
GEOMETRY OF NUMBERS

LECTURES BY AKSHAY VENKATESH,
NOTES BY TONY FENG AND NICCOLO RONCHETTI

CONTENTS

1. Lattices 1
2. Reduction theory 6
3. Pell’s equation 16
4. Diophantine inequalities 23
5. Volume of the space of lattices 26
6. Sphere packing 41
7. The Leech lattice 51
8. Quadratic forms 55
9. The mass formula: examples 61
10. Proof of the mass formula 70
11. Theta series 81

1. LATTICES

1.1. Overview. This will be an introductory course on the geometry of numbers. We will
mostly adopt a classical approach, but here is the highbrow way of describing the goal
of the course. For G a reductive group over Q (or really over any global field), we want to
understand the size and shape of

G (R)/G (Z)
(for G a suitably nice flat affine Z-group of finite type with generic fiber G ), or the adelic
reformulation

G (A)/G (Q).

1.2. Lattices. Here is a puzzle that we will be able to answer soon.

Question 1.2.1. Choose a large prime p and an integer 1 ≤ λ ≤ p − 1 randomly. Find

the smallest solution (minimizing
p

x 2+ y 2) among non-zero solutions to x ≡λy mod p .

How large should you expect
p

x 2+ y 2 to be?

Definition 1.2.2. A lattice in Rn is a subgroup L ⊂Rn that is generated by an R-basis.

Example 1.2.3. Zn ⊂Rn is a lattice. (However, for reasons we’ll discuss later in the course,
it does not look like a “typical” lattice.)

1
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Definition 1.2.4. By an n-dimensional lattice we mean a lattice in Rn up to rotation.
Equivalently, it is a free abelian group Λ of rank n together with a positive-definite qua-
dratic form on Λ⊗R. (One could consider indefinite quadratic forms, but for present
purposes we focus on the positive-definite case so that the associated special orthogo-
nal group is “compact at infinity”; i.e., R-anisotropic.)

Example 1.2.5. The Dn -lattice is the lattice associated to the Dn root system.

Dn = {(x1, . . . ,xn )∈ Zn :
∑

x i even}.

Example 1.2.6. More generally, fix an integer N and integers a 1, . . . , a n not all zero. We
can consider the lattice

{(x1, . . . ,xn )∈ Zn :
∑

a i x i ≡ 0 mod N }.

Example 1.2.7. For fixed λ∈ Z,

{(x , y )∈ Z2 | x ≡λy mod p}

is a lattice in R2.

Example 1.2.8. One description of the famous E8-lattice is

E8 : s =D8+
�

D8+
�

1

2
,

1

2
, . . . ,

1

2

��

.

More generally, Dn + {Dn +( 12 , . . . , 1
2 )} is a lattice (i.e., stable under addition) when 2 | n .

1.3. Classification of 2-dimensional lattices. In particular, 2-dimensional lattices up to
isometric isomorphism are lattices in R2 up to rotation and reflection (orientation is not
fixed). Let L be any such lattice. After rotating and scaling (v 7→ λv with λ ∈ R×) we
can suppose that (1, 0) ∈ L, and furthermore that it is the shortest vector in L (since by
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discreteness L has finite intersection with any bounded region).

Clearly L ∩R(1, 0) = Z(1, 0). The connected components of L R −R(1, 0) are swapped by
negation. Let v = (x , y ) be a shortest vector in a fixed such connected component (drawn
as an “upper half-plane”). This lies outside the open unit disc, which is to say ||v || ≥ 1.
Also, we will have − 1

2 ≤ x ≤ 1
2 because otherwise translating v by ±1 produces a shorter

vector.
So, up to boundary issues, the isometry classes of 2-dimensional lattices are parame-

terized by points (x , y )with x 2+ y 2 ≥ 1 and − 1
2 ≤ x ≤ 1

2 .

(In other words, up to specific boundary issues, GL2(Z) acts freely on the union of this
region and its reflection across the x -axis.)

We can now answer Question 1.2.1 in terms of this fundamental domain, as follows.

If (x0, y0) is the smallest solution then t = x 2
0+y 2

0
p has a limiting disribution as p →∞. The

distribution function is supported in the region 0 ≤ t ≤ |λ| 2p
3

, and is given by F (t )dt

where F (t ) is proportional to the width of the fundamental domain at y = t −1.

1.4. The space of lattices. The set of lattices in Rn is GLn (R)/GLn (Z): given g ∈GLn (R),
the image g Zn is a lattice in Rn with basis the “column vectors” of g . This description
does not account for the equivalence relation of isometric automorphisms of Rn , so the
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set of lattices up to isometric isomorphism is

On (R)\GLn (R)/GLn (Z).

1.5. Minkowski’s Theorem. Reduction theory is about constructing preferred and pleas-
ant class of bases for lattices. It makes statements of the form “each lattice has a ‘quasi-
orthogonal’ basis, and such bases are roughly unique”.

First we discuss the existence of short vectors. Minkowski observed that lattices have
short vectors for simple geometric reasons.

Definition 1.5.1. If L ⊂Rn is a lattice, then we define the volume of L to be the (absolute
value of) the determinant of any basis

vol(L) =

�

�

�

�

�

�

det






v1 . . . vn







�

�

�

�

�

�

This is the same as vol(Rn/L), and by definition also coincides with the volume of a fun-
damental domain for Rn/L (such as the parallelope arising from a Z-basis of L).

Example 1.5.2. The volume of {x ≡ λy mod p} is p . You can calculate it using our defi-
nition, but it is easier to note that this is a sublattice of Z2 with about 1/p of the vectors.

Theorem 1.5.3 (Minkowski). Let Vn be the volume of the unit sphere in Rn . If Vn

Rn ≥ vol(L), then L contains a nonzero vector of length ≤ 2R.

Remark 1.5.4. The intuition is that if we take a sphere of radius R , so that the volume of
the sphere is at least that of the lattice, then there will be a lattice point inside it. The
theorem statement is off by a factor of 2, but we will generally ignore absolute constant
factors (so that all norms on Rn become equivalent).

Example 1.5.5. For L = {(x ≡ λy mod p )}, this says that if πR2 ≥ p then L contains a

vector of length at most 2R ; in other words, a nonzero vector of length at most
Æ

4p
π

.

Proof. Take the ball of radius R in Rn and map it to Rn/L.

By volume considerations, this cannot be injective. That means that there exist distinct
x , y with ||x ||, ||y || ≤R such that x ≡ y in Rn/L, so x − y ∈ L. On the other hand, we clearly
have ||x − y || ≤ 2R . �
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1.6. Some applications.

Example 1.6.1. If p ≡ 1 mod 4, there there exists λ ∈ Z/p Z such that λ2 ≡−1 mod p . By
Theorem 1.5.3 we can find (x , y ) 6= (0, 0) such that x 2+ y 2 ≤ 4p

π
< 2p and p | (x 2+ y 2), so

x 2+ y 2 = p .

From Theorem 1.5.3 you can derive all the basic finiteness theorems of algebraic num-
ber theory: finiteness of the class number, Dirichlet’s unit theorem (we’ll do these two
later, in a more general setting), and the finiteness of the number of field extensions K /Q
with bounded discriminant.

One manifestation of this last result is that there are no non-trivial field extensions
K /Q with discriminant 1. To illustrate the technique, we prove that now.

Proof. (In the case where K is totally real; the general case is similar.) First we recall the
meaning of the discriminant. Recall that if [K : Q] = d , we have d embeddings

σ1, . . . ,σd : K ,→R

that are the component functions of an R-algebra decomposition R⊗Q K = Rd . Let OK

be the ring of algebraic integers in K . Then these embeddings identify OK as a lattice in
Rd :

(σ1, . . . ,σd ): OK ,→Rd .

One definition of the discriminant, ignoring its sign, is:

disc K := vol(OK as a lattice in Rd )2 ∈ Z>0.

We want to show that disc K > 1. By Minkowski’s Theorem 1.5.3, if Vd Rd ≥
p

disc K then

there exists a nonzero element x ∈OK such that
p
∑

σi (x )2 ≤ 2R .
We want to show that such a small vector can’t exist. What constraint do we have? The

conjugatesσi (x ) can’t all be small because their product is a nonzero integer. That is,
�

�

�

∏

σi (x )
�

�

�≥ 1

so by Cauchy-Schwarz (for instance),
∑

σi (x )2 ≥ d .

Using this bound in Minkowski’s Theorem, we obtain

p

disc K ≥Vd

�p
d

2

�d

.

We’ll analyze how the right hand side behaves for d large; for d small you can calculate
it directly.

The area of the unit sphere in Rd is 2πd /2

Γ(d /2) ; you can derive this by integrating the d -
dimensional Gaussian distribution:

πd /2 =

∫

Rd

e−x 2
1−...−x 2

d dx =

�∫

e−r 2
r d−1 dr

�

· (Area of unit sphere).



6 LECTURES BY AKSHAY VENKATESH, NOTES BY TONY FENG AND NICCOLO RONCHETTI

Integrating, we find that

Vd =
2πd /2

Γ(d /2)
·

1

d +1
so

p

disc K ≥
2

d +1

�

π1/2d

2

�d
1

Γ(d /2)
and by Stirling’s formula, for large d this grows exponentially. �

2. REDUCTION THEORY

2.1. Reduced bases.

Example 2.1.1. Consider the lattice (Z3,x 2+y 2+z 2+107(
p

2x +e y +πz )2). The shortest
non-zero vector turns out to be

(x , y , z ) = (17,−10, 1).

This corresponds to the fact that

17
p

2−10e +π= 0.0004 . . .

The point of this example is that you can detect approximate linear dependencies with
integral coefficients over Z by finding short vectors. This is one application of having
efficient algorithms for finding short vectors.

Definition 2.1.2. A basis for a lattice is a basis as a Z-module.

There are many bases for a given lattice, but we want to codify a notion of preferred
basis. Let’s consider an example.

Example 2.1.3. Consider the lattice depicted below

with basis (v1, v2) in red and basis (w1, w2) in yellow. We feel like (v1, v2) is a “better” basis
than (w1, w2). Why? The basis (v1, v2) satisfies:

• the orthogonal projection v 1 of v1 onto v⊥2 satisfies

||v 1|| ≥
p

3

2
||v2||.
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• If we write v1 = v 1+αv2 then |α| ≤ 1
2 .

Definition 2.1.4. In general, an (A, B )-reduced basis v1, . . . , vn for L is a basis such that, if
vi is the projection of vi onto 〈vi+1, . . . , vn 〉⊥ then

• ||v i || ≥ A ||v i+1||,
• If we write

vi = v i +
∑

j>i

αi j v j ,

then |αi j | ≤ B .

The point here is to force the vectors to be “roughly” orthogonal. This is very rough,
but one gets that the angle between any two is bounded away from zero.

Theorem 2.1.5. Reduced bases enjoy the following properties:

• (“Existence”) For small enough A and large enough B (e.g. (A, B ) = (
p

3/2, 1/2)
works), (A, B )-reduced bases exist.
• (“Uniqueness”) If (v ′1, . . . , v ′n ) and (v1, . . . , vn ) are reduced bases, then

||vi || �n ,A,B ||v ′′i ||.

Here the � means that the lengths are bounded above and below in terms of the
implicit constants.
• If you write v ′i =

∑

m i j v j , then ||m i j || ≤ constant(n , A, B ), independently of the
lattice.

Remark 2.1.6. Part of the proof will give an algorithm (LLL), which finds such a basis in
polynomial time.

Reformulation of Theorem 2.1.5. if y1, . . . , yn is any basis for L and v1, . . . , vn is an (A, B )-
reduced basis for L, then






y1 . . . yn






=






v1 . . . vn






· (M ∈GLn (Z)).

The condition of being (A, B )-reduced tells us that





v1 . . . vn






=






v 1 . . . v n













1 0 0
∗ 1 0
∗ ∗ 1







where | ∗ | ≤ B , and also






v1 . . . vn






∈On









a 1

...
a n















1 0 0
∗ 1 0
∗ ∗ 1







where ∗ ≤ B and a i /a i+1 ≥ A.
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So if we write FA,B ⊂GLn (R) given by

FA,B =On









a 1

...
a n















1 0 0
∗ 1 0
∗ ∗ 1







(the subscripts A, B may be suppressed in the future) then Theorem 2.1.5 says that

FA,B GLn (Z) =GLn (R)

for small enough A and large enough B , and the set of γ ∈GLn (Z) such that F ∩ Fγ 6= ; is
finite. This FA,B is a “Siegel” set, and this is saying that it is an approximate fundamental
domain.

Remark 2.1.7. An actual fundamental domain must be very complicated, since we know
the Betti numbers of the quotient space and they are very large.

Corollary 2.1.8. The group GLn (Z) is finitely generated. In fact, it is generated by

S := {γ | F ∩ Fγ 6= ;}.

Proof. Pick δ ∈ GLn (Z). Consider Fδ. Then there exists a sequence of translates Fγi

interpolating between F and δF :

and we may assume that Fγi ∩ Fγi+1 6= ;, implying that γi+1γ
−1
i ∈S. �

Remark 2.1.9. Why not make a lattice by enforcing a lower bound on angles? Consider a
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lattice of the form below.

What should be a “preferred” basis? We obviously want the shortest vector. If we only
demanded that the angles of the basis be bounded below, then there would be many
options for a second basis vector, and the number of reduced bases could be arbitrarily
large. In Theorem 2.1.5 the constants are bounded independently of the lattice.

2.2. The LLL algorithm. We will now discuss a proof of Theorem 2.1.5. (Assume A <p
3/2 and B > 1/2 throughout.)

“Existence.” We first give a non-constructive proof, which is a “greedy” algorithm. Let
vn be the shortest non-zero vector. Project L to v⊥n , obtaining a lattice L n−1 of rank n−1.
Let v ′n−1 be the shortest vector in L n−1 and lift it to L n in the shortest possible way, so
that the coefficient of vn is ≤ B .

By the discussion of §1.3 we have

||v n−1|| ≥
p

3

2
||v n ||.

Next project L to 〈vn−1, vn 〉⊥ and call v ′n−2 the shortest vector in L n−2. Lift it to vn−2 ∈
L; adjusting by vn−1 and vn we can assume that

vn−2 = v n−2+αv n−1+βv n
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where |α|, |β | ≤ B (taking care to adjust α first). Continue.

Exercise 2.2.1. Check that algorithm indeed produces an (A, B )-reduced basis.

Now we give the constructive LLL algorithm. For n = 2 this is “equivalent” to the con-
tinued fraction algorithm.

The LLL algorithm.

Input. A basis (y1, . . . , yn ) for L.

Output. An (A, B )-reduced basis (A <
p

3/2, B > 1/2).

Algorithm. At each stage form y 1, . . . , y n as before (i.e. y i is the projection of yi to
〈yi+1, . . . , yn 〉⊥). By adjusting yi by a combination of yi+1, . . . , yn we can assume that

yi = y i +
∑

j>i

αi j y j where |αi j | ≤
1

2
.

If there exists i such that ||y i ||/||y i+1|| < A, then swap yi and yi+1. Repeat from the
beginning.

Remark 2.2.2. The running time depends on the parameters; it may not be polynomial
for all parameters.

Exercise 2.2.3. Run this for some examples in the case n = 2.

If this algorithm terminates, i.e. no swaps are necessary, then it produces an (A, B )-
reduced basis. Therefore, we merely have to prove that it does terminate.

Proof of termination. We give another perspective on reduced bases. Roughly speaking,
yn is the shortest vector. But we can say more via ||yn ||, ||yn−1∧yn ||, ||yn−2∧yn−1∧yn ||, etc.
(Here ||x1∧x2|| can be interpreted as the area of the parallelogram spanned by x1 and x2.
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Generally, if V is a vector space with inner product then all ∧j (V ) also have an inner
product, namely

〈v1 ∧ . . .∧v j , w1 ∧ . . .∧w j 〉= det(〈vi , w j 〉).)
The idea is that a reduced basis (roughly) minimizes all of these at once. That is, not only
is the last vector short as possible, but the sequence of parallelepipeds have the smallest
possible volumes.

Once this is granted, the proof of termination is almost immediate since by discrete-
ness, each quantity ||y j ∧ . . .∧yn || is bounded below. Each swap yi ↔ yi+1 doesn’t change
any of these areas except for ||yi+1 ∧ yi+2 ∧ . . .∧ yn ||.

Exercise 2.2.4. Show that this decreases by a factor of at least
p

A2+1/4. (i.e. the new

volume is ≤
p

A2+1/4 times the old volume).

�

We have seen that the LLL algorithm hinges on the following principle:

Principle. In an (A, B )-reduced basis,

• vn is roughly the shortest vector,
• 〈vn−1, vn 〉 is roughly the smallest parallelogram, etc.

The justification of this principle will be bundled up with the (approximate) unique-
ness of reduced bases.

Uniqueness. If e1, . . . , en and f 1, . . . , f n are (A, B )-reduced bases, then

|| f i || �n ,A,B ||e i ||.

Also, the change of basis e i 7→ f i has coefficients bounded in magnitude by ≤ c (A, B , n ).

Lemma 2.2.5. If L is the linear transformation satisfying e i 7→ e i for each i , then

||Lv || � ||v ||.

Proof. By the definition of a reduced basis, we have

L−1 :
e i

||e i ||
7→

e i

||e i ||
=

e i

||e i ||
+
∑

j>i

n j i
e j

||e i ||

where |n j i | ≤ B . We can rewrite this as

L−1 :
e i

||e i ||
7→

e i

||e i ||
+
∑

j>i

n j i
e j

||e j ||
||e j ||
||e i ||

where ||e j ||/||e i || ≤ An . Hence, with respect to the ordered orthonormal basis {e i /||e i ||} the
matrix of L is









1

∗ ...
∗ ∗ 1
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with each entry ∗ bounded uniformly in terms of A, B , and n . Lengths of vectors are
computed by the habitual formula in coordinates relative to any orthonormal basis, so
we are done. �

Corollary 2.2.6. We have

||
∑

xk ek ||2 �n ,A,B

∑

|xk |2||ek ||2.

Remark 2.2.7. A consequence of this is that it is “easy” to enumerate all vectors v ∈ L
with ||v || ≤R : they are all of the form

∑

xk ek , |xk | ≤ γn
R

||ek ||
.

for some uniform constant γn > 0 and integers xk .

Choose v1, . . . , vk ∈ L, so we can write

v1 ∧ . . .∧vk =
∑

J⊂{1,...,n}
#J=k

m J e J

where e J = e j1 ∧ . . .∧ e jk for a strictly monotone sequence J = {j1, . . . , jk } and m J ∈ Z. By
Corollary 2.2.6, the norms are changed by a bounded amount upon replacing e j with e j ,
so:

||
∑

J⊂{1,...,n}
#J=k

m J e J ||2 � ||
∑

m J e J ||2

=
∑

|m J |2||e J ||2

In particular, we see that

||v1 ∧ . . .∧vk || ≥ ||e n−k+1 ∧ . . .∧ en || � ||en−k+1 ∧ . . .∧ en ||

provided the en−k+1 ∧ . . .∧ en -coefficient in Z for v1 ∧ · · · ∧vk is nonzero.1

If we have two (A, B )-reduced bases (e1, . . . , en ) and ( f 1, . . . , f n ), we can apply this result
to each with respect to the other to obtain that

||en−k+1 ∧ . . .∧ en || � || f n−k+1 ∧ . . .∧ f n ||

for all k , which implies that
||e i || � || f i || for all i

and also
||e i || � || f i || for all i .

This means that the lengths ||e1||, . . . , ||en || are well-defined “up to constants” (depending
on n); they are classically called the minima of L.

Remark 2.2.8. Prior to the notion of reduced bases, the “k th successive minimum of L”
was defined to be

min
�

r > 0: dim Span({v ∈ L : |v | ≤ r })≥ k
	

which we now know is � ||en−k+1||.

1Need to explain why this is nonzero when v1, . . . , vk arises from the end of a reduced basis!
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2.3. A “Harder-Narasimhan” stratification. Note that if there is a huge gap in the k th
minimum, i.e. if

||e k ||>C ||e k+1||

for some large enough C = C (n , A, B ), then our previous argument shows something
more precise: it shows that if e1, . . . , en and f 1, . . . , f n are reduced then in fact

ek+1 ∧ . . .∧ en = f k+1 ∧ . . .∧ f n .

(Previously we said only that ek+1 ∧ . . .∧ en �n ,A,B f k+1 ∧ . . .∧ f n .)
This shows that if (for instance) ||e2||/||e3|| ≥C and ||e7||/||e8|| ≥C then the data

• e8 ∧ . . .∧ en (equivalently, Span(e8, . . . , en )),
• e3 ∧ . . .∧ en , and
• e1 ∧ . . .∧ en

are independent of the reduced basis.
For a fixed C , this gives a flag in L⊗Q, analogous to the “Harder–Narasimhan filtration”

of vector bundles on curves.

Example 2.3.1. We have already discussed the fundamental domain for the moduli space
of 2-dimensional lattices. Consider the “y -height” map to R, which one can think of as
roughly specifying the length of the second-shortest vector. The fibers are S1, corre-
sponding to the choice of phase for this second basis vector.

Example 2.3.2. Consider the moduli of 3-dimensional lattices. Consider the map from
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this space to R2 given by (||e1||/||e2||, ||e2||/||e3||). It is natural to divide up the image ac-
cording to how the ratios compare with C , corresponding to the “breaks” in the Harder–
Narasimhan filtration.

The fiber over a point in region III is roughly similar to a product of 3 circles, correspond-
ing to a choice of phase for the three basis vectors. More precisely, it is a “nilmanifold”
N (R)/N (Z)where

N =







1 ∗ ∗
0 1 ∗
0 0 1







Over small compact region, the fiber is a mess. The fibers over regions IIa and IIb look
like an S1×S1-bundle over the fundamental domain.

Finally, we show the last part of Theorem 2.1.5: if {e i } and { f i } are (A, B )-reduced
bases for L and we write

e i =
∑

j

m i j f j ,

then we claim that |m i j | ≤C ′(A, B , n ).

Proof. We break up into two cases, according to “Harder–Narasimhan” filtration.

Case 1: no large gap. Then ||e i ||/||e i+1|| ≤ C for all i , where C is as in the preceding
discussion. We can sandwich this value as

A ≤
||e i ||
||e i+1||

≤C

so all the ||e i || are the same (up to uniform constants in A, B , n). The same applies to { f i }
since ||e i || �n ,A,B || f i || for all i , so

||e i ||2 = ||
∑

j

m i j f j ||2 � ||
∑

j

m i j f j ||
2 =
∑

j

|m i j |2|| f j ||
2.



GEOMETRY OF NUMBERS 15

Since || f j || �n ,A,B ||e j || for all j , we get ||e i ||2 �n ,A,B
∑

j |m i j |2||e j ||2. But there are no large
gaps, so in this final sum we can replace every e j with e i up to uniform constants (con-
trolled by n , A, B , which absorbs any intervention by C as well). Hence, we obtain the
desired type of upper bound on

∑

j |m i j |2 for each i and hence on every |m i j |.

Case 2: there is a large gap. Then we can essentially break the problem up into smaller
ones. We showed earlier that if there is a large gap at i , then

〈e i+1, . . . , en 〉= 〈 f i+1, . . . , f n 〉

and we work with 〈e i+1, . . . , en 〉 and the projection of L onto 〈e i+1, . . . , en 〉⊥. (There is
some work required in gluing these two cases together.)

Exercise 2.3.3. Check this.

�

Remark 2.3.4. There will be O(c n 3 ) reduced bases. This comes from analyzing the Gram
matrix of inner products (〈vi , v j 〉). The reducedness imposes only an exponential bound
on each entry, so one has (c n )n 2 for a bound on the number of Gram matrices.

2.4. Applications. Let’s use reduced bases to recover Minkowski’s Theorem, which says
that up to constants, a lattice of volume V in an n-dimensional quadratic space has a
nonzero vector of length < cn V 1/n for some universal constant cn > 0 depending only
on n .

Proof via reduced bases. If {e1, . . . , en} is an (A, B )-reduced basis, we claim that

||e1|| . . . ||en || �n ,A,B V.

Indeed, for our purposes we can straighten the vectors (i.e., replace e i with e i ) “for free”,
so

||e1|| . . . ||en || � ||e1|| . . . ||en || � ||e1 ∧ . . .∧ en ||=V

so the shortest ||e j || is at most V 1/n . �

Exercise 2.4.1. For L ⊂Rn with dual lattice

L∗ = {v ∗ ∈Rn | 〈v ∗, L〉 ⊂ Z},

find the minima of L∗ in terms of the minima of L.

We end our discussion of reduction theory with the following, very useful, conse-
quence.

Theorem 2.4.2 (Mahler compactness). Fix δ> 0. Inside

GLn (R)/GLn (Z) =
�

lattices L ⊂Rn	

the set

S(δ) =
�

L ⊂Rn | vol(L) = 1, all nonzero v ∈ L have length ≥δ
	

has compact closure.
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Remark 2.4.3. The topology on GLn (R)/GLn (Z) is the quotient topology: concretely, we
have L i → L exactly when there exists basis Bi for each L i approaching a basis B for L as
i →∞.

Proof. For L ∈ S(δ), pick an (A, B )-reduced basis {e1, . . . , en} for some appropriate A, B .
Recall that we think of an (A, B )-reduced basis as an “almost-orthogonal” basis; in par-
ticular, we have

||e1|| . . . ||en || �n ,A,B vol(L).

Since ||e i || ≥δ, we also obtain

||e i || ≤
C vol(L)
δn−1

and hence each lattice L ∈S(δ) has columns in the compact set
�

x ∈Rn |δ≤ ||x || ≤
C vol(L)
δn−1

�

.

In other words, inside SLn (R) the compact subset of matrices whose columns lie in the
above compact region in Rn has image in GLn |(R)/GLn (Z) that contains S(δ), so S(δ) has
compact closure. �

Informally speaking, the only way a sequence of lattices L i with covolume 1 can go to
infinity in the space of lattices is if the lengths of the shortest nonzero vectors go to zero.

3. PELL’S EQUATION

We now discuss Pell’s equation:

x 2−d y 2 = 1,

where we look for nontrivial integer solutions (that is, aside from (±1, 0)). This is a very
ancient problem, but our discussion will involve very flexible methods and ideas that we
will generalize later.

3.1. Existence and number of solutions. First of all, a very rough but surprisingly ef-
fective algorithm for solving (when possible) this equation comes from the observation
that x

y ≈
p

d : one then writes down the continued expansion of
p

d and then proceed to

guess the solution (x , y ). A priori, such method only guarantees that x 2 − d y 2 is small,
and it is unclear why in practice this yields an actual solution to Pell’s equation.

Theorem 3.1.1. Let d be a non-square. Then Pell’s equation admits a nontrivial solution.
Notice however that the smallest nontrivial solution may be very large (roughly

p
d digits).

Remark 3.1.2 (Hardy-Littlewood heuristic). Before giving the proof we describe a very
useful heuristic - let’s call it Hardy-Littlewood heuristic - which we will come back to
when we will talk about the mass formula.

Consider the hyperbola x 2−d y 2 = 1 in the half-plane x ≥ 0. Rather than looking for
integer points on this curve, consider its small thickening 0.5 ≤ x 2−d y 2 ≤ 1.5: it turns
out that the area of this region is infinite, and hence we expect it to contain points with
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integer coordinates.

More precisely, if we look at the thickened hyperbola to the left of the vertical line

x = T , its area turns out to be log Tp
d

and hence our expectation for the smallest integral

solution grows exponentially in
p

d . Finally, observe that an integer point (x , y ) in the
thickened hyperbola is necessarily a solution of Pell’s equation.

Proof. To show that x 2 − d y 2 = 1 with non-square d > 0 admits nontrivial solutions,
it is enough to prove that for the quadratic form Q(x , y ) = x 2 − d y 2 the Zariski closure
SOQ ,Z ⊂ SL2 over Z of the associated algebraic group SOQ over Q has infinitely many Z-
points. Indeed, explicitly we have

SOQ (R) =
��

a d b
b a

�

∈ SL2(R)
�

for Q-algebras R , so elements of SOQ ,Z(Z) corresponds to (a ,b ) ∈ Z2 with a 2 − d b 2 = 1,
and having infinitely many guarantees the existence of a pair with nonzero b .

Denote now G = SOQ (R). Denote by [Z2] the lattice Z2 thought of as a point in

{lattices in R2}=GL2(R)/GL2(Z).

We claim that the set of translates (i.e., the orbit) G .[Z2] has image in GL2(R)/GL2(Z)with
compact closure.

Example 3.1.3. If we picture the usual fundamental domain for the set of lattices in R2

we can see that the orbit goes away from [Z2], then comes back and closes in on itself.

To prove the claim, notice that since G preserves Q , for each vector v ∈ L and each
[L] ∈ G .[Z2], we have Q(v ) ∈ Z. This says that even though L = g (Z2) where g ∈ SL2(R)
might have irrational entries, Q |L is Z-valued. Hence, in coordinates arising from a Z-
basis of L the quadratic form Q |L has Z-coefficients.

Moreover, disc(Q |L) = disc(Q) = −d since g ∈ SL2(R). Since d is not a square, Q |L
is Q-anisotropic; i.e., the only v ∈ L Q for which Q(v ) = 0 is v = 0. Therefore, for each
[L] ∈G .[Z2] and each nonzero v ∈ L, we have |Q(v )| ≥ 1, so by staring at a hyperbola not
passing through (0, 0) we get δ > 0 independent of L such that ||v || ≥ δ. We have shown
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that G .[Z2]⊂S(δ), and then Mahler’s compactness criterion kicks in to yield that the clo-

sure G .[Z2] is compact.

The previous argument yields then that there exists a sequence (g i )with g i →∞ in G
such that g i Z2→ L for some limit lattice L as i →∞. In particular, there exist primitive
vectors (x i ) of Z2 such that g i x i → x∞ in R2 with x∞ primitive in L. .

Notice that all g i x i and x∞ lie on the same integral level set of Q , since G preserves
the quadratic form.

Since G acts locally transitively on the level set, by adjusting each g i a tiny bit we can
assume that g i x i = x∞.

Hence, for every i we have the primitive vector x∞ ∈ g −1
i Z2; on the other hand, vol(g −1

i Z2) =
1 and we can take it to be spanned by {x∞, vi } for vi lying on the line perpendicular to
x∞ and of length 1/||x∞||.

Finally, notice that all vi must lie on the same level set for Q as G preserves the quadratic
form, hence there are only finitely many possibilities for the vi ’s, and therefore we obtain
infinitely many pairs (i 6= j ) such that g i Z2 = g j Z2. This yields infinitely many elements
g i g −1

j ∈ SOQ ,Z(Z), completing the proof. �
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Remark 3.1.4. In the last step we used crucially the assumption that our original choice
of g i →∞; otherwise, when we “wiggled” the g i to send x i to x∞ we could have made
them the same.

Let’s summarize the proof: we look at all automorphisms of Q , then firstly we notice
that G .[Z2] is precompact, then by discreteness arguments we prove that the orbit G .[Z2]
is closed, rather than just almost closed.

Remark 3.1.5. This proof is in fact constructive, because it uses lattice reduction theory
for which the LLL algorithm is available. In fact, implementing the algorithm involved in
the proof is equivalent (in terms of complexity) to all other algorithms to find solutions.

We will generalize the above proof to a constructive argument.

Exercise 3.1.6. Make the proof effective by showing that the smallest nontrivial solution
(x , y ) to Pell’s equation satisfies

log |x |+ log |y | ≤C d .

In fact, the best bound is C
p

d , which can be obtained from the proof if one is very
careful.

Remark 3.1.7. Answering a question of Arnav. The orbit G .[Z2] gives a closed circle inside
the space of 2-dimensional lattices. Projecting to the usual fundamental domain gives a
closed orbit of the geodesic flow, after changing coordinates.

3.2. Three generalizations. We give three generalizations of the setup above, the last
one being a theorem of Mostow and Tamagawa.

Suppose first that Q : Zn −→ Z is a quadratic form such that Q (Zn −{0}) 6= 0, or equiv-
alently Q is Q-anisotropic.

Proposition 3.2.1. If SOQ (Z) is large enough, the quotient SOQ (R)/SOQ (Z) is compact for
the quotient topology.

One way that SOQ (Z) can be infinite is when Q is indefinite.

Remark 3.2.2. Nonetheless, for an indefinite quadratic form Q , the anisotropicity condi-
tion can only happen for n ≤ 4. This follows from the general theory of quadratic forms,
which we will talk about later in the course.

Proof. We prove compactness of Y = SOQ (R)/SOQ (Z). Start by defining

ι : Y : →
�

lattices in Rn	=GLn (R)/GLn (Z)

g 7→ g [Z2].

We claim that ι is a homeomorphism onto its image, and that ι(Y ) is compact.
First, one proves that the closure ι(Y ) is compact: this works just like before. Indeed,

for each [L] ∈ ι(Y ) the restriction Q |L is anisotropic but Z-valued, so |Q | ≥ 1 on L − {0}.
This guarantees that the points in L−{0} are bounded away from zero. Mahler compact-
ness criterion yields then that ι(Y ) is precompact.
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Then we prove that ι(Y ) is closed. By definition of quotient topology, this means show-
ing that SOQ (R)GLn (Z) is closed inside GLn (R), or equivalently GLn (Z)SOQ (R) is closed
inside GLn (R).

Look then at the action of GLn (R) on the space of quadratic forms on Rn with Z-
coefficients: the GLn (Z) ·SOQ (R)-orbit of Q is obviously the same as its GLn (Z) orbit, call
this D: this is a set of integral quadratic forms.

In fact, it turns out that GLn (Z) ·SOQ (R) is the preimage of D under the orbit map

GLn (R)→
�

quadratic forms
	

g 7→ g .Q

This shows that GLn (Z) · SOQ (R) is the preimage of the discrete set D under the con-
tinuous orbit map, hence it is closed.

Proving that ι is an homeomorphism onto its image is left as an exercise to the reader.
�

The general context is the following: given an algebraic group G (e.g. GLn ) and a
subgroup H (e.g. SOQ ) we can understand G /H by finding a representation ρ : G −→
GLN (e.g. GLn acting on quadratic forms) and a line ` ⊂ AN whose stabilizer is H . The
fact that such a pair (ρ,`) always exists is a theorem of Chevalley. We obtain in particular
an embedding

G /H ,→PN−1

into projective space. (If H is semisimple, e.g. SOQ , then it will fix ` pointwise and furnish
an embedding into affine space.)

Let us recap the argument to prove infinitude of solutions to Pell’s equation for non-
square d , so that it will be easier to generalize it. Let d be a non-square integer, and
Q(x , y ) = x 2−d y 2, so that

SOQ =
��

a b
d b a

�

|a 2−d b 2 = 1

�

and we want to show that |SOQ (Z)|=∞.

Look at the SOQ (R)∼=R∗-orbit of [Z2]:

Step 1. We show that the orbit is precompact, by using the fact that Q(g [Z2]) takes inte-
gral values, hence they are bounded away from zero.

Step 2. A discreteness argument together with the precompactness proved in the previ-
ous step shows that the orbit "closes up" by using integrality again.

This argument generalizes immediately to the following result:

Proposition 3.2.3. Let Q be an integral quadratic form such that Q(x ) 6= 0 for each x ∈
Zn − {0}, then the SOQ (R)-orbit of [Zn ] is compact, i.e. SOQ (R)/SOQ (Z) is compact. In
particular, SOQ (Z) is an infinite group.

Proof. Step 1. Works precisely as above.
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Step 2. We outline the discreteness argument: we want to show that SOQ (R)GLn (Z) is
closed in GLn (R), we show instead that GLn (Z)−→GLn (R)/SOQ (R) is closed. The
target space GLn (R)/SOQ (R) is - up to replacing SOQ (R) with OQ (R) which does
not influence closedness of the image of GLn (Z) - the space of quadratic forms in
Rn .

The image of GLn (Z) consists then of the integral quadratic forms, which is
discrete inside the the space of all quadratic forms.

�

Let us now discuss more examples where generalizations of the above argument go
through.

Example 3.2.4 (Dirichlet unit theorem). Let F/Q be a number field with ring of algebraic
integers OF . Then the inclusion

O ∗F ⊂
�

x ∈ (F ⊗R)∗ | N(x ) =±1
	

is co-compact, i.e. the quotient space is compact.

In particular, unless F = Q(
p

d ) for d < 0, the ring of integers OF has infinitely many
units.

Remark 3.2.5. Notice that this encompass our previous setting of the Pell’s equation, by
setting F =Q(

p
d ) and then OF ⊃ Z[

p
d ]with

Z[
p

d ]∗ =
§

a +b
p

d |a 2−d b 2 = 1
ª

.

We want to prove the Dirichlet unit theorem using our results on lattices: the argu-
ment will be the same as before, but replacing the quadratic form Q with the Norm form
N on F .

Example 3.2.6. Let’s work it out in a specific example, to make it as explicit as possible.
Take F =Q(3

p
2), so that OF =

¦

x +3
p

2y + z 3
p

4 |x , y , z ∈ Z
©

. The Dirichlet unit theorem
implies that the rank of O ∗F is 2.

Consider the matrix of multiplication by x + y 3
p

2+ z 3
p

4 on the Q-basis {1,3
p

2
3p

4}
of F :

x







1
1

1






+ y







1
1

2






+ z







1
2

2







Its determinant is the norm

N (x + y 3
p

2+ z 3
p

4) = x 3+2y 3+4z 3−6x y z .

We want to apply the previous reasoning where we replace Q by N and SOQ by

G =







x







1
1

1






+ y







1
1

2






+ z







1
2

2













∩SL3
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Looking at the G (R)-orbit of [Z3] yields a compact orbit, and hence G (Z) is infinite, so that
we have infinitely many solutions to N (x + y 3

p
2+ z 3

p
4) = x 3+2y 3+4z 3−6x y z = 1.

Example 3.2.7 (Division algebras). Let D be a division algebra, and OD an order in D: this
is a Z-subalgebra with the same dimension as D. Then O ∗D is co-compact inside (D⊗R)∗.

The proof is exactly the same as in the case above: we never used commutativity of
multiplication in the field F .

To clarify things, let’s discuss some examples of division algebras. Let

Dα,β =
¦

a +b i + c j +d k |a ,b , c , d ∈Q, i 2 =α, j 2 =β , i j =−j i = k
©

for some α,β ∈Q∗. This is a division algebra as long as α is not in the image of the Norm

map from Q(
p

β ) to Q.

Suppose α,β ∈ Z - this can always be arrange since multiplying α by a square does not
change the resulting division algebra, and same for β . Then in this setting the theorem
says that taking the order OD =

�

a +b i + c j +d k |a ,b , c , d ∈ Z
	

yields

O ∗D =
¦

a +b i + c j +d k |a 2−αb −βc 2+αβd 2 =±1
©

being infinite.

Remark 3.2.8. As mentioned before, the proof via reduction theory is in fact effective,
that is to say one can find a solution by working through the proof.

Example 3.2.9. We construct now another example of division algebra. Let L/Q be a field
extension with cyclic Galois group Gal(L/Q) ∼= Z/nZ and fix a generator σ of this Galois
group. Take β ∈Q∗ and set

D = L〈τ〉
with relations

τxτ−1 =σ(x )∀x ∈ L and τn =β .

It turns out that D is a division algebra exactly when β is not in the norm group N(L∗)⊂
Q∗.

Remark 3.2.10. Notice that this generalized the previous construction, which was ob-
tained for n = 2 by taking L =Q(

p
α).

By the way, if n is not prime, it could happen that the center of the division algebra D
defined as above is larger than expected - this corresponds to [D] ∈ Br(Q) having order
smaller than expected.

Theorem 3.2.11 (Mostow-Tamagawa theorem). Let G /Q be a reductive algebraic group.
Then G (R)/G (Z) is compact (equivalently, G (AQ)/G (Q) is compact) if and only if G is
anisotropic.

Remark 3.2.12. For general number fields F and a reductive algebraic group G /F , a sim-
ilar statement can be deduced by using Weil restriction.

Let’s recall the definition of anisotropic. All the examples discussed so far, e.g. SOQ

for Q an indefinite quadratic form and the Norm-1 units D (1) of a division algebra D are
anisotropic.
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Definition 3.2.13 (Anisotropic group). For our purpose, consider an embedding G ,→
GLn . Then G is anisotropic if it satisfies any of the equivalent conditions.

(1) No element g ∈ G (Q) is unipotent except for the identity. Here an element g ∈
G ⊂GLn is unipotent if 1 is its only eigenvalue.

(2) No element of Lie(G ) is nilpotent, except for 0.
(3) G contains no nontrivial split tori.

Proof of Mostow-Tamagawa theorem. We will sketch a proof of the ’‘anisotropic to com-
pact” direction.

In the example mentioned before we had a quadratic form Q(x1, . . . ,xn ) and we con-
sidered the orbit of [Zn ] under the SOQ (R)-action on the space of lattices in Rn . This
time, we consider instead the action of G on {lattices in Lie(G )}, after we have dealt with
ZG in a similar way as for the Dirichlet unit theorem.

Suppose ZG = 1, and pick a fixed lattice L0 ⊂ Lie(G ); consider its G -orbit. The key fact
is the following: for each nonzero X ∈ Lie(G ), anisotropicity guarantees that the orbit of
g ∈ G (R) under conjugation is bounded away from 0, by the same version of the well-
known statement

If X ∈Matn×n , then 0∈ {g X g −1}g∈GLn
if and only if X is nilpotent.

�

4. DIOPHANTINE INEQUALITIES

4.1. Margulis’s Theorem.

Theorem 4.1.1 (Margulis). Let Q be an indefinite quadratic form in n ≥ 3 variables which
is irrational (that is to say, it’s not a multiple of a rational form). Then Q(Zn ) is dense in R.

Before sketching the proof, we remark that this is false for n = 2!

Example 4.1.2. Let Q(x , y ) = (x −
p

2y )(x −
p

3y ), we claim that the values of Q on Z2

are bounded below. Indeed, if Q(x , y ) were to be small for integers x , y , one of the two
factors have to be small (but they cannot both be small since taking the difference yields
�p

2−
p

3
�

y and y is in Z).

For instance, suppose x −
p

2y ≈ 0. Then rewriting

Q(x , y ) =
x 2−2y 2

x +
p

2y
(x −

p
3y )

yields that
x −
p

3y

x +
p

2y
≈
(
p

2−
p

3)y

2
p

2y
=

p
2−
p

3

2
p

2
and Q(x , y ) is approximately an integer multiple of it, which thus cannot be too small.

Proof. Recall that in the proof of infinitude of solutions to Pell’s equation we showed that
the SOQ (R)-orbit of [Z2]was closed in the space of all lattices. Here the opposite happens:
Margulis shows that

for n ≥ 3, the orbit SOQ (R)[Zn ] is dense in {n-dimensional lattices with volume 1} .
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Assuming this, for every lattice L we can find g ∈ SOQ (R) with g Zn ≈ L. Choosing L
to contain a vector v having Q(v ) as wanted, we can approximate it very closely with a
vector w ∈ g Zn , but then Q(w )∈Q(g Zn ) =Q(Zn ), proving the theorem.

To prove that the SOQ (R)-orbit of [Zn ] is dense when n ≥ 3, Margulis uses crucially that
for n ≥ 3, the group SOQ (R) contains unipotent elements. Fix then 0 6= N ∈ Lie

�

SOQ

�

a nilpotent element, and study the orbit e t N [Zn ], which one can think of "orbit in the
nilpotent direction". The importance of taking N to be nilpotent is to make sure that
e t N grows only polynomially in t . �

Remark 4.1.3. We can see that for n = 2 the proof fails since the SOQ (R)-orbit of [Z2] is
not dense, even if it may have horrible behaviour. Indeed, for n = 2 we have SOQ (R)∼=R∗

so quite evidently there are no unipotent elements besides the identity.

The general idea that we should keep from these examples is that to study quadratic
forms on Zn , we can consider the SOQ -action on Zn inside the space of all lattices, and
then study the shape of the orbit.

4.2. Finiteness theorem for quadratic forms. As another application of reduction the-
ory, we start by studying the number of quadratic forms.

Definition 4.2.1 (Discriminant of a quadratic form). Let Q(x1, . . . ,xn ) =
∑

i ,j a i ,j x i x j be

an integral quadratic form, so that a i ,j ∈ Z. Equivalently, Q(~x ) = ~x T A~x for a symmetric
matrix A such that 2A ∈Matn (Z). We define the discriminant of Q to be discQ := det(2A).

Example 4.2.2. For the binary quadratic form Q(x , y ) = a x 2+bx y + c y 2 we obtain A =
�

a b
2

b
2 c

�

so that discQ = det(2A) = 4a c −b 2.

The following theorem goes as back as Gauss for the cases of binary and ternary qua-
dratic forms.

Theorem 4.2.3. There are only finitely many integral quadratic forms of discriminant
discQ =D 6= 0, up to equivalence (where by equivalence we mean integral change of coor-
dinates, that is to say, up to GLn (Z)-action).

Remark 4.2.4. Later on we will explicitly count the number of quadratic forms of discrim-
inant D by using the mass formula, but it’s nice to know a priori that there are finitely
many.

Proof. Suppose first that Q is positive definite: in this case the theorem is a direct conse-
quence of reduction theory.

Applying reduction theory to (Zn ,Q), find an (A, B )-reduced basis {v1, . . . , vn} for Zn

with the property that
||v1|| · . . . · ||vn || �n ,A,B volQ (Zn ).

The notation volQ (Zn ) means the volume of the standard lattice Zn with respect to the

quadratic form Q . In fact, all lengths ||v || = ||v ||Q =
p

Q(v ) are computed with respect to
Q . For instance if Q = a x 2+ c y 2, then volQ (Z2) =

p
a c .

In general we have

volQ (Zn ) =
p

discQ ·2−n/2
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where the power of 2 has been introduced by our scaling (passing from A to 2A when
defining discQ), but after all we do not care about constants only depending in n , so we
get

||v1|| · . . . · ||vn || �n ,A,B

p

discQ . (4.2.1)

Now the Q(vi )’s are nonzero positive integers (by definiteness), so they are bounded be-

low. On the other hand, (4.2.1) shows that they are also bounded above by Cn

p

discQ .
By Cauchy-Schwarz obtain then that

�

�〈vi , v j 〉
�

�≤ ||vi || · ||v j || ≤
�

Cn

p

discQ
�2
=C 2

n discQ

We have then a reduced basis {vi } such that with respect to it, Q(x ) =
∑

i ,j a i ,j x i x j and

a i ,J =
�

�〈vi , v j 〉
�

� ≤ C discQ . Hence there are finitely many possibilities for Q of bounded
discriminant.

Remark 4.2.5. We will see later using the mass formula that the number of definite qua-
dratic forms in dimension n of fixed discriminant discQ = D grows as n n 2 . There was
some explanation using a model via n ×n matrices, which explains the n 2 exponent.

Suppose now that Q is indefinite. It turns out that for each fixed signature the number
of quadratic form is bounded independently of n ! One can see that as a consequence
of strong approximation. This uniform bound comes out as a consequence of the fact
that for many different quadratic forms Q(x1, . . . ,xn ) in n variables, adding two more by
setting eQ =Q(x1, . . . ,xn )−x 2

n+1−x 2
n+2 makes them become equivalent.

Since the result in the indefinite case is so different, we should not expect the proof of
the definite case to go through. Where does it break? Well, we used definiteness crucially
in the previous case when we claimed that the Q(vi ) were bounded below. This clearly
fails in the indefinite case, so we have to use a new argument.

The following argument is due to Hermite: the idea is to replace Q by a positive definite
quadratic formQ+ having the same discriminant and run the previous argument on that.
More precisely, in suitable coordinates (after a real change of variables) we have

Q(x1, . . . ,xn ) =
∑

i≤p

x 2
i −
∑

i>p

x 2
i ,

so we take
Q+(x ) =

∑

i≤p

x 2
i +
∑

i>p

x 2
i .

Obviously Q+ ≥ |Q | and since we only swapped a few signs in the formula, we have
discQ+ = |discQ | = |D |, but now Q+ is not necessarily integral. At any case, we can run
the same argument as in the previous step, and for a reduced (A, B )-basis {v1, . . . , vn} for
Q+, certainly ||vi ||Q+ ≥ |Q(vi )|2 ∈ Z.

Suppose now that Q(vi ) 6= 0 for each vi . Then as before we get that ||vi ||Q+ is bounded
below, and that is all that we needed in the previous step to conclude that there were
only finitely many forms Q+ of the given discriminant, hence finitely many Q’s.

We run a separate argument in the case that Q(v ) = 0 for some nonzero v ∈ Zn . The
general idea in the indefinite case is to find a vector of short length (with respect to the
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given form) and then break it off, splitting the lattice in two pieces, where we can apply
induction.

Define
〈x , y 〉Q :=Q(x + y )−Q(x )−Q(y )

a bilinear form whose matrix is 2A, where Q(x ) = x T Ax .
We can then find a vector a ∈ Zn such that 〈v, a 〉= det(2A) = discQ , since (2A)Zn has

index det(2A) in Zn , hence it contains det(2A)Zn .
We look at the collection of vectors a + t v ∈ Zn for t ∈ Z: since

Q(a + t v ) =Q(a )+ t 2Q(v )+ t 〈a , v 〉=Q(a )+ t ·det(2A),

for a suitable choice of t we obtain

0<Q(a + t v )≤ |det(2A)|= |discQ |.

We obtain then a vector v ′ = a+t v such that roughly speaking, splitting Zn = 〈v ′〉⊕〈v ′〉⊥
and inducting on the dimension gives the claim.

More precisely, by an integral change of coordinates we can assume that v ′ = (1, 0, . . . , 0),
and then Q(x1, . . . ,xn ) = αx 2

1 + x1l (x2, . . . ,xn ) + eQ(x2, . . . ,xn ) where 0 < α ≤ |discQ |, and
l (x2, . . . ,xn ) is a linear form. Using a change of coordinates of the form

x1 7→ x1+ el (x2, . . . ,xn )

x2 7→ x2

...

xn 7→ xn

we can assume that the linear form l has all coefficients between 0 and 2α. Multiplying
the equation for eQ by 4a , we find that

4aQ = (2a x1+ L)2+Q ′′(x2, . . . ,xn ).

Now we have

discQ ′′ =
(4a )n discQ

4(2a )2
.

By induction there are finitely many possibilities for Q ′′ up to linear equivalence.

�

Remark 4.2.6. The argument in the indefinite case seems to suggest that there are many
indefinite quadratic forms, but we know this is not the case.

5. VOLUME OF THE SPACE OF LATTICES

5.1. Overview. In this section we discuss measures and volumes on the space of lattices.
One of the main theorems is the following.

Theorem 5.1.1. There exists a unique probability measure on the space
�

volume-1 lattices on Rn	= SLn (R)/SLn (Z)

that is invariant by SLn (R).
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In other words, there exists a canonical notion of ’‘random lattice in Rn ” as long as we
normalize the volume.

Remark 5.1.2. This is remarkable since the space of volume-1 lattices is not compact,
yet the existence of an invariant probability measure means that it is “bounded” in some
sense.

Before proving this, let us go back to our favorite example. Take n = 2 so that after
rotating and scaling the space SL2(R)/SL2(Z) thought of the space of lattices Z(1, 0) +
Z(x , y )

The probability measure of the theorem turns out to be dx d y
y 2

3
π

, where the last factor is

just to normalize the measure to have volume 1.
Recall the situation of Question 1.2.1: given a large prime p , we can choose 1 ≤ λ ≤

p −1 at random, and then take the volume-1 lattice

Lλ,p =
�

(x , y )∈ Z2 |x ≡λy mod p
	

p
p

.

This corresponds to sampling from the probability measure.
Denoting by δL the Dirac’s δ at the lattice L (a point in our space of all lattices), we

have that
∑p−1
λ=1 δLλ,p

p
→µ as p →∞

where µ is the probability measure given by the theorem. In fact, one can verify com-
putationally the above statement by plotting the distribution of the lattices Lλ,p for large
primes p .

The smallest solution to x ≡ λy corresponds to the y -coordinate, so the probability
distribution function mentioned on day 1 already tells us that the lattices become scarcer

as we increase the y -coordinate, a fact confirmed by the limit measure µ= dx d y
y 2

3
π

.

5.2. Haar measure. By measure on a space X we will always mean a continuous func-
tional on the space of compactly supported continuous functions Cc (X ).
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Theorem 5.2.1. On any Lie group G there exists a unique (up to scaling) measure µwhich
is invariant by left translation: that is to say, for any measure set S ⊂ G , we have µ(S) =
µ(g S) for any g ∈G .

In particular we will be interested in the case G = SLn (R).

Example 5.2.2. Before giving the proof, let’s make it explicit in the case of SL2(R). Write

g −1 d g =
�

x y
z w

�−1�
dx d y
d z d w

�

=
�

v1 v2

v3 v4

�

where vi are four left-invariant 1-forms on G , hence wedging any three of them will give
a left invariant 3-form, i.e. a volume form. For instance v1 ∧v2 ∧v3 6= 0 works.

Once we have a (left-invariant) volume formω, we can get a (left-invariant) measure
µω by setting

∫

f dµω :=

∫

f ·ω.

Even more explicitly, here’s how you compute measures for SL2(R) = {A ∈Mat2(R) | det A = 1}:
draw SL2(R) as the relevant hypersurface in R4, and let S ⊂ SL2(R) be a nice set. Draw the
cone over S with vertex at the origin: the volume of S with respect to the invariant Haar
measure on SL2(R) is the volume of that cone.

Recall that the goal is to understand the shape and size of G (R)/G (Z) where G is a
semisimple group. Just think SLn (R)/SLn (Z). We want to prove that there is a unique
SLn (R)-invariant probability measure on SLn R/SLn Z. One should think of this as a
boundedness type statement. In particular, it implies that there is a sensible notion of
“random lattice” (by contrast, there is no sensible notion of “random real number”).

On a Lie group G , there exists a uinque up to scaling left-invariant measure. For ex-
istence, one takes an invariant differential formωL ; then the associated measure |ωL | is
invariant. For uniqueness, suppose ν is a left-invariant measure. If

ν = f (g )|ωL |
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for a function f (where we need absolute continuity of ν with respect to |ωL | to rule out
something like a δ-function), then clearly f needs to be a left-invariant function, hence
constant.

Why is ν absolutely continuous with respect to |ωL |? (i.e. if something has measure 0
for ν then it also does for |ωL |). This is left as an exercise.

Left vs right Haar measure. For SLn R, we have µL =µR but not in general.

Example 5.2.3. Consider

B =
��

a b
0 1

��

.

Then we have
�

a b
0 1

��

a ′ b ′

0 1

�

=
�

a a ′ ab ′+b
0 1

�

.

The right-invariant measure is d a
a d b , since a was changed by a dilation and b was changed

by a translation.
On the other hand, the left-invariant measure is 1

a
d a
a d b because the b ′ is also being

scaled, by a .

In general, the left and right Haar measures are related by the formula

µR =µL(g 7→ det Ad(g ))

where Ad(g )X = g X g −1. In the preceding example,
�

a b
0 1

��

x y
0 0

��

a b
0 1

�−1

=
�

x a y
0 0

�

so the determinant of Ad

�

a b
0 1

�

is a . This matches up ith what we found.

It is easy to see why this is the case: µR comes from a right-invariant differential form,
µL comes from a left-invariant differential form, and they differ by conjugation. That is,
to get from e to g you could left multiply by g and right multiply by g , and these differ
by conjugation.

In particular, for the group of upper triangular matrices








a 1

...
a n















1
1

n i j 1






.

the left-invariant measure is

µL =
d a 1

a 1
. . .

d a n

a n

∏

i>j

n i j

and the right-invariant measure is

µR =
d a 1

a 1
. . .

d a n

a n

∏

i>j

n i j

∏

i>j

a i

a j
︸ ︷︷ ︸

det Ad(g )

.
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Note that by Gram-Schmidt / Iwasawa Decomposition / QR decomposition, every
∈GLn (R) is uniquely expressible as

k a n

where k ∈On (R), a is diagonal, and n is lower triangular unipotent (to make this unique
we adopt the convention that by absorbing signs into k , all the entries of a are positive).
Write a n =b . In coordinates q = kb , we have that the right Haar measure is

right Haar measure= d Lk ·d Rb.

This is surprising because the kb decomposition is not a direct product of groups (the
k and b factors don’t commute). This is surprisingly hard to show directly, but we can
argue as follows.

Proof. Let d g be a left (right) Haar measure on G . Then we have

right Haar measure= d Lk ·d Rb = f (g )d g

for some f . Here we are using that the left side is absolutely continuous with respect to
d g because the map K ×B→G is a diffeomorphism. Whatever this measure is, it is left-
invariant by K and right-invariant by b . Then f (kb ) = f (1) for all k and b , but everything
in GLn (R) is expressible in this form, so f is constant. �

For SLn (R), the story is similar but the product only goes up to a n−1 since a n is deter-
mined by the condition that the product be 1:

(right Haar measure)= d Lk ·
n−1
∏

i=1

d a i

a i
·
∏

d n i j

∏

i>j

a i

a j

(the a i are positive and signs are absorbed into k )
Finally we prove Theorem 5.1.1.

Proof. We will prove that SLn R/SLn Z has a finite measure with respect to the Haar mea-
sure on SLn R, so there exists a SLn R-invariant probability measure.

Recall that we constructed an “approximate fundamental domain” SA,B , which had
the property that SA,B ·SLn Z= SLn R (“SA,B contains a fundamental domain”). We remind
you that the construction was

SA,B = SOn (R) ·









a 1

...
a n















1
1

n i j 1







with |a i /a i+1| ≥ A and |n i j | ≤ B . The SOn (R) is compact and the unipotent factor is too,
so it suffices to study the measure of the center factor, which is

∫

a 1...a n=1
a i /a i+1≥A

n−1
∏

i=1

d a i

a i

∏

i>j

a i

a j
.
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Example 5.2.4. For n = 3, this is explicitly
∫

a 1/a 2≥A
a 2/a 3≥A

a 1a 2a 3=1

d a 1

a 1

d a 2

a 2

�

a 2

a 1

��

a 3

a 2

��

a 3

a 1

�

Making the change of coordinates x = a 1
a 2

, y = a 2
a 3

, we can rewrite this as

∫

x≥A;y≥A

d x

x

d x

y

1

x y (x y )

which is evidently convergent. This reflects the general behavior; without the modular
function the thing is barely divergent, and this pushes it to being convergent.

�

Remark 5.2.5. It might seem like thereis an asymmetry between left and right here. It
comes from the fundamental domain. Recall that SA,B was defined by parametrizing
the reduced basis as v1, . . . , vn and the orthogonalized version as v1, . . . , vn . These were
related

�

v1 . . . vn

�

=
�

v1 . . . vn

�

(lower triangular)

which is why the order k a n was forced upon us.

Remark 5.2.6. In fact, for a natural choice of Haar measure the volume is ζ(2) ·ζ(3) · . . . ·
ζ(n ).

5.3. Fibral measures. Suppose f : X → Y is a submersion of manifolds.

If we have a volume form ωX on X and a volume form ωY on Y , then we can form a
“quotient” volume form ωF on each fiber Fy := f −1(y ) which is characterized by the
property that for any function G on X ,

∫

GωX =

∫

Y

 

∫

f −1(y )

Gω f −1(y )

!

ωY .
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Explicitly, if S ⊂ X is a nice subset then the fiber measure of S ∩ f −1(y ) is the limit over
small balls B 3 y of

measureX of S ∩ f −1(B )
measureY of B

This means that if ν is a differential form of degree X of degree dim X −dim Y such that

ν ∧ f ∗ωY =ωX

then theω f −1(y ) are obtained by restricting ν to f −1(y ).

Example 5.3.1. Consider

det: X =GLn R→R∗ =: Y .

Then det−1(1) = SLn R. What is the Haar measure on GLn R? It is not d M i j , since for in-

sance this is obviously not invariant under multiplication by a scalar matrix; it is
d M i j

(det M )n .
The measure on R∗ is d y /y . So what we are saying is that the fiber measure can be ob-

tained by taking any νn 2−1 on GLn R such that νn 2−1 ∧d (det) = d M i j

(det M )n (where by d (det)
we mean det∗d y /y ). Then ν |SLn R gives the “fiber” form.

For instance, on SL2 R we are looking for a 3-form such that

ν3 ∧d (x w − y z ) =
d x ∧d y ∧d z ∧d w

det2 .

Here d (x w − y z ) = x d w +w d z − y d z − z d y , so such a ν3 is

ν3 =
d y ∧d z ∧d w

x
.

This defines a Haar measure on SL2 R.

Example 5.3.2. Let’s go back to the example of Pell’s equation

x 2−Dy 2 = 1.

Earlier we estimated the number of solutions with x ≤ T to be ≈ log Tp
d

. The heuristic
for this was that the number of solutions should be the area of the narrow strip around
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hyperbola 0.5< x 2−Dy 2 < 1.5

This is a little arbitrary though, because of the choice of endpoins 0.5 and 1.5. Really we
don’t care how the function behaves away from 1, so it would be better to consider

{1−ε< x 2−Dy 2 < 1+ε}
2ε

as ε → 0. This is the “fibral measure” of {x 2 −Dy 2 = 1 | 1 ≤ x ≤ T } for the function
f : R2→R sending (x , y ) 7→ x 2−Dy 2.

How do we find this measure? We look for a 1-form ν on R2 satisfying

ν ∧ (2x d x −2Dy d y ) = d x ∧d y

and restrict this to the hyperbola. For instance, we can take ν = d x
2Dy . (By the way, this

form restricted to the hyperpbola x 2−d y 2 = 1 is invariant under SO(x 2−d y 2), basically
by construction.) So

2

∫ T

1

d x

2Dy
=

∫ T

1

d x

Dy
≈

1
p

D

∫ T

1

d x

x
=

log T
p

D
.

Remark 5.3.3. The general heuristic is that if you consider polynomial equations f 1, . . . , f n

then the number of solutions to f i (x1, . . . ,xn ) = 0 should be approximated in a similar
manner. For spaces with many symmetries, e.g. homogeneous spaces, the formula has
a tendency to be exactly correct - that is the magic of the mass formula.

5.4. Integral Haar measure. We computed earlier that for the Haar measure on SLn R
the volume of SLn R/SLn Z is finite. Now we will explain that there is a “canonical” choice
of measure, and for it we will compute the volume to be

vol= ζ(2)ζ(3) . . .ζ(n )

and also heuristically explain why.
Let’s go back to SLn R (Example 5.3.1). We wanted a form ν such that

ν ∧ (x d w +w d x − y d z − z d y ) = d x d y d z d w
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and one can take for instance

d y d z d w

w
or

d y d z d x

z
or . . .

The general formula for SLn R is

ω=

∏

1≤i≤j d x i j (omitting xk`)

(minor)k`
. (5.4.1)

We have

det=
∑

xk`(minor)k`

so

d (det) =
∑

d xk` ∧ (minor)k`+ . . .

and after after restricting to the SLn R the extra terms . . . disappear.
Note that ω extends to an invariant differential form on SLn /Spec Z (this is basically

evident from the expression, since the sets with non-vanishing minors cover SLn ). The
set of such forms is a free Z-module of rank 1, and this ω is a generator for it. That
determinesω up to sign. (If we had multiplied it by 7, then it would vanish modulo 7.)

Let’s say this another way. Look at the tangent space SLn R, which can be thought of
as trace-free matrices in M n (R). Thisω assigns volume 1 to the natural integral structure
of trace-free matrices in M n (Z).

Theorem 5.4.1. With the measure |ω|, we have

vol(SLn R/SLn Z) = ζ(2) · . . . ·ζ(n ).

Let’s first give a heuristic explanation. We have SLn (R) ⊂M n (R) cut out by the equa-
tion det = 1. Normalize the volume of SLn R using the volume form |ω|. We want to
estimate:

How many elements of SLn Z are there inside some large ball B ⊂ SLn R?

In fact we will derive Theorem 5.4.1 by comparing two heuristics.

Heuristic 1. The answer should be vol(B )
vol(SLn R/SLn Z) (this is an analogue of the heuris-

tic that the number of lattice points inside a ball B ⊂ Rn should be about vol(B ) =
vol(B )/vol(Rn/Zn )).

Heuristic 2. The number of points on the hyperbola is the fibral measure, which is
just vol(B ). This is the same reasoning as for Pell’s equation. But we need a correction,
because the current heuristic takes no account of mod N properties.

Example 5.4.2. Consider 2×2 matrices with Z/3-coefficients. There are 34 = 81 of them.
The number with determinant 1 would be 27 if the determinants were uniformly dis-
tributed, but this is not quite right. The correct answer is

(32−1)(32−3)
2

= 24.
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Note that this differs from the “expected” value of 27, so this is telling us that the number
of matrices with determinant 1 is “slightly less than expected”. So we should correct the
heuristic by 24

27 , because modulo 3 there is a slight repulsion away from determinant 1.

Remark 5.4.3. This heuristic goes back at least to Hardy-Littlewood; in analytic number
theory it is known as singular series.

So let’s figure out what the correction factors should be for all p . It should be

cp =
#{matrices mod p with det 1}

p n 2
/p

.

The answer turns out to be

cp =
�

1−
1

p 2

��

1−
1

p 3

�

. . .

�

1−
1

p n

�

.

Remark 5.4.4. Strictly speaking, we should do the same with p replaced with p k and
take the limit as k →∞. This means that we take account of behavior modulo all powers
of primes. This limit can be described as the fibral measure of SLn Zp for the standard

measure for M n (Zp )
det−→ Zp , i.e. the Zp -analogue ofω. In this case the limits stabilize at

k = 1, which is why we can get away with this simplified account.

The conclusion is that
∏

p

cp =
∏

p

�

1−
1

p 2

�

∏

p

�

1−
1

p 3

�

. . .
∏

p

�

1−
1

p n

�

= ζ(2)−1ζ(3)−1 . . .ζ(n )−1.

Comparing this with Heuristic 1 gives

vol(SLn R/SLn Z) = ζ(2) ·ζ(3) · . . . ·ζ(n ).

Proof of Theorem 5.4.1. Consider a fundamental domain F for SLn Z (marked in red in
the picture).

(We’re going to pretend that F is compact, although it is not.) We’re going to compute the
volume of lattice points in F by computing the number of lattice points in an asymptotic
scaling of it.
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Let coneF be the cone from the origin over F . As remarked in Example 5.2.2, we can
also think of the Haar measure for SL2 as computing the volume of the cone from the
origin. This will be off from our canonical Haar measure by a scalar factor; what scalar is
it?

We claim that the scalar is 1/n , so that the volume of coneF is µ(F )/n . Why? Imagine
the strip obtained by scaling F by the interval (1− ε, 1), which consists of matrices with
determinant lying in ((1−ε)n , 1).

So the volume of the shaded region is ≈ µ(F )(nε). Therefore, if we scale by the interval
(r (1−ε), r ) then the volume of (r, r (1−ε))F is r n 2

µ(F )(nε). Now we integrate over r : the
volume of the full cone is

vol(coneF ) =µ(F )n

∫ 1

0

r n 2 d r

r
=
µ(F )

n
.

So it suffices to show that the volume V of coneF is ζ(2)...ζ(n )
n . To do this, we count

lattices points in [0, T ] · F ; this should closely approximate vol([0, T ] · F ). If we scale the
cone by a factor of T , then its volume scales by T n 2 , so on one hand we have

vol([0, T ] · coneF ) = T n 2
V.
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On the other hand, it should be approximately the number of lattice points M n (Z) ∩
[0, T ]F . (In general, for a compact domain the difference between the volume and the
number of lattice points is the measure of a 1-neighborhood about the boundary.)

So how can we count the number of lattice points? We can think of (0, X ] ·SLn R as the
set of matrices with determinant in (0, X n ]. Then (0, X ] · F is a fundamental domain for
SLn Z acting on matrices with determinant ≤ X n , so X n 2 V is approximately the number
of matrices in M n (Z)with 1≤ det≤X n modulo the action of SLn Z. We write this as

X n
∑

1

A(k ), A(k ) = #{M ∈M n (Z) | det M = k }/SLn Z.

So

V = lim
T→∞

∑T
k=1 A(k )

T n .

Lemma 5.4.5. For n = 2,

A(k ) =
∑

0<d |k
d

In general,

A(k ) =
∑

k=a 1...a n ;a i∈N

a n−1
1 a n−2

2 . . . a 0
n .

Proof. A(k ) is the number of subgroups L ⊂ Zn with index k . The reason is that given a
matrix M , we can send it to the lattice M ·Zn . Since M has determinant k this has index
k , and right translation by SLn (Z) doesn’t affect it.

For n = 2, any sublattice L ⊂ Z2 with index k is uniquely the span of (a , 0) (just taking
the first multiple of (1, 0) lying in L) and (`,b ) where we can adjust ` to be in [0, a ) with
a ,b > 0. The index is ab , so the number of such things with index k is

∑

ab=k

a .

This works in general. For instance, how would this start off for n = 3? Any sublattice
L ⊂ Z3 is uniquely the span of (a , 0, 0), (`,b , 0), and (m , n , c ) where 0 ≤ `, m < a and
0≤ n <b .

�

Now we are reduced to computing

∑

k<T A(k )
T n .



38 LECTURES BY AKSHAY VENKATESH, NOTES BY TONY FENG AND NICCOLO RONCHETTI

The nicest way to do this is to write down a generating function. For n = 2, A(k ) is
multiplicative, so it’s useful to consider the Dirichlet series.

∑ A(k )
k s =

∑

k

1

k s

∑

ab=k

a

=
∑

a ,b≥1

a

a s b s

=
∑ 1

a s−1

∑ 1

b s

= ζ(s −1)ζ(s ).

In general, the result is

∑ A(k )
k s = ζ(s )ζ(s −1) . . .ζ(s −n +1).

Let’s rescale this a bit:

∑ A(k )/k n−1

k s = ζ(s )ζ(s +1) . . .ζ(s +n −1). (5.4.2)

We expect the sum to have a limit, which means that A(k ) should be (at least on average)
≈ c k n−1. Just pretend for the moment that this is right. If so, then we would expect

∑

k

A(k )/k n−1

k s =
∑ c

k s = cζ(s ).

If we slowly decrease the value of s , this becomes singular at s = 1 and the residue there
is c , so this is nice for s > 1 but behaves like c

s−1 near s = 1. On the other hand, as s → 1
the right hand side of (5.4.2) is

ζ(s )ζ(s +1) . . .ζ(s +n −1)∼
ζ(2) . . .ζ(n )

s −1
.

So this is telling us that c = ζ(2) · . . . · ζ(n ). Of course we didn’t prove it, but standard
analysis makes this rigorous.

Let’s just do this “by hand” for n = 2:

∑

k<T

 

∑

ab=k

a

!

.



GEOMETRY OF NUMBERS 39

You can think of this as the lattice points below the hyperbola x y = T .

We can count this by cutting it up into columns: the number of points with a given x -
coordinate is

∑

1≤y≤T /x

y ≈ (T /x )2
1

2

Adding this up over x yields

≈
1

2

∑

x

�

T

x

�2

=
1

2
T 2 ·ζ(2).

�

Let’s do a consistency check for n = 2. In this case we understand the space SL2 R/SL2 Z
by hand: {(x , y ): |x | ≤ 1/2,x 2+y 2 ≥ 1} is the space of lattices in R2 up to rotation and scal-
ing. (Compared with SL2 R/SL2 Z, we have collapsed the rotations.)

The point (x , y ) corresponds to the lattice 〈(1, 0), (x , y )〉. The fundamental domain (with-
out collapsing rotations) is

SO2 R×
�p

y 0
0 1/

p
y

�

×
�

1 0
x 1

�
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where {|x | ≤ 1,x 2+ y 2 ≥ 1}. We explicitly parametrize the SO2 R as

�

cosθ −sinθ
sinθ cosθ

�

×
�p

y 0
0 1/

p
y

�

×
�

1 0
x 1

�

The measure µ in coordinates (θ , y ,x ) is 1
2 dθ 1

y
d y
y d x (the 1/2 coming from the square

root), because the formula is to multiply a left Haar measure for K and a right Haar
measure for the other thing. So the total measure is

π

∫

d x d y

y 2 .

This turns out to be π2/3= ζ(2)/2.

Exercise 5.4.6. What happened to the 1/2?

Remark 5.4.7. The same method works if we replace M n by a field extension K /Q. This
gives a proof of the class number formula. (This is Dirichlet’s original method.) If (D ⊗
R) = M n R, and O is an order in D, then the same reasoning (interpreting SLn Z as ele-
ments of determinant 1 in M n Z) gives

µ(SLn R/O (1)) =
p

q
ζ(2) · . . . ·ζ(n )

where O (1) is the norm-1 units and p/q ∈Q.

5.5. Application. (This is in Seungki Kim’s Ph.D. thesis.)
Earlier we defined the notion of (A, B )-reduced basis for a lattice L. There is a proba-

bility measure on the space of lattices and the number of reduced bases is always finite,
so one can ask for instance:

What is the number of (A, 1/2)-reduced bases for L?

The answer should be vol(SA,1/2)/vol(SLn R/SLn Z). The answer is that this is

2n

n !(n −1)!

�

1

A

�
n3−n

6 1

ξ(2) . . .ξ(n )

where ξ(s ) = (π−s/2Γ(s/2))ξ(s ). Note that this grows as c n 3 , so the number of reduced
bases grows extremely rapidly; they are nearly unique for n = 2 but highly non-unique
in general.

Where do these factors come from? When computing the volume of SOn R with re-
spect to the volume form which at the identity is given by

∏

i<j d x i j , you get

n
∏

i=2

�

2πi/2

Γ(i/2)

�

.
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The factor
�

2πi/2

Γ(i/2)

�

is the surface area of a unit sphere in Ri . This can be proved by suc-

cessive fibering: SOn acts on Sn−1, with stabilizer isomorphic to SOn−1:

SOn−1
// SOn R

��
Sn−1

The product has the formal structure of something like ζ(2) . . .ζ(n ). This coincidence
happens in all cases, up to powers of 2 which vary irregularly from case to case.

6. SPHERE PACKING

The question we want to consider is:

What is the largest density of packing of spheres of equal radius in Rn ?

Let’s call this number ρn .

Lemma 6.0.1. We have ρn ≥ 2−n .

Proof. This is the “greedy bound”: simply pack the spheres arbitrarily until no more fit.

If the centers of the spheres are at x i , then there does not exist y such that |y −x i | ≥ 2 for
all i , or else we could fit a sphere centered at y . Therefore,

⋃

B (x i , 2)

cover Rn . So if we shrink them by a factor of 1/2, then their density is at least 1/2n . �

This is very crude; it is just to normalize our expectations. In large dimensions it is
hard to pack spheres! We won’t be able to do much better.
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6.1. Low-dimensional packings. In 2 dimensions, the best packing is

(This is the lattice packing for the lattice A2.) It has density

ρ2 =
π

2
p

3
> 0.9.

This is a lattice packing, which is a packing whose centers form a lattice.
The packing associated to a lattice L ⊂Rn is described as follows. The balls with radius

R centered at the lattice points are disjoint if and only if L∩B2R = {0}. The sphere packing
associated to L is obtained by taking the largest possible value of R (which is the half the
length of the shortest vector).

Example 6.1.1. If L = Zn then 2R = 1 =⇒ R = 1/2, so the sphere packing is

⋃

v∈Zn

(V + B1/2),

so the density is

vol(B1/2) =
πn/2

(n/2)!

�

1

2

�n

.

Note that this is asymptotically terrible because πn/2

(n/2)! scales like n−n . (A “typical” lattice
is much better.)

Example 6.1.2. The Dn lattice is {(x i ) ∈ Zn |
∑

x i even }. Let’s compute the density of Dn

relative to that of Zn . The point is to eliminate the vectors of length 1, so 2R =
p

2 and
R = 1/

p
2. The precise we pay is that we have only half as many balls, so the density is

(
p

2)n/2 times that of Zn .

Example 6.1.3. An = {(x i )∈ Zn+1 |
∑

x i = 0}.

Example 6.1.4. E8 =D8 ∪
�

D8 ∪ ( 12 , . . . , 1
2 )
�

.
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Lattice Density

Zn πn/2

(n/2)!

�

1
2

�n

Dn
πn/2

(n/2)!
1
2

�

1
2

�n/2

An

E8
π4

4!
1

24

In low dimensions, all the best sphere packings that we know about come from lat-
tices.

dimension densest packing known density
2 A2 > 0.9
3 A3 =D3 ≈ 0.74
4 D4

5 D5

6 E6

7 E7

8 E8
π4

4!
1

24 ≈ 0.25

You can try to do this trick in general: take two lattices and try to slide them together.
In dimension 8 you can slide in a complete copy without reducing the size of the spheres,
so the density doubles.

These are almost surely the densest packings in their dimensions, but the densest
packing is only provably found in dimensions 1, 2, 3 (huge computational work of Tom
Hales), 8, 24 (Maryna Viazovska). In dimension 24 it is the packing associated to the
Leech lattice. For the Leech lattice, the answer is π

12

12! ≈ 0.002. (This is very respectable!
Compare with 1/224.)

An interesting phenomenon in dimensions 8, 24 is that there is one lattice which is
much better than the others. In dimension 3, the lattice is obtained by stacking on top of
the 2D solutions

but there are many ways of doing this.

Theorem 6.1.5 (Minkowski). We have

ρn ≥ 2 ·2−n .

In fact, this can be achieved with a lattice packing.
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Remark 6.1.6. The best known result is

ρn ≥ c n2−n .

We need a tool called Siegel’s integration formula. Let SLn R/SLn Z have an invariant
measure of mass 1.

Let C ⊂Rn be a measurable set not containing 0 (think of it as a ball). Then, when L is
chosen randomly from SLn R/SLn Z (the space of lattices of volume 1 in Rn ) the average
size of C ∩ L should be about vol(C ). Siegel’s Theorem says that this is true on average:

∫

g∈SLn R/SLn Z

#(C ∩Zn g ) = vol(C ) .

We’ll prove this next time.

Exercise 6.1.7. We can do it by pure thought. Think about this.

Corollary 6.1.8. If vol(C )< 1 then there is a lattice disjoint from it.

Proof of Minkowski’s Theorem. Let B = {||x || ≤ R} be a ball of volume 2 and C to be a
hemisphere of B minus {0}. By the Corollary 6.1.8 L doesn’t contain an element of C ,
hence also no element of B because L is symmetric under inversion. Then {v + 1

2 B : v ∈
L} are disjoint, so the density is at least ≥ 21−n . �

Example 6.1.9. In Rn , the ball of volume 1 has radius ≈ C
p

n (the diagonal of a hyper-
cube). So Siegel’s formula says that a typical lattice of volume 1 has 1 vector on average
in {||x || ≤ C

p
n}. On the other hand, Zn has an exponential number of such vectors (for

instance, any assignment of each coordinate to be 0 or 1 works).

6.2. Proof of Siegel’s Theorem. We now go back to the proof of Siegel’s Theorem. For
f ∈ L1(Rn ), we define E f from the space of lattices to R sending L 7→

∑

v∈L,v 6=0 f (v ). The
claim is that

∫

SLn R/SLn Z

E f ·dµ=
∫

Rn

f (x )d x

where d x is the Lebesgue measure. We can recover the statement above by taking f to
be the characteristic function of C .

Easy proof. The map

f 7→
∫

SLn R/SLn Z

E f dµ

defines a continuous functional Cc (Rn )→R. The coninuity is not obvious; it amounts to
the statement that for a compact subset K ⊂Rn , if supp( f )⊂ K then

∫

SLn R/SLn Z

E f � || f ||∞.

This defines a measure on Rn , which is SLn R-invariant. But the only such measures are
of the form a ·δ0+b · (Lebesgue). Why? Let ν be an SLn R-invariant measure on Rn . It is
enough to show that ν ( f )∝

∫

f d x for f ∈Cc (Rn − 0). If we knew that ν were absolutely
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continuous with respect to Lebesgue, then implies Radon-Nikodym would imply that
ν =ϕ(x )d x for some SLn R-invariant function ϕ, which is necessarily consant.

So why is the absolute continuity true? Choose H ∈Cc (SLn R)with
∫

SLn R/SLn Z

H = 1.

Then ν = g ν for all g ∈ SLn R implies that

ν =

∫

g

H (g )(g ·ν )d g =H ∗ν .

This “smooths out” ν away from 0.
Now that we know

f 7→
∫

SLn R/SLn Z

= aδ0+b d x

e need to compute the constants a and b . Let f = χBall(R)

vol(Ball(R)) , so
∫

f (x )d x = 1. Then for
each L, E f (L) is the number of lattice points in Ball(R), which converges to 1 as R →∞.
Granting the continuity once again, dominated convergence implies that

∫

E f (L)→ 1 as R→∞

and the left hand side approaches b as R→∞ since the contribution of the delta function
is overwhelmed. Similarly taking f =χB (R) with R→ 0, we get that a = 0. �

A “harder proof of Siegel’s Theorem. We now give another proof.

Definition 6.2.1. We say that f is primitive if v 6= nv ′ for some n ∈ Z with n ≥ 2. Then

E ∗f =
∑

v∈L primitive

f (v ).

We will compute
∫

L∈SLn R/SLn Z

E ∗f (L)d g

The parametrization is L = g ·Zn , so this is
∫

L∈SLn R/SLn Z

E ∗f (L)d g =

∫

SLn R/SLn Z

∑

v∈Zn prim.

f (g v )d g .

Since SLn Z acts transitively on primitive vectors in Zn , with the stabilizer of

en :=













0
...
0
1
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being

Pn Z :=









∗ . . . ∗ 0

∗ . . . ∗
...

∗ . . . ∗ 1









⊂ SLn Z.

So we can rewrite
∫

E ∗f =

∫

g∈SLn R/SLn Z

∑

γ∈SLn Z/PZ

f (g γen ) =

∫

g∈SLn R/PZ

f (g en )d g .

If we change g 7→ g p with p ∈ PR then this is unchanged, so we can take out a factor of
PR/PZ:

∫

g∈SLn R/PZ

f (g en )d g = vol(PR/PZ)

∫

SLn R/PR

f (g en ) = vol(PR/PZ)

∫

Rn

f (x )d x .

(where we have to be careful with the normalization of the volumes and to check that
the quotient measure on SLn /PR really is the quotient measure). This shows that

∫

SLn R/SLn Z

E ∗f = vol(PR/PZ)

∫

Rn

f d x .

Now what is PR/PZ? It has a block that looks like SLn−1 R and one that looks like Rn−1. So

vol(PR/PZ) = vol(Rn−1/Zn−1) ·vol(SLn−1 R/SLn−1 Z).

So we’ve computed that
∫

SLn R/SLn Z

E ∗f = vol(SLn−1 /SLn−1 Z)

∫

Rn

f d x .

We can use this to inductively compute the volume.

Remark 6.2.2. The abve identity is compatible for the canonical integral measure on

SLn R arising from the differential form
∏

Öd xk l /mk ,` (see (5.4.1)) and the Lebesgue mea-
sure.

Now take f = χB (R). Letting R → ∞, the number of primitive lattice points in B (R)
needs to be normalized by the probability that the coordinates are coprime. The familiar
argument for n = 2 easily generalizes to:

E ∗f (L)≈
B (R)
ζ(n )

.

Letting R→∞, we get

vol(SLn R/SLn Z) = ζ(n )vol(SLn−1 R/SLn−1 Z) = ζ(n )ζ(n −1) . . .ζ(2).

Now let’s talk about the convergence that have been swept under the rug. We should
check that

∫

|E f |<∞, and it is enough to show that
∫

E1Ball(R) <∞ because we have only
used f such that | f | ≤ c |1Ball(R)|. We have to estimate

E1Ball(R) (L) = #(L ∩Ball(R))−1.
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Note that this can go to infinity: imagine a lattice with one really short basis vector.

So this is unbounded; we need some estimates. Suppose L has reduced basis v1, . . . , vn ;
we want to estimate

#(L ∩Ball(R)) = #{(m i )∈ Zn : ||
∑

m i vi || ≤R}.

Recall that in terms of reduced bases, the lengths behave as if they were orthogonal, so
we need

m i ≤ c ·R/||vi ||.
The number of possibilities for (m i ) is then ≤ c (R/||vi ||+1). Then

#(L ∩Ball(R))≤C
∏

�

R

||vi ||
+1

�

.

So
∫

SLn R/SLn Z

E f ≤
∫

L∈SA,B

#(L ∩BallR )

≤ cn ,A,B ·
∫

y1,...,yn
∏

yi=1
yi≥Ayi+1

d y1

y1
. . .

d yn−1

yn−1

1
∏

i>j yi /y j

∏

�

R

yi
+1

�

By explicit computation, we can check that this converges.

6.3. Upper bounds. We showed the lower bound

ρn ≥ 2 ·2−n .

Now we will discuss an upper bound. The asymptotically best bound is

ρn ≤ 2−βn

where β ≈ 0.599 . . .. This is due to Kabatiansky-Levenshtein.
As discussed previously, we also knowρ2,ρ8, andρ24. We’ll prove thatρn ≤ 2−0.5n and

explain the idea of the stronger results.

Lemma 6.3.1. Suppose we have non-zero vectors v1, . . . , vN ∈ Rn such that the angle be-
tween any vi , v j is at least π/2. Then N ≤ 2n.
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Proof. Project the remaining vectors onto the orthogonal complement; the angles can
only get further apart. (The dot product is negative; removing one coordinate where the
contributions align makes it more negative.)

�

Exercise 6.3.2. Show that if we replace π/2 by π/2+ε for any ε> 0, then we can bound N
independently of n . Show that if we replaceπ/2 byπ/2−ε, then there are an exponential
number of such vectors.

Proposition 6.3.3. We have ρn ≤ 2n ·2−0.5n .

This is a slight weakening of a result due to Blichtfeld which says that ρn ≤ 2−0.5n .

Proof. Imagine a packing of spheres of radius 1 centered at x i . We know that |x i−x j | ≥ 2.
We want to bound the number of spheres that are near. If |x i |, |x j | ≤

p
2 then the triangle

between the origin and x i ,x j has side lengths (≤
p

2,≤
p

2,≥ 2), so must have angle at
least π/2.

The upshot (by the Lemma) is that there are at most 2n sphere centers in Ball(0,
p

2). This
implies that the density is at most 2n (1/

p
2)n . Why? Let χi be the characteristic function

of a ball of radius
p

2 centered at x i . Then
∑

χi (x ) ≤ 2n . Taking the average over x , we
get ρn (

p
2)n ≤ (2n ). �
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How can we do better? Let χ = χBall(0,
p

2). We just showed that
∑

i χ(x − x i ) ≤ 2n ,
which is small on the scale of the problem. Can we improve this using another χ?

We want to choose χ ∈Cc (Rn ) such that

G (x ) :=
∑

χ(x −x i )
︸ ︷︷ ︸

τxi χ

is small. We’ll try to choose χ so that τx iχ ,τx jχ don’t intersect each other. More pre-
cisely, we’ll assume that

〈τyχ ,χ〉 ≤ 0 for all |y | ≥ 2.

Fix B to be a large ball in Rn . Then we have

〈G ,G 〉B =
∑

i

〈χ ,χ〉#{spheres in B}+ (edge effects)

since our assumption makes the cross-terms contribute negatively. Letting N = #{spheres in B},
we thus have

〈G ,G 〉B ≈N 〈χ ,χ〉. (6.3.1)

On the other hand, by Cauchy-Schwarz we have

〈G ,G 〉B ≥ vol B · (average value of G on B)2. (6.3.2)

The average value is
∫

χ ·N
vol(B )

+ (edge effects)

Putting together (6.3.1) and (6.3.2) gives

(
∫

χ)2N 2

vol(B )
≤ 〈χ ,χ〉N −edge effects

Taking B to∞, we find that the density of sphere centers, which is (N /vol B ), is at most
〈χ ,χ〉
〈χ ,1〉2 .

Theorem 6.3.4. Suppose that χ ∈S (Rn ) such that 〈τyχ ,χ〉 ≤ 0 for |y | ≥ 2R. Then

ρn ≤
〈χ ,χ〉
〈χ , 1〉2

· (volume of a sphere of radius R).

We can linearize this problem. If we write F (y ) = 〈τyχ ,χ〉, so F (y ) ≤ 0 for |y | ≥ 2R ,
then

ρn ≤
F (0)
∫

F

because
∫

F = (
∫

χ)2. On Rn , we have

bg (k ) =

∫

g (x )e i k x d x .

Then
bF = |bχ(k )|2.

This reasoning suggests:
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Theorem 6.3.5 (Cohn-Elkies). Given a Schwartz function F such that F (y ) ≤ 0 for |y | ≥
2R and bF ≥ 0, then

ρn ≤ (volume of sphere of radius R)
F (0)
bF (0)

.

To prove this carefully one should rephrase the original argument on the Fourier trans-
form side.

For suitable F , this gives ρn ≤ 2−0.599n .

Example 6.3.6. Let’s try to cook up an F that beats the trivial bound for n = 2. We choose
R = 1/2. We want a function F : R2→R satisfyingF (~x )≤ 0 for |~x | ≥ 1 and bF ≥ 0. We could
try to enforce the first condition by putting

F (x , y ) = (1− ~x · ~x )e−
c
2 ~x ·~x .

Then

ρ2 ≤
π

4

1
bF (0)

.

What is bF ? Recall that
Øe−x 2/2 =

p
2πe−k 2/2.

and Óx g =−i∂k bg . So

Ûe−
c
2 (x

2+y 2) =
2π

c
e−

1
2c (k

2
1+k 2

2 ).

Then

bF =
2π

c
(1+ ∂ 2

k1
+ ∂ 2

k2
)e−

1
2c (k

2
1+k 2

2 ).

So

∂k e αk 2/2 =−αk e−αk 2/2

∂ 2
k = (−α+α

2k 2)e−αk 2/2.

Then

bF =
2π

c

�

1−2/c +
k 2

1 +k 2
2

c 2

�

e−(k
2
1+k 2

2 )/2c

which is positive if c > 2. This is positive for c > 2, and for such c we get

ρ2 ≤
1

8

c

1−2/c
≤ 1.

It’s now clear by pure thought that you can perturb this to do better than 1, by perturbing
this example. Suppose we replace f ← f +εh. We can assume that f (0) is unchanged by
choosing h(0) = 0. We take h to be some P(r 2)(1− r 2)e−2r 2 . If this is going to satisfy the
conditions for ε small enough, then

• the Fourier transform ĥ(k ) should be ≥ 0 for large |k |, because f̂ (0)> 0,
• P(t )≥ 0 for large enough t .
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These conditions are satisfies as long as the highest degree term of P(t ) is a k t k where
a k > 0, and the Fourier transform is positive. That latter thing basically amounts to
k ∈ 2Z: the Fourier transform is the Laplace transform applied k times... Clearly it’s
possible to satisfy these conditions and have h(0) = 0, ĥ(0)> 0.

I tried doing this with h(r ) = (Ar 8+ Br 6)(1− r 2)e−2r 2 . Optimizing for A and B , we get
a density bound ρ2 ≤ 0.96.

Cohn-Elkies used functions of the form f = (poly) ·Gaussian. Doing this in dimen-
sions 2, 8, 24, they found that the functions and resulting bounds both converged. The
upper bounds for ρn were very close to the known packings. On the basis of this, they
conjectured:

Conjecture 6.3.7. In dimensions n = 2, 8, 24 there exists a Schwarz function f n satisfying

the conditions above, such that vol (R-ball)· f n (0)
f̂ n (0)

is the density of the A2/E8/Leech packing.

For n = 8 this was recently proved by Maryna Viazovska, and shortly thereafter it was
done in n = 24 by Viazovska and collaborators. The functions are obtained as transforms
of modular forms. In n = 2 it is still open.

7. THE LEECH LATTICE

7.1. Even unimodular lattices. Recall the definition of the E8 lattice. You start with

D8 = {(x1, . . . ,x8)∈ Z8 |
∑

x i ≡ 0 (mod 2)}.

We then take

E8 =D8 ∪
�

D8 ∪
1

2
(1, . . . , 1)

�

.

How might we have discovered this lattice? Notice that D8 has the property that 〈x ,x 〉 ∈
2Z for all x and 〈x , y 〉 ∈ Z for all x , y . (The second is implied by the first.)

Definition 7.1.1. We say that a lattice L ⊂ Rn is integral if 〈x , y 〉 ∈ Z for all x , y ∈ L and
even if 〈x ,x 〉 ∈ 2Z. We say that L is unimodular if vol(L) = 1.

Even unimodular lattices exist only when 8 | n .

Example 7.1.2. For n = 8, the only unimodular lattice is E8.
For n = 16, we have E8⊕E8 and “E16” (the same consruction with respect to D16).
For n = 24, there are 24 even unimodular lattices. Among them there is a unique one

such that no x ∈ L has length 〈x ,x , 〉 = 2. This is the Leech lattice. The others are the
Niemeier lattices. We know 3 of them: E8⊕E8⊕E8, E8⊕E16, and E24.

For n = 32, there are at least 109 such lattices.

Given D8, how might we have discovered E8? i.e. how can I extend D8 to an even
unimodular lattice L?

We know that L must be of the form D8+Zx where 2x ∈D8. We need 〈D8,x 〉 ∈ Z for the
pairing on L to be integral. This means that x ∈D∗8 = Z8+Z · 1

2 (1, . . . , 1). Let e = 1
2 (1, . . . , 1).
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So x corresponds to an element of D∗8/D8
∼= Z/2×Z/2, with explicit representatives

e = (
1

2
, . . . ,

1

2
)

f = (1, . . . , 0)

e + f = (
3

2
,

1

2
, . . . ,

1

2
)

Each such x gives D8+Zx on which the inner product is integral. To check evenness, we
have to check 〈x ,x 〉 ∈ 2Z.

〈e , e 〉= 2

〈 f , f , 〉= 1

〈e + f , e + f 〉= 4.

In fact x = e , e + f both work.

7.2. The Golay code. A perfect code in FD
2 is a subset S such that for some integer `, the

balls of radius ` around s ∈ S tile FD
2 , i.e.

∐

s∈S Ball(s ,`) = FD
2 (where distance is the

Hamming distance). This is only possible if

|S| ·
��

D

0

�

+ . . .+
�

D

`

��

︸ ︷︷ ︸

size of ball

= 2D .

Golay showed that there exists a perfect code S ⊂ F23
2 with #S = 212 and `= 3. (Note that

1+
�23

1

�

+
�23

2

�

+
�23

3

�

= 2048.) In fact S is a vector space.
Let’s call this code G23 ⊂ F23

2 . It can be chosen to be a vector subspace. It is “sym-
metric” in the sense that the automorphism group M 23 := {σ ∈ S23 : σ(G23) = G23} acts
transitively on the 23 coordinates. (In fact it even acts four-transitively.)

Remark 7.2.1. This automorphism group is the exceptional simple group, the Mathieu
group M 23. (Incidentally, we don’t know any field extension K ⊃Q with Gal(K /Q) =M 23.)

The fact that G23 is so symmetric nearly pins it down. Necessarily M 23 has a 23-cycle
(since it acts transitively on a set with a prime number of elements), so we can identify
the 23 coordinates with Z/23 and assume that translation by Z/23 preserves G23. We can
think ofG23 as a 12-dimensional subspace of F2[Z/23], and it is invariant by Z/23. Writing
x for a generator of Z/23, we can write

F2[Z/23] = F2[x ]/(x 23−1).

Over F2 we can factor

x 23−1= (x −1) f g

where deg f = deg g = 11. If ζ is a primitive 23rd root of unity in F2, then the roots of
x 23 − 1 are ζi for 0 ≤ i ≤ 22 and the irreducible factors correspond to orbits of Frobe-
nius y 7→ y 2 on these roots. What are the orbits of squaring? The order of 2 in (Z/23)∗
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is 11, and 〈2〉 is the set of quadratic residues. So the orbits of Frobenius are {1}, Q :=
{quadratic residues}, and N := {quadratic non-residues}. So we can write

f (x ) =
∏

q∈Q

(x −ξq ) g (x ) =
∏

n∈N

(x −ξn ).

Then

F2[x ]/(x 23−1) = F2[x ]/ f ×F2[x ]/(x −1)×F2[x ]/g .

SinceG23 is Z/23-invariant, it must be an ideal in F2[Z/23]. The only such ideals are sums
of these factors, so there are only two possibilities for G23:

G23 = F2[x ]/ f or G23 = F2[x ]/g .

In fact applying t 7→ −t on Z/23 switches the two, so they are indistinguishable.
We can think ofG23 are the set of all multiples of g in F2[x ]/(x 23−1). Alternatively, it is

the set of all h ∈ F2[x ]/(x 23−1) such that h(ζn ) = 0 for all n ∈N . (Note that this imposes
11 conditions on a 23-dimensional space.)

Key point. Every non-zero h ∈G23 has |h | ≥ 7.

This implies that if h, h ′ ∈ G23 then Ball(h, 3) ∩ Ball(h ′, 3) = ;, since otherwise their
difference would have size at most 6.

Of course one can check the key point by hand, but here is one trick.

Lemma 7.2.2. For all h ∈G23, we have |h | ≡ 0 or 3 mod 4.

Proof. Let G 0
23 ⊂ be the set of all y ∈ G23 such that |y | is even. This is F2[x ]/g , since the

map to F2[x ]/(x −1) is adding up all the coordinates. So

G23 =G 0
23⊕F2(1, 1, . . . , 1).

it is enough to show that for h ∈G 0
23 we have |h | ≡ 0 mod 4, since changing by (1, 1, . . . , 1)

changes the number of non-zero elements by 3 mod 4.
For h, h ′ ∈G 0

23 we can consider

h ·h ′ =
∑

i

h i h ′i .

We claim that this is necessarily 0. Why? We have Q = −N , so F2[x ]/ f and F2[x ]/g
are dual to each other as Z/23-representations (duality replaces the characteristic poly-
nomial with the one having the inverse roots). Therefore we cannot have a non-trivial
pairing on F2[x ]/ f .

So

|h +h ′|= |h |+ |h ′| −2|h ∩h ′|.
Since the last term is divisible by 4, we get that

h 7→ |h |

is a homomorphism from G 0
23 to 2Z/4Z. Again for representation-theoretic reasons this

must be 0. �
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Remark 7.2.3. The element
∑

n∈N x n (i.e. the vector with 1s only in N position) belongs
to G23 and its translates under Z/23 generate G23. This is left as an exercise.

We can extend toG24 ⊂ F24
2 by forcing the bits to sum to 0 (this is called adding a “parity

bit”):
G24 := {(~x ,x24)∈G23×F2 :

∑

x i 6= 0}
It follows from the preceding result that for all h ∈G24, we have |h | ≡ 0 mod 4 and |h | ≥ 8.

Remark 7.2.4. Another combinatorial coincidence is that for every set S ⊂ {1, . . . , 24} of
size 5 is contained in a unique code word of G24 of length 8.

The automorphism group ofG24 is the (simple) Mathieu group M 24. This is 5-transitive,
which is as good as one a finite simple group can get without being symmetric or alter-
nating (by the classification of finite simple groups).

We have G23 ⊂ FZ/23
2 , and we can consider G24 ⊂ FZ/3∪{∞}

2 . In this perspective M 24 ⊃
PSL2(Z/23).

7.3. Construction of the Leech lattice. It’s very natural to use codes to impose congru-
ence conditions on integral lattices. (We want to eliminate short vectors, so we can try
to eliminate them mod 2, and G24 has no short vectors.) Define

L 0 := {x ∈ Z24 | x mod 2∈G24}.

This obviously isn’t unimodular. Since dimF2G24 = 12, this has index 212 in Z24. There-
fore, L := 1p

2
· L 0 has volume 1, i.e. is unimodular. For ~x ∈ L 0, we have

〈~x ,~x 〉 ≡ 0 mod 4.

Therefore, vol(L) = 1 and 〈x ,x 〉 ∈ 2Z for x ∈ L; that is, L is even.
However, this is still not the Leech lattice.
We need to kill more short vectors. Now we started with Z24, which has many short

vectors, like the coordinate vectors. The construction L kills off the short vectors e1, e1+
e2, e1+e2+e3, . . . but doesn’t kill off 2e1, 2e2, etc. So the shortest vectors left are twice the
coordinate vectors; we want to kill these off now. Set

L∗ =
1
p

2
{~x ∈ Z24 | ~x ∈G24 mod 2,

∑

x i ≡ 0 mod 4}.

Now the shortest vectors are 1p
2
(e1+ . . .+ e8) or 1p

2
(2e1+2e2).

Now (just as for D8) we can extend L∗ by 2. Consider the dual lattice L∨∗ , and consider
(L∗)∨/L∗ ∼= Z/2× Z/2. We just need to find an element v such that 〈v, v 〉 ∈ 2Z. Coset
representatives are

1
p

2
(1, 0, . . . , 0)

1
p

2
(1/2, 1/2, . . . , 1/2)

1
p

2
(3/2, 1/2, . . . , 1/2)
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which have lengths 1/2, 3, 4, so the last vector works. (Perhaps there is an error? Two of
them should have worked.)

8. QUADRATIC FORMS

A quadratic form over a ring R is a formal expression

Q(x1, . . . ,xn ) =
∑

i≥j

a i j x i x j , a i j ∈R .

(We’re mostly interested in R = Z, but this compels us to consider also Q, R, Qp , Zp , Z/N Z.)
We can write this as

~x T A~x

where

A =

�

a 11
1
2 a 12

1
2 a 12 a 22

�

We say that

Q ∼Q ′

if we can obtain Q ′ from Q using an invertible change of coordinates, i.e.

A ′ = B T A B for some B ∈GLn (R)

We define the discriminant of a quadratic form Q to be

discQ := det(2A).

If Q ′ ∼Q then (discQ ′) = (discQ)u 2 for some u ∈R∗.

8.1. Genus of a quadratic form. Over Z, we say that Q and Q ′ are in the same genus if
they are equivalent in Z/N for all N and Q ∼R Q ′. Equivalently, Q ∼Zp Q ′ for all p and
Q ∼R Q ′.

Lemma 8.1.1. If Q ,Q ′ are in the same genus, we have discQ = discQ ′. In particular, there
are only finitely many Z-equivalence classes in a genus.

Proof. If Q ,Q ′ are in the same genus thatn discQ ≡ (discQ ′)u 2 mod N for all N , for some
u ∈ (Z/N Z)∗. �

So we have

{genus of Q} ⊂ {forms of the same discriminant as Q}.

In practice one should think of this as being almost an equality.

Example 8.1.2. Even unimodular lattices form a single genus.
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8.2. Hardy-Littlewood heuristic. Recall that a heuristic for the number of solutions to
f (x1, . . . ,xn ) =m with (x1, . . . ,xn ) ∈ B for f ∈ Z[x1, . . . ,xn ] is as follows. Consider a small
neighborhood of the equation f =m .

Then the Hardy-Littlewood heuristic predicts that number of solutions is

#{ f (x1, . . . ,xn ) =m } ≈ lim
ε→0

vol(B ∩ f −1(m − ε
2 , m + ε

2 ))

ε
·
∏

p

densityp .

Here

densityp = lim
N→∞

#{solutions modulo p N }
p N (n−1) .

8.3. The Mass formula. Now suppose that Q is a positive-definite quadratic form over
Z. Define

rQ (m ) = #{(x1, . . . ,xn )∈ Zn |Q(x1, . . . ,xn ) =m }.
(In the indefinite case this number might be infinite, but one can make a good definition
by modding out by equivalence of forms.) The expectation is that

rq (m ) =HL heuristic(Q , m ). (8.3.1)

If Q ,Q ′ are in the same genus then the right side is for Q and Q ′ are equivalent. (The
density forms are exactly the same by definition, and the volume term is basically the
discriminant.) However, the left hand sides may not be, so there is one obvious obstruc-
tion to the expectation being reality. The mass formula says that (8.3.1) is exact when
averaged over the genus.

Theorem 8.3.1 (Mass formula version 1). We have
∑

Q∈genus(Q0) rQ (m ) ·wQ
∑

Q wQ
=HL heuristic(Q0, m )

where wQ := 1
|Aut(Q)| , and Aut(Q) := {γ∈GLn Z: Q(γx ) =Q(x )}.

This is a miracle; even the fact that the right hand side (a priori an infinite product) is
a rational number is surprising in any given case.
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Example 8.3.2. If Q0 = x 2+ y 2+ z 2, then genus(Q0) = {Q0}. So this tells us a formula for
the number of ways of writing m as a sum of three squares. Basically all cases when such
a formula is known comes from the Mass formula.

Theorem 8.3.3 (Mass formula version 2). We have
∑

Q∈genus(Q0)

wQ = explicit function(Q0).

Some parallels. Before going into the proofs, we discuss some parallels. For a nice func-
tion f on Rn , we defined a function E f on the space of lattices SLn R/SLn Z by the rule

E f (L) =
∑

v∈L−{0}
f (v ).

Then we argued that
∫

E f =

∫

f (8.3.2)

From this we deduced by an inductive argument the measure of SLn R/SLn Z. The equal-
ity (8.3.2) is parallel to Version 1 of the Mass formula, and the measure calculation is par-
allel to Version 2.

Outline of proof. Roughly, we’ll show “Version 2 in dimension n −1 implies Version 1 in
dimension n implies Version 2 in dimension n”. (In the parallel story, the only idea for
(8.3.2) was to take f to be the characteristic function of a large ball; this corresponds to
averaging over m . But there are also some new ideas here.)

8.4. Review of quadratic forms. A quadratic form q over a field K can always be diago-
nalized:

q ∼ a 1x 2
1 + . . .+a n x 2

n .

The argument is to choosing v with q (v ) 6= 0, and then split the space as 〈v 〉⊕〈v 〉⊥. Then
q ∼ a 1x 2

1 +q ′(x2, . . . ,xn )where a 1 =q (v ), and then applies induction.
We’re going to consider non-degenerate quadratic forms (i.e. disc 6= 0).

8.4.1. Quadratic forms over C. We have

q (x1, . . . ,xn )∼ x 2
1 + . . .+x 2

n .

There are are no invariants at all except for the dimension n .

8.4.2. Quadratic forms over Z/p Z, for p > 2. We can always make a change of variables
to pu

q (x1, . . . ,xn )∼ x 2
1 + . . .+x 2

n−1+αx 2
n .

To get this, we just need to show that if n > 1 then q takes the value 1. This follows from
counting.

In our normalization, discq = (2n )α so q is classified by n and discq ∈ (Z/p )∗/�.
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8.5. Quadratic forms over Qp . A quadratic form q is classified by n , discq , and the Hasse-
Minkowski invariant, which is in {±1}. We have to explain what this is.

Remark 8.5.1. But first we give an aside for context. Over any field we can form the
Witt ring W of quadratic forms modulo the hyperbolic plane. There is a map W → Z/2
giving the dimension mod 2; let I be the kernel. Then I /I 2 ∼−→ K ∗/(K ∗)2, and this is the
discriminant map.

Next, there is a map

I 2/I 3 ∼−→H 2(K , Z/2)

and this is the Hasse-Minkowski invariant.
Continuing, one can construct maps

I n/I n+1→H n (K , Z/2).

Milnor conjectured that this is an isomorphism for all n , which was eventually proved
by Orlov-Vishik-Voevodsky.

If we write q ∼
∑n

i=1 a i x 2
i , then the Hasse-Minkowski invariant is

∏

i<j

(a i , a j )p ∈ {±1}

where (a i , a j )p is the Hilbert symbol. (It is not a priori obvious that this is well-defined,
but it is.)

Remark 8.5.2. This invariant can be thought of as a class in the Brauer group. It is prob-
ably the associated Clifford algebra.

Hilbert symbol. For a ,b ∈Q∗p we define

(a ,b )p =

(

1 z 2 = a x 2−by 2 has a non-zero solution (x , y , z )
−1 otherwise.

Remark 8.5.3. This makes sense over R as well. It is

(a ,b )∞ =

(

−1 a ,b < 0

1. otherwise

Properties.

• (BILINEAR) We have

(a ,bb ′) = (a ,b )(a ,b ′)

and

(a a ′,b ) = (a ,b )(a ′,b ).

• (SYMMETRIC) We have (a ,b )p = (b , a )p .
• (SYMBOL) In addition to the bilinearity, (x , 1−x )p = 1 for all x ∈ F ∗ \ {1}. This also

implies that (x ,−x )p = 1.
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• For p > 2, if a ,b are p -units then

(a ,b )p = 1.

If a is a p -unit, then (a , p ) =
�

a
p

�

=

(

1 a =QR

−1 a =NQR
.

• (PRODUCT FORMULA) For a ,b ∈Q∗ we have

(a ,b )∞
∏

p

(a ,b )p = 1.

This is basically a reformulation of quadratic reciprocity.

8.6. Quadratic forms over Q.

Example 8.6.1. Are the forms 2x 2+3y 2 and x 2+6y 2 equivalent over Q? The correspond-
ing matrices are

�

2
3

�

and

�

1
6

�

.

We only need to check the Hasse-Minkowski invariants:

(2, 3)p
?= (1, 6)p .

The right hand side is 1 for all p , since the HM invariant is a symbol. The left side is 1
if p > 3. For p = 3, it is −1. At∞ it is also 1, so the product formula says that it is −1 at
p = 2.

Example 8.6.2. Are the forms 2x 2 + 7y 2 and x 2 + 14y 2 equivalent over Q? We have to
compare (2, 7)p and (1, 14)p . By the same reasoning, this is okay except at p = 2, 7,∞. At
7 we get (2, 7)p = 1, so the same thing at all places.

For two quadratic forms q ,q ′ over Q, we have

q ∼Q q ′ ⇐⇒ q ∼Qp q ′ for all p and q ∼R q ′

which is equivalent to having the same dimension, discriminant, signature, and Hasse-
Minkowski invariants at all primes p .

8.7. Quadratic forms over Zp (p > 2). For p > 2, all quadratic forms over Zp can still be
diagonalized! That is, we have after change of variables

q ∼
∑

a i x 2
i .

Why? Choose ~x = (x1, . . . ,xn ) ∈ Zn
p so that vp (q (x1, . . . ,xn )) is minimal (here vp is the

p -valuation). By a change of variables, we can assume that ~x = (1, 0, . . . , 0), so then

q (~x ) = a 11x 2
1 +x1Linear(x1, . . . ,xn )+q ′(x2, . . . ,xn ).

Now we claim that the coefficient a 11 divides all the other coefficients. Indeed, since
q (~x ) = a 11x 2

1 +a 12x1x2+ . . . we can write

a 12 =
q (e1+ e2)−q (e1)−q (e2)

2
,
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so a 11 divides a 12, and similarly all the other a i j . So

q (~x ) = a 11(x 2
1 + . . .)

and we can now complete the square.

Uniqueness. For p > 2, a quadratic form q =
∑

a i x 2
i over Zp group the terms by their

p -valuations:

q = p 0(a 1x 2
1 + . . .+a k x 2

k )+p 1(b1y 2
1 + . . .b`y

2
` )+ . . .

Write this as p 0q0 + p 1q1 + . . .. Then the dimensions q0,q1, . . . and the discriminants of
the qi (valued in Z∗p/�∼= {±1}) form a complete set of invariants.

8.8. Quadratic forms over Z2. Any quadratic form q is a direct sum of diagonal terms
or 2× 2 blocks a x y or a (x 2 + x y + y 2). The argument is similar, except that you can’t
complete the square, but you can break off a 2×2 block.

8.9. Application. Let’s prove that an even unimodular lattice L ⊂Rn must have 8 | n .
Since 〈x ,x 〉 ∈ 2Z for all x , we have an integral quadratic form q (x ) = 〈x ,x 〉

2 . Let A be the
matrix for q , so

q (x ) = x T Ax .

Then det(2A) = 1 because L is unimodular.
We know that

HM (q )∞
∏

HM (q )p = 1

by the product rule applied termwise.
We’ll show that HM (q )p = 1 for p 6= 2. Over Zp , we can diagonalize q =

∑

a i x 2
i , and

∏

2a i = 1 so all the a i are p -units, so (a i , a j )p = 1 for all i , j . This shows that HM (q )p =
1.

Over R, we can diagonalize

q ∼
∑

a i x 2
i , a i > 0

so the Hasse-Minkowski invariant is
∏

(1, 1)∞ = 1.
It only remains to figure out what happens at 2. There it turns out that we can always

write write

q =
∑

a i x 2
i +
∑

b i x y +
∑

c i (x 2+x y + y 2)

(with the b i , c i being powers of 2). Corresponding, the matrix A is a sum of blocks

(a i )⊕b i

�

1/2
1/2

�

⊕ c i

�

1 1/2
1/2 1

�

.

Since

1= det 2A =
∏

(2a i )
∏

b 2
i (−1)

∏

c 2
i det

�

2 1
1 2

�

there are no a i ’s, and all b i = c i = 1. So q is a sum of r copies of x y and s copies of
x 2+x y + y 2 over Z2. Then

1= det(2A) = (−1)r 3s .
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Even in Z/8, an equality 3r (−1)s = 1 =⇒ r, s are both even. So the product formula
implies HM (q )2 = (−1)r (r−1)/2+s (s−1)/2, which forces (r + s )/2 to be even. Then the di-
mension, which is 2(r + s ), is divisible by 8.

9. THE MASS FORMULA: EXAMPLES

9.1. Binary quadratic forms. Recall Minkowski’s theorem: given a lattice L ⊂ Rn , if the
volume of the ball of radius r /2 is bigger than the volume of L, then there exists a non-
zero x ∈ L with ||x || ≤R .

Example 9.1.1. Consider Q = x 2+y 2, and suppose Q ′ ∈ genus(x 2+y 2). Consider (Z2,Q ′),
a lattice of volume 1. By Minkowski’s theorem, there exists v ∈ Z2−{0}with Q ′(v )≤R2 as
soon as πR2/4> 1, i.e. R2 > 4/π. Q(v ′) is a non-zero integer, so for R sufficiently close to
4/π the resulting vector v ′ must satisfy Q(v ′) = 1.

Choose coordinates on Z2 so that v ′ = (1, 0). Then

Q ′(x , y ) = x 2+bx y + c y 2.

Note that disc(a x 2 + bx y + c 2) = det

�

2a b
b 2c

�

= 4a c − b 2. So disc(Q ′) = 4c − b 2 =

disc(x 2+ y 2) = 4.
Replacing x by x + y changes b to b + 2. Therefore we can assume that b = 0 or 1,

which forces b = 0, c = 1 hence Q ′ = x 2+ y 2 =Q .
What are the automorphisms of Q? Note that any such must permute the vectors of

length 1, which are {(±1, 0), (0,±1)}. Therefore the automorphisms are (x , y ) 7→ (±x ,±y )
and (x , y ) 7→ (±y ,±x ).

Example 9.1.2. LetQ0 = x 2+x y+6y 2 (which has discriminant 23). SupposeQ ′ ∈ genus(Q0).
This has volume

p

23/4. (We can diagonalize it to a x 2 + by 2. This lattice has volume
p

ab and discriminant 4ab , so the volume is
p

disc/4.) Then by Minkowski’s Theorem

we have a vector of length ≤ 2
p

23
π

, so there exists v ′ ∈ Z2 with Q ′(v ′)∈ {1, 2, 3}.

Case 1: Q ′(v ′) = 3. Again you can assume that v ′ = (1, 0) and Q ′ = 3x 2+bx y + c y 2. If we
adjust x to x +y , then b goes to b +6. Then we can assume that−2≤b ≤ 3. If we replace
y by −y , then b is negated, so we only need to check b ∈ {0, 1, 2, 3}.

We have discQ ′ = 12c −b 2 = 23. The only solution is b = 1 and c = 2. This leads to the
form Q ′ = 3x 2+x y +2y 2.

We leave the other cases as an exercise. The answer is that there is nothing new: the
forms are equivalent to Q0 = x 2+x y +6y 2 or Q1 = 3x 2+x y +2y 2. We still have to check
that Q0 ∼Zp Q1 for all primes p .

Exercise 9.1.3. Repeat this analysis for x 2+6y 2. A similar analysis leads to Q1 = 2x 2+3y 2.
These two are not equivalent over Q3.

You can check Q0 ∼Zp Q1 by the classification theory we discussed before, and the
following lemma.
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Lemma 9.1.4. Let Q ,Q ′ be quadratic forms over Z2. Ifl vp (discQ), vp (discQ ′)≤ 1 (for p = 2,
demand that vp (. . .) ≤ 3) then Q ∼Zp Q ′ if and only if discQ = discQ ′ and HM (Q)p =
HM (Q ′)p , i.e. if and only if Q ∼Qp Q ′.

Finally we record the automorphisms:

• Aut(Q1) = {(x , y ) 7→ (−x ,−y ), Id},
• Aut(Q0) = {(x , y ) 7→ (x + y ,−y ), (−x − y ,−y ), (−x ,−y ), (x , y )}.

So |Aut(Q0)|= 4 and |Aut(Q1)|= 2.

Remark 9.1.5. Gauss considers binary Q up to equivalence by SL2 Z. Then 2x 2 + x y +
3y 2 6∼ 3x 2+ x y + 2y 2, because it requires a matrix with determinant −1. For this all the
automorphism groups have the same size. With this notion, the set of binary quadratic
forms of discriminant D has a group structure, and that makes it isomorphic to the ideal
class group of the order with discriminant −D.

9.2. The mass formula for binary quadratic forms. We’ll work through the statements
of the mass formula for binary quadratic forms:

∑

Q∈genus(Q0) rQ (m ) ·wQ
∑

Q wQ
=HL heuristic(Q0, m )

and
∑

Q∈genus(Q0)

wQ = explicit function(Q0).

We want to prove a version of this, where we average not just over the genus but all forms
of discriminant D.

We want to compute
∑

Q : a x 2+bx y+c 2/∼
discQ=d

#{vectors v ∈ Z2 |Q(v ) =m }
|Aut(Q)|

.

For simplicity assume that m is squarefree, so that v is automatically primitive. In other
words, we are counting

=
#{Q(x , y ), v ∈ Z2 |Q(v ) =m ; discQ = d }

GL2 Z

=
#{Q(x , y ): Q(1, 0) =m ; discQ = d }

stabilizer of (1, 0) in GL2 Z

=
#{m x 2+bx y + c y 2 : 4m c −b 2 = d }

stabilizer
This is very analogous to the unfolding process we used in the second proof of Siegel’s
formula,

∫

E f =
∫

f . Note that the stabilizer is generated by (x , y ) 7→ (x + y , y ) and
(x , y ) 7→ (−x ,−y ). Using the stabilizer we can assume that 0 ≤ b ≤ m , because by ap-
plying (x , y ) 7→ (x + y , y ) we can assume that −(m − 1) ≤ b ≤m , and then we can apply
x 7→ (−x ,−y ). The endpoints (i.e. forms with b = 0 or b =m ) are counted with weight
1/2, because there is only one pre-image.
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So what we have found is

∑

Q disc D

rQ (m )
|Aut(Q)|

=
m
∑

b=0

′

{#c | 4m c −b 2 =D}

where the
∑′means the endpoints are counted with weight 1/2. Thanks to our limita-

tions on b , there is exactly one solution if D is a square modulo 4m , so this is

=
m
∑

b=0

′(
1 b 2 ≡−D mod 4m

0 otherwise

which is “the number of square roots
p
−D, modulo 4m ”. It’s important that we not only

have this formula, but that there is a nice interpretation of the right hand side.

Review of the HL heuristic. We’re expecting to find the output from the Hardy-Littlewood
heuristic on the right hand side. The heuristic says that

#{Q =m } ≈ vol(Q =m ) ·
∏

νp

where

νp = lim
`→∞

#{Q =m (mod p `)}
p (n−1)` .

Example 9.2.1. Let’s check version 1 of the mass formula for Q = x 2 + x y + 6y 2. For
simplicity we take m 6= 23 to be a prime. Last time we found that the genus of x 2+x y +
6y 2 consists of Q0 = x 2+x y +6y 2, which has automorphism size 4, and Q1 = 2x 2+x y +
3y 2, which has automorphism size 2.

The answer should be the number of solutions to b 2 ≡ −23 mod 4m in 0 ≤ b ≤ m .
This is 0 if−23 is not a square mod m ; otherwise there are two square roots, an even one
and an odd one, but only the odd one works mod 4 so we get 1.

In other words, if −23=� mod m then

rQ0 (m )
4

+
rQ1 (m )

2
= 1.

In fact either rQ0 (m ) = 4 or rQ1 (m ) = 2, since as soon we have one solution we get more
by acting an automorphism.

We need to check that HL heuristic (Q0, m ) = 1. This is

lim
ε→0

vol(Q−1(m −ε/2, m +ε/2)
ε

∏

lim
`→∞

#{Q =m (mod p `)}
p (n−1)` .

First, let’s consider the volume of {Q =m }. The volume of Q ≤ R is πR/
p

23/4. So the

volume of the shell is πε/
p

23/4= 2π/
p

23.
Now what about the factors

νp =
lim #{Q =m mod p `}

p `
?
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If p 6= 23, m , 2 then by the theory of quadratic forms over Zp (namely that they can be
diagonalized) we have Q ∼ x 2−u y 2 where u is a unit. If u is a square, then

x 2−u y 2 = (x −
p

u y )(x +
p

u y )∼ x y .

Thus the number of solutions to x y ≡m mod p ` is the number of units in Z/p `, which
is p `(1− 1/p ). If u is not a square, then the number of solutions mod p ` is p `(1+ 1/p ),
which you check by reducing to Z/p and checking that it’s p +1 in that case. Therefore,

ν` = 1±1/p

but discQ =−4u , so u =−23/4 up to squares. Therefore,

νp =































1+1/p −23 6=� mod p

1−1/p −23=� mod p

2 p = 23

1/2 p = 2

2(1−1/p ) p =m ,−23=� mod m

0 p =m ,−23 6=� mod m

So the HL heuristic is
2π
p

23
22
∏

p

(1−χ(p )/p )

where

χ(p ) =







1 −23=� mod p

0 p = 23

−1 −23 6=� mod p

The product is
∏

p

(1−χ(p )/p ) =
p

23/3π.

How do you derive this? Inverting the left hand side gives
∏

p

1

(1−χ(p )/p )−1 =
∑ χ(n )

n

where χ(n ) is defined multiplicatively. This is periodic with period 23. So we can rewrite
this as a sum of terms

∑

ζn/n , where ζ varies over 23rd roots of unity. So the HL heuristic
gives

8π
p

23

p
23

3π
=

8

3
.

We should have gotten 1/(3/4) = 4/3. Actually, the Mass formula is off by a factor of 2
when n = 2.

The mass formula version 1 is

vol(Q =m )
∏

p

#{Q =m mod p `}
p ∗

=

∑ rQ (m )
|Aut(Q)|

∑ 1
|Aut(Q)|

.
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We can refromulate the mass formula version 2 is

vol(OQ )
2

∏

p

1
2 #OQ (Z/p `)

p ∗
=

2
∑

1/|Aut(Q)|

which makes the similarity between the formulas clearer. Here OQ is the set of linear
transformations preserving Q , so OQ(Z) = Z, and OQ (Z/p `) is the set of linear transforma-
tions mod p ` preserving Q . Also, by volume we mean vol(OQ ) = vol(OQ (R)) for the “fiber”
volume form of Q : Rn → R. We do the same thing here where the “fiber” form is where
we think of OQ (R) as the fiber of the map M n (R) to the quadratic forms over R sending
M 7→Q(M x ).

9.3. The Kneser neighbour method. The main new idea in the general case is a good
way of parametrizing the genus. To explain the rough idea, recall that E8 was constructed
by going down to D8 and then squeezing in another copy. The construction of the Leech
lattice was similar: start with the sublattice of Z24 mapping to the Golay code, pass to
some intermediate thing, then extend to the Leech lattice.

This idea lets you generate new elements in a genus. Namely, for a general quadratic
form you perform an analogue of going down and back up. This is the “Kneser neighbour
method”.

To talk about this propertly we need a slight change of perspective, shifting the em-
phasis from quadratic forms to lattices. If q is a quadratic form on Qn and L ⊂ Qn is a
lattice, such that q (L)⊂ Z, then (q , L) defines a quadratic form over Z.

Properties.

• If L, L′ ⊂Qn are lattices, then (q , L)∼ (q , L′) ⇐⇒ there exists g ∈Oq (Q) such that
g L = L′.

The argument is that (q , L)∼ (q , L′) when there exists λ: L→ L′ with q (λ(v )) =
q (v ). Then you take g to be an extension of λ to Qn .
• (q , L) and (q , L′) are in the same genus if and only if for all primes p , there exists

g ∈Oq (Qp ) such that g L p = L′p . Here L p is the closure of L in Qn
p , which you can

think of concretely as taking a basis v1, . . . , vn for L and setting L p := Zp v1+ . . .+
Zp vn .

Now we come to the Kneser neighbour method. The is a generalization of our con-
struction of the Leech lattice:

{x ∈ Z24 | x ∈G24}

2

Leech

L 1

2

Let q be a quadratic form on Qn and L a lattice in Qn with q (L)⊂ Z. Let p be a prime not
dividing disc(q ).
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Definition 9.3.1. A p -neighbour of L is a lattice L′ ⊂Qn fitting into a diagram

L

p

L′

p||
L ∩ L′

with q (L′)⊂ Z (and L′ 6= L).

Theorem 9.3.2. For all p -neighbours L′, (q , L′) and (q , L) are in the same genus. Also,
there is a bijection

{p -neighbours L′}↔{lines `⊂ L/p L |q mod p is 0 on `}.

Remark 9.3.3. If you join (q , L) and (q , L′) whenever L and L′ are neighbours, you get a
graph structure on the genus. (This may be called the “Kneser graph”.)

Proof. Let A be the matrix for q , so that

〈x , y 〉= x T (2A)y =q (x + y )−q (x )−q (y ).

Choose v ′ ∈ L′−L∩L′. Let v = p v ′ ∈ L∩L′. Let v be the image of v in L/p L. We’re ba-
sically going to show that we can reconstruct everything from this v . Then v determines
L ∩ L′ in the following sense. Note that

〈L ∩ L′, v 〉 ∈ p Z

so L ∩ L′ ⊂ {λ ∈ L | λ(v ) ≡ 0 mod p}, but this must be an equality since both sides have
index p in L (this uses that the discriminant is not divisible by p ).

This means that we can describe (this is where we use v ′ /∈ L)

L ∩ L′ = {x ∈ L : 〈x mod p , v 〉 ≡ 0 mod p}.

Next, v determines v up to translation by p 2L. The reason is that q (v ) = p 2q (v ′) ∈ p 2Z,
so we can find v by lifting v arbitrarily to v0 ∈ L and then adjusting v = v0+p t . We want

q (v ) =q (v0)+p 〈v0, t 〉+p 2q (t )

to be divisible by p 2. So among the lifts of v in L, this condition determines v modulo
p 2: we need to solve for t (unique up to p L) such that p 〈v0, t 〉+q (v0)≡ 0 mod p 2.

Therefore, v determines L′ by the following recipe:

L′ = L ∩ L′+Z
v

p

where L∩L′ = {x ∈ L : 〈x , v 〉= 0 mod p} and v is a lift of v to L such that q (v )≡ 0 mod p 2.
This rule gives a bijection between neighbours L′ and [v ]mod p with q (v ) = 0. �

Example 9.3.4. Let q = x 2 + x y + 6y 2, L = Z2. Take p = 3. Start with v ∈ (Z/3Z)2 with
q (v ) = 0. For instance, we could take v = (0, 1). Then

L ∩ L′ = {x ∈ Z2 : 〈x , v 〉 ≡ 0 mod 3}= {(m , n )∈ Z2 : 3 |m }.

To find L′, lift v to v ∈ Z2 such that q (v )≡ 0 mod 9. For instance, we can take v = (3, 1).
Now we adjoin 1

3 v = (1, 1/3), obtaining

{(m , n ): 3 |m }+Z(1,
1

3
) = Z(1,

1

3
)+Z(0, 1).
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Let e = (1, 1
3 ) and f = (0, 1). Then

q (x e + y f ) = x 2+
�

x 2

3
+x y

�

+6
�x

3
+ y
�2
= 2x 2+5x y +6y 2.

The substitution x 7→ x − y turns this form into 2x 2+ x y + 3y 2, which is the other form
we found earlier in this genus.

Remark 9.3.5. The number of neighbors is the number of isotropic lines in L/p L. We
can put the quadratic form into

x 2
1 + . . .+x 2

n−1+u x 2.

There is some formula for the number of isotropic lines, roughly p n−2 since there are
p n−1 lines and one in p is isotropic.

Finally, we have to show that if L, L′ are neighbors then (q , L) and (q , L′) are in the same
genus. Here is the sketch of the argument. We use the classification of forms over Zp . At
` 6= p we have L = L′ = L ∩ L′, so we can take g = 1. You can change coordinates so that

L p = Zn
p

q = x1x2+q (x3, . . . ,xn )

v = (1, 0, . . . , 0)

L p ∩ L′p = {(x1, . . . ,xn ): x2 ∈ p Zp ,x i ∈ Zp for i 6= 2}

L′p = {(x1, . . . ,xn ): x1 ∈
1

p
Zp ,x2 ∈ p Zp ,x i ∈ Zp }.

At `= p , we can take g (x1, . . . ,xn ) = (x1
p , px2,x3, . . . ,xn ) and this g ∈Oq .

9.4. Parametrization of genus. We reiterate that we are now adopting the perspective
of a quadratic form q on Qn . A lattice L is a subset of Qn such that q (L)⊂ Z. Then

• (q , L)∼Z (q , L) if and only if there exists g ∈Oq (Q)with g L = L′.
• (q , L)∼Zp (q , L) if and only if there exists g ∈Oq (Qp )with g L p = L′p .

Lemma 9.4.1. The map sending L 7→ (L p )p gives a bijection

�

lattices in Qn	↔
§

{L p ⊂Qn
p }

for almost all p , L p = Zn
p

ª

Proof. If L ⊂ Qn is a lattice, then L p = Zn
p for almost all p because we can choose N , M

such that
1

N
Zn ⊃ L ⊃M Zn .

To show that this is a bijection, write down the inverse

{L p }→ “intersection of L p ”= {x ∈Qn | x ∈ L p for every p}.

�

The group GLn Qp acts on lattices in Qn in the following way. Given g ∈ GLn Qp , we
send L↔ (L 2, L 3, . . .) to the lattice (L 2, L 3, . . . , g L p , . . .).
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Example 9.4.2. Let g =
�

2 0
0 3

�

∈GL2(Q3). How does g act on Z2? It only focuses on the

“3-adic” aspect, so

g ·Z2 = {x ∈ Z2 | x ∈
�

2
3

�

Z2
3}= {(m , n )∈ Z2 : 3 | n}.

Putting these actions together, we get an action of
′
∏

p

GLn Qp

on lattices in Qm (the restricted product means that for almost all p , g p ∈GLn Zp ). Note
that if we embed GLn Q ,→

∏′
p GLn Qp then the action restricts to the natural action of

GLn Q.
Now we introduce a convenient packaging of this structure, namely the adeles.

Definition 9.4.3. Define the finite adeles to be

A f =
′
∏

p

Qp

(so xp ∈ Zp for almost all p ). The full ring of adeles is

A=R×
′
∏

p

Qp .

The topology is the natural one induced by the presentation

A f =
⋃

finite set S







∏

p∈S

Qp ×
∏

p /∈S

Zp







where we take the product topology on
∏

p∈S Qp ×
∏

p /∈S Zp . This makes the adeles into
a locally compact topological ring.

So we’ve shown that GLn A f acts on lattices in Qn .

Theorem 9.4.4 (Parametrization of the Genus). Let Q be an integral quadratic form on
Zn . There is a bijection

genus(Q)↔ SOQ (Q)\SOQ(A f )/
∏

p

SOQ (Zp )

(the right hand side is the set of orbits of SOQ (Q) on SOQ(A f )/
∏

p SOQ (Zp )).

How should we think of this? We should think of Q ,→ A as a “thick” version of Z ,→R.
Therefore we should think of

SOQ(A f )/
∏

p

SOQ (Zp )

as similar to the orbits of SOQ (Z) on SOQ (R), so this “behaves like”

SLn R/SLn Z.
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We will be able to rephrase version 2 of the mass formula: for a natural measure on
SOQ (A), the volume of the right hand side is 2. This was discovered by Weil [“Adeles and
Algebraic Groups”].

Proof. Let q be the quadratic form induced by Q on Qn , i.e. “Q considered over Q”. So
Q = (q , Zn ). Let L be the set of lattices L ⊂ QN such that (q , L) is in the same genus as
(q , Zn ). There is a natural map

L → genus(Q).

We claim that it is surjective. This has some content, as follows. If Q ′ ∼Q then Q ′ ∼Zp Q
and Q ′ ∼R Q . The nontrivial content is that this implies that Q ′ ∼Q Q , i.e. there exists a
map λ: Qn →Qn such that Q(λ(v )) =Q ′(v ). Then Q ′ = (q ,λ(Zn )).

So genus(Q) is the set of orbits of Oq (Q) onL .
Since (q , L)∼Zp (q , L′) ⇐⇒ L = g L′ for some g ∈Oq (Qp ), if (q , L)∈L then for all p we

have L p = g p Zn
p for some g p ∈Oq (Qp ). In other words, L is in the Oq (A f )-orbit of Zn . So

L is the orbit of Zn under Oq (A f ), which is

L =Oq (A f )/
∏

p

stabilizer of Zn
p

and the latter is
∏

p Oq (Zp ). So the genus ofQ is the set ofOq (Q)-orbits onOq (A f )/
∏

p Oq (Zp ).
We can replace Oq by SOq using that:

(1) Oq (Q) contains an element of determinant −1,
(2) for all p , Oq (Zp ) contains an element of determinant −1. This is not trivial; one

way to see it is to choose v ∈ Zn
p such that q (v ) is divisible by p , i.e. vp (q (v )) is

minimal. Then reflection through v (i.e. reflection through its orthogonal hyper-
plane) sends

x 7→ x −
q (x +v )−q (x )−q (v )

q (v )
v

and we can see from the choice of v that q (x+v )−q (x )−q (v )
q (v ) is integral.

�

Remark 9.4.5. Actually there was a mistake. The map

Oq (A f )/U → genus(Q)

sending L ∈ Oq (A f ) · Zn to (q , L). This descends to give the bijection between SOq (Q)-
orbits and the genus. Replacing O by SO, one gets that the map is still surjective by the
argument with reflections. But it may not be injective.

The upshot is that the SOq thing is only the genus of Q up to strict equivalence.

Example 9.4.6. The genus of x 2+ x y + 6y 2 is {x 2+ x y + 6y 2, 2x 2+ x y + 3y 2}. However,
up to strict equivalent we have {x 2+x y +6y 2, 2x 2+x y +3y 2, 3x 2+x y +2y 2}. Note that
# Aut(x 2+x y +6y 2) = 4 and # Aut(2x 2+x y +3y 2) = 2, so the total mass is 1/4+1/2= 3/4.

If we do the computation for “strict” version of genus, we only look at automorphisms
of determinant 1. So we get # Aut+(x 2 + x y + 6y 2) = 2, # Aut+(2x 2 + x y + 3y 2) = 2, and
# Aut+(3x 2+x y +2y 2) = 2. So the total mass is 1/2+1/2+1/2= 3/2.
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In fact it is always the case that the mass of the strict genus is always exactly twice the
mass of the genus. Either you have a determinant −1 self-map, in which case it doesn’t
divide, or it does divide into two copies.

10. PROOF OF THE MASS FORMULA

10.1. Measures and the volume of SLn A/SLn Q. If X is a smooth algebraic variety over
Q andω is an algebraic differential form of degree= dim X then we get a measure |ω| on
X (R).

Properties:

• | fω|= | f | · |ω| for f an algebraic function.
• the measure of Y (R) if Y ,→X is a lower-dimensional subvariety is always 0.
• If π: X → Y is algebraic and smooth, choose ωX on X and some non-vanishing
ωY on Y and let ωπ−1(y ) on each fiber π−1(y ). Then for F continuous and com-
pactly supported,

∫

X (R)

F |ωX |=
∫

Y (R)

|ωY |
∫

π−1y (R)

|ωπ−1(y )|F.

• This is compatible with restriction to an open subset.
• Ifω= d x1 ∧ . . .∧d xn on An , then |ω| is the Lebesgue measure.

Similarly, we get a measure |ω|p on X (Qp ) with normalization that |d x1 ∧ . . .∧d xn | is
the Haar measure with |Zn

p | = 1 on Qn
p . In particular, for π: X → Y as above (smooth in

the algebraic sense) and F ∈Cc (X (Qp )), we have an induced fibral formωπ−1y such that

∫

X (Qp )

F |ωX |Qp =

∫

y∈Y (Qp )

|ωY |Qp

∫

π−1y

F |ωπ−1y |Qp

and the inner integral is continuous in y ∈ Y (Qp ).

Example 10.1.1. Suppose X ⊂An is defined by

f 1 = f 2 = . . .= f r = 0.

Suppose that the map

F : An ( f 1,..., f r )−−−−→Ar

is smooth above 0 (i.e. its derivative is of full rank). On An put the form d x1 ∧ . . .∧d xn

and on Ar put d x1 ∧ . . .∧d xr . On X we put the “fiber” differential form, which is anyωX

such that

ωX ∧d f 1 ∧ . . .∧d f r = d x1 ∧ . . .∧d xn .

What is |ωX |Qp (X (Zp ))? (The answer has to do with counting points modulo powers of
p .)
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Let FK = 1Zn
p∩π−1 B , where B = p K Zr

p (thought of as a small ball around 0), where we’ll

consider K →∞ (so that B shrinks to 0). Then
∫

An (Qp )

FK =measure{x ∈ Zn
p |π(x )∈ B}

=measure{x ∈ Zn
p | f 1(x )≡ . . .≡ f r (x )≡ 0 mod p K }

Assuming that the f i have integral coefficients, this is

=
#{x ∈ (Z/p k )n : f 1(x ) = f 2(x ) = . . .= f r (x ) = 0}

p K n .

(When the f i don’t have integral coefficients, you have to adjust slightly.) Now,

lim
K→∞

∫

An (Qp )

F

computes the integral over y ∈ B of the volume of the fiber, which as we take K →∞ the
left side is just the volume of X (Zp ), so we find that

vol(X (Zp )) = lim
K→∞

1

vol(B ) = p−K r ·
#{x ∈ (Z/p k )n : f 1(x ) = f 2(x ) = . . .= f r (x ) = 0}

p K n .

Therefore, we have found that

|ωX |X (Zp ) = lim
K→∞

#{x ∈ (Z/p k )n : f 1(x ) = f 2(x ) = . . .= f r (x ) = 0}
p K (n−r ) .

Here one can think of p K (n−r ) is the expected number of solutions (since there are n
variables and r equations). This gives an interpretation of the factors showing up in the
Hardy-Littlewood heuristic.

Remark 10.1.2. Here is an aside. Let X , Y be projective smooth Calabi-Yau varieties over
C (so there are volume forms). Suppose X and Y are birational. Batyrev showed that
b i (X ) =b i (Y ) for all i , by using p -adic integration.

First he reduced to the case where X , Y are defined over Q. Then he showed that
#X (Fp ) = #Y (Fp ) for almost all p ; this implies equaliy of Betti numbers by a standard
argument. The proof is that

∫

X (Qp )

|ωX |=
∫

Y (Qp )

|ωY |

because birationality implies modification on a set of measure 0.

Example 10.1.3. Let’s consider SLn , with the sameω as before:h

ω :=
∏

(i ,j )6=(1,1)

d x i j

minor(1, 1)
.

Thisωwas the “fiber” volume form for

det: Matn×n →A1.
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Then

|ω|(SLn Zp ) = lim
K→∞

# SLn (Z/p K )

p K (k 2−1)
=
�

1−
1

p 2

��

1−
1

p 3

�

. . .

�

1−
1

p n

�

.

In particular, the measure of
∏

p SLn Zp is 1
ζ(2)ζ(3)...ζ(n ) . We showed earlier that |ω|R (SLn R/SLn Z) =

ζ(2)ζ(3) . . .ζ(n ). This implies that if F is a fundamental domain for SLn Z acting on SLn R,
then the product volume of F ×

∏

p SLn Zp is 1.

Lemma 10.1.4. This set F×
∏

p SLn Zp is a fundamental domain for SLn Q acting on SLn A

Proof. We have SLn A = SLn R× SLn A f . The key fact is that each element g ∈ SLn A f

can be written as γu for γ ∈ SLn Q and u ∈
∏

p SLn Zp . Moreover, this is unique up to

replacing γ by γδ−1 and u by δu , where δ ∈ SLn Z.
The main way to understand an adelic group like GLn A f is to understand its action

on lattice. For g ∈GLn A f , the action is by applying g to Zn . This is some in the ambient
Qn , so you can get to it by some element in GLn Q, and you can further fiddle to get to it
with SLn Q. So g ·Zn = γ ·Zn for some γ ∈ SLn Q, so γ−1 g stabilizes Zn , hence belongs to
∏

SLn Zp .
�

As an upshot, we get the following more uniform statement:

Corollary 10.1.5. We have
vol(SLn A/SLn Q) = 1.

For SLn replaced by any semisimple algebraic group, one gets a rational number, and
we know what this rational number is.

10.2. The volume of SOq A/SOq Q. We will see that Version 2 of the mass formula looks
like the statement

vol(SOq A/SOq Q) = 2.

We can phrase things in terms of an adelic measure coming from a differential formω
on SLn coming from det: M n → A. As we have seen, the volume of SLn A/SLn Q is 1 (this
is the volume with respect to |ω|R ×

∏

p |ω|p . This measure is unchanged by scaling by
λ∈Q∗, by the product rule, so this is canonical and independent of the choice ofω.

Let Q be a positive-definite integral quadratic form. Let q = Q considered as a Q-
form. Fixω to be a left-invariant algebraic differential form on SOq . We can “construct”
this explicitly as a fibral measure by viewing Oq as the fiber of

Matn×n →{quadratic forms in n variables},

sending A 7→ q (Ax ), with the measure on M n being
∏

d a i j and the measure on qua-
dratic forms is

∏

d b i j , if they are parametrized by q =
∑

b i j x i x j .
We’ll prove that with respect to the form |ω|R

∏

p |ωp |,

vol(SOq (A)/SOq (Q)) = 2

and then show that this is equivalent to version 2 of the mass formula.
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Proof. Let g 1, . . . , g k be representatives for SOq Q-orbits on SOq A f /
∏

p SOq Zp . We saw
earlier that the set {g i } is in bijection with the genus of Q for the relation of strict equiv-
alence, under the map

g i 7→ (q , g i Zn ) =: Qi .

Therefore, we have the partition

SOq A=
k
∐

i=1

SOq Q · g i (SOq R ·U ).

This gives a good “fundamental domain” for SOq Q\SOq A, but one has to be careful be-
cause there is some “folding”, due to stabilizers:

measure(SOq Q\SOq A) =
k
∑

i=1

measure(SOq R ·U )
#(SOq Q∩ g i (SOq R ·U )g −1

i )

where #(SOq Q∩ g i (SOq R ·U )g −1
i ) is the number of automorphisms of Qi . For instance,

taking g 1 = 1 and we see SOq Q∩SOq R ·U which is SOq Q.
Therefore,

measure(SOq Q\SOq A) =measure(SOq R ·U )
∑

Qi∈genus(Q1)
strict∼

1

|Aut+Qi |
.

Recall that the “mass” of the genus up to strict equivalence is always twice the mass of
the genus up to equivalence:

∑

genus(Q1)/strict∼

1

|Aut+Qi |
= 2

∑

genus(Q)/∼

1

|Aut(Q)|
.

So to show measure(SOq Q\SOq A) = 2 is equivalent to showing

∑ 1

|Aut(Q)|
=

1

measure(SOq R ·U )
=



measure(SOq R)
∏

p

measure(SOq Zp )





−1

.

(10.2.1)
Recall that

measure(SOq Zp ) = lim
k→∞

# 1
2Oq (Z/p k )

p k dimOq

and there is a similar expression for SOq R.

Example 10.2.1. For Q = x 2+ y 2, we have Aut(Q) = 8.
We now calculate the volumes to show that this matches the right side of (10.2.1). For

p 6= 2,

SOq (Z/p k ) =
��

a b
−b a

�

: a 2+b 2 = 1

�

and the number of solutions is p k (1± 1
p ), with + when p ≡ 3 (mod 4) and − when p ≡ 1

(mod 4).
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For p = 2, we have #Oq (Z/8) = 128 and #Oq (Z/16) = 256, and for all large k ,

1

2

#Oq (Z/2k )

2k
= 8.

Finally, computing the measure at p = ∞ is just a matter of understanding the right
normalization of the mesaure. We realize Oq (R) as the fiber of

�

α β
γ δ

�

7→ (αx +βy )2+(γx +δy )2 = (α2+γ2)x 2+2(αβ +γδ)x y +(β2+δ2)y 2

Differentiating this at the identity, we get
�

a 11 a 12

a 21 a 22

�

7→ (2a 11, 2a 12+2a 21, 2a 22).

Therefore, we can take the fibral invariant form on Oq R to be d a 12/8 (at the identity),
which in terms of the parametrization

SO2 R=
�

cosθ sinθ
−sinθ cosθ

�

is dθ/8. Then |ω|R(SO2 R) = 2π
8 =

π
4 .

In summary, the right hand side of (10.2.1) is in this case










π

4
︸︷︷︸

R

· 8
︸︷︷︸

2

·
∏

p

(1±1/p )
︸ ︷︷ ︸

p>2











−1

.

Note that
∏

p

(1±1/p )−1 = (1−1/3+1/5−1/7+1/9+ . . .)−1 =
4

π

so the right side of (10.2.1) is 8−1, as desired.

10.3. The inductive step. We’ll now give an inductive argument showing that Version 2
of the mass formula in dimension n − 1 implies versions 1 and 2 in dimension n . The
idea is the same as the computation of

∑

Q ,discQ=D rQ (n ) that we did earlier.
Let Q be the n-dimensional integral quadratic form. Let L i be representatives for

SOq Q acting on SOq A f ·Zn . So L i ⊂Qn are lattices and {(q , L i )} comprise the genus of Q
modulo strict equivalence. We want to show:

average of rQi (m ) =

∑

i
rQi (m )
|Aut+Qi |

∑

i
1

|Aut+Qi |

or the analogous version with Aut instead of Aut+ for the genus modulo the usual equiv-
alence (as opposed to strict). The denominator is (by definition) the “total mass”. The
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numerator is
∑

i

rQi (m )
|Aut+Qi |

=
∑

i

#{(v, L i ): q (v ) =m }
|Aut(q , L i )|

= #

�

SOq Q−orbits on pairs (v, L):
L∈SOq A f ·Zn

v∈L
q (v )=m

�

where if (v, L) has stabilizer H ⊂ SOq Q then it is counted with weight 1/|G |.
Now we unfold this by moving v to standard position. Fix v0 ∈ Qn with q (v0) = m .

Then all v ′ ∈ Qn with q (v ′) =m are in the orbit of v0 under SOq Q (by Witt’s Theorem.)
Let H = Stab(v0)⊂ SOq . This is an orthogonal group in n −1 dimensions.

Remark 10.3.1. Gauss showed that the number of representations x 2+y 2+z 2 = n has to
do with a class number for binary quadratic forms. This seems to be the earliest recogni-
tion of the principle that representation numbers in dimension n have to do with class
numbers in dimension n −1.

So the count is
∑

i

rQi (m )
|Aut+Qi |

=
∑

i

#{(v, L i ): q (v ) =m }
|Aut(q , L i )|

= #
¦

SOq Q−orbits on pairs (v, L)
©

= #{H (Q)−orbits on L ∈ SOq A f ·Zn : L 3 v0}.

Let L := {H (Q)− orbits on L ∈ SOq A f · Zn : L 3 v0}. We’re going to break up the set
of lattices L into orbits of H (A f ). Indeed, the condition of containing v0 is preserved by
H (A f ), so H (A f ) acts on L . Choose representatives L 1, . . . , L g for these orbits. (If m is
not divisible by high powers of primes, then g will usually be 1, so large g has to do with
high divisibility of m ). Then we write

∑

i

rQi (m )
|Aut+Qi |

=
∑

i

#{(v, L i ): q (v ) =m }
|Aut(q , L i )|

= #
¦

SOq Q−orbits on pairs (v, L)
©

= #{H (Q)−orbits on L ∈ SOq A f ·Zn : L 3 v0}

=
g
∑

j=1

#{H (Q)− orbits on H (A f )L j }.

By the same reasoning as before, {H (Q)− orbits on H (A f )L j } are the same as H (Q)-orbits
on H (A f )/Uj where Uj is the stabilizer of L j in H (A f ).

Recall that we calculated the total mass to be

vol(SOq (A)/SOq (A)) ·vol(SOq R ·
∏

p

SOq Zp )−1

by unfolding the orbits of SOq Q on SOq A. We can apply the same reasoning in this case
to the numerator to conclude that

∑

i

rQi (m )
|Aut+Qi |

=
∑

j

vol(H (A)/H (Q)) · (vol H (R)vol(Uj ))−1.
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To summarize, we have chosen some fixed vector v0 with Q(v0) =m . Let G = SOq (∼=
SOn ) and H = Stab(v0)(∼=SOn−1). We have found

∑

Q ′∈genus(Q)
rQ′ (m )
|Aut(Q ′)|

∑

Q ′∈genus(Q)
1

|AutQ ′|
=
�

vol(H (A)/H (Q))
vol(G (A)/G (Q))

�

·
g
∑

j=1

vol(G (R))
∏

p volG (Zp )

vol(H (R))vol(Uj )
(10.3.1)

where L 1, . . . , L g is a set of representatives for H (A f ) acting onL = {L ∈G (A f )Zn : v0 ∈ L}.
Note that we can identifyL =

∏

pLp where

Lp = {lattices L p ⊂Qn
p of form G (Qp ) ·Zn

p : v0 ∈ L p }

The orbits of H (A f ) onL correspond to the product over p of H (Qp )-orbits onLp . That
is a singleton for almost all p .

The Hardy-Littlewood heuristic. Let X be the varietyQ−1(m ). Note that G acts on X , and
the stabilizer of v0 is H . Define a volume formωX on X as the fibral form by regarding X
as the fiber of

Q : An →A1.

According to the Hardy-Littlewood heuristic, the number of solutions to Q = m is ap-
proximately

vol(X (R))
∏

p

vol(X (Zp ))

with volumes with respect toωX .
Instead of ωX we can use the “quotient form” ωG /ωH . These are both algebraic dif-

ferential forms on X/Q, so they are proportional (being both G -invariant). The product
formula implies that they give the same answer.

Now G acts transitively on X , but this doesn’t necessarily mean that G (Zp ) acts transi-
tively on X (Zp ). If that were true, then we would have

vol(X (Zp )) =
vol(G (Zp ))
vol(H (Zp ))

.

In general, there are several orbits of G (Zp ) acting on X (Zp ).

Lemma 10.3.2. The G (Zp )-orbits on X (Zp ) are in bijection with H (Qp )-orbits onLp .

Proof. Using that G (Qp ) acts transitively on X (Qp ), we have a bijection between G (Zp )-
orbits on X (Zp ) and G (Zp )-orbits on vectors g v0 ∈ Zn

p for g ∈G (Qp ).

G (Zp )\X (Zp )

G (Zp )\{g v0 ∈ Zn
p : g ∈G (Qp )} G (Zp )\{g H (Qp ): v0 ∈ g −1Zn

p }
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But
G (Zp )\{g H (Qp ): v0 ∈ g −1Zn

p }=G (Zp )\{G (Zp )g −1H (Qp ): g −1Zn
p ∈Lp }.

Finally, the right side is equal to H (Qp )-orbits on Lp by sending the orbit of g to the
lattice g −1Zn

p . �

For L ∈Lp , let HL be the stabilizer of L in H (Qp ). The Lemma shows that

X (Zp ) =
∐

H (Qp )−orbits onLp

G (Zp )/UL .

At the level of measures this says that

vol(X (Zp )) =
∑ vol(G (Zp ))

vol(HL)
.

Also, vol(X (R)) = vol(G (R))
vol(H (R)) and so taking the product gives

vol(X (R))
∏

p

vol(X (Zp )) =
∑ vol(G (R))

vol(H (R))
·
∏

p

volG (Zp )
vol(HL)

.

Comparing this with the right side of (10.3.1), we see that we have shown

average of rQ (m ) =
�

vol(H (A)/H (Q))
vol(G (A)/G (Q))

�

· (HL heuristic).

We would like to show that the multiplying factor
�

vol(H (A)/H (Q))
vol(G (A)/G (Q))

�

is 1. We will do this by

averaging over m .

Remark 10.3.3. This argument is showing that there is a correspondence between

solutions to Q(x ) =m ↔ genus of a quadratic form in dimension n −1

and there is even a map from left to right, by taking the orthogonal complement.

10.4. The averaging step. We now show that

vol(H (A)/H (Q))
vol(G (A)/G (Q))

= 1

by averaging over m , assuming m ≥ 5. More precisely, the argument works by assuming

vol(SOq (A)/SOq (Q)) = 2

for all forms q in dimension n − 1, and then showing that it is also true in dimension
n (i.e. Version 2 in dimension n − 1 implies Version 1 in dimension n and Version 2 in
dimension n).

We can write the Hardy-Littlewood heuristic as

HL heuristic= ν∞(m )
∏

p

νp (m )

where ν∞(m ) = vol(X (R)) and νp (m ) = vol(X (Zp )). We have shown that
∑

Qi

rQi (m )
|Aut |

∑

Qi

1
|Aut |

=
�

vol(H (A)/H (Q))
vol(G (A)/G (Q))

�

·



ν∞(m )
∏

p

νp (m )



 (10.4.1)
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We are going to “average” both sides over m .
Letting LHS denote the left hand side of (10.4.1), we clearly have

∑

m<M

LHS(m )≈
∑

m<M

ν∞(m ).

Theefore, it suffices to show that the average of
∏

p νp (m ) over m equals 1. This fol-
lows from three ingredients:

(1) For n ≥ 5, there exists C =Cq such that

1−C/p
p

p ≤ νp (m )≤ 1+
C

p
p

p
.

(2) The map m 7→ νp (m ) is continuous as a function of m ∈ Zp . (We need n ≥ 3 for
this.)

(3) We have
∫

Zp

νp (m ) = 1

This is easy: νp is the pushforward of the usual measure on Zn
p by the form q , so

the measure is the volume of Zn
p , which is 1.

Why do these imply what we want? (1) means that we can restrict the infinite product to
a finite one. (2) says that the sum is approximated by an integral, and (3) says that the
integral is 1.

To prove (1) and (2), we use the Fourier transform. Think about the quadratic form
Q := x 2+ y 2− z 2.

We’re asking about the measure of these fibers. It’s infinite, so we cut off by some com-
pact set.

ν∞(m ) =measure of K ∩Q−1(m ).

Something bad happens at the singular point, but the measure of the fiber is still conin-
uous there. This is non-trivial - it’s not true for the similar example Q ′ = x 2 − y 2 in the
plane! In fact, the fiber measures blow up if and only if the fibral singularities are rational
in the sense of algebraic geomery.
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Letψ be a character of Zp , i.e. a continous homomorphism

(Zp ,+)→C∗.

By continuity has to factor through Z/p k for some k . Let the level ofψ be the smallest k
such thatψ factors through Z/p k . For simplicity, suppose Q =

∑n
i=1 x 2

i and p > 2. (There
is 1 character of level 0, p −1 of level 1, p 2−p of level 2, etc.) Then the Fourier transform
of νp is

F (νp ) =

∫

ψ(m )νp (m ).

The measure νp is (by definition) the pushforward of the standard one on Zn
p by sum of

squares, so this

Fνp (ψ) =

∫

Zn
p

ψ(x 2
1 + . . .+x 2

n ) =

 

∫

Zp

ψ(x 2)

!n

.

By the same reasoning as for the Gauss sum, one can check that
�

�

�

�

�

∫

ψ(x 2)

�

�

�

�

�

2

= p−level(ψ).

(Think of this as a p -adic Gaussian.) So

|F (νp )|(ψ) = p−level(ψ)n/2.

So if n ≥ 3, then this is integrable (F (νp ) ∈ L1)). That’s enough to make it continuous.
You also get (1) from an explicit estimate.

10.5. The base case. We set up the following induction. Let Q be a quadratic form in n
variables. Then we showed that

Average over genus of rQ (m ) =
vol(H (A)/H (Q))
vol(G (A)/G (Q))

· (HL heuristic).

This was basically an elementary computation. Let’s call the left side LHS(m ) and the
Hardy-Littlewood heuristic H L(m ). We also showed that for m ≥ 5,

∑

m<M

LHS(m )∼
∑

m<M

H L(m ). (10.5.1)

In particular, if we know that vol(H (A)/H (Q)) = 2 for all forms in dimension n − 1, then
we get the result also in dimension n .

Therefore it only remains to establish the base case. There are several options of at-
tack:

(1) Very carefully extend (10.5.1) to all n ≥ 2. (There has to be something different
for n = 2!)

(2) Weil used the exceptional isomorphisms:
• SO3 ∼ SL2,
• SO4 ∼ SL2×SL2.

to handle n = 3, 4.
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(3) The Hardy-Littlewood circle method implies that for n ≥ 5, without averaging

LHS(m )∼H L(m ) as m →∞.

Also, the group H is evidently unchanged by m 7→ k 2m . Taking k to be large and
using the above, we deduce that

vol(H (A)/H (Q)) = vol(G (A)/G (Q))

for all H . So by checking the volume for one H in dimension 4, we get vol(H (A)/H (Q)) =
2 for all n ≥ 4.

(4) Directly show (in some other way) that

LHS(m ) =H L(m ) for all n ≥ 3.

We will do this with θ -functions (at least in the even unimodular case).

Dimension 2. When n = 2, we have in fact

LHS(m ) =
1

2
H L(m )

i.e. the Hardy-Littlewood prediction is off by a factor of 2!
Why? Recall that H L(m ) = ν∞(m )

∏

p νp (m ). The point of these factors were to “cor-
rect” ν∞(m ) by a factor νp (m ) for each p . The underlying idea is to correct as if different
primes impose “independent” conditions. However, in n = 2 “the νp (m ) are not inde-
pendent”, which causes the overcounting by a factor of 2.

The point is that if a binay form Q has discriminant D, then νp (m ) 6= 0 implies that
Q(x )−m = 0 has a solution, so (−D, m )p = 1. But thanks to the product formula, we
know that

∏

p

(−D, m )p = 1.

10.6. Examples of version 2 for even unimodular lattices. If Q arises from an even uni-
modular lattice, the mass formula gives (noting that all even unimodular lattices lie com-
prise a single genus)

�

∑ 1

|Aut(Q)|

�−1

=
n
∏

i=2

Si

∏

p

�

1−
1

p 2

�

· . . . ·
�

1−
1

p n−2

�

where

Si :=
2πi/2

Γ(i/2)
is the volume of a high-dimensional sphere. Therefore, the archimedean term is the
volume of SOn R, and the factoring coming from p is the volume of vol(SOq Zp ). Actually,
in this product the middle term has exponent 2, e.g. for n = 8 it is

8
∏

i=2

S−1
i ζ(2)ζ(4)

2ζ(6).

You can make this nicer by using the functional equation, which absorbs the real volume
terms.
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• For n = 8, the formula gives

1/|Aut E8| ≈ 1.4×10−9.

• In dimension 16, the right side is 2.4×10−18.
• In dimension 24, the right side is 7.9×10−15.
• In dimension 32, you get about 40× 106. So there are at least 80 million even

unimodular lattices, since AutQ ≥ 2.

The Gamma is like a factorial, so this is asymptotically nC n 2 . The Gram matrix has n 2

entries, with size about n . From this you can deduce a lower bound for b i (SLn Z). The
reason is that you can construct an involution of the locally symmetric space (Rohlfs)
with fixed points the unimodular lattices, and use Lefschetz fixed point formula.

11. THETA SERIES

11.1. Modular forms from theta series. Let L be an even unimodular lattice of dimen-
sion n and Q(x ) = 〈x ,x 〉

2 . We define the theta series

θQ =
∑

x∈Zn

e 2πi zQ(x ) =
∑

m≥0

rQ (m )q m

for q = e 2πi z . This is convergent for Im z > 0, i.e. |q |< 1.

Theorem 11.1.1. Suppose that 2Q arises from an even unimodular lattice (so Q itself can
take odd values). Then

(1) θQ is a modular form for SL2 Z of weight n/2.
(2) The average of θQ over the genus of Q, meaning

∑ θQi
|AutQi |

∑ 1
|AutQi |

is the Eisenstein series of weight n/2, normalized with constant term 1.

Remark 11.1.2. This second statement is an instance of a more general phenomenon
observed by Siegel-Weil: the “average of θ -series over a genus = an Eisenstein series”.

In particular, (2) gives a computation of the average of rQ (m ) and you can check that
this equals H L(m ). So you can think of (2) as a different incarnation of the mass formula
(version 1).

11.2. Proof of Theorem 11.1.1. It is enough to check that it transforms as

θQ

�

a z +b

c z +d

�

= (c z +d )n/2θQ (z )

for
�

1 1
0 1

�

and

�

0 1
−1 0

�

since they generate SL2 Z. The first is obvious: it is built into the periodicity. The second
corresponds to z 7→ −1/z . It follows from Poisson summation.
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To explain: we can think of Q as arising from the standard quadratic form
∑

x 2
i on Rn ,

restricted to some lattice L ⊂Rn . Unimodularity means that the dual lattice

L∨ := {v ∈Rn : 〈v, L〉 ∈ Z}= L.

The Fourier transform is

f̂ (k ) =

∫

v

f (x )e 2πi 〈k ,x 〉d x

where d x is “Lebesgue measure”, obtained by choosing an orthonormal basis. Poisson
summation says that

∑

v∈L

f (v ) =
∑

ξ∈L∨
f̂ (ξ)

(using that L is unimodular), where

f̂ (ξ) =

∫

f (x )e 2πi 〈x ,ξ〉d x .

We apply this to f (x ) := e−πt 〈x ,x 〉, which has the important property that

(F e−π〈x ,x 〉)(ξ) = e−
π
t 〈ξ,ξ〉.

Now using that L is even unimodular,s we find that

f̂ (x ) = e−
π
t 〈x ,x 〉t −n/2.

This implies that
∑

x∈L

e−πt 〈x ,x 〉 = t −n/2
∑

L

e−
π
t 〈x ,x 〉

using that L = L∗, so putting t = i z gives

θQ (z ) = z−n/2θQ (−1/z ).

Eisenstein series. Now we come to the second part. First, we give a digression on what
Eisenstein series actually are. Modular forms of weight k correspond to functions on
lattices in C, which are homogeneous:

f (λΛ) =λ−k f (Λ).

In particular, Ek corresponds to

f (Λ) :=
∑

z∈Λ
z−k .

The graded ring of (level one) modular forms is generated by the Eisenstein series E4 and
E6:

⊕

k

Mk =C[E4, E6].

Now, the Fourier expansion of Eisenstein series is

Ek ∼ (constant term)+
∞
∑

n=1

σk−1(n )q n .
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How can you remember the constant term? If you look back at the definition of Eisen-
stein series, you see that it should be formally 0 when q = 1. Formally we also have

∑σk−1(n )
n s = ζ(0)ζ(1−k )

so the constant term is −ζ(0)ζ(1−k ).

Example 11.2.1. When n = 8, we haveM4 = CE4. Since θE8 is in here, it must be propo-
tional to E4:

E4 ∼ θE8 = 1+ . . . .

Comparing constant terms, we find

θE8 = 1+
−1

ζ(0)ζ(−3)

∑

σ3(n )q n

and the constant −1
ζ(0)ζ(−3) is 240, so the number of vectors in E8 of length 2m is 240σ3(m ).

Example 11.2.2. When n = 16 we have lattices E8⊕E8 and E16, so

θE8⊕E8 = θE16 .

This was used by Milnor to give an example of two non-isomorphic Riemannian mani-
folds with the same spectrum (of the Laplacian). The point was to consider R16 modulo
the respective lattices; the fact that the associated theta functions coincide implies that
that the quotients have the same spectrum.

Example 11.2.3. For n = 24, M12 is the span of E12 and ∆ = E 3
4 − E 2

6 . For every even
unimodular L,

θQ =αE12+β∆.

The constant α is determined by the fact that the first coefficient is 1, and the second
constant is determined by knowing the number of vectors of length 2.

For the Leech lattice, we have

θ = 1+
65520

691

∑

σn (m )q m+?

Recall that for the Leech lattice rQ (1) = 0 (arranging this to be the case was one of the
motivations for the construction), so we must have

θ = 1+
65520

691

∑

σn (m )q m −
65520

691
∆.

Note that this implies that

τ(m )≡σ11(m ) mod 691

because θ is clearly integral.

Example 11.2.4. For n = 32,M16 is still two-dimensional. So by the same reasoning the
theta series are determined by one parameter, namely the number of vectors of shortest
length. There aren’t so many vectors, so many of them give the same theta series.
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Finally, we discuss part (2) of Theorem 11.1.1. To prove it, we use Hecke operators.
Recall that

Tm f (Λ) =
1

m

∑

Λ′⊂mΛ

f (Λ′).

Lemma 11.2.5. Fix m ≥ 2. The Eisenstein series Ek is an eigenfunction of Tm with eigen-
valueσk−1(m ) and this space is 1-dimensional.

Proof. It’s enough to show that all eigenvalues of Tm on Sk are smaller. We’ll show by a
maximum modulus argument that any eigenvalue of Tm is at most (deg Tm )m k/2−1. For
instance, if m is prime then this is ≤ (m +1)m k/2−1.

Namely, we homogenize f by multiplying it by a power of the area: more precisely,
ef (Λ) := f (Λ) ·Area(Λ)−k/2. This makes it so that ef depends only on the class of the lat-

tice modulo homothety, so it descends to a function on the usual fundamental domain.
The cuspidality assumption implies that f extends continuously to the point at infinity,
hence is bounded. Then by the maximum modulus principle applied at a point where ef
is maximized shows that T ef expands it by at most the degree.

�

Therefore, it’s enough to show that the average of θQ is a Tm -eigenfunction. Fix p and
let the neighbors of Q be Q1, . . . ,Q g . Let g be the number of isotropic lines in (Z/p Z)n .
We claim that

∑

θQi = (a +b Tp 2 )θQ

for a and b which are explicit polynomials in p . (In fact we’ll see that b = 1.)
To see why this claim finishes off the proof, note that summing this equation over Q

in a genus, we obtain

g (Average of θQ )= (a +b Tp 2 )(Average of θQ ),

because g is the number of neighbors.
To see the claim, we remind you what the neighbor operation is.

(1) Start with (L,Q) and take 0 6= v ∈ L/p L with Q(v ) = 0.
(2) Lift v to ev ∈ L such that Q(ev )≡ 0 (mod p 2).
(3) Set L′ = {y ∈ L : 〈y , v 〉 ≡ 0 (mod p )}+Z ev

p .

Now, by definition
g
∑

i=1

θQi =
g
∑

i=1

∑

v∈L i

qQ(v ).

All the possible neighbors L i are in p−1L. We count for each v ∈ p−1L how many L i

contain it. So we rewrite the above as
∑

w∈p−1L

#{L i 3w } ·qQ(w ).

There are several cases; we just sketch how they go.

• If w ∈ p L, then #{L i 3w }= g . (All neighbors contains p L.)
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• If w ∈ L−p L, then a neighbor L i formed from v ∈ L/p L contains w exactly when
〈w , v 〉 ≡ 0 (mod p ). So we need to figure out the number of isotropic vectors
orthogonal to w . That is, we are looking for the number of isotropic lines in
w⊥ ⊂ (Z/p Z)n . There are two subcases, depending on whether or not w is itself
isotropic.
• If w ∈ p−L− L, then w ∈ L i if and only if Q(w )∈ Z (and w can only be contained

in one L i ).

♠♠♠ TONY: [this still needs to be finished]

11.3. Theta functions from general lattices. Let Q be an integral quadratic form on L.
Then there is an associated bilinear form

〈x , y 〉=Q(x + y )−Q(x )−Q(y ).

To be clear, if Q(x ) = x T Ax then 〈x , y 〉= x T (2A)y .
Let D = disc = det(〈·, ·〉) = #(L∗/L) where L∗ is the dual of L with respect to 〈·, ·〉. Note

that L∗ ⊃ L because the pairing is integral on L.
Let θQ (z ) =

∑

x∈L e 2πi zQ(n ). This is evidently still periodic, but if we apply Poisson
summation then we obtain

θQ (z ) =

 

∑

x∈L∗
e 2πi (−1/z )Q(n )

!

(. . .).

This is problematic because it relates θQ not to itself but to a theta function attached
to a different lattice. The way out will be to analyze the package of several theta functions
at once. That is, we’ll analyze not only θQ but the sums over every coset of L in L∗:

∑

L+λ

e 2πi zQ(n ).

Fourier analysis on groups. For anyψ∈C[L∗/L], define

θψ =
∑

n∈L∗/L

ψ(n )
∑

x∈n+L

e 2πiQ(x )z =
∑

x∈L∗
ψ(x )e 2πiQ(x )z .

(In this framework, the theta function attached to L is the special case with ψ equal to
the characteristic function of the identity.) Call G := L∗/L. The form 〈·, ·〉 descends to a
pairing

G ×G →Q/Z

and also Q descends to a function

Q : G →Q/Z.

If we change z to z +1, we find

θψ(z +1) = θe 2πiQψ(z )

where e 2πiQ is viewed as a function on G .
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The Fourier transform on G is

(Fψ)(`) :=
1
p

D

∑

G

ψ(x )e 2πi 〈x ,`〉

(noramlized to make it unitary). An exercise in Poisson summation shows that
�

i

z

�n/2

θψ(−1/z ) = θFψ(z ).

The Weil representation. Define operators S, T : C[G ]→C[G ] by

Tψ=ψ · e−2πiQ

Sψ= (Fψ)γq

Here γq ∈µ8, and in fact γq ∈µ4 if n is even. However, just ignore it for now.
These satisfy the relations

(S2) = (ST )3 = γ2
Q w (11.3.1)

where wψ(x ) =ψ(−x ). These relations look a lot like the ones for the standard genera-
tors S, T of SL2 Z. In particular, the map

�

0 1
−1 0

�

7→S

�

1 1
0 1

�

7→ T

extends (for n even) to a map ρ : SL2 Z→ Aut(C[G ]). For n even, then, we have an action
of γ∈ SL2 Z on the theta functions:

θψ |γ−1= θγψ.

where the slash operator is

( f |γ)(z ) = (c z +d )−k f

�

a z +b

c z +d

�

and for n odd this is similar, but with a 2-fold cover of SL2 Z.
Now we go back to explain what γQ is. A formula for it is

γQ =
1
p

D

∑

x∈G

e 2πiQ(x ) = i n/2.

(Note that this implies that the dimension of an even unimodularlattice is divisible by 8,
since we have seen that in that case γQ = 1.)

Example 11.3.1. For L = Z and Q(x ) = x 2, the pairing is 2x y and L∗ = 1/2Z, so

γ=
1
p

2
(1+ eπi/2) =

p

i .

Why does this help? It’s a fact that for n even, the representation ρ factors through
SL2(Z/D), so θψ is a modular form of weight n/2 for Γ(D).
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Let’s discuss how to check the relations

(S2) = (ST )3 = γ2
Q w .

Let δx ∈C[G ] be the characteristic function of x and ex =Fδx , so ex (y ) = e 2πi 〈x ,y 〉. Write
e (Q) for e 2πiQ : G →C∗.

You can just compute that

F (e (Q)ex ) = γQ e−2πiQ(x )e (−Q)e−x .

etc.

Extra symmetries. The representation ρ is closely related to a natural projective repre-
sentation ρG×G of G ×G on C[G ]. This come from two different natural actions of G on
C[G ]. We take (g , 1) to act by translation (δx 7→ δx+g ), and (1, g ) acts by translation in
Fourier space, which comes out to

ex 7→ ex−g .

These don’t commute, but they commute up to scalar, hence descend to an action on
the projectivization.

The representation ρSL2 is compatible with ρG×G in the following sense. We have an
action of SL2 on G ×G . The (g , 1) and (1, g ) are switched by Fourier transform. This
means that for γ∈ SL2 Z,

ρG×G (γ(g , h)γ−1) =ρSL2 (γ)ρG×G (g , h)ρSL2 (γ
−1)

(equality up to scalar). You can check this on the generators. This property actually
almost characterizes ρSL2 . The reason this doesn’t characterize is because of issues with
projective representations (there is a centralizer, even for PGL2).

11.4. Moduli interpretation. The slogan of the moduli interpretation is:

Theta series come from sections of line bundles over the universal abelian
variety.

To explicate, a modular form is a section of a line bundle on a modular curve. Theta
series extend to sections on the universal abelian variety.

The more precise way to say this is as follows. Consider the moduli spaceM parametriz-
ing abelian varieties equipped with a symmetric theta divisor (the zero locus of section
of degree 1 ample symmetric line bundle, i.e. [−1]∗L ∼=L ). This has a universal abelian
varietyA with universal theta divisor O (Θ).

A

��
M

e

77

From this we get a divisor e ∗O (Θ) onM .

Theorem 11.4.1 (Mumford). We have

(e ∗O (Θ))⊗2 = e ∗(detΩ1
A /M )

∨ in Pic(M )⊗Q.
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Remark 11.4.2. The need to tensor with Q comes from the horrible mess of 8th roots of
unity that we saw earlier.

We get classical θ -series by pulling back a section of O (Θ) along the identity section.
(This accounts for the extra symmetries.)

Example 11.4.3. Consider
∑

q n 2 . We want to see how this is a specialization of a section
onA along the identity section. Consider

θ (q , z ) =
∑

n∈Z

z 2n q n 2

for z ∈ C∗. Then we can regard θ (q , z ) as a section of a line bundle over the eliptic curve
C∗/q Z. It satisfies

θ (q , z q ) =q−1z−2θ (q , z ).
So θ (q , z ) is a section of the corresponding line bundle on C∗/q Z.

Which line bundle is this? (For instance what is it’s degree?) When z 2 =−q , the theta
function become

∑

n∈Z

q n 2−n

which vanishes formally after grouping in pairs. So θ vanishes along the divisor cut out
by z 2 = −q , i.e. the line bundle is O (P1 + P2) where P1, P2 are the nontrivial 4-torsion
points.

Now that we know what the line bundle is, we can write down another section as
∏

m∈Z

�

1−
�

z 2

−q

�

q m
�

This doesn’t make sense because of all the negative terms, so we rewrite it:

θ ′ :=
∏

m≥0

�

1−
�

z 2

−q

�

q 2m
�

∏

m>0

�

1−
�

z 2

−q

�−1

q 2m

�

This θ ′ has the same transformation law:

θ ′(qz ,q ) = (z−2q−1)Θ′(z ,q )

and the ratio θ ′/θ is basically
∏

n≥0(1−q 2n ). Unwinding the precise relation gives the
Jacobi triple product formula.
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