. We now go through the patching argument in this non-
minimal case.

9.3.1. Adding finite level. As before, we have a diagram

R loc
1 R�T

Q ,1 x S�T
Q ,1

TT
;,1 x S T

;,1

for any finite level Q .
The augmentation ideal in this case is

a= (A1, . . . , A4#T−1,{δ−1}δ∈∆Q
)⊂O [[A1, . . . , A4#T−1]][∆

′
Q ]

and we have S T
;,1 = S�T

Q ,1/a.
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9.3.2. Tangent space. We are interested in the relative tangent space of R�T
Q ,1/R

loc
1 .

Lemma 9.3.1. Assume T 6= ;. Then we have

dimmR
�T
Q ,1
/((mR

�T
Q ,1
)2,mR loc

1
) = dim H 1

(L T
Q )⊥
(GF,T ∪{`}∪Q , (ad0 r )(1))+#Q +#T −1.

where L T
Q agrees with LQ away from T , but is 0 at T (since we are considering things

relative R loc
1 , what happens locally at T is fixed). Therefore, (L T

Q )
⊥ is the same as L ⊥

Q

away from T , and at v ∈ T it’s all of H 1(GFv
, ad0 r (1)).

Proof. Look at Theorem 7.3.3. The new local contribution #T −1 arises as follows. For
v ∈ T , it should be

dim Lv −dim H 0(GFv
; ad0 r )

︸ ︷︷ ︸

=3

+ 4
︸︷︷︸

framing

= 1.

But at the end we have to subtract 1 (if T is non-empty) because of the quotienting by
scalar β in (9.2.1). �

9.3.3. Patching. We choose Q as in Proposition 7.4.1 to allow a surjection

R∞�R�T
Q ,1

with R∞ =R loc
1 [[X1, . . . , X#Q+#T−1]].

We define Λ = O [[S1, . . . ,S#Q , A1, . . . , A4#T−1]], which has dimension 4#T + #Q . We let
a∞ = (A1, . . . , A4#T−1,S1, . . . ,S#Q )⊂Λ.

Note that

dim R∞ = dim R loc
1 +#Q +#T −1= (3#T +1) +#Q +#T −1= 4#T +#Q .

Hence we find that dimΛ= dim R∞: the dimensions match again.

Λ R∞,1

R�T
Q ,1 T�T

Q ,1 x S�T
Q ,1

R T
;,1 TT

;,1 x S T
;,1

The augmentation a⊂Λmaps to 0 in R�T
;,1 and induces

S�T
Q ,1/a

∼−→ S T
;,1

and S T
Q ,1 is finite free over Λ/ker(Λ→O [[A1, . . . , A4#T ]][∆Q ]).

As before, we can patch this to a diagram

Λ R∞,1 x S�T
∞,1

R T
;,1 TT

;,1 x S T
;,1
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Furthermore,

• S∞,1 is finite free over Λ,
• a⊂Λmaps to (0) in R T

;,1 and induces

S∞,1/a
∼−→ S T

;,1.

Note that dimΛ= 4#T +#Q . So

4#T+#Q = dim R∞,1 ≥ dim R∞,1/Ann(S∞,1)≥ depthR∞,1
(S∞,1)≥ depthΛ(S∞,1) = 4#T+#Q .

This forces equality to hold everywhere, so suppR∞,1
(S∞,1) = Spec (R∞,1/Ann(S∞,1)) is a

union of irreducible components of Spec R∞,1. Since this is formally smooth over R loc
1

(recall that R∞,1 = R loc
1 [[x1, . . . , X#Q+#T−1]]) it is the pre-image of a union of irreducible

components in R loc
1 .

By the diagram

Spec R�T
;,1 suppR

�T
;,1
(S T
;,1)

Spec R∞,1/a suppR∞,1/a
(S T
;,1) suppR∞,1

(S T
;,1)∩Spec R∞,1/a

we deduce that suppR T
;,1
(S T
;,1) is the pre-image of a union of irreducible components of

Spec Rloc,1. But Spec R loc
1 has 2#T irreducible components. For each v ∈ T , there are

two components: the unramified representations, and unramified twists of the Stein-

berg (N =
�

0 1
0 0

�

). So as long as we don’t change the local behavior, we’re on the same

component and we win. Otherwise we’re in trouble, and in the next section we’ll ex-
plain a trick to resolve this issue.

9.3.4. There’s a relationship between irreducible components of Spec R loc
1 and Spec R loc

1 /λ,
where p↔B if B⊃ p. In principle this could be many-to-many: generic components
could collide over the special fiber, or components could live over the special fiber. In
this case, however, this correspondence is 1:1. So it’ll suffice to show that suppR T

;,1
(S T
;,1)

contains all components of the special fiber.

9.4. Deformation rings with nebentypus. We consider characters of the form

ψ=
∏

ψv :
∏

v∈T

Iv →
∏

v∈T

I (F ab
v /Fv )

∏

v Art−1
Fv−−−−−→
∏

v∈T

O ×F,v �
∏

v∈T

k (v )×→µ`∞ .

For any such character, we consider a local lifting ring R�v,ψ that parametrizes lifts ρ of
r |GFv

such that ifσ ∈ IFv
, then

charρ(σ) = (X −ψv (σ))(x −ψv (σ)
−1).

Again this can be written down concretely:

• Φ≡ Id2 (mod m),
• Σ≡ Id2 (mod m),
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• ΦΣΦ−1 =Σ#k (v ),
• charΣ(X ) = (X −ψv (σ))(x −ψv (σ)−1).
• detΦ is fixed.

As before this is 4-dimensional (relative dimension 3 over O ). But the difference is that
ifψv 6= 1, it is irreducible.

9.4.1. Sinceψ takes values in µ`∞ , it is trivial mod `. So we have

R�v,1/λ
∼=R�v,ψ/λ.

The picture is: for Rv,1, we had two generic components reducing to two special com-
ponents. For Rv,ψ, we have one generic component reducing to (the same!) two special
components.

We will develop the story for ψ parallel to the case ψ = 1, which we had been con-
sidering previously.

9.4.2. Local deformation rings. Define as before R loc
ψ :=c

⊗

v∈T R�v,ψ. We have dim R�v,ψ =

4, so dim R loc
ψ = 3#T +1.

9.4.3. Global deformation rings. We also have global rings R univ,T
Q ,ψ and R�T

Q ,ψ. A choice

of r univ over R univ,T
Q ,ψ induces an isomorphism

R�T
Q ,ψ

∼−→R univ,T
Q ,ψ [[A1, . . . , A4#T−1]]

equipped with R loc
ψ →R�T

Q ,ψ.

9.4.4. Modular forms. Define also S T
Q ,ψ = Sk ,χ (U T

Q ,ψ;O )m. This means for v ∈ T , (U T
Q ) =

Iwv and we look at the forms transforming by the character

Iwv � k (v )×
ψv−→O ×.

We also get a framed version

S�T
Q ,ψ := S T

Q ,ψ⊗O O [[A1, . . . , A4#T−1]].

This has an action of

T�T
Q ,ψ := TT

Q ,ψ[[A1, . . . , A4#T−1]].

9.5. Patching with nebentypus.
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9.5.1. Finite level setup. Let ΛQ :=O [∆Q ][[A1, . . . , A4#T−1]]. We have a diagram

ΛQ

R�T
Q ,ψ T�T

Q ,ψ x S�T
Q ,ψ

R univ,T
;,ψ TT

;,ψ x S T
;,ψ

Furthermore,

• S�T
Q ,ψ is finite free over ΛQ .

• The augmentation aQ = (A1, . . . , A4#T−1,{δ−1}δ∈∆Q
)maps to 0 in R univ,T

;,ψ .

• S T
;,ψ
∼= S�T

Q ,ψ/aQ .

We can choose Q so that R loc
ψ [[X1, . . . , X#Q+#T−1]] surjects onto each R�T

Q ,ψ. Further-
more, we can arrange that all these objects for differentψ coincide mod λ.

9.5.2. Patching. Set R loc
∞,ψ :=R loc

ψ [[X1, . . . , X#Q+#T−1]].
Let Λ=O [[S1, . . . ,Ss , A1, . . . , A4#T−1]], and a= (S1, . . . ,Ss , A1, . . . , A4#T−1)⊂Λ.
The patching argument gives:

Λ

R�T
∞,ψ R loc

ψ [[X1, . . . , X s+4#T−1]] x S�T
∞,ψ

R univ,T
;,ψ TT

;,ψ x S T
;,ψ

such that

• S�T
∞,ψ is finite free over Λ,

• S�T
∞,ψ/a

∼−→ S T
;,ψ

• a 7→ (0) ∈R univ,T
φ,ψ .

• These are all independent ofψmod λ.

Hence the patching argument gives

s+4#T = depthΛ(S
�T
∞,ψ)≤ depthR

�T
∞,ψ
(S�T
∞,ψ)≤ dim

R�T
∞,ψ

AnnR
�T
∞,ψ
(S�T
∞,ψ)

≤ dim R�T
∞,ψ = s+4#T
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therefore
dim(R�T

∞,ψ/AnnR
�T
∞,ψ
(S�T
∞,ψ)) = dim R�T

∞,ψ.

Now, the explicit computation of R�v,ψ forψv 6= 1 shows that Spec R�v,ψ is irreducible.

Some algebra then shows that Spec R ;,loc
ψ is also irreducible. So suppR

�T
∞,ψ
(S�T
∞,ψ) = Spec R�T

∞,ψ

for nontrivialψ. Then

suppR
�T
∞,ψ/λ

(S�T
∞,ψ/λ) = Spec R�T

∞,ψ/λ.

Now, modulo λ everything is independent ofψ, so once we know it for oneψ, we get it
for all of them. In particular, the result for non-trivialψ implies it forψ= 1.

9.5.3. Recall that the issue in the caseψ= 1 had to do with multiple irreducible com-
ponents. The two components parametrize unramified and multiplicative/semistable
representations, respectively. There is a bijection between irreducible components of
Spec R�v,1 and Spec R�v,1/λ, namely p↔B if B⊃ p.

suppR
�T
∞,ψ/λ

(S�T
∞,ψ/λ) Spec R�T

∞,ψ/λ

suppR
�T
∞,1
(S�T
∞,1) Spec R�T

∞,1

Now, S�T
∞,1 is torsion-free overO , so suppR

�T
∞,ψ/λ

(S�T
∞,ψ/λ) = Spec R�T

∞,ψ/λ implies suppR
�T
∞,1
(S�T
∞,1) =

Spec R�T
∞,1.

Then we get
suppR

�T
∞,1/a

(S�T
∞,1/a) = Spec (R�T

∞,1/a).

Since the R�T
∞,1/a-action factors through R univ,T

;,1 � TT
;,1, we get

suppR
�T
∞,1/a

(S T
;,1)

Spec (R�T
∞,1/a) Spec R univ,T

;,1 Spec TT
;,1

We deduce that |Spec R univ,T
;,1 |= |Spec (TT

;,1)| i.e. the kernel of R univ,T
;,1 → TT

;,1 is nilpotent.
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